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FOREWORD

(U) This report, SAMSO-TR-68-4, was prepared by the Radiation Labora-
tory of the Department of Electrical Engineering of The University of Michigan
under the direction of Dr. Raymond F. Goodrich, Principal Investigator and
Burton A. Harrison, Contract Manager. The work was performed under Con-
tract F 04694-67-C-0055, 'Investigation of Re-entry Vehicle Surface Fields
SURF." The work was administered under the direction of the Air Force
Headquarters, Space and Missile Systems Orgainzation, Norton Air Force Baseg|
California 92409, by Capt. J. Wheatley, SMYSP, and was monitored by Mr.
H.J. Katzman of the Aerospace Corporation.

(U) The studies presented herein cover the period 18 June 1967 through
18 September 1967,

(U) In addition to security requirements which must be met, this docu-
ment is subject to special export controls and each transmittal to foreign
governments or foreign nationals may be made only with prior approval of
SAMSO, SMSD, Air Force Station, Los Angeles, CA 90045.

(U) Information in this report is embargoed under the Department of
State International Traffic in Arms Regulations. This report may be released
to Foreign governments by departments or agencies of the U.S. Government
subject to approval of Hq. Space and Missile Systems Organization (SMSD),
Air Force Station, Los Angeles, Calif., 90045 or higher authority within the
Department of the Air Force. Private individuals or firms require a Depart-
ment of State lincense.

(U) The publication of this report does not constitute Air Force Approval
of the report's findings or conclusions. It is published only for the exchange
of stimulation of ideas.

SAMSO Approving Authority
William J. Schlerf BSYDR
Contracting Officer
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ABSTRACT

(S) This is the Third Quarterly Report on Contract F 04694-67-C-0055
and covers the period 18 June to 18 September 1967. The report discusses
work in progress on Project SURF and on a related short pulse investigation.
Project SURF is a continuing investigation of the radar cross section of metallic
cone-sphere shaped re-entry bodies and the effect on radar cross section of
absorber and ablative coatings, antenna and rocket nozzle perturbation, changing
the shape of the rear spherical termination, and of the plasma re-entry envir-
onment. The objective of the short pulse study is the determination of methods
of modifying the short pulse signature of cone-sphere shaped re-entry bodies
and of decoys. SURF investigations make use of experimental measurements
in surface field and backscatter ranges to aid in the analytical formulation of
mathematical expressions for the computation of radar cross section. A com-
puter program for determining the radar cross section of any rotationally sym-

metric metallic body is being developed.
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I
INTRODUCTION

(S) This is the Third Quarterly Report on Contract F 04694-67-C-0055,
"Investigation of Re-entry Vehicle Surface Fields (Backscatter (SURF)". It
covers the périod 18 June to 18 September 1967, Work under this program in-
cludes an investigation of methods to compute the radar cross section of cone-
sphere shaped re-entry vehicles both in and out of the atmosphere and a met-
hod for changing the short pulse discrimination characteristics of such re-entry
vehicles and their decoys. These studies are monitored by Capt. J. Wheatley
for the Space and Missile Systems Organization and by Mr. H. J. Katzman
for the Aerospace Corporation,

(S) The approach adopted in the SURF investigation makes use of exper-
imental measurements of the surface fields induced on various scale models of
re-entry bodies and related shapes to aid in the construction of a theory to ex-
plain radar scattering behavior and in the formulation of mathematical expres-
stions for the computation of radar cross section. In addition to the surface
field measurements, backscatter measurements are relied on to furnish sub-
stantiation of the theory being developed or to guide the investigation in areas
wherein surface field measurements alone do not provide adequate data. A
digital computer program is being developed to aid in the study of cases of
oblique incidence on the target and to provide supplementary data in cases
where the very low backscatter from the target is difficult to measure accur-
ately.

(S) The SURF program is a comprehensive attempt to provide radar
cross section formulas for such practical situations as may be expected to a-
rise. They include formulas for the following:

(a) The metallic cone-sphere and the cone with non-spherical mod-

ifications to the cap.
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(b) Modifications of the cone-sphere due to the addition of antennas
and rocket nozzles.
(c) The addition of absorbing materials to the cone-sphere surface.
(d) The effect of the re-entry plasma environment.
(8) Short pulse discrimination methods permit one to distinguish between

a warhead and accompaning decoys by a simple numerical count of the pulses
returned by each body. The short pulse investigation has been undertaken to
determine methods for countering this discrimination method and to recommend
penetration aids to accomplish this. The investigation in its early stages was
principally mathematical so that the basic theory of short pulse scattering can
be set forth, Its application to re-entry shapes now follows. Experimental
data is available at Lincoln Laboratory to be used as part of this analysis

should it prove desirable.

2
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II

TASK 2: EXPERIMENTAL INVESTIGATIONS
2.1 Introduction

(U) The experimental work for this Quarter was concerned with three
main subjects. It was carried out to furnish experimental data for the study
of (a) the effect on radar cross section of exposing the flush mounted antennas
which had hitherto, in studies up to this period, been covered by absorber
material; (b) the effect on radar cross section of perturbations to the cap of
the conical re-entry vehicle, including the effect of rounding the cone-sphere
join; and (c) the effect on radar cross section of the cone-sphere in the plasma
re-entry environment.

(U) The work on Item (a) originated in Agreement No. 2 at the Technical
Discussion Meeting held at the Radiation Laboratory on 3 August 1967. It was
requested that work be done "to perform surface current measurements of a
cone-sphere model when the coated material does not cover the antenna per-
turbations and to compare these results when the coated material covers the
antenna perturbations of same model." The surface field measurements were
completed. The comparison will be made during the next reporting period.
2.2 Surface Field Measurements of Coated Perturbed Re-entry Shapes (Tasks

2.1.1 and 2.1.2).

(U) In previous surface field measurements, dielectric spacers were
used to study the effect of placing flush mounted antennas near the tip or near
the join of the cone-sphere re-entry vehicles. The model with the spacer near
the tip is designated LSP and that with the spacer near the join is designated
LSH in the discussions which follow. These studies showed that the effect of
the dielectric spacers were strongly suppressed when the model was covered
with absorber. Based upon the surface field data alone, it was often difficult

to tell which model was underneath the coating, the metallic unperturbed cone-

3
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sphere, model LSP or model LSH. The study was thereafter extended to de-
termine the effect of exposing portions of the underlying body through annular
slots cut in the coating.

(U) Since the spacers are simulators of possible antennas, and since an
absorber coating would reduce the radiation efficiency of such antennas, one
would like to slice away the coating directly over the antenna to permit more
rf to be radiated. Slicing away the coating, however, exposes the underlying
structure to the incident EM wave and there is a strong possibility that large
local perturbations may be imparted to the surface field intensity. The series
of measurements described below thus represent a natural course of surface
field studies.

(U) No new models were constructed for the measurements and instead
several combinations of existing models and coatings were relied upon to ob-
tain the modifications shown in Fig. 2-1. There are four configurations for
each of two spacer locations, one near the tip and one near the join. The
models of Fig. 2-1la and 2-1b are simply conducting cone spheres having an
annular slot cut in the coating at a point corresponding to that of model LSP;
the slot is filled respectively with air or Lucite. The next two models, shown
in 2-1c and 2-1d, have the same coating configurations as those in 2-1a and
2-1b, except that the model inside the absorber sheath is model LSP and not
a plain cone-sphere. The same treatment is given to the models shown in
2-le and 2-1h except that the slot in the coating appears near the join instead
of the tip; the basic model for 2-le and 2-1f is a plain cone-sphere while for
2-1g and 2-1h, we have model LSH.

(U) In general, the measured surface fields behave as might have been
predicted; exposing the surface of the model beneath the absorber by means of

an annular slot in the coating produces a stronger field perturbation than when
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L OO B
580 ¢

FIG. 2-1: EIGHT CONFIGURATIONS WERE EMPLOYED IN
STUDYING THE EFFECTS OF AN ANNULAR SLOT
IN THE COATING.
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the coating is intact. The slot in the coating has less effect on the fields when
the spacer is near the join (model LSH) than when the spacer is near the tip
(model LSP). The effect is also weaker when the underlying model is a plain
cone-sphere and usually (but not always) the slot has a stronger effect when it is
packed with Lucite than when simply air-filled. Finally, as might be expected,
the effects are stronger for higher ka then lower ka, usually independently of the
model inside the coating. Each of the models of Fig. 2-1 was measured for nose-
on incidence at the following values of ka: 1.1, 3.0, 5.0 and 8.0. The results thus
form a set of 32 patterns, but we shall present only a selection of typical data.
(U) In Fig. 2-2 one can see the effect of the kind of model that has been
exposed b; an annular slot cut in the lossy sheath. The models used for this
comparison were five wavelengths in circumference and the slot in the coating
lay just aft of the join. The slot was filled with a Lucite ring whose width
matched that of the coating (so that the outer surfaces of both ring and coating
were a continuous profile and whose thickness matched that of the spacer used
in model LSH 1/4 inch). The dashed curve shows the surface field behavior when
the model under the coating is a plain cone-sphere and, although the fields are
small near the spacer because of the presence of the absorber on the conical
part of the model, there is a decided jump near the slot. When the model is
the LSH model, having a dielectric spacer electrically separating the front and
rear parts of the model, one also sees a jump in the fields near the slot, ex-
cept that it has a slightly different character than before (the solid trace). The
field intensity along the conical portion of the model show perturbations that
were nearly totally absent for a plain cone-sphere, suggesting that the depth of
the spacer used for model LSH has some influence. Whether the underlying
model is a solid one or one with a spacer also dictates the character of the
fields around the spherical portion of the body, as evidenced by the differences

shown in Fig. 2-2,
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(U) In Fig. 2-3 we present the same kind of comparison as in Fig. 2-2,
except that the ka is lower. The dashed trace shows the field when the model
inside the coating is a plain cone-sphere and the solid curve corresponds to
model LSH being coated. The slot cut in the coating near the join gives rise
to perturbations in both cases, but they are stronger with model LSH. Note
that, in addition to an enhancement of the periodic wobbles on the cone, the
fields around the back have been suppressed. The effects are apparently mag-
nified versions of those seen in Fig, 2-2,

(U) In Fig. 2-4 we see the effect of frequency on the surface fields of
the coated LSP model. This object, it will be recalled, has an isolated tip
antenna simulated by a 1/4" spacer near the tip. The data presented in Fig,.
2-3 are for ka = 5.0 and 1.1; the solid trace corresponds to the higher ka.
Note that aft of the slot cut in the coating the fields behave much as they might
on a solid cone-sphere coated with absorber. Forward of the slot we see a
strong perturbation for ka = 5, but the perturbation is nothing more than a
ripple for ka = 1.1. Thus the annular slot has a very small effect at low fre-
quencies, and can have a large effect at high frequencies, if the slot is situated
near the tip.

(U) One can also assess the relative effects of exposing the LSP and LSH
spacers by comparing the solid traces of Figs. 2-2 and 2-3. These traces are
for the same frequency (ka = 5.0) and it can be seen that the LSH model ex-
hibits less perturbation effects than the LSP one. This should come as no sur-
prize, for, it will be recalled, without lossy coatings the same relative, qual-
itative effects were noted in the Second Quarterly Report (Goodrich et al, 1967b).

(U) In addition to the studies described above, the effects of coating in-
dented base models was also investigated. It was difficult to fasten the ab-

sorber coating to the complicated, doubly curved surfaces around the bases of
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these models, so we simply stretched the coating across the back of the models, as
shown in Fig. 2-5. Three indented-base models were available (ID-1, ID-2 and ID-
3) from earlier studies and each was coated and measured at four frequencies, cor-
responding to ka = 1.1, 3.0, 5.0 and 8.0, The measurements were obtained for
nose-on incidence only.

(U) The resulting data (12 patterns) showed such marked independence on
the depth of indentation that we present results for ka = 5.0 as typical of all four
frequencies. In Fig. 2-6 we have superposed the surface field data for the three
models and since the data are substantially the same for each, we make no attempt
to differentiate one from the other. The fields along the coated cone decay as ex-
pected (based on measurements of coated cone-spheres) with slight periodic
wiggles that betray a possible reflection emanating from near the join. The
intensity builds up slightly near the tip, attaining a maximum value of about
1.4, then falls off to a value of about 0.6 at the join. Around the rear of the
model we see the greatest differences and amount to about 2.5 db.

(U) We thus conclude that it matters little how deep the base is indented
if the model is absorber-coated, and would guess that a coated flat-backed
model would behave precisely the same as the indented base models if the
first radius of curvature would be made the same.

2.3 Backscatter Measurements of Perturbed Shapes (Tasks 2.1.3 and 2.1.4)

(U) In addition to measurements of surface fields during this quarter, con-
siderable time has been expended in far field measurements of both ""clean' and
perturbed shapes. We hasten to point out that no measurements of coated, per-
turbed shapes were made. The subjects of the backscatter measurements were a
plain 15-degree (total angle) cone-sphere, model LSP (a 15-degree cone-sphere with
a simulated tip antenna), and a series of four flat-backed cones having varying ra-
dii of curvature connecting the cones with bases. The flat backed models are

sketched in Fig. 2-7.

11
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COATING

VOID INDENTED BASE

FIG. 2-5: THE COATING WAS SIMPLY STRETCHED ACROSS THE
BACK OF THE ID MODELS.
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0.188"R

12,077

0,376"R
12, 294"
0.564'R
12,511"
0. 751"R

FIG, 2-7: THE FINAL APPEARANCE OF THE MODELS IS SHOWN IN THE
SKETCHES, Beside each is the total model length, assuming

a perfect tip (a point) and perfect tolerance. Coneobase diameter
at point of tangency = 3.765" total cone angle = 18",
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(U) The radar cross section of each of the six models was measured as
a function of 'aspect angle for a host of frequencies. In all, a total of 286
patterns were recorded in order to obtain the close frequency spacing that was
desired. The nose-on, tail-on, and specular returns were read from each pat-
tern and then plotted as functions of ka; as will be shown in a later portion of
this report, the close frequency spacing was of considerable value in analyzing
backscattering behavior. We mention in passing that the return of model LSP
had been measured once before, but for only four widely separated frequencies,
and that the present data is of much more value than the earlier data.

(U) In Fig. 2-8 we have plotted the behavior of a metallic cone-sphere
for purposes of reference. Observe that the specular glint remains more or
less a steady 15 db above the tail-on return, and both increase with increasing
ka., The nose-on return shows the familiar oscillatory pattern as the join echo
goes in and out of phase with the contribution of the creeping wave. Note that
2.5 < ka < 6.8 for this figure.

(U) We have plotted the returns of model LSP in Fig. 2-9 and for the
sake of clarity have displaced the nose-on behavior downward by 25 db. Note
that the specular glint is much the same as for a cone-sphere in spite of the
presence of the insulating wafer between the tip and the main part of the object.
The tail-on return is severely perturbed for ka between about 4 and 7 due to
a wave that is launched toward the tip from the shadow boundary. The nose-
on return in this region is markedly enhanced over that of a plain cone-sphere
but there are no strong oscillations like those in the tail-on behavior. The
enhancement amounts to 10 db or more and is analyzed in a later portion of
this report.

(U) In Figs. 2-10 through 2-13 we present the backscattering behavior of
the four flat-backed models sketched in Fig. 2-7. In all four of these figures

the three returns have been displaced from each other for clarity and the

15
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reader is cautioned to inspect the appropriate scales before attempting to read
off any values from the plots. A cursory comparison of all four figures shows
the specular glints and tail-on responses to be nearly the same for the four
models but small differences persist due to the curvature near the join, It is
the nose-on cross sections that change from model to model,

(U) In Fig. 2-10 we see an oscillatory pattern in the character of the
nose-on return of model FB-1. A null appears near ka = 3.3 and the radar
cross section there is about -9 db)tz. This model has the sharpest radius of
curvature of the flat-backed cones. In Fig. 2-11, the null has drifted to about
ka = 3.2 and the return is about -12 dbhz. In Fig. 2-12, the null is becoming
pronounced and has moved to about ka = 3.1, reaching a depth of about -22 db)tz.
Finally in Fig. 2-13 the null appears slightly below ka = 3.0 with value of
=23 dbkz. In these last two figures we can see another null forming, near ka =
5.6 in Fig. 2-12 and near ka = 5.3 in Fig. 2-13; this second null appears to
be sharper than the first one. This phenomena could not be immediately ex-
plained by theory. A more detailed discussion is given in Section 3.2.

2.4 Effects of Radius of Curvature on Surface Fields (Task 2. 1.4)

(U) During this quarter a series of surface field measurements were
obtained for the FB models. Again, the ka values used were 1. 1, 3.0, 5.0
and 8.0 and the models were illuminated nose-on. The results of the measure-
ments for ka = 5.0 are shown in Figs. 2-14 and 2-15 and are typical.

(U) The effect of the radius of curvature near the join is clearly shown
in these figures. For model FB-1, the shape with the sharpest curvature, we
observe the strongest interference pattern in the field structure. The magni-
tude of the perturbation steadily decreases as we examine the responses on

models FB-2, 3, and 4, the fields on the last being perturbed least of all. We
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conclude that the radar return arising near the join should become progressively
lower as that radius increases. Indeed, inspection of Figs. 2-10 through 2-13
show that the average nose-on return falls approximately 6 db from the first
(Fig. 2-10) to the last (Fig. 2-13). The reader is cautioned to strike these aver-
ages carefully, for the scales are logarithmic and the return cannot be "aver-
aged" when expressed in decibels.

2.5 Re-entry Plasma Experiments (Task 2.1.5)

2.5.1 Introduction

(U) During the Third Quarter radar cross section measurements were
made on a flat-back cone covered with a wire grid (simulated plasma with no
loss) at S-band (2.1 to 3.0 GHz). Separate tests were performed on the un-
coated cone for reference and calabration purposes. The test results on the
perfectly conducting cone check out well with theory for nose-on, broadside and
end-on, but no theoretical explanations have been developed for the behavior of
a cone when it is covered with a wire grid. Typically the return from the
coated cone is reduced 5 to 13 db at nose-on whereas the return from the lobes|
away from nose-on is substantially increased compared to that for the perfectly
conducting cone. Examples of experimental results are presented and analyzed
for the tests made on the conical geometry.

(U) Additional work has been done on the flat plate covered with a wire
grid, a problem which was discussed in the last Quarterly Report (Goodrich
et al, 1967b). This Quarter, surface field measurements were made at angles
of incidence where the extraordinary lobe peaks and nulls appeared in the scat-
tering patterns for the coated flat plate. These measurements verified that
there were correspondingly large and small surface fields present in the lobe
peak and null regions. Further studies were made to determine if complex

of leaky wave modes could be supported by this geometry. For the lossless
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current sheath approximate calculations show that the complex poles of the
composit reflection coefficient are located in the vacancy of the extraordinary
lobe peaks. Work is continuing on the formulation of the leaky wave model
to fit our problem. Since this work is incomplete at the present time, it will
be presented in the final report.

2.5.2 Backscatter Cone Measurements

(U) A number of measurements were made on the conical geometry shown
in Fig. 2-16 at 2.1, 2.5 and 3.0 GHz and for VV and HH polarization. During
the tests the cone is mounted on a foam pedestal with its cone axis normal
to the axis of rotation. The distance between the target and transmit-receive
antenna was 25' which is L2/A (L is the slant length of the cone) instead of
the usual far field range 2L2/)t. This slight reduction in the far field range
did not cause any noticable effects in the scattering patterns.

(U) Referring once again to Fig. 2-1B, it is seen that the test model
consists of an aluminum flat-backed cone with half angle a, = 12.20, slant
length L = 363/8" and radius a = 7 5/8" which is covered by an open-base wire
grid cone with a - 14,5%, L = 361/2" and a = 9 1/4". The wire grid struc-
ture is supported by four foam rings which also act as spacers. The grid is
easily removed for making tests on the aluminum cone alone.

(U) Number 38 gauge copper wire was glued to a thin plastic sheet in
the form of 0.3" square inch grid to form the conical grid. When the half
angle cone of the grid is 14.50, it is easy to fabricate. The surface imped-
ance Zs of thin wire grid (neglecting curvature effect) is purely inductive,

ZS = jXS, and has the values 0,17 at 2,1 GHz, 0.2 at 2.5 GHz, and 0.24 at
3.0 GHz. These values are normalized with respect to fire impedance of free

space (Zo = 377 Q).
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FIG. 2-16: THE COATED CONE GEOMETRY.

(U) Figures 2-17 through 2-22 represent the experimental results ob-
tained for monostatic radar cross section tests made on the conical model. In
these six figures the upper pattern (a) is for the cone with the wire grid pre-
sent and (b) is with the grid removed (bare aluminum cone). It should be
noted that when the wire grid is present it only extends from the cone tip along
the slant-length to the base; the flat-back is exposed with no grid covering it.
Thus the return at 6 = 180° is about the same for the coated and uncoated
cases and serves as a secondary reference. In addition there is a calabration
reference mark on each pattern which is a thin, flat circular disc whose di-
ameter is 15 1/4", The patterns are arranged according to frequency and
polarization as indicated in the captions.

(U) Special attention is called to Figs. 2-18, 2-19, 2-21 and 2-22 where
additional raised plots also have been included in cases where the return went

off the low end of the recorder. The term "Regular RCS" means the unaltered
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FIG. 2-20: RCS PATTERNS FOR FLAT-BACK CONE (a) WITH WIRE
GRID (b) WITHOUR BRID, f = 2.5 GHz, HH POLARIZATION.

31

UNCLASSIFIED



UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN
8525-3-Q

el i I RS 7 TS G 8 R EPSH T P A
N I R 6 A PR O A rnr ok [ 711l ke, gRao] (s

"

EEmar

!
LATIVE POWER (dby—

(a)

D |
i
]

3 L3 >
]

L E L FEEEE T
ot
T
[
]

n g

I ol 1 o e R 50 ot A AN S e A FO o

P
BT

|
1

° T — : N - A SR - -
- =T

D -
L
-]

|
1
I\NNN
T
!
|
I
I T

: R I R R
g
! i
: i nv.h‘
1
|

-]
i :

o e
§|

g

! —— 11 . R S GO ot
. 1

—
o
~—
|
T

I
f
—'——t——i_-,_ | \
i 7 ~
r
I
|
I
I

»N
il i -] }

A - H !
RELATIVE POWE| (""‘
|

A_\ REQULAR.

|

>

|

T :

Pieeale 4w
R
w__..__"__‘-

|

|

T
)
|
1
!
F R o o e o i - o 3 e i s 8 5o I e o S O e o =
e e LR O 0 S 61 31 R A1 S Rt O RO L it N e et el I e e

-
—
o

SURSTTEGR [0 (S0 RO IOV DR NolY It ot

o
—

1
!
iy

IR EER! ) OO I ; ; T ElE
M N | H A HIEIREN B EENEIN
| HECHR R B B i ERC A N ERRES il

¢
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return which corresponds to the same level as the rest of the pattern and the
term '"Raised 10 db'" means that 10 db of attenuation was removed from the
receiver in order to raise the return so that more of the lobe structure can
be observed.

(U) The aspect positions 6 of the model for all the scattering patterns
is such that 6 = 00 is nose-on, 6 = 900 - a is broadside, and 6 = 1800 is
end-on or the back of the cone. In the discussion which follows all cross-
section values will be normalized to the end-on return at § = 180°. If for any
reason the absolute value is desired, it can be determined by calculating the
radar cross section for the flat circular disc from the expression

2,2
Cgise - T a (ka) (2.1)

where a is the radius of the disc and k is the wavenumber 27 /).

2.5.3 Analysis and Evaluation of Conical Measurements.

(U) Unfortunately no worthwhile theoretical model has been developed to
predict the radar cross section for the flat-back cone when it is covered by a
wire gird. For that matter we still are unable to completely explain the be-
havior of the flat plate covered with a wire grid, although as pointed out ear-
lier we are still working on the flat geometry problem and hope to have a
better understanding of it before the final report.

(U) Even with a better understanding of the coated flat plate problem,
there is no assurance that this will enable us to comprehend this problem
better in the conical geometry. It has hoped that there would be an opportunity
to study the cylinder problem in order to gain an insight into the coupled mode
behavior before attempting to do the coated cone, but time will not allow this

approach.
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(U) Since no theoretical mode is available for determining the radar
cross section of the coated flat-back cone careful calibrations were made with
the perfectly conducting (aluminum) cone before each test on the coated cone
as indicated in Fig. 2-17 through 2-22. Broadside and nose-on comparison
are made between theory and data for the base cone. All comparisons are
normalized to the end-on return which is given by the expression in Eq. (2.1).

(U) When a flat-back cone is large compared to wavelength X, the return
at nose-on (6 = Oo) is determined by the rim return which is well approximated
by (Siegel, 1960)

(o} 2 2m -2
o(07)= 7a 133/2 + afn) sin ( m )j] . (2.2)
A more accurate expression which takes into account second order diffraction
from the rim has been presented by Keller (1960).

(U) At broadside, 6 = 90° - a, the radar cross section for a large cone

is approximately (Crispin et al, 1959),

0(90 - ) = ETiiEﬁZ ka L° (2.3)
when L is the slant-length of the cone. For half cone angles o less than 200,
Eq. (2.2) is about 1/2 the broadside return of a right circular cylinder whose
radar cross section is ka L2.
(U) After expressions (2.2) and (2.3) are normalized to (2.1), they be-
come
0(00)

a(180°)

‘ -2
= [ka(S/z +afr) sin ((3—5-%%7”—) )jl (2.4)
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and

0
o (90 ;a) i} 4 (L/a)2 . (2.5)
a(1807)

9r ka cos «

These two equations are plotted in Fig. 2-23 as solid lines along with exper-
imental data taken from the b patterns of Figs. 2-17 through 2-22. Figure
2-23 discribes the relationship between radar cross section at nose-on and
broadside relation to end-on as a function of frequency.

(U) The agreement between theory and data is good for the bare cone
and therefore it is expected that the data for the cone covered with the wire
grid is as reliable. There is some question about the behavior of the wire
grid near the cone tip, but since in the case of large ka and kL the dominant
return is from the rim at the cone base where the wire grid behaves like it
does in the flat plate geometry, it will be assumed that wire grid does sim-
ulate a thin, lossless plasma sheath until we can prove otherwise.

(U) After one examines all the patterns in Figs. 2-17 through 2-22 in

0
the aspect region between + 60, two general comments can be made:

(a) The nose-on return with the grid present is reduced 4 to 13 db
compared to the bare cone case

(b) the lobe-peaks away from nose-on are increased as much as
10 to 15 db for the cone covered with the grid compared to

the bare cone.

In more realistic plasmas, collision effects (losses) are present and these
would tend to reduce the effects of statement (b) and in general would reduce
the over all radar cross section, Also it is noticed that the return at broad-
side, 6 = 90° - a, is about the same with or without the grid present. This is

similar to behavior of the flat plate at normal incidence.

36

UNCLASSIFIED



UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN

8525-3-Q
r
-4 (o) 0!90 - a)
o4 | ]
B
-8
12
-16 O HH Polarization
X VV Polarization
- (o}
b ¢
1 | 1 | 1 | 1 | 1 |

2.0 2.2 2.4 2.6 2.8 3.0
Frequency (MHz)

FIG. 2-23: COMPARISON BETWEEN THEORY AND EXPERIMENT
FOR THE PERFECTLY CONDUCTING FLAT-BACK

CONE.

37

UNCLASSIFIED



UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN
8525-3-Q

(U) The preliminary test results shown in Figs. 2-17 through 2-22 in-
dicate that a thin, lossless plasma coating around a flat-back cone can effect
the radar cross section in the nose-on region in an appreciable way. These
experimental results show enough change in radar cross section to make fur-
ther theoretical investigations worthwhile. In the time that remains in the
contract our efforts will be directed towards trying to explain the measured
results we have on the flat and conical models covered with the simulated

plasma sheaths.
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I
TASK 3: THEORETICAL INVESTIGATIONS

3.1 Radar Cross Section of Conical Vehicles with Indented Rear Caps

3.1.1 Introduction

(S) In the investigation of the radar scattering behavior of conical veh-
icles with indented rear caps, similar to that of the Mk-12 re-entry vehicle,
the background studies reported in Goodrich et al (1967a) and the continuing
study reported in Goodrich et al (1967) used expressions for the creeping wave
and the join contributions which were conceptually erroneous. In these next
two sections, the correct expressions are derived and set forth explicitly for the
indented rear cap model (referred to in the tet as an ID model) viewed at nose-
on incidence. In Section 3.1.4 a comparison is made of these analytical re-
sults and radar cross section data.

3.1.2 The Creeping Wave Contribution for a Non-spherical Body - With

Application to Indented Rear Cap

(U) The profile of the rear part of an indented base model is shown in
Fig. 3-1. As regards the longitudinal curvature (in the plane of the paper), the
radius is b from the join back to beyond the rear-most point, and then changes
abruptly to a radius c through the indentation. Models ID-1 and ID-2 have the
same value of b, but different values of ¢. At all junctions in the profiles,
however, the tangents are continuous.

(U) Since the half-cone angle o is small, the radius of the body at the
shadow boundary is insignificantly different from that of a pure cone-sphere,
and will therefore be denoted by a. For each model, a = 2,210 in., b = 0,553
in, Thus, b is small compared with a, suggesting that we use a cylindrical
analogy in the derivation of the creeping wave component. The expression for

the far field amplitude that then results is
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FIG. 3-1: PROFILE OF INDENTED CAP.

. 2ik(a-b)+i 7 /4 2/3
S=-1 ka e TP & <k2£> @ +
v2k (a - b)
J7/6 ,1/3 -11T 2
(1 +3/B) exp (-EB e
30~F (kb)2/3 ZS: ‘AI( 5, }2
(3.1)

where & = 7/2 (kb/2)l/ 3, the B are the zeros of the Airy function derivative,
i.e. Ai' (—BS) =0, and G(E) = ( )(S) is the function tabulated in Table T, pp. 8
through 18, of Logan (1959).

(U) An elementary explanation of the various factors in the expression
for S is as follows. A surface wave is "born'" at the shadow boundary with
birth weight Band travels a distance 7/2 b around the surface, decaying as it

goes. It is there launched with a launch factor L. The energy thus radiated
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is subject to a ''space' variation

- T
ikR- 4)
e
1 s

ey

where R is the distance from the launch point. Note that this is a cylindrical

approximation, as is the approximation to all other factors employed in the
analysis. The above energy strikes the surface again when R = 2(a - b),
leading to a new creeping wave which proceeds around the remainder of the
surface to the shadow boundary. Energy radiated at this point contributes to
the backscattered return, but to get the total contribution we must add up the
returns from elements all around the ring. The factor introduced by this add-
ition is denoted by F.

(U) For a hard cylinder of radius b, using only the sth creeping wave:

1 1

L= 5aica) /2

1/3 in/3
B AL(B)  ° M7 2AI(B)

B =

and the decay rate is Bs/kb (kb/2)1/ 3 em/ 3. Thus, a birth-progress-launch

procedure leads to a product

T T
ik = b iy i€
o 2 1 . (kb/2)l/3 R
28, {Al (-BS)}
which, on summing over s, becomes
ik” 1/3
T e (kb/2)"' " §

since
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LT
6 exp {ig‘Bs e /3}

oW T i)

After the first launch the energy is modified by the 'space" factor
o1 {2 D) - 7/4}

VZk (a -Db)

before experiencing the above product of factors again. It is then "focussed"

i

via a factor F = ka, and the net result is the expression given in Eq. (3.1)
with the terms in square brackets replaced by q(¢) alone. We remark that
the additional terms, representing a correction to q(£), are provided by the
second decay terms in the creeping wave expansions, which terms are known
to be important (Senior, 1965) when kb is not large.

(U) Inasmuch as the above expression for S is an asymptotic one for
large kb, it is to be expected that its accuracy will decrease as kb gets smal-
ler, and based upon our experience with the expression for the sphere creeping
wave, the best that we can hope for is that (3.1) will be numerically effective
for kb > 0.7. Unfortunately, for the ID models, this restriction limits us to
ka > 2.8 and leaves an appreciable range of ka not covered by our formulas.
Nevertheless, it is necessary to employ the formula (3.1) for all values of ka
of interest, including those less than 2.8, and to appreciate the behavior of the
far field amplitude, Eq. (3.1) has been computed in amplitude and phase (de-
grees) for a variety of ka > 1.0. A selection of the computed values is given
in Table III-1. It will be observed that the phase is, over an extended range
of ka, almost a linear function of ka, and thus, for 5.0 < ka < 10.0, the
best fit straight line is
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arg S = 137.028 ka + 187. 385 (degrees) , (3.2)

0
with a maximum error of less than 1.4 over the above range of ka. Bearing

in mind that the geometrical path length is
b+ 2(a-Dhb), (3.3)

the effective (average) phase velocity of the creeping wave implied by (3.2)
is 0,9433 c.

(U) We also observe from Table II-1 that S continues to increase with
ka until ka is almost 20, and only beyond this value does the decrease provided}
by the exponential decay for large ka overwhelm the increase produced by the
algebraic factors. The maximum value of S (approximately 0.407) is some-
what less than the maximum value 0.450 achieved by the creeping wave for a
pure sphere, and in Fig. 3-2 we show the moduli for the two creeping waves.
If the creeping wave were the only contributor to the nose-on backscattering
cross-section, the cross-section of the ID model would be less than that of
the corresponding cone-sphere for ka < 9.4, but greater for ka > 9.4; there
is, however, a join contribution as well, and since this is different for the two
bodies (Senior, 1967), no immediate conclusion about the relative values of the
nose-on return is possible.

3.1.3 The Join Contribution for Perturbed Cone-Spheres - With Applic-

ation to Indented Rear Cap.

(U) As emphasized by Senior (1967), the join contribution Sj is crit-
ically dependent on the geometrical properties of the cap in the immediate

vicinity of its junction with the cone, and the formula

2ikh

sec2 ae , (3.4)

e
NP
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TABLE III-1: Creeping Wave Contribution for ID Models

ka IS | arg S (degrees)
1.0 0. 14795 256.273
1.1 0. 15000 275,939
1.2 0. 15326 295,077
1.3 0.15671 313. 561
1.5 0.16368 348. 953
1.8 0. 17702 399. 660
2.0 0. 18522 432,038
2.5 0.20690 509. 993
3.0 0. 22679 584. 960
3.5 0. 24460 658. 078
4.0 0.26178 729, 887
4,5 0.27615 800. 855
5.0 0.29044 871. 060
9.9 0. 30237 940. 824
6.0 0.31376 1008. 119
6.95 0. 32487 1085. 980
7.0 0. 33249 1147, 865
7.5 0. 34149 1216. 276
8.0 0. 34886 1284. 567
8.5 0. 35515 1352, 743
9.0 0. 36189 1420. 638
9.5 0. 36749 1488. 468
10.0 0. 37205 1556. 251
15.0 0.40144 2229, 094
20.0 0.40696 2897, 420
25.0 0. 40060 3563. 325
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where « is the half-angle of the cone and h is its vertical height, is valid
only for a pure cone-sphere. In particular, for the ID models, the appro-
priate join contribution differs considerably from this, and has a significant
effect on the backscattering cross section for near nose-on angles of incidence.
It is therefore desirable that we set down the required expression for the ID
shape, and since we can approximate the oblique incidence behavior as we did
for a pure cone-sphere by using a Bessel function factor Jo, it is sufficient
to confine attention to nose-on incidence.

(U) Consider a plane wave at nose-on incidence on a conical body con-
sisting of a cone of half-angle o and vertical height h, terminated in a cap whose

profile is defined as

p=rp(2), (3.5)

where z is a coordinate running along the axis of the body from an origin at
the tip. If the tip is also chosen as the origin of phase, the scattering ampli-

tude associated with the join is (Senior, 1967)

. 2 . .
1Ztam o (2ikh - 1)e? KB 4 2 R (pg‘S) dz . (3.6)

h

S, = -
j

~The first group of terms originates with the cone, and the integral with the
cap. Note that the integral is to be evaluated only at a lower limit, z = h,
from which it is evident that only the profile in the immediate vicinity of the
join is significant as regards the join contribution. It follows immediately thaﬁ
the ID models, all of which have the same profile from the join back to be-
yond the shadow boundary,i all lead to the same expression for Sj‘
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(U) For a pure cone-sphere, the profile of the cap is part of a circle
of radius h tan o sec @ with center at z = h se02 «. With the ID models, the
cap profile for some considerable distance beyond the join is also part of a
circle, but of smaller radius b (say), and since the tangents are continuous at
the join, geometrical considerations require that the center of the circles be at
p=htana - b cosa, =z =h+bsina The equation of this part of the pro-

file is therefore
2 . 2 2
(p-htanae +bcosa) +(z-h-bsina) =b , (3.7

implying

2 K
p=htana -b cosa+Vb cos2a+2(z -hbsina - (z —h)2 . (3.8)
Note that the overall radius of the body at its shadow boundary, that is, its
maximum radius, is h tan ¢ + b (1 - cos @), and for small « this is insign-
ificantly less than for a pure cone-sphere.
2
(U) For use in Eq, (3.6) it is p , rather than p, that we require, and

from (3.8) we have

2
p2 :hztan2a+2(z-h)htana—(z-h)2+2)ﬂ)cosa{bcosa +

+ (z-h)tano - \/bz cosza+2(z - h)b sin @ —(z—h)2 } (3.9)

where

X=1-%ta.naseca. (3.10)

Since X is zero for a pure cone-sphere, the first group of terms in Eq. (3.9)
are those appropriate to a cone-sphere, with the remaining terms showing

the modification to p2 produced by the indentation,
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(U) We have now only to insert (3.9) into (3.6) to determine Sj' It is
convenient, however, to make use of the general result (Senior, 1967) which

2
says that if, in the vicinity of the join, p is expanded in the Taylor series

2 2 n
A a (z-b)", (3.11)
n=0
then
. : .
o2l (p%f) dz =:21- a_ I - Sl (3.12)
n=1 (-2ik)

h

As regards the first three terms on the right hand side of (3.9) a = h tan a,

a =2hta.n2a, a

. = -1 and hence, from (3. 6),

2

8p1>
19z . dz (3.13)

S. = i seczoz e‘?'lkh + 2ik2 Xb cos o e21kz (p

]
h
with

o\

p? = b cosa 4-(z-h) tanc —'\/bzcosza+2(z—h)b sina - (z -h)2 . (3.14)

As expected, the first term in the expression for Sj is simply the result for
a pure cone-sphere,
(J) The expansion of p? in a Taylor series of the form (3.11) is a te-

dious but straightforward task, and for the first seven coefficients we obtain

ao=0, al=0

2b cos3 o 2b2 cos4 o
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2 2
_1ltotan a 4 - 3(1 + 7 tan"a)tan o
3 5 ’ = -
4 8b cos « 5 3b40056a

(1 + 14 tan2 a + 21 ’can4 a) tan «

7
16 b5 cos «

Insertion into (3.12) and thence into (3.13) now gives for the join contribution:

S, =
]

INES

2
i +
se020821kh[1_x{1 o gtme 3(1+5 tan 2,
(2 kb cos a)

2
45(1 + 7tan o)tan a N 45 (1 + 14 tanza + 21 tan4ar) +
4
(2 kb cos 0)3 (2 kb cos @)

+ 0 [(2 kb cos a)—sj }J . (3.15)

(U) Unfortunately, we have now run into the sort of difficulty that so

often confronts us. If X % 0, that is, if the body is not a pure cone-sphere,
the expansion on the right hand side of (3.15) is feasible for computation only
when 2kb cos « is large compared with unity, and this is true even for small
. In contrast, it is values of kb near unity (say 0.5 < kb < @) which are of
most practical interest.

(U) To investigate further the nature of the expansion in (3.15) it is
necessary to compute terms beyond those shown above, and because of the in-
creasing complication of the terms as their order increases, any exact com-
putation rapidly becomes extremely tiresome. On the other hand, if o« is so
small that terms involving ’can2 @ can be neglected (so that, for example, ag
is approximated as tan o/ 16b500s7a), the calculations are rather trivial. Thud

we have that a =a_ =0
0 1
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2
o (2n)! sec «
a - 1 ! + ’ n —>- 0
2n+2 n! (n+ 1)! (2b cos a)2n 1
(2n)! s 2 t
~ _ (2n)! ec a tan o 0> 1

a —
2 2
2+l (n!) (2b cos @) n

and hence, from Egs. (3.12) and (3. 13)

s :iZ sec® o o2lkh [1 - x{1 +(1 + 2ikb sin a) «
(2n)! (2n + 1)! (‘1)n
e 5 . (3.16)
n=1 (n!) (4kb cos a)

The asymptotic nature of the expansion is now apparent, and for given kb the
mere insertion of additional terms into (3.15) provides no guarantee of im-

proved accuracy. Indeed, for ka as small as 2 (or even 1), it is possible

that the best numerical extimate that can be obtained from (3. 16) is that com

puted using the first term in the infinite expansion, namely

] - 3(1 + 2ikb sizn a) }:] . (3.17)
(2 kb cos @)

S, =
J

NS

2 2i
sec aelkh [1 -X

(U) For kb still smaller than this, we can seek an alternative expres-
sion for S, as a series of increasing positive powers of kb. Inserting (3. 14)
into (3.13) we have

S, =
]

INIES

sec2 a ezlkh + ik2 Xb cos « e21kz {tan o+

h

(3.18)

+ 2z-h-bsmar 7}dz
1/b —(z—h-bsinar?

o0
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which can be reduced to
Sj = IZ e21kh{ sec2 a + 2ikXb sin o + 4k2 b2X cos a -

eZikb (sin B + sin a)

sin B dB} (3.19)

-

by evaluating the first term in the integrand of (3.18) exactly, and making the
substitution z - h - bsin @ = b sin 8 in the second term. If kb << 1, the

exponential in (3. 19) can be expanded as a power series, giving

2i inf3 +si 2
e ikb(sin8 sma)sianB=cosar+ikb(a/+sinoz cosa)+ 0 [(kb):l .
-a
Hence
S, = 1Zsec2 a e2lkh l:l + 2ik Xb cosza { sin a - 2ik b 0052 a +
2 ) 3
+ 2(kb) (@ + sin @ cos @) + O l:(kb)}}} , (3.20)

but from the nature of the higher order terms in this expansion it is probably
that the region of mathematical validity is limited to kb < 0.2, Values of kb
as small as this are of little practical concern and, in addition, are such as
to give little confidence in the validity of the physical optics approximation on
which Eq. (3.6), and consequently Eq. (3.20), are based. Indeed, whereas
Eq. (3.20) indicates that Sj approaches the join contributi0121 for a pure cone-
sphere, modified by only the numerical factor 1 - 2ikh sin o, as kb — 0,
physical reasoning would suggest that the contribution in this limit should re-

semble the flat-backed cone result, namely

o1
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. 2 .
S. = - Lian® o e21kh (2ikh - 1) . (3.21)
j 4
flat
In contrast, from Eq. (3.20)
S, — - tanz a e21kh (2ikh - cosec2 a) , (3.22)

jkb—>0 4

and the difference between (3.21) and (3.22) is numerically significant* for
small a.

(U) In spite of these difficulties, Egs. (3.17) and (3.20) are the only
ones at our command for the estimation of the join contribution associated
with an ID model, and we have no alternative but to use them for cross sec-
tion prediction purposes at all frequencies of interest. Each ID model is such
that b = a/4, where a is the base radius of the corresponding cone-sphere.

Thus, X = -3 and if we write

A (kb) sec2 o e21kh , (3.23)

N L

S, =
J
then according to Eq. (3.17)

91i tan o sec « 98e02a
A(kb) = 4 - 2L £ - , (3.24)

2kb ( 2kb)2

whereas according to Eq. (3.20)

2 2 4
A(kb) = 1 - 6ikb sin @ cos” a - 12 (kb)" cos o -

3 2
- 121i (kb) cos a(e + sin a cos a) . (3.25)

"To the leading order in kh (high frequencies), however, (3.21) and (3.22)

are identical.
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These expressions have been computed in modulus and phase a functions of kb,
and the results are shown in Fig., 3-3. Note that the cross-over point for the
moduli is almost identical (at kb = 0,58) to the cross-over point for the phase,
suggesting that Eq. (3.25) should be used for kb < 0,58, and Eq. (3.24) for

kb > 0,58. Mathematically at least this is quite satisfying, but the nature of
the resulting (combined) curve is sufficiently peculiar to cast doubt on the meam
ingfulness of the computed values for (say) kb < 1. On the other hand, for

kb > 2 (say), the results seem unquestionable, and the quite large values of

| A(kb)(, asymptotic to 4 as kb - m, will be the source of quite substantial
increase in the scattering from an ID model in comparison with that from a
pure cone-sphere.

3.1.4 Nose-on Radar Backscattering Cross Section of ID Models - Com-

parison of Analysis and Experimental Data.

(U) We shall now employ the new results described in the previous two
sections in the computation of the nose-on cross section and compare the pre-
diction with measured data. It is convenient to begin with a few remarks
about the experimertal data available for the ID models, Values of the nose-
on backscattering cross section have been measured at a series of discrete
frequencies for each of the models ID-1 and ID-2., These two models are
characterized by the same half-cone angle o, the same radius, a, of original
spherical cap (i.e. transverse radius of curvature at the shadow boundary),
and the same radius, b, of cap at the join (i.e. longitudinal radius of cur-
vature at the shadow boundary). Only the radius c¢ of the concave indentation
serves to distinguish them, and since the theoretical estimates of the join and
creeping wave contributions are functions of a and b alone, and are indepen-
dent of ¢, it is to be expected that the measured values of the nose-on (and
also oblique angle) cross sections the two models will be identical. This

turns out to be the case.
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(U) In Table II-2 are shown measured values for the nose-on cross
section of model ID-1. The measured values for model ID-2, are plotted as
functions of ka in Fig. 3-4, and superimposed are the points appropriate to

model ID-1. The agreement is very good and confirms the conclusions of the

theory.
TABLE III-2: Nose-on Cross Section of Model ID-1.
2
ka Frequency (GHz) Pattern No. o/x" (db)
2,98 2.53 3969 -11.8
3.96 3.37 3978 -4.8
4,51 3.83 3980 - 3.6
6. 74 5.73 3962 - 0.4

(U) In order to appreciate the change in the nose-on cross section pro-
duced by the indentation, the curve based on the experimental values for
model ID-2 is reproduced in Fig. 3-5 along with the theoretical curve for a
pure cone-sphere of the same base radius. The latter curve is known to
constitute an accurate estimate, and has been taken directly from Fig. 3-6
with the creeping wave enhancement given by the standard empirical factor.
We observe that the locations of the maxima and minima are different for the
two bodies, thereby emphasizing the futility of using isolated measurements
of the cross section to determine the merits of either body, and that on aver-
age the indentation has increased the nose-on scattering by (about) 8 db over
this range of ka.

(U) Let us now compare the measured data for the nose-on cross sec-
tions of models ID-1 and 2 with the theoretical estimate based on the formulae

in Sections 3.1.2 and 3.1.3. The theoretical expression from which to com-
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pute the estimate is
2 1 2
= = + +
a/x — |8, t8, + 8,
where*
i 2 -2ik (a cot @ cos @ + b sin «)
S1 = _Z tan ae

is the tip contribution;

2 -2 ik b sin o
ae

S = Zl sec A (kb)

2

is the join contribution, with the factor A(kb) as given in Section 3.1.3 and
S3 is the net creeping wave contribution which differs from the function dis-
cussed and computed following section 3.1.2 only in an enhancement factor.
This last arises from the "overflow' of the traveling wave on the side of the
cone, and is expected to be identical to the factor vy for a pure cone-sphere.
For large ka, v can be computed from its asymptotic approximation given be-
low:
B
v = [2 (1/3 + Ai(-x)dx{l+l/2(ka/2)2/3 012 emiﬁ/3 }

0
+ (ka/2)2/3012 e 17 ﬁAi(-Bﬂ exp{—(ka/Z)l/S af e_”/6} (3.26)

but for small ka ( < 3, say), the empirical formula must be used; for con-
venience, therefore, we shall use the empirical formula for < throughout the

range of ka required for the reproduction of the ID model data,

E3
For each contributor, the origin of the phase has been taken to be at the

shadow boundary.
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(U) As noted in Section 3.1.3, the range of ka spanned by the exper-
imental data is a difficult one because of the relatively small values of the
corresponding kb. Indeed, the break point between the low and high frequency
approximations for A(kb) falls right in the middle of this range and, in truth,
there is no real basis for confidence in the accuracy of either formula. Never-
theless, it is necessary for us to compute A(kb) in order to predict the nose-
on scattering, and to see which of the several possible approximations for
A(kb) is most effective is reproducing the measured data, a preliminary com-
putation was performed in which (i) the (small) tip contribution S1 was ne-
glected, (ii) the creeping wave enhancement factor Y was replaced by unity,
and (iii) A(kb) was determined first from the union of the high and low fre-
quency approximations (see Fig. 3-3, Section 3.1.3), and then was taken to
be 4 (leading term in the high frequency expansion) throughout the entire
fange of ka covered by the experimental data. The two curves resulting from
these preliminary computations are superimposed upon the experimental points
in Fig. 3-7. Not surprisingly, the curves differ considerably from one an-
other for ka less than (say) 4, but are in very close agreement for the larger
ka. With A(kb) taken equal to 4 for all ka, the curve fits the experimental
data quite well near to the maxima in its oscillation, but does not reproduce
the deep minimum centered on ka = 3.3. On the other hand, the more com-
plete high frequency expression for A(kb) does reproduce the minimum, but is
less accurate at the maxima; and since the low frequency expression for A(kb)
appears quite irrelevent the composit (low /high frequency) expression is unsatis-
factory. Indeed, the best agreement with experiment is obtained by using the
high frequency expression for A(kb) for ka > 2 (approx), and then transfering
to the value 4 for A(kb) for values of ka less than 2. This leads to a
continuous curve for the theoretical estimate, albeit one having a discontinuity

in slope at the transition point, and constitutes a tolerable approximation to
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the measured data. This is, in fact, the approximation that will be used
hereafter, and for a model with concave indentation in the base the postulated

expressions for A(kb) are

kb < kbl : A(kb)

kb>kb1 : A(kb)=1-Xl-{

1-X

3(1 + 2ikb) sin « }
2
(2kb cos a)

with X = 1 - a/b. The value of kb1 is chosen to provide continuity of the
resulting cross section estimate for the body, and for an ID model with b =
0.2502 a (X = 3), kblz 0. 50,

(U) With the tip return included, the creeping wave contribution duly
enhanced using the empirical factor, and A(kb) defined as above, the nose-on
cross section of an ID model has been computed, and is shown as a function
of ka in Fig. 3-8. The agreement with the measured data is adequate, though
not exceptional, and in defense we note again the quite small values of the
associated kb throughout the range covered by Fig. 3-8.

3.2 Backscattering Cross Section of FB Mdels

3.2.1 Introduction
(U) The FB models are rounded flat-backed cones of the character

shown in Fig. 3-9. A cone of half-angle 9° and base radius, a, of 1.878 in

is smoothly terminated in a toroidal portion of (longitudinal) radius b, which
portion is itself smoothly terminated in a flat back. Tangents are continuous
at all joins and consequently, on the assumption of perfect tolerances and

modeling, the parameters of the body are as follows:

overall length acota+b(l +sin q)

maximum radius a+b(l -cos 0

Radius of flat back a->bcos «a
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FIG. 3-8: COMPARISON BETWEEN THEORY AND EXPERIMENT FOR
MODEL ID-2.
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FIG. 3-9: BASIC FB SHAPE.

where o is the half-cone angle (=90). Each of the models which have been
constructed have the same a and «, but differ in their values of b. Some per-

tinent dimensions are given in Table III-3. It will be observed that even for

TABLE III-3: Dimensions of FB Models.

Model | a(m.) | bGn.) | a/b | b(l-cosa)in. | %% ; ’;f.(l *
FB-1 | 1.878 | 0.188 | 10 0.0023 12.075
FB-2 | 1.878 | 0.376 | 5 0.0046 12,292
FB-3 | 1.878 | 0.564 | 3.33 | 0.0069 12.510
FB-4 | 1.878 | 0.751 | 2.5 0.0092 12,726

model FB-4 the maximum radius exceeds the radius of the conical base by

less than one-half percent, and accordingly it is sufficient for all purposes of
computation to treat a as the maximum radius, which is therefore the same
for the four bodies. The analysis which is reported in the next two sections
is continuing. It is anticipated that better agreement of computed data with

experimental data will result as the analysis develops.
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3.2.2 Nose-on Backscattering Cross Section of FB Models

(U) Complete backscatter patterns have been measured at &« seriec of
frequencies spanning the range 1.0 < ka < 5.8, and from these the values of
the nose-on cross section have been read. The results are plotted as functions
of ka in Figs. 3-10 and 3-11. There are several features that should be
noted. For each model the data points show a regular cyclical variation as a
function of ka, with no evidence of any superposed oscillation of higher fre-
quency, and it is therefore concluded that the scattering is made up of two
dominant contributors whose amplitudes (and associated phase centers) vary
only slowly as functions of ka. In particular, there is no indication of any
abrupt change in the character of the curves within this range of ka. The
positions of the maxima and minima show a slight but systematic displacement
to larger values of ka as b/a decreases, and this is consistrnt with the re-
duction in the path length of any wave circumscribing the base,

(U) For ka less than the value corresponding to the first maximum in
the cross section, the scattering is almost independent of b/a -- and, inci-
entally, very similar to that for a flat-backed cone of the same base radius.
As ka increases, however, the differences between the results for the four
models become more pronounced. Thus, for model FB-1 (b/a small), the
first minimum is realtively shallow and the second maximum much higher than
the first (by about 6 db): in this respect the results are comparable to those
for a flat-backed cone. But as b/a decreases, the second maximum rapidly
falls to a level little more than that of the first maximum, with the minima
becoming much more pronounced. Indeed, for model FB-4 the first minimum
is 18 db down on the level of the maximum, and the second minimum is 2 db
lower still. Clearly, for this model the two contributors must be almost
equal in magnitude at the position of the minima and, hence, may well be com

parable throughout the intervening region as well.
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FIG. 3-11: MEASURED NOSE-ON SCATTERING DATA FOR MODELS
FB-3 AND FB-4.
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(U) If the measured nose-on scattering cross section of model ID-2
(see Fig. 3-4 of Section 3.1.4) is compared with the data in Figs. 3-10 and
3-11, the curve is found to lie mid-way between the curves derived from the
data points for FB-2 and FB-3. This is entirely reasonable since, for model
ID-2, b/a = 4, and confirms that the indentation has no effect on the cross
section at least for nose-on incidence.

(U) The theoretical prescription for the cross section is, of course, the
same regardless of whether the back is flat or indented, and depends only on
the values of ka and a/b. It will be recalled that the numerical estimate
based on this prescription was in tolerable agreement with the measured nose-
on data for models ID-1 and ID-2; unfortunately, for the more extensive FB
data shown in Figs. 3-10 and 3-11, the estimates are not satisfactory and the
theoretical formula (notwithstanding its obvious accuracy for sufficiently large
values of ka) fails entirely to predict the character of the data as a function
of b/a for ka in the range 2.5 to 6. It does not, for example, predict the
increasing depth of the minimum near ka = 5.5 as b/a decreases, and accord-
ingly it is necessary to seek a modification of the theory for such values of
ka.

3.2.3 Specular Flash and Rear-on Backscattering Cross Section of FB

Models.

(U) From the backscatter patterns measured for each of the FB models
at 51 frequencies from 1.00 to 5.80 GHz, corresponding to 1.0 < ka <5.8,
where a is here the radius of the cone at its base, the values of the cross
sections at specular and rear-on aspects have been read, and it is the purpose
of this section to compare the specular and rear-on cross sections with the

theoretical estimates derived from formulae given heretofore.
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(U) Figure 3-12 shows the measured values of the specular flash cross
section 0/)\2 plotted as functions of ka, where, for clarity of presentation, the
values for models FB-2, FB-3 and FB-4 have been reduced by 5, 10 and 15
db respectively. The results for the four bodies are virtually indistinguishable,
and certainly there is no evidence of any dependence on b. This is in accor-
dance with the theoretical picture and included in Fig. 3-12 is the curve re-

presenting the theoretical estimate computed from the formula
2
oo/x = K (ka)3 (3.27)
(Senior, 1967) with

2
cosec o sec o

97r2

K = = 0.4646 for o = 9°

The agreement is good, particularly for the larger ka, and certainly any dis-
crepancies average no more than a fraction of a db. In particular, there is
no apparent need for any refinement of the formula when ka is large. Never-
theless, for the smaller ka (approaching unity), the formula does underestimate
the measured values by as much as 2 or 3 db, and throughout the range the
data does show some evidence of a small but systematic oscillation as a
function of ka. This may be attributable to the influence of the creeping waves
on the cone, and any prediction of this effect is beyond the scope of a simple
formula such as that in Eq. (3.27).

(U) The nature of the discrepancy between theory and experiment for
the specular flash is clearly shown in Fig. (3-13) in which the ratio of the
measured flash cross section to the theoretical estimate given in-(3.27) is
plotted versus ka. Each data point is the result of averaging the measured

cross sections for the four FB models, and the trend revealed by Fig. 3-13 is
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probably due to experimental error, there is nevertheless a residual discre-
pancy much of which is removed if we base our theoretical estimate on a
cylinder approximation instead of physical optics. As noted by Senior (1967),
the specular return from the cone can be interpreted as a return from a right
circular cylinder whose length is the slant length of the cone, and whose
radius is % a seca. Rather than estimate the return from such a cylinder
using physical optics, we can instead employ the exact expression for the cur-
rents borne by a cylinder of infinite length and the above radius, and integrate

these currents over the finite length of the equivalent cylinder. The resulting

cross section is (Senior and Knott, 1964):

o

o /Az . L A(ﬂka secar)(kacosecoz)2 . A, o (3.28)

0 2 9 X 2

4m A
where
2
4 @ n Jn(x)
e IO B
n=-m n

and x = % ka sec a. A(x) has been computed for x = 0.1(0.1)10.0, and using
these results it is a simple matter to calculate the ratio of the modified cross
section 08 to the physical optics cross section o, as a function of ka. The
curve is shown in Fig. 3-13, and it is seen that the modification to the the-
oretical estimate provided by Eq. (3.28) does improve the agreement with ex-
periment.

(U) For rear-on incidence, the measured values of the backscattering
cross section of the four models are plotted as functions of ka in Fig. 3-14

where, for clarity, we have again separated the data points by reducing those

for models FB-2, FB-3 and FB-4 by 5, 10 and 15 db respectively. Although
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the results for all four models are similar, there are some slight differences
which appear to indicate a systematic dependence on b. Some such dependence
is, indeed, predicted by the theoretical formula, and we have included in Fig.
3-14 the theoretical curves computed from the physical optics gormula given in
Eq. (3.32). The agreement is good, particularly for the more sharply-curved
model FB-1 and in general for all models for the larger ka. As ka decreases|
however, a systematic discrepancy is evident, which discrepancy increases
with kb.

(U) A more striking illustration of the differences between theory and
experiment is provided by Fig. 3-15, in which the ratios of the measured and
theoretical cross secﬁons are plotted as functions of ka, with o determined
from (3.32). For model FB-1 the agreement could hardly be improved upon,
and most of the discrepancies here are undoubtedly experimental, but as b/a
increases the theoretical formula for the smaller ka under-estimates the mea-
sured values by an amout which, for model FB-4, averages about 2 db for ka
near unity. The explanation clearly lies in the high frequency nature of Eq.
(3. 32).

3.2.4 Physical Optics Estimate of the Rear-on Return of Flat Back Model

(U) A valid estimate of the rear-on backscattering cross section of an
FB model is provided by physical optics, and the derivation of the appropriate
expression is a straightforward task using the techniques described by Senior
(1967).

(U) With the coordinates and notation illustrated below, the expression
for the far field amplitude is (Senior, 1967)

a-b b
S = ik’ pdo+| 2%, g—g) dz , (3.29)
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at

-
a-b

Y

where the time dependence e_m)t has been assumed. The first integral on the
right-hand side of (3.29) arises from the flat portion of the back, and is tri-

vially performed; the second, in which

2

p-a+b2+@-b°=b0> (3.30)

arises from the toroidal portion, and since the upper limit of integration cor-
responds to the shadow boundary (where the physical optics current is in error),
our main interest centers on the contribution provided by the lower limit, cor-
responding to the join of the flat and curved portions.

(U) Substituting (3. 30) into (3.29) we have, after carrying out some

simple steps,

2

S = ik ';'(a-b)z-

2ikz
e

(a-b) (1 + ﬂ-—) dx
z(2b - z)

0 V

211 9 e2ikz
~ ik E(a-b) +(a-b) b/2 ‘E dz

0

in which we have retained only that term resulting from the lower limit of
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2
integration that is dominant at high frequencies. The transformation s~ = 2kz

now reduces the integral to a standard form, and gives

L (a - )7 {1 ¢ ‘]/ikl’ SN (3.31)

Note that the first term is merely the result for a circular disc of radius (a -

S =

Do | =

b), and that the second term is one half the standard expression for a torus
(Crispin et al, 1959). The required expression for the rear-on cross section

is therefore

0/>t2 = l(ka)4(1 - %)4{1 — IV[—‘ L u } (3.32)
1" —_

1 2T +
4r nka (1 _l)2 nka
n n

where, for convenience, we have written b = a/n.

3.3 Computer Program for Current on Rotationally Symmetric Metal Body

3.3.1 Introduction

(U) In evaluating multi-dimensional integrals, as in the case of the com-
puter program for solving the Maue eguation for the surface current induced
on rotationally symmetric metallic bodies, movable singularities occur.

(U) A number of ad hoc methods exist for removing final singularities
in an integral (Davis, P.J. and P. Rabinowitz, 1967; McNamee, J., 1964) but
there appear to be no general procedures. In this section we develop and
discuss a general procedure using a transformation of the independent variables,
The procedure is effective not only for removing fixed singularities in a inte-
gral, but also for removing movable singularities, that is, singularities which
may depend on one or more parameters. We are able to transform the orig-
inal integral Io into a product GI 1 where G is a function depending only on

the parameters and I1 is a new integral. The singular behavior of I0 is con-

7
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tained in G while I1 exists for all values of the parameters. The procedure
is also quite flexible, in that it allows the use of a variety of weight functions
in Il’ and thus enables us to pick that weight function which leads to the most
suitable existing quadrature scheme. The integral I0 may be one of the inte-
grals in the process of repeated integration, and the parameters in G may de-
pend on other independent variables. In this case GI, is in the form suitable
for treatment in later integrations.

(U) In Section 3.3.2 we develop the general procedure. In the following

sections we apply this to the evaluation of the integral

1

f(x) dx (3.33)

-1 1/(1 - A - KD

where f(x) is entire and k is a parameter such that O < k < 1. In the pro-

cess we shall develop some new quadrature schemes and some effective meth-
ods of evaluating incomplete elliptic integrals.

3.3.2 The General Procedure

(U) Consider the evaluation of the integral

L W (x) dx
I = (3.34)

0 m Wi
g M -2y

where the wi are real constants and wo(x) is defined for all complex x such
that wo(x) < 0 for x in the interval (-1,1). The )xi are parameters in an open
domain /\ such that for each fixed (A P .hm)EA the integral

! w (x) dx
)

. (3. 35)
m Wi
T]—i=1(l - Aix)

-1
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exists and such that the Ai may approach + 1. For the purpose of simplific-

ation of the development in this section we shall assume that f is entire¥
W,

real when x is real, and that l |i=1 (1- Aix) ! is real when x€A(-1,1) and

(A- 9 e o ey A.mE_A.o

(U) We briefly describe a norm on the error of quadrature which in-

1

fluences our choice of a transformation on (3.34). Let En(g) be the error of

a quadrature scheme, i.e.
! n
En(g) = w(x) g (x) dx - Z W g(xj) (3. 36)
j=1
-1

where |w(x)| is integrable over (-1, 1), the wj are weights and the xj are
points on the closed interval [—1, l_] such that En(g) = 0 whenever g is a
polynomial of degree p. Let g(z) be holomorphic in the ellipse ;p (of com-
plex numbers z = x +1iy) with foci at z = + 1 and sum of semi-axes equal to

p, and let g(x) be real. Define

1
n
A= |w(x)ldx , B-= Z]Wl
T
-1
sup (3.37)
M(p) = |Re g (2) |
z€ gp
Then we have
Lemma 2, 1:
En(g) < S8(a+B) Mp) (3. 38)

+1
o

* .
In practice the function f(x) may have singularities in the finite x plane pro-
vided that these are far from the region of integration relative to those dis-

played in (3. 34).
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Proof: The proof is similar to that of Theorem 4 in Stenger F. (1966) and is

omitted.

Corollary 2.1: Of the set of all n-point quadrature schemes (3. 36) that are

exact for polynomials of degree p the Gaussian scheme minimizes the right of

(3.38). For Gaussian quadrature with w(x) > 0 the bound

Yo Mg 1
E@|< — 55 5 owu = | wax, (3.39)
-1

holds.

(U) Quadrature schemes that are exact for degree p are most extensively
tabulated. In what follows we shall, therefore, attempt to construct transfor-
mations on (3, 34) which reduce (3. 34) to another integral that can be evaluated
by Gaussian quadrature and for which the error bound (3.39) is relatively small|

Best results would be achieved in this respect by choosing
W,
_ _ i
Wl(X) = wo(x) / ”i=1 (1 Aix)

as a weight function and constructing a set of Gaussian quadrature formulas
using polynomials orthogonal over (-1, 1) with respect to wl(x). We could
achieve this by constructing quadrature formulas for certain fixed values of the
parameters and then obtain formulas for intermediate values of the parameters
by use of polynomial interpolation. However we expect that this procedure is
worthwhile only if it is necessary to evaluate (3.34) for a large number of dif-
ferent functions f.

(U) Let /i( be a path in the complex x plane such that the segment of
7'; joining -1 and 1 is a straight line, such that the integral
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% w (t) dt
0

Ws
1
a0 e G2y

taken along )ﬂ X exists for each x on 72 , and such that the points xo, X

(3.40)

o
X, are on 70x’ where X, = 1. Let w(y) be a function defined for complex y

such that w(y) > 0 if -1 <y < 1. Let 72 be a path in the complex y plane
such that the segment of 7” joining -1 and 1 is a straight line and such that
I . r . 2 r
+ . = .

the r + 1 distinct points {yl}i=0 with Y, 1 are on y Let {hj(y) } j=o be
a set of functions such that ho(t) = 1, such that hj(y) is real when y is real,
such that each integral

Yi-1
H, = w(t)hj_l(t)dt (i, j=1, 2, ... r+1) (3.41)

-1

taken along 70y exists, and such that the square matrix [Hij] of order r +1
is non-singular for all ()ul, cees )\m)é A the closure ofA , Where Hij is
the (i, j)'th element of [Hij] . '

(U) Note that ﬁx and 70y may depend continuously upon (A EEE km)e
A , provided that the above conditions are satisfied. Note also that the
functions v, and w may restirct the choice of /x' # or r. For example,
if w(y) = 0 for all y E—l, 1] it is necessary to take yj € [—1, l] if we wantr >
0; if we do not want yj€ [—1, l] for j > 0 it is necessary to take r = 0.

(U) Let us put

X w (t) dt r
0

= h dt . 3.42
- m (o + J-Z:;ai ;)W) dt (3.42)
-1 T2 (- -1
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In this equation the constants o, on the right are determined such that y = yj
when x = Xj’ i=0,1, ... r. Note that since [H} is non-singular there
exists a unique set of aj's for all (\ P DY )€ /\

Theorem 2.1: Let x = x(y) be determined by (3.42) as described above. This

transformation reduces the integral (3.34) to the integral

1

r
I = [ao + Z aj hj(y):] w(y) f[x(y):l dy . (3.43)
P S

Proof: The proof follows by direct substitution of (3.42) into (3.34). The
constants aj in general depend on the parameters Ki. Hence if r > 0 (3.43)
offers no advantage over (3.34) if we attempt to evaluate (3.43) using
r

% f: oyt @) Wy
as a weight function. We may however have gained over (3. 34) if we either

(i) replace (3.43) by r + 1 new integrals choosing h (y) w(y) as a

weight function in the j'th, or

(ii) choose w(y) as a weight function to evaluate (3.43).

(U) In order to minimize the bound (3. 38) it is preferable in each of
these cases that x(y) be an analytic function in as large a region as possible.
In the cases (ii) we also want the function hj(y) to be analytic in as large a
region as possible,

(U) Let z ;x) and Z I(Jy) be ellipses of complex numbers with foci at + 1
in the x and y planes respectively such that for each ellipse the sum of its
semiaxes is p and such that x(y) is analytic for y€ ; (y). Let w = F(y) be
a conformal map of Zpy onto 1w| < 1 such that F(-1) = 0. If we suppose
that x(y)€ ;p whenever y € {f: y)’ Schwarz's Lemma (Caratheordory, C. 1958),
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applied to the function G[F(y)] = F [x(y)] yields la [F(y)]| < | F(y)| for all
y€ g;y) Since moreover G[F(1)] = F(i) Schwarz's Lemma yields G[f(y)] =
F(y), from which x(y) = y.

(U) We have thus proved the following negative result:
Lemma 2.2: Let x(y) be analytic in ; (y). Unless x(y) = y there exists
points y€ ;‘g) such that x(y) € ;(:-)

(U) Hence if x(y) F= y then given any positive number B there exist en-
tire functions f(t) such that

su . S
P ¥) If(y)] = B  while P (y) If [:x(y)]! > B.

ye ZP ye P

(U) We have considerable freedom of choice in picking the weight func-
tion w(t). In practice we would be apt to pick a weight function for which
quadrature formulas are extensively tabulated. On the other hand since the
bound (3.37) can in general be made smaller when x(y) is analytic in a larger
domain, picking a weight function w(t) for which quadrature formulas are tab-
ulated does not always yield the most rapidly converging quadrature scheme.

(U) By Lemma 2.2 the bound (3. 38) applied to (3.43) in either case (i)
or case (ii) above is in general minimal when x(y) = y. Since the construc-
tion of high degree Gaussian quadrature formulas is no longer a formidable
task (Gautschi, W. 19 ) it is worthwhile to keep in mind the following result,
the proof of which illustrates a construction of x(y):

Theorem 2.2: Corresponding to any positive number € any compact subset

S of the parameter domain /\ can be covered by a finite number of N

neighborhoods Uj’ j=1, 2, ..., N such that for (A X ,.._Au)e Uj there
exists a function w(t) and a set of functions h (t) with the property that if
]

x(y) is defined by (3.42) then [x(y) - y| <€, -1 < y <_L.
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Proof: Let (A c1>’ Afn) be a point of S and let § > 0 define
m o 2
U = (0, ...x ): ’A.—A.’ < 3.44
;A0 ) J}; s 6’0/\ (3.44)
Putting
wo(t)
w(t) = 5 (3. 45)
T -a% !
i=1 i
we choose A @ ey @ (r < m) in (3.42) such that
y = 1when x =1
y = I/A?when X = I/Ai, i=1,2, ..., r . (3. 46)

Here we assume thar r > 0 is taken sufficiently small such that only integra-
ble singularities are included on each side of (3.45) and such that in (3.42)

y = I/A? is a singularity of the same type as x = l/ki. By our hypotheses
on the independence of hi(t) the conditions (3.46) uniquely determine aj, j=0,
1, ..., r as continuous functions of >‘1’ cee, Am. When (Al, cees Am) =
(kcl), cees k;)n) we have @ =1 and ozj =0,j=1,2 ..., r. Consequently
if 6 is chosen sufficiently small, arj can be made of differ by as little as we
please from its value when (A 1o Am) = (h(l), cees An‘:). Hence if ¢ is
sufficiently small the assention of Theorem 2.2 follows for ( TORREY ?tm)G
Uj' That S can be covered by a finite number of the Uj is a consequence of

the Heine-Borel Thoerem.

Corollary 2.1: If the integral on the left of (3.42) becomes unbounded as

some of the li approach + 1 then at least one of the aj on the right of (3.42)

becomes unbounded,
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Proof: That at least one of the a/j's must become unbounded follows from the

fact that

hj(t) w(t) dt
-1

exists for all j = 0, 1,... r and for all ()Ll, cees )\m)€/\.

(U) We conclude this section with some additional remarks concerning
the transformation (3.42).
Remarks: 1. The resulting transformation is often analytic in a larger do-
main if the wi are chosen such that -1 < W, This choice can always be made
by use of the following identity:

) il o, 1k, Fw
(x-u) + — (3.47)

B k! Ww-u

(1- ux)w k=0 (1 -ux

where u = [w] . Given f(x) (3.47) defines F(x); further with the exception of
X = l/u the singularities of F(x) are of the same type as those of f(x), and
F(x) is holomorphic wherever f(x) is holomorphic.

2. The transformation (3.42) has practical merit only if it enables
us to easily express x as a function of y.

3. KFr

0 the transformation (3.42) is a one-to-one mapping of
-1<x<1lonto-1<y <L If r > 0 the transformation (3.42) may cease
to be one-to-one for all values of the parameters.

4, In the notation of Theroem 2.2 it is often the case that rela-
tively few sets Uj are required to cover S, particularly if instead of 'near-

ness of x(y) to y" we only require "analytivity of x(y) in some domain,"
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5. In order to produce a holomorphic function x = x(y) it is not
always necessary to match singularities as in the proof of Theorem 2.2. As
is readily verified we need not require a singularity of y to match up with
X = 1/)Li when w, = (n - 1)/n, where n is a positive integer.

3.3.3 Examples

(U) In this section we illustrate the developments of Section 3.3.2 with
some examples. In section 3.3.3.1 we give two examples illustrating that
the theory of Section 3.3.2 does in fact include and extend well-known pro-
cedures., In Section 3.3.3.2 we develop some formulas to evaluate the inte-
gral (3.33).

3.3.3.1 Well-known Examples

(U) Consider evaluating the integral

1
fx)

, 1

I= dx . (3.48)

where f(x) is analytic and does not have singularities near the interval of in-
tegration, Actually (3.48) is already in a form suitable for Gaussian quad-
rature with' weight function 1/7X.

(U) Denoting 'g“j and wj to be the corresponding Legendre-Gauss zeros

and weights (S_n <& .. <§’_1 <0< 'g"l <... < En) for 2n-point quad-

<,
-n+1
rature over (-1,1) we have

I=2 Z; wjf(sz) +E () (3. 49)
J:

where, with If(x)[§ eB le, x complex (f(x) is real where x is real) (3.39)

yields
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lfieB/2

]En(f) l < (eB/8n)>™ (3. 50)
after minimization with respect to p.

(U) On the other hand we may remove the 1/ 4X singularity by setting

X y
dt

‘ﬁ‘_za dt

0 0
choosing o such that y = 1 when x = 1. This yields @ = 2 and x = y2, SO

that (3.48) becomes
1

I=2 ty%) dy . (3.51)
0

We can now use Gauss-Legendre quadrature directly on this integral since
f [(-y) _J— f (y ) and since & , = - £, we again need not evaluate f(y ) when
g < 0. Using (3.39) with lf(y )l Bly l

A .

and minimizing with respect to
p we again obtain (3.50).
(U) We next examine the integral

1
f(t) dt

< <
S, 0< x<1. (3.52)

0

The usual method of subtractiﬁg out the singularity in this integral is to write

1

L= -1 (/0m(1-0+x | LU (3.53)

0

for x near 1. Note that the integrand in the integral on the right is now en-
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tire and we may use Legendre-Gauss quadrature to evaluate it. Using a n-

point formula we get the error bound

1,1
(=+=) 2n
16 B x 2 |[eB Bx
< —-— .
fEn(f)l —e | 5 IF] < e (3.54)
On the other hand putting
t y
dr _
X T xr - ¢ dr (3.55)
0 0

and choosing a such that y = 1 when t = 1 we obtain

y
t=i—§)— s a=-Mh(1-x)
X .
1 y ? (3.56)
I:-In(l_x) f ]‘_..._X(]';x)_)dy
0
On evaluating
1
y
- 1-0-x)°
I1 = f ( " ) dy
0

by n-point Legendre-Gauss quadrature we get the error bound

m
0« 2 Je [e0zn]
4 —

B

(U) Note that the function f = f(y) defined by (3.56) is an entire function
of y. Note also that although the bound on the right of (3.54) approaches zero

faster as n — oo than that given by (3.57). The form (3.56) has an advantage
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over (3.53) in the case when I is part of a repeated integral and integration
with respect to x is required next,* since an effective numerical integration
of (3.53) with respect to x requires two different procedures while the inte-
gration of (3.56) requires only one: Gaussian quadrature using log (1 - x) as
a weight function.

(U) Note also that by Remark 1 of the previous section the transform-
ation (3.53) can also be obtained by our procedure.

3.3.3.2 The Numerical Evaluation of

(U) 1
I= f{x) dx (3.58)

-

-1 ]/(1 - x2)(1 - k2 x2)

In this integral of I of (3.58) k is a parameter such that 0 <k<1. We

shall assume that f(x) is an entire function, real when x is real.

(U) We (the authors) feel that an effective method of evaluating (3.58)
would be of considerable value because of the frequenct occurance of elliptic
integrals in practice. The above problem arose in our attempt to evaluate a
three dimensional integral connected with the solution of the reduced wave
equation (V2 + Az)u = 0 in three dimensions (Honl, H., et al, 1961), In that
case I was an inner integral and k a function of two other variables. As it
was necessary to integrate the result also with respect to these other vari-
ables a knowledge of the type of singularity that I has as k - 1 was impor-
tant. In evaluating (3.58) we wanted the number of evaluation points to be
small since the evaluation of I was an often used subroutine in a larger pro-

-7
gram. Also it was necessary to compute I very accurately -- to within 10 .

Sk
Consider the case when f(t) = f(t, x)

89

UNCLASSIFIED



UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN
8525-3-Q

(U) In what follows we illustrate several procedures for evaluating I.
Some of these procedures are effective over the whole range of k, while othersg
are effective only over a part of the range 0 <k <1

3.3.3.3 A Method for Small and Intermediate k

(U) We apply Chebychev quadrature to (3.58) in the form

n .
1= STRx)+E (F), x - cos [MJ (3.59)
n =) j n j 2n
where
Fx) = fx) | Y1 - k5% (3. 60)

On applying the error norm of Section 3.3.2 we get

B/2 2n
'En(f), < —1be (iﬁ) (8/4n < k) (3.61)
2 2" o
1/1 -k (4n/B)
2n
or k eﬁ/k, 0<k<1.
1+ |1 - k2

Thus convergence is quite rapid when k is small. However when k is a
function of other variables and additional integrations are required with res-
pect to these variables the above method has a disadvantage for k near 1
since it does not display the singularity of I as a function of k.

3.3.3.4 A Method for Large k.

(U) In this section we use the procedure of Section 3.3.2 to develop a
method suitable for ka near 1. The method is in fact suitable for all k in
the range 0 < k < 1 although the rate of convergence is not as rapid for that

of some of the other methods for intermediate and small values of k.
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(U) In view of (3.58) we have

1

[ - F (x) dx )

0 V(l -x)(1 - kx)‘

(3.62)
f(x) + f(-x)
J+2(1 +kx)

F (x) =

Thus F(x) has a singularity at the point x = -1; by our assumptions of Section
3.3.2 this is the nearest singularity of F(x) to the integration strip [0, ] .
(U) In (3.62) we put

1 1
dt _

_dat
W-t)(l-kt)ﬁ ’ y W’l-t

choosing o« so that x = 0 when y = 0. We then obtain

(3.63)

- k
] _ 1, (_1_+_VE) 3,60

‘Vl-k
x=1- lk_k sinh2 [a]/k(l—y):l

With this transformation (3.62) becomes

E.[X_(&] dy (3.65)
o 1L-v

where x(y) and o are given by (3. 64).

I =«
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(U) Note that x(y) defined by (3.64) is an entire function of y and also
a one-one function mapping 0 < 4 < lonto 0 <x< 1. Hence, the integral on
the right of (3.65) exists for all values of k. The dominant portion of the
singularity of (3.58) as a function of k is contained in ¢; this being a partic-
ularly desirable feature from the point of view of repeated integration.

(U) The integral on the right of (3.65) can now be evaluated by use of
Gaussian quadrature with 1/ 1/_1——_y' as a weight function (see 3.48, 3.49).

Setting
n
I=a [Z wj F [x(yj)] + En(F)J (3.66)
=1
we obtain
1 +8
lEn(F)l< Sdne /"\ (y, + yj-l)-2n ;
a’V(T +k)(2-y)
(3.67)
sinh—1 2k
_ 1 -k
y =1+ ;
o o 1[—12
B |x|

assuming again that |f(x)] <e The abo ve bound is obtained again by
use of (3.39) and minimization with respect to p. The bound on F used is
|F(x)| <2 eBIXI/ (1+x), -1<x<0. Under the transformation (3.64)
the singularity at x = -1 in (3. 62) becomes a function of k and approaches
the region of integration arbitrarily closely as k — 1. Note however that

En(f) — 0as k — 1,
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3.3.3.5 A Method for Intermediate and Large k

(U) Let us make the transformation x = x(y) in (3.58), where x(y) is

determined from

X y 9
+

dt i (@+pt) dt (3. 68)
2 22 2 22

0 V(l—t)(l-kt) 0 1/(1-t)(1-k0t2)

In (3.68) ko is fixed, and @ and 8 are determined such that
(i) y =1 when x =1
(ii) y = 1/k0 when x = 1/k, 0 <Kk, k <1. (3.69)

We thus attempt to match up the singularities as described in Section 3. 3.2,

Using the notations

X X
dt 1-k2t2
F(x, k) = , E(x,Kk) = 5 dt (3. 70)
2 22 1-t
0 ]/(1-t)(1-kt) 0
together with
F(1, k) = K, F(, k) =K
(0] (0]
E(1, k) = E, E(l,ko)=Eo
2
Kt = \/1 K F(LK) =K', F(Lk)=K } (3.71)
E(1, k') = E', E(1, k') = E
(0} (0}
F(1/k, k) =K +iK', E(1/k, k) = E+i(E' -K")

we find on substituting (3.69) into (3.68) that @ and B satisfy a simultaneous

pair of linear equations whose determinant is

EK' +E K -K' K =7/2 |, (3.172)
o O O O o o
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the Lagrange identity. Thus the condtions (3.69) uniquely determine o and

in (3.67) and we obtain

F(x, k) = ITK F (k, ko) +;r2' [Ko K' - K'o K]
0

EO
['f(: Fly, k) - E(y, ko)] (3.73)

or

K 2
= = + = ' - K!
X = sn {Ko F(y, ko) . [Ko K Ko K ‘

E
0 - '
[K Fly, k) - Ely, ko):]} . (3.73")
0
The integral (3.58) is thus transformed into the integral
! 2
I = (@+By) F xy) dy (3.74)
2 2 2.
-1 'V(l-y)(l-koy)
where
E
K 2 0
= = 4+ = (- ' —_
@ K0 T (KoK Ko K) Ko
9 (3.75)
2 0
B=-— (K K'-K'K)
T o 0

and where x(y) is given by (3.73').
(U) Let us check whether (3.73') is a one-to-one transformation. To
this end we have

Lemma: The Transformation (3.73) maps -1 <y < lonto -1<x<1lina

one-to-one manner if and only if k is such that
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oy — . (3.76)
1 - e
Ko Eo 72

Proof: It is readily seen by use of (3.68) that (3.73) is one-to-one if and
only if both of the requirements (i) @ > 0 and (ii) (@ + B) > O are satisfied.
For if « < 0 we must have 8 > 0 in order to meet the first of (3.69); in this
case a + 3 y2 has a simple zero in (-1, 1) similarly if & = 0 then 8 > 0.

Clearly o + 8 > 0 implies that o + f3 y2 >0, -1 <y <1, since there is at

most one y in (0, 1) such that o + y2 0. Consequently if o + 8 < 0 then

a+By2<0for

y| (|y| < 1) sufficiently near 1. The inequality @ + § > 0

yields
2 2
K@'—kK1+K[E—U—k)K]>O. (3.77)
0 o o ) -0 ol =
Since
Ko
2 2 2
E -(1-k)K =Kk cn u du (3.78)
0 o o )
0

where cn u [= cn (u, ko)] is defined by cnu = V1 - 2n2u , -KO <y < KO
it follows that Eo -(1 - ki)K0 > 0(>0) for all k0 in 0 < ko <1(0< ko <
1). Similarly Eo' - kOKO' 2 0. Therefore the only condition which may not
be satisfied for all k in 0 < k < 1 is the condition « > 0. Using (3.75) we
see that this condition is satisfied for all k such that (3. 76) holds.

(U) For example, when k0 = 1/¥2' (3.76) holds for all k such that
0.059... <k <1

(U) Similarly we are able to deduce the behavior of x = x(y) defined by
(3.73) when y is complex by use of formulas in Byrd, P.F. and M.D.

Friedman, (1954). These formulas were used to obtain one of the graphs of
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Fig. 3-16. Let k 1/{ 2" and let Ep be defined as in Section 3.3.2. Then
Fig. 3-16 enables us to obtain for any given k in 0 < k < 1 the value of p
with the property that x(y) is bounded if and only if y GZ o In Section 3.3.3.6
we shall describe a method of using the graph for obtaining error bounds.

(U) .Table IM-4 is a table of zeros and weights for applying Gaussian

quadrature to (3.74), with weight function

1/ 1[(1 - y2) (1 - k20 y2)

and with k_ = 1 /{2'. Gautschi's method (Gautschi, W. 1967) was used to

obtain these formulas.

3.3.3.6 A Method for all k

(U) In this section we describe the transformation

X y
dt a - dt (3.79)

0 \/(1-t2)(1-k2t2) 0 41 -t

choosing @ such that x = 1 when y = 1. We thus obtain @ = 2K/7, and

X = sn [% sin_1 y] , (3.80)

™

and (3.58) is transformed into the integral
9K ! f (sn [2—; sin—1 y:, )
== dy . (3.81)

4 2
-1 l1-y

We evaluate the integral I by use of n-point Chebychev quadrature to obtain

n .
1=37r‘$ [Z’r-l Zf(sn [‘“?*DKJ) +En(f):’ (3.82)
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TABLE II-4: A Tabulation of Zeros and Weights for
the Formula (3.90),

X, W,
i i
n =2
0.7369 21582 63652 1.854 07467 73012
n =4
0.3954 69781 80571 0.8425 64689 98211
0.9301 23603 28663 1.0115 09987 3191
n==~6
0.2649 51597 16405 0.5451 74977 20330
0.7170 91637 67463 0.6099 34460 36376
0.9680 02002 48077 0.6989 65239 73418
n-=38
0.1986 21001 15531 0.4036 60738 26268
0.5632 97934 36302 0.4324 38866 30620
0. 3372 28694 04480 0.4845 76717 20760
0.9817 02539 55180 0.5333 98355 52475
n = 10
0.1587 15892 17121 0.3207 08661 04100
0.4596 28626 03537 0.3357 07997 14341
0. 7131 04989 96760 0. 3647 39149 50250
0.8944 27331 04644 0.4019 89917 80663
0.9881 69228 53536 0.4309 28951 80771
n = 32
0.0492 92858 71437 0.0986 84761 02046
0.1473 94213 81454 0.0991 54111 01528
0.2440 47560 36271 0.1000 94187 01064
0. 3383 04451 55721 0.1015 06874 34035
0.4292 41652 76928 0.1033 92706 97865
0.5159 70971. 01291 0.1057 47763 89022
0.5976 48818 41601 0.1085 58977 12039
0.6734 85408 86576 0.1117 97486 80229
0.7427 53450 03188 0.1154 09842 42554
0.8047 96126 79396 0.1193 07377 72279
0. 8590 34069 81790 0.1233 55206 02390
0,9049 70875 26986 0.1273 64117 31767
0.9421 96641 28673 0.1310 90854 28518
0.9703 89031 67376 0. 1342 53453 52388
0.9893 11727 28378 0.1365 66149 66189
0.9988 10853 58111 0.1377 90808 16210
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We illustrate two methods of obtaining a bound on En(f)
Method I:
(U) Here we use the usual notation

- ]
q=e T K'[K (3.83)

2 -
for the nome q. The transformation x = sn[?l'{ sin lyJ maps the ellipse
}: 5 in the y plane conformally Kober, H. (1960) onto the circle lxl < l/ﬁ,

wuere p = q—1/4. Thus by use of (3.39) we have

|En(f) l < 16 M* q—n/ 2 (3.84)

where

max
M* = ‘ Re f(x)
|x|< 1

(3. 85)

Thus for example, for the case |f(x)‘ < ea]x]’ x complex and f(x) real when

X is real we have

lEn(f)' < 16 &M¥ M (3. 86)

Method II:
2 - : 2iK
(U) Here we note that snl:—K sin 1iy:| = sn [T lnx] , where r =

T
y+ Vy2 + 1, y > 0. The expansion

@ 2j +1 -(25 +1)
r - T

2iK i
sn[r lnr] — Z: q'(j T 1/2) ) q(j 1) (3.87)

j=0
yields the estimate
. 1/2
2 -
sn [—lKlmj <« L 4T , 1< r<q 1/2 (3.88)

m = kK 2 =

1 -qr
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Using this inequality we replace

;néxf l’Re f <sn[2%- sin~ ﬂ)] = M(r)
r

-2
by a function g(r) which exceeds M(r) and then minimize 16 q (r)r " with

respect to r to obtain a bound on En(f). For example, with lf(x), < ea’fx]

41 on
|7k (3.89)

]En(f)I <16 e q ,

we get

a bound which is usually smaller than (3.85), although not quite as simple to
obtain,

(U) Method II has the advantage that it may also be used to obtain a
bound on the error of the quadrature scheme developed in the previous section,
For if (3.74) is evaluated by the formula

1
(a+py) F[x(y)lay _

n
2
2 wila+By) FGly) +E(F) (3.90)

) 1[(1 -y —kiyz) =1

where the wj and yJ_ are obtained from Fig. 3-17, we may obtain an estimate
on E (F) as follows. We first determine p from Fig. 3-16 and set g* = g(k¥

= 1f/p . Corresponding to k* we find K* = K(k¥ and then minimize

_1\
32 Ko r-r )2 .| 21K* -2n
a+f3 Fx* | —— finr| r
T 2 s

1
with respect r (1 < r < 1/g* / 2) to obtain an estimate on the bound of E (F),
2iK* - IK* - 9
where F*[ 17':( lnx} bounds F I:-;}{— sin ly] in the ellipse Z;(r = yHl+y

if y is imaginary).
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3.3.3.7 A Method of Computing Elliptic Integrals and Elliptic Functions.

(U) Two disadvantages of the method in Section 3.3.3.5 are that it re-
quires the computation of Elliptic integrals and elliptic function sn. The
method of Section 3.3.3.5 also requires the computation of m. We suggest

computing snu = sn (u, k) by use of the formula (Copson, E.T., 1950)

2 ., (2n+1l)7mu
+ ——————— ————
i (_1)nq(n 1/2)" sin TR
snu = 2 00 (3.91)
1} k 149 Z(D n2 S nTu
n=1 ! * 2K

where K can be computed by the method of Section 3.3.3.3 for moderate
values of k and by the method of Section 3.3.3.4 for k near 1. We then use
(3.83) to find q and (3.91) to find sn u.

(U) The methods developed in the previous sections also provdie effec-

tive procedures for computing the elliptic integrals (3. 70) we obtain

r1
X du
F(x, k) = — (3.92)
2 2
JO J(l - x2u2)(1 - k2x u)
and
r a V
: 1 k2X2 2
E(x, k) = o xdu . (3.93)
1 -xu
/0

We now make the transformation
u y

_xdT_ = a _dr (3.94)

V 2
0 1-x272 0 1 -7
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choosing o« so that u = 1 when y = 1. We then obtain
u = i sin [% (sin_1 x) sinn1 y:] . (3.94")

This transformation changes (3.92) and (3.93) into the integrals
1
9 -
F(x,k) = = sin Iy L - I (3.929)

2 - -
0 J1-k sin2 [(;2; sin L x)sin 13] 1- y2

and
1

E(x,Kk) = % sin-lx \/1 - k2sin2 [:(% sin_lx) sin—1 3] &y (3.93")
2
0 1-y

respectively.

(U) Both integrals (3.92') and (3.93') are now suitable for Chebchev
quadrature. On noting that each integrand in (3.92') and (3.93') is on even

function of y we may use an even number of evaluation points to obtain

. -1 n
_ Sin_ x
F(x,k) = - jzl 1/Mj (x,k) + En(F) (3.95)
and
sin-1 X 2
E(x,k) = M, (x,k) + E_(E) (3.96)
1ol "
where
M(x.k) = 1/1 i sin® [(2'2; L) g x] : (3.97)

Proceeding similarly as in Section 3.3.3.3 we obtain
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2
1 -k

4ne

\En(F)I , {En(E)} < 16 [———E——TH , (3.98)
1+1 -k

bounds which are uniformly valid for all x in -1 < x < 1. For example when

k = 1/42 we have the bounds

n E (F) E (E)

n n
5 2.7 x 10'6 3.5 x 10'7
6 2.6 x 1078 1.0 x 107

We expect that the above method competes well with that described in Fair,
W.G. and Y.L. Luke, (1967) or that described in National Bureau of Standards
(1964).

3.3.4 Conclusion

(U) This section describes an analytic procedure for treating movable
singularities in an integral. Some methods for treating fixed singularities
in special quadrature schemes are known and are currently being developed
(Fox, L., 1967, and the references therein), but ours is more general since
it is independent of the quadrature scheme and since we do not require the
singularities to be fixed.

(U) The examples given for evaluation of the integral (3.33) are not the
only ones that we tried on a computer. For example, we also expanded F(x)
in a power series and applied term-by-term integration using formulas given
in Byrd, P.F. and M.D. Friedman (1954). We found that while these pro-
duced good results for k near 1 they were unstable for smaller values of k.
Although effective methods for evaluating elliptic functions and integrals exist
(we have in fact developed an effective method of evaluating elliptic integrals

in Section 3.3.3.7) routines for evaluating these on a computer are not as
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accessible as routines for evaluc¢ting elementary functions. Thus while the
method of Section 3.3.3.5 proauces very rapid convergence for intermediate
and large k and while the method of Section 3.3.3.6 is effective for all k in
0 <k <1 we prefer the methods in Sections 3.3.3.3 and 3. 3. 3.4 since for
these the evaluating of x(y) can be achieved more simply on a computer.

(U) The variety of transformations obtained for the integral (3.33) point
to the non-uniqueness of our procedure. We believe this to be an asset,
rather than a handicap.

3.4 Plasma Re-entry Sheath (Task 3.1.5)

3.4.1 Introduction

(U) One of the key problems in obtaining the nose-on or near nose-on
incident, backscattered return from a plasma sheathed conical vehicle, is the
determination of the return from the base. The plasma will partially or com-
pletely shield the base thus reducing its cross-section. Of the two types of
bases rounded or flat-backed, the latter should be treated first for two rea-
sons, (1) the flow fields around the base are better known, and (2) there are
more dynamic re-entry backscattered measurements available for such vehicles.

(U) The choice of electromagnetic model for the plasma in the vicinity
of the rear shoulder of the vehicle depends upon the flow fields. As pointed
out by Weiss and Weinbaum (1966), there is a rapid expansion and separation
of the hypersonic boundary layer at the rear shoulder of a blunt based re-
entry body (see Fig. 3-17). In the outer portion of this expansion region (the
free shear layer), the electrom density will rapidly decrease beyond the
shoulder, whereas in the inner portion, and the recirculation region the elec-
tron density may be quite large. Due to the complexity of the problem, some
simplified models should be treated first. For the direct backscattered re-
turn from the rear edge, the effect of the electron density in the recirculation

region and the portion of the free inviscid layer adjacent to it, will play a
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”~
_~— Free Shear Layer

7
/

Boundary Layer

Recirculation Region

FIG. 3-17. HYPERSONIC BOUNDARY LAYER SEPARATION FOR
FLAT-BACKED CONES.

minor role. Such regions are important when multiple scattering across the
base is taken into account. In addition it will be assumed that the expansion
will be sufficiently rapid in the remaining section of the free shear layer, so
tmt the electron density becomes insignificant a short distance (compared to
wavelength) back of the rear shoulder or edge. Thus a first order model of
the sheath in the vicinity of the rear edge would be a finite conical slab as

given in Fig. 3-18. The usefulness of such a model will depend mainly upon

Plasma Sheath

Rear Edge

FIG. 3-18: FIRST ORDER MODEL OF SHEATH TO TAKE INTO
ACCOUNT THE BACKSCATTERING FROM THE
REAR EDGE,
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the rate of expansion (or decrease in electron density) beyond the rear edge,
compared to the incident wavelength. Thus, such a model is more useful at
lower frequencies. The theoretical approach to the calculation of the back-
scattered return from the rear of such a model falls in several degrees of
approximation., The first crude approximation to the direct return from the
base, is obtained by employing physical optics. Computations are being per-
formed, using the physical optics technique combined with the local reflection
coefficients calculated for a plasma sheathed pointed cone, and the results
will be given in the final report.

(U) However since the physical optics technique will only give 'ball-
park" answers, more accurate techniques are required. A theoretical treat-
ment is being carried out using the integral equation approach. The integral
equation approaches has been applied to the non-homogeneous planar sheath,
in order to yield physical insight into the physical approximations that can be
applied to the more difficult cases. The results were presented in the Second
Quarterly, and some additional results are given in the next section of this
quarterly. The application of the integral equation to the rear edge is also
given.

(U) To assist in the theoretical analysis for the base return, experi-
mental measurements have been made for a finite cone coated with a simu-
lated plasma sheath. The results are presented in the experimental section.

3.4.2 Integral Equation Approach

(U) In the last quarter, the integral equation approach was applied to
the problems of reflection by a planar inhomogeneous sheath. It was found
that a thin inhomogeneous sheath of permittivity e(z), where z represents the
distance normal to the surface, can be replaced by a homogeneous sheath with

a ""mean" relative permittivity € In the first polarization case treated,

1"
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electric polarization perpendicular to the plane of incidence, the mean permit-
tivity €, was obtained in the form
)

€ = (3/63) t2 € (t) dt , (3.99)
0

where § denotes the thickness of the sheath. This represents a first approx-

2 2
imation valid when |k 6' < 1, where Kl = k [e 1 sin 6] .  The results

1
derived for the other polarization case, however, are not in agreement with

the above expression when normal incidence is considered. For this reason
we have reconsidered the case where the incident electric field is polarized
in the plane of incidence.

(U) We orient a Cartesian coordinate systems so that the positive z
axis is normal to the sheath of thickness 6 with the z = 0 plane being the
conducting surface. The angle of incidence is denoted by 6 and the plane of
incidence is the x - z plane.

(U) For electric polarization in the plane of incidence, the magnetic

field has the general form

ikx sin 6

H=5e H(z) . (3.100)

outside the slab (z > ¢), the field is comprised of the incident and reflected

waves in which case H(z) has the explicit form

H(z) = exp | -ikz cos 9] + R exp | ik (z - 2¢) cos 6:] . (3.101)

In the slab the function H(z) must satisfy the differential equation

d ,1 dH 2 2
— —_— — + - 1 =
o (€ dZ) k™ (¢ - sin” 6) H = 0 (3.102)

m
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subject to the boundary condtions
di | 0atz =0, H,‘ 1 di continuous at z = § . (3.103)
dz € dz

(U) In order to express Eq. (3.102) as an integral equation, we introduce

a constant € and write the differential equation in the form

2 €. -€
dH 2 d <1 dH) 2 .2
— + = - = - ==+
5 KlH iz [61 €) < dz:l k™ sin” 6 H, (3.104)
dz
where
2
Ky o= k2 (e1 - sin2 0) . (3.105)

3

The following integral equations satisfying the required boundary condition at
z = 0 may now be obtained in the form

z

€, - €lt)
- o dH ()
H(z) = H0 coS K .2 <0 cos Kl (z - t) m
0
2 .2
o ksin 0 z-vHW®S @ | (3. 106)
K 1
1
H « K z - €(t)
L dilz) ___o ! sink 2z + = o - sink (z -t) die
e(z) dz € 1 € e (t) 1 dt
1 1
0
k2 in 6
+ ———s—:‘——— cos k. (z - 1) H(t) ) dt . (3.107)
1

The continuity conditions at z = § yield two equations involving the two un-

known quantities Ho and R :
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-€

1 dH
cos k_ (6 -t) —
1 dt

2 2
k . _-
_ sin 6 sinxl(é-t)H dt=elkécOSBE+R]

H -
- o1 sin k 6+K—1 it sin k (6—t)d—H
€ 1 € 1 dt
1 1
0
k2 sin2 0 ik §6cos 0
+ ——— cosk_(6-t)HY dt =e [1+R] ikcos 6 .
Kl 1

By eliminating H0 we obtain the following expression involving R:

6
€. -¢€ .
1 . dH 2 .2 ik 6cos 0
- . Klsm(lclt) dt k™ sin Ocos(Klt)}dte
0
= . _. 6
[xlsmkla 1kcoseelcos:<1]
+R[x1sin/<16+ikcos9€1 cosxlé:l . (3.108)

(U) The constant permittivity € will be chosen so that the reflection
coefficient associated with a uniform slab of thickness & and permittivity €
will be the same as the reflection coefficient given by Eq. (3.108) for the
nonuniform case. In the uniform case the reflection coefficient is given by
Eq. (3.108) with the left-hand side equal to zero; thus, the mean permittivity

€ is prescribed by the equation
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6

€, -€
1 dH .2 2
< {Klsin(x 1t) dt-k sin Gcos(xlt)H dt =0 , (3.109)

0

where the functions dH(t)/dt and H(t) may be found by iterating Eq. (3.106)

and (3.107). The value of € is thus determined by a transcendental equation.

(U) A simple solution can be obtained for sheaths thin enough that

|x16|<< 1. We further assume
6

2
sin 6 dt
—_— — <<
6 e(t) o
0
then we have approximately (with H0 = 1) H(z)~1, -E-zl;; d—l%(z&)zu - kzz .

On applying this approximation to Eq. (3.109) we obtain the relation

6
e(t) t2 dt}
0

6

2
_ sin 6 _ dt
k 0

which is a quadratic equation for e ) except in the case of normal incidence

2 3
(e, - sin” 6) [61(6 /3) -

(6 = 0). For normal incidence the result presented in Eq. (3.99) for the
other polarization case is recovered. Unlike the other polarization case, how-

ever, the first approximation to €, given immediately above is dependent upon

1
the angle of incidence.
(U) 1t is interesting to consider the case where e(z) is a constant; then

Eq. (3.110) may be written in the form
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22 2
K 2 '
(e. -¢) | =& (¢ -sing+ S 0| _ . (3.111)
1 3 1 €

The exact condition that two different uniform layers have the same reflection
coefficient can be written as

€ ;
1 cot k 6= €k cotk & , (3.112)
Kl 1

which for thin layers becomes

€ K262 2 2
L 1 - L :€/K2 1 - £ :
2 3 3

“1

This last equation may be presented in the form

K262 2 .2
(c. - € 1 + k sin 6 -0
1 3 2

K

and since, for |e| >> sin2 6 we have K2/\/ kze, it is clear that Eq. (3.111)
is obtainable from the exact relation in Eq. (3.112) under the conditions we
have assumed. The consistency of Eq. (3.110) is thus illustrated by the uni-
form layer case.

(U) Some numerical results have been calculated. Let us consider the
simpler polarization case, electric vector polarized perpendicular to the plane
of incidence, in which case it was shown that the effective dielectric constant

€ is given by

2
€ 3/63 t e(t) dt (3.113)
0

provided IK 16 | << 1. We will evaluate € ) for a specific permittivity
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e(z)=1+(iv—w)Ae_bZ (3.114)

where v, w, A and b are positive constants, and investigate the validity cri-

terion |k 8 | <<1. Evaluating Eq. (3.113) for the permittivity in Eq. (3.114)

we find
e =1+ [1 - e(a)J v () (3.115)

where

p=ps , (- (3/¢3) [¢2 +2(f+1 - eﬂ : (3.116)

Using this expression for € in the formula for 1’ one can show that IK 1<S|<

< 1 may be written in the form

1/4
2 2 - 2 - 4
Ké{(A‘YhJ) [(v/w) +1]e 2¢+2(A‘yw)cos fe ¢+cos 6 << 1.
9 (3.117)
Hence, if (v/w) << 1, then Eq. (3.117) reduces to
Ké{lA'ywe_¢+cos20 } 1/2 <<1. (3.118)

It should be noted that (@) < 0 for all § > 0.

(U) The expression in (3.113) is derived under the assumption that E(z)
~ K2 however, it is useful to investigate the effect of the error term. We
find by including a higher order iteration

)
2 2
E(6)~K16{1+k e(t) [(31;/26) 1] tdt}+ otk o” . (3.119)
0

Hence, in addition to the criterion that !K 16 | << 1, one must also have
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8
K e(t) | (3t/28) - 1] t dt
0

<<1., (3.120)

For the permittivity in Eq. (3.115) this inequality may be written as

ke Ix@]aw 1 -0 <<1 (3. 121)

where
A(¢)=[(¢2+4¢+6)e'¢ +2(¢-3)] /2¢3 (3.122)
and if (v/w)2 <<1, then Eq. (3.121) becomes

(x 5)2 Aw X (<< 1 . (3.123)

(U) In the following table III-5 some numbers have been calculated. It
-6
has been assumed that v << w and that v = 108 rad/sec, A =10 sec.; the

6 is computed for several values of § from Eqs. (3.118) and (3.123) .

TABLE III-5
¢ Equation (3. 118) Equation (3. 123)
2
1 6<< .4 6 << 7
10 §< < 3 — £ << 14
2
V cos 6 - .Gl
2 3
100 6 << 3 6 << 10

\/cos2 6 -6. 10_4‘
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3.4.3 Integral Equation Applied to the Base Return

(U) In obtaining the backscattered return from the base, the plasma
model indicated in the introduction will be employed. The principal of local
analysis will then be used, wherein, the local region of the rear edge will be
approximated by a coated wedge. With this reduction to the local two dimen-
sional geometry as shown in Fig. 3-19, the fundamental problem reduces to

the obtaining of the backscattered field from the coated edge.

y

Incident —s
Radiation

Plasma
Sheath

FIG. 3-19: LOCAL WEDGE GEOMETRY.

(U) The integral equation approach to this, is briefly described as fol-
lows for the case of polarization parallel to the wedge.
(U) With the z-axis taken along the edge, and the y axis normal to

plasma coated surface, the incident electric intensity will have the form
Ei = z exp ik(x cos @ - y sin 0)

and the total (scattered plus incident) electric intensity will have the form
E=y(xyz

where  must vanish on the conducting surface of the body. Employing the
Green's function G, which vanishes on the conducting wedge, and which sat-

isfies the differential equation.
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2 2
V'G+kG=-47 6(x—xo)6(y-yo)

the following integral equation may be developed for i,

vx) =) + o | e - D@ x) dx.
A

In this expression e(x,y) is the relative dielectric constant of the plasma
sheath (denoted by the domain of integration A), and wo is the total field gen-
erated by the incident wave on the bare conducting body. Expressions for
both g[/o and G can be found in Oberhettinger (1954).

(U) In the analysis, the variation of € with regard to x will be ignored
(assumed very slowly varying) in which case € ~e(y). Thin plasmas will be
treated where the cor;cept of thin plasmas is given by the relations
6
‘K 6| <1, k2 =12 l:3/63 t26(t) d - sin’ 0:’
0

where ¢ is the thickness of the plasma, It was pointed out in the Second
Quarterly that thin non-homogeneous plasma slabs could be replaced by a
homogeneous slab of relative dielectric constant,

6
€ - 38° e dt,

under the action of incident plane waves. This was based upon the approxi-
mation, that the total electric field in the slab behaved linearly i.e.; ¢ ~ yg(x).
Thus the best approach for the thin plasma sheath on the wedge, is to assume

that
Y (x) = ywl(x) +y2 vy (x) + ...
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such that a distance several wavelengths away from the edge (lkx| > 1), the
dominant behavior corresponds to that of an infinite slab, i.e., Y(x)~ yw1(§).
With such an approximation, the solutions of the integral equation is to be
sought, where in particular the values of y(x) and %ﬁ on the surface of the
slab are required. At a short distance away from the edge the following im-
pedance boundary condition should be obtainable 9y/on = n iy where n is a
constant. Thus the integral equation approach can be used to establish the
approximation of thin plasma sheaths by an impedance boundary condition and
the errors in such an approximation, The backscattered return for the im-
pedance wedge is immediately obtainable from well-known solutions. The

backscattered return from the plasma sheathed cone using the impedance wedge

approximation, will be presented in the final report.
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v

TASK 4.0: SHORT PULSE INVESTIGATION |
4.1 Introduction
(U) All aspects of the problem discussed in the previous Quarterly
Report (Goodrich et al, 1967b) were continued. The new work is described
under the same section headings as in the previous report. In addition in-
vestigation of short pulse returns from cone-sphere and flat-backed cones
viewed nose-on were begun. These results are reported in Section 4.5 and 4.6.

4.2 Ray Optical Techniques

(U) In Goodrich et al, (1967b) a ray optical method was discussed as
one technique whereby the transient scattered field due to a short pulse in-
cident upon a scattering body could be obtained. In that report the procedure
for computing the reflected field was outlined in detail. The procedure for
computing the diffracted field was considered by using a frequency domain
analysis and then applying a Tauberian theorem to obtain the time domain
solution for a short time interval behind the pulse front. Since the last
Quarterly Report work has been done on the development of a purely time
domain analysis which could be used to compute the diffracted field.

(U) With the knowledge that the total field at all points is necessarily
described by an analytic function of the variables in space and time we may
write the functional form of the field as:

o Kn(f‘)
n!

BT, 1) = t - /) (4.1)

n=0
where ¢ is a surface in space on which the field is discontinuous and which
2
must satisfy the eikonal (V) = 1. The An(‘r) are the discontinuities in the
n'th derivatives across this surface. The An(f') must satisfy a transport-

recurrence relation:
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2(9 - MA@+ VYA eV A () (4.2)

wheren =0, 1, 2, ... andA1=O.
(U) For the free space portions (@, @) of the diffracted rays shown
in Fig. 4-1 the procedure for evaluating the transport of the coefficients is

straightforward sine the y, Vi and V2¢/ are known well behaved functions.

FIG. 4-1: TYPICAL DIFFRACTED RAY.

For the surface portion @ of the diffracted ray the coefficients An(r) must
satisfy the boundary conditions at the surface as well as the transport equation,
A problem now presents itself in that Vzw approaches infinity on the obstacle
surface. This is true if the equation of the pulse front is computed assuming
that each element of the front (¢ = constant) moves with the same speed. If

2
we consider a right circular cylinder V ¢ has the form:

vy = = 4.3)

where a is the radius of the cylinder. This singularity may be removed from
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from the transport equation for n = 1, 2, . . . by writing it in the form

20 (Vy - V) Kn - Kn[z (Vy - V) A

n-1 1

-c v An_2:| = CA v A - (4.4)
To evaluate the transport of A we must use the original equation and the pro-
blem still remains. If we remove the assumption that all elements of the
¥ = constant surface travel with constant speed this problem may be allev-
iated. The correct situation as regards the motion of the ¢ = constant sur-
faces can be ascertained from the CW high frequency surfaces of constant
phase, but we do not see how to determine this a priori in the time domain.
(U) A second problem which remains before the method can be applied
is to find out how to make the transitions between regions @ and @ and

between @ and @ . In region @ the expression for the field is known

—i
. A" (7) i .
E@EY - i —2— -5 = > EBwy. @
n! c p
n=0 p=1
Let us suppose there exists a time dependent diffraction factor sz(t) in the
form of a tensor such that the surface field at the point 7 = 0 on the surface
ray is given by the convolution:
@
—C 1 =i
E (r,t) = D (t-t)E (t) dt’ (4.6)
q qp p
0

where the superscript ¢ denotes the surface field. This leads to the fact

that:
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Y (r) ®
C =\ _ 0 ,\-h 1 .
Anq(ro) = (t - S ) qu (t -t
0
Y (r) ,
t - —2—"at' | A" () 4.7
c pn o

where y (F,) = ' (F ) = y/ ).

(U) A single factor Dr l(t) can be defined for the process of re-radiation
of energy in the backscatter direction. A method for determining exactly the
Dxl-l(t) and Diz(t) has yet to be discovered. If the range of the spectral func-
tion of the incident pulse only extends over large values of w then the inverse
transforms of Keller's geometrical diffraction coefficients will provide an ad-
equate approximation to these factors.

4.3 Integral Equation Formulation of Time Dependent Scattering Problems.

(U) In Goodrich et al, (1967b) some background material for setting up
an integral equation for the scalar potential in a scattering problem was pre-
sented. This has not been pursued further since we are really interested in
the vector case. We therefore present below, first, the CW; i.e. frequency
domain integral equations (3.8) and then the time domain equations obtained by
taking Fourier transforms. The numerical integration of the CW equation is
being studied on this contract (task 3.1.3) and elsewhere as well. The inte-
gration involves large matrix inversions if the scattering body has dimensions
large compared to A as well as other difficulties. It appears that, by working
in the time domain, the matrix inversion can be avoided, although probably
other complications will arise. The scalar version of this problem has been
attacked with some success by Soules and Mitzner (1966), There does not
appear to be any fundamental reason why their approach, suitably modified,
cannot be used in the vector case. It is a problem worthwhile investigating
but is certainly too long term to be brought to fruition during the remaining

life of this contract.
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(U) We derive an integral expression for the electromagnetic field scat-
tered by a smooth finite closed three diminsional scatterer when irradiated by
a linearly polarized pulse of arbitrary form.

(U) A linearly polarized plane incident pulse of arbitrary form and

length T is represented by

-_— . A - A —
£l AT ¢ - acr) , ‘t— acr < T/2
PR (4. 8)
-0 , lt - ac o> 1)

where ?Ji is an arbitrary function of one real variable, & is a constant unit
vector in the direction of the electric field, @ is a constant vector in the
direction of propagation, T is the position vector of any point in space and c
is the velocity of propagation.

(U) The free space time dependent Maxwell equations are

of

curl Z = - u E
cur177 = B_Z -9
€ ot
from which we may deduce (assuming no time independent terms)
Py AN A . n -
}/1=9‘X—33’1(t-“ ). (4.10)
U e c

The scattering surface will be denoted by B and fi is a unit normal from B
to the exterior volume. We fix the origin of a Cartesian coordinate system
in the interior of B, The geometrv is illustrated in Fig. 4-2

(U) To find a representation of the scattered field we make use of an

integral representation derived in the Second Quarterly (Goodrich et al, 1967b)
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s>

FIG. 4-2: GEOMETRY OF SCATTERER AND INCIDENT PULSE.
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(00}
20 - E° ) F e ™
-0
® (4.11)
o - B F e ™ w
-

where Tis(w)e-wt and ﬁs (w) e-mt are the scattered fields due to an incident

. . . A A .
=i -iwt L iw(a - ~iw
time harmonic plane wave of the form E' e wt se’ (@ - r/ec) e t,
. . A A . A N .
He Wt _axa elw(a £e) e - iwt and F(w) is the spectral function of the

uc

incident pulse evaluated at r = 0.

a
Flw) = —= P ¢ dr
27
-

® (4.12)
‘i}jl( 7 F (w) e ¥ quw

-

o

In our case 7 = t (& - #)/c , thus '}’i, ES, ﬁs, ES and %S will in general
be functions of position where as Fi (w) will not. The expressions for the

time harmonic scattered field may be expressed in integral form as follows.
Start with Stratton (1941)*, for the field at a point P in terms of its values

on a surface S enclosing V.

-‘%ﬂ Ew(ﬁxﬁ)¢+(ﬁxﬁ)x V¢+(ﬁ-f)V¢]da
S
E(P) for P in V
= (4.13)

0 for P not in V or on S

X
Section 8.14 Eq. (22) and the text of 8.14 following the equation.
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Here § = elkR/R where R is the distance between P and an arbitrary point on
the boundary, 1 is a unit outward normal to S. Taking the curl of (4. 13) with
respect to point P gives, via Maxwell's equation curl E-iw 7] H

i
4T WU

2L ourl § (A x H) da + curl curl | § (0 x E) da

47

H(P), for P in V
= (4. 14)
0 , for P not in V or on S.

(U) To obtain an expression for fields scattered by a surface SO one

uses the fact that such fields satisfy the radiation condition

lim [f xcurl E +ik rE:l= 0 (4. 15)
r—= o

The Eqgs. (4.13) and (4.14) are applied to a volume included between two sur-
faces B and SR o’ the latter being a large sphere enclosing B whose radius

Roo will be permitted to tend toward infinity. From (4. 13) one has

ik(r-7.7)
0

s | 1
E o d Qe
B SR o
_ -s -S|
[r xcurl E +ikr E :f (4. 16)

where d 2 is an element of solid angle. In the limit R 0o =  the integral

over SR o = 0,

(U) Thus for a wave scattered from a surface B bounding volume V
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@ xH) da-
B

ﬁS(P) -1 curl

4m 4T W

curl curl [ g(hxE% da ,PnotinVoronB (4.17)
B

where now n represents the outward normal to the volume enclosed by So
which accounts for the sing change from (4. 14).
(U) To obtain an expression for the total fields (H, E) which are the

fields to which the boundary conditions are applicable, one takes into account

the fact that incident field is a plane wave.

Since a plane wave does not

satisfy the radiation condition, one cannot use (4.17).

formula (4. 14) can be applied to ",

However, the interior

For a point exterior to B (4. 14) gives

1 s oine i .+ . =inc
0= curl[ g (nxH )da T on curlcurl[ KoxE )da
B B (4.18)
Adding (4.17) and (4.18) yields the desired result
H(P) = =~ curl| ¢ GxTd
= our nx H)da - 27
B
curl curl g (h x E) da (4.19)
B
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If B is a perfectly conducting surface, n x E = 0. Then

1 . -
H® = o curl $ (A x H) da (4. 20)
B
and by Maxwell's equation curl H = -iewE
g - curl curl g (0 x H) da (4.21)
47 €w ' )
B

We repeat that in (4.20) and (4.21) the H under the integral sign is total H
field.
(U) Substituting these expressions in (4.12) yields

w iR
5S,a i, -iwt i N
2T, 1) F(w)e o cuIl'l curl arm °
-0 B
=i - =S .
p'e [H (rB, w)+ H (rB, w)] da dw (4.22)
100) iBR
—5,. i -iwt e ® .
) (E b= F)e curl el
-0 B

+ l dw
X [H (rB, w) + H (rB, w) |da

where FB is a point on B. Provided we may invert the order of s integra-

tion, which should be rigorously established, we obtain

126

UNCLASSIFIED



UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN

8525-3-Q
®
_ . . , -iwt+(iwR/c)
S, = _d n i(we
z (r, t) = < curl curl i R X F o
B -0
X [ﬁ‘ (Fg. w) + q° (Fp, w)] d ) dB (4.23)
(04) . wR
9 S n : i —iwt +1—(:_
}5 (r, t) = curl 2R X F(w) e
B -
X [ﬁi('f W) + H (P, W) |dwSdB
B -y

A, - 2X2 W B (4.24)
B uc c
the term
© i -iwt+iwc—R i
FW)e H (fB, w) dw
-0
(00} & i“B
axa i Aot -7 - c )
= F(w) e dw
uc
-00
A A . & ‘ F
a X a R B
= t-— - 4,25
> T - —) (4.25)

This follows from (4.12). Also from (4.11) we see that
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© . —1w’c+iili -
F(w) e H (r_, w)dw = (r_,t--) (4. 26)
B B c
-
Thus
A o T
“S.A _ n A A i _R B
%(r,t)—Vx To4nR x(axa)t}ﬂ(t S " ) da
B
;1 TS . R
+ - =
vV x R ¥ % (fg t . ) d (4.27)
B

This is the desired integral equation giving % S(r, t) in terms of its retarded
values on the surface and that of the incident field. It is expected that it
can be solved by a timewise iterative procedure. As mentioned in the opening
paragraph it certainly can be treated analogous to the scalar problem which
has been worked through numerically for a spherical obstacle by Soules and
Mitzner (1966).

4.4 Pulse Scattering from a Perfecfly Conducting Sphere.

(U) Some computation of the return for a rectangular pulsed CW carrier
were carried out numerically, essentially as reported in the previous Quarterly
Report but with the effect of an added bandwidth limitation on reception taken
into account. This was done by limiting the frequency range in the inverse
Fourier transform of the weighted CW response. These isolated results are
not of much use in themselves, but will be included with further ones (to be

carried out in the next quarter) in the Final Report.
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4,5 Pulse Scattering from a Perfectly Conducting Cone-sphere.

(U) It was decided to more or less repeat the type of calculations given
in Section 4.4 for the body consisting of a finite cone with spherical base

joined on in such a way that the slope is continuous

incident

—mmi
Poynting vector

- .

Cone - Sphere

(U) We are considering backscattering from a cone-sphere irradiated

nose-on by a pulse

fi (r, t)

% cos Wt [t] < T/2
=0 It > T/2 (4.28)
which in the frequency domain corresponds to

. T T
. sin(w+w)= sin(w -w) =
Fl(h)) - 9{ l o 2 + o 2 (4.29)
5 (w+w)I (w-w)I
o 2 o 2

(U) To compute the scattered field we will assume a linear time in-

variant system so that in the frequency domain, the response to (4.29) will
be
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Fo(r, w) = FiL (w) fs (r, w)

where E° (r, w) is the impulse responce, and is given by Senior (1965) as

ikr

e S (4. 30)

ﬁs(r, W) = x £

and S is the scattering amplitude. Using the inverse Fourier transform, we

can write
W
PRy -4 Flw) 5 (r, v) et du (4.31a)
-
. T
a cT Sin (w * wO) 2
=x — +
dnr (Wwtw) s
- o 2
.
sin(w-w)I 1w(c Y
+ o 2 e ‘
T ) S dw (4. 31b)
(w - wo) 3

Since the integral is to be carried out overall frequencies we have to specify
the ranges for which S is a good approximation, and also justify the use of
negative frequencies.

(U) The frequency spegtrum will be divided in three regions, high,
medium and low,

High Frequency Range (ka large)

(U) For high frequencies, the creeping wave contributes nothing and S

can be approximated as

. 2 . . .
;— sec a e 2ika sin a (4. 32)

S~
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Thus
. T . T
S ; , T |sin (w + wo) > sin (w wo)2
E (r,w) F(r, w) = x — +
4 (w+w)I (w—w)I
o 2 o 2
. T
we
g £ x - sec2 o e-21ka St @ (4.33)
r W 4
and
®
-S A s i -iwt
fH(r, t) = x 2 Re E"F e dw (4. 34)
a
(U) Since Es’P(r, W) = Es(r, -w) thus
sin (W + w )I
=S . acTsec « 0o 2
f (r,t) = - x ————
H 8rr ©+ )I
o 2
sin (w - wo)g do
+ sin wr, — (4. 35)
© - v )I 1 W
o 2
2a
T, = rfc - S sine-t (4. 36)

Intermediate Frequency Range

(U) For intermediate values of frequency, the creeping wave gives a
significant contribution, and S is given by

2 -2ika sin o
e

S=— sec a + v (ka) Sc(ka) (4.37)

> |

and
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(r, t) + f'i’d (r, t) (4. 38)

-s -s
f (r, t) =1
M Ml 2

where T° (r, t) is the join contribution given by

M,

a .

S .. g sec? o sin (w + w) T/2

M, 87 r (w+w)T/2

1 0
B
sin (w - w ) T/2
0 W
+ - ‘*’0) /2 } sin w-rl " (4. 39)

and f;lz(r, t) is the creeping wave contribution. For ka in the range 7.5 <

ka < 10.5, = 2.0 and Sc is given approximately by
Sc = (0.5026 - 0.01467 ka) exp{iw (1.0256 ka - 0. 95410)} (4.40a)
= (A - Bka) exp{ ir (C ka - D)} . (4. 40b)

Thus we can write the creeping wave contribution as

o .
-S AT elkr
f. (r, t) = X = 2Re —=—— (A - Bka) exp ({ir (C ka -
) M2 T k
B
. D)} e 2, W) dw (4.41)
“
=$(2r—r -F—(f)’—w—)(A-Bka){coschoska72+
B
+ sin D7 sin ka Ty }dw (4.42)
_r _ ot
T2 T T°T % (4.43)
132

UNCLASSIFIED



UNCLASSIFIED

THE UNIVERSITY OF MICHIGAN
8525-3-Q

(U) Since D = 1

EISVI (r, t) -% %I-‘ (A - Bka) Fl(r, w) cos ka T _@-’_. (4.44)

2 W
2
B

and Fl(r, w) is given by (4.29).

Cone Tip Contribution

(U) The scattering amplitude for the cone tip is given by

. 2 Y
S = - 'i tan a e ika csc a . (4. 45)

(U) Using this expression to calculate the time response, we get that

sin (w + wo)T /2

fs. (r, 1) - % Tc tan « +
tip 87 r (w+w)T-
0 o 2
sin (w - w) T/2
0 dw
+ i — 4,
(w_w)-'l-” sin ka L (4. 46)
o 2
and
_r _ _ct

T3 %3 2 ¢csc a o (4.47)

Low Frequency Range

(U) For ka < 5, there is not a closed form expression for the creeping
wave component and even for ka > 5 the exact expressions for vy and Sc are
so complicated that computations using them are not very easy. If wo is of
sufficiently high frequency, perhaps we can then neglect the creeping wave

contribution and extend formulas (4.39) and (4.35) to zero frequency.
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4,6 Pulse Scattering from a Perfectly Conducting Flat Backed Cone.

(U) We consider backscatter from the flat backed cone as illustrated on
the following page. For this case fairly accurate simple CW formulas are
available over the entire frequency range. Hence it is reasonable to obtain
the impulse response (response to a ¢ function incident pulse) directly which
is here done in closed form. Superposition of impulse responses in the time
domain can then be used to synthesize returns from actual pulse shapes.

(U) As in our previous work we assume an incident plane wave
a ei(kz -2ryt)

X Eo dz and write the backscattered field
g ei(kz-21rvt)
E =xE ————8§ ) (4. 48)
6] kz

We have already used the known CW answer by indicating that there is no de-
polarization and in fact S is given quite accurately for frequencies v > v, *

c/(2ma) by the formula (Kleinman and Senior, 1963),
+ iBlv iB
SwSH =C,ve +C,v

1/2
1 2 €

v .
2 /e (4.49)
where

-T a

27
cosec —
n

oS = - oS 3
C,=C (c/2a)1/2 L ginZ = =
1 nm n T 3 \2
(cos— - cos =)

n 2n

B =mcot(1r-6)=47rh
c 0

)
B=4‘7r‘(a+h) , n=2. =2
c 2 T
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GEOMETRY FOR FLAT BACK CONE
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are all real constants. The first term corresponds to radiation diffracted

directly to the receiver from the edge of the base, the second term corre-

sponds to diffracted radiation which has traveled across the base before a

second diffraction returns it to the receiver.

%

(U) For 0<p < v, the Rayleigh formula gives good results

+ 3
S = SR =y 03
where
2
3 ha 4a exp J:—h/(4a):l
= —_— +
03 (27 [c) 3 (1 — ) (4.50)
(U) Define Fourier Transforms symmetrically
100) ®
97 § _ >
f(t) = Flw) e " lqy <= i ) e 19t dw) (4.51)
-0 ! -0
©
Fl) = ) " Wy (4.52)
-00
Then an incident pulse field which strikes the tip at t = 0 is
i A Z
Flt,z) =X E 5(-= -1 (4.53)
0 c
has Fourier transform
. 2Ty
i -i zZ
E(, z) = x Eo e , (4.53)

4The fact that formulas (4.49) and (4.50) together adequately cover all fre-

2 . ) . .
quencies as far as |s|” is concerned is shown in the reference just cited

where the formula for | sz is given in Section 4.1. However, one must trace

back the derivation of (4.50) to conclude that, in fact, S is real; S = [S] .
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has Fourier transform

2Ty

. -i Z
Elw, z) = § E e ¢ , (4.54)

(U) Hence the resulting backscattered field in this impulse excitation is

kce [
/ZS(Z/C -t) = 27rz0 R (2/c -1 Sw) dv (4. 55)

-

-4
where S(v) = S(v)/v. Since ,Zs(z/c - t) must be a real function §v) = S1v)

and hence

x cE @
2TV (zfc - t)

% Re ’é/(v) dv . (4. 56)

Es(z/c -t) =
0

~

(U) To approximate Z'S(z/c - t) we can replace S(v) by the approxi-

mations valid in different ranges of v, (4.49) and (4.50). Thus

A

g X cE0
~/
Zzfe 1) ¥ S— [11 I, + 13] (4.57)
where
p 0
I1 = 2 Re e127rv(z/c - t) S (v) dv
, H
J 0
(Ve
12 = 2 Re 6127rv (z/c - 1) §/H(V) dv
/7 0
oV
i y
I, = 2Re Gl2mviz/e - 1) S0 av (4. 58)
/0
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(U) We can evaluate these integrals after inserting (4.49) and (4.50) in
the integrands as required.

C C
1 . 2 ,
12 —TT_TI smwch + %{0(2 Vc |T2) + S(2 V|T2| )} (4.59)

where C(x) and S(x) are the Fresnel integrals

X

X
C(x) = cos (r /2 t2) dt, Skx) = sin (7 /2 t2) dt ,
0 0
w =2 v ,
(¢} (¢
T, = -t+(z+2h)/c and T, * -t+(z+2h+2a)/c.
I =C 6 (T) +Cyf(2 @ ) (4. 60)
Finally
2C,
I3 - 3 {2‘% [Ty] cosw, [Ty +
(2r |T3|)
2 .
. (wle | - 2) sin (0_ 'T3[ )} . (4.61)
cl™3

(U) Causality requires that in (4.59) through (4.61) each response term
is zero at a fixed z until t increases to make the Ti involved in that term
equal to zero. To summarize
E c

0
2Tz

fs(z/c -t) = X [(4.60) - (4.59) + (4.61£] . (4. 62)
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(U) For an arbitrary incident field }:(—z/c -t) X the response will be
the convolution

®
E:(Z/C -t) = f Zs(z/c -y Z’;(t -y dy . (4.63)
0

(U) It is intended to investigate (4.62) for various incident pulses by

-LS
using (4.63) for X .
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