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ABSTRACT

The surface waves that can be supported by various simple geometrical
shapes are examined, and some of the properties that they have in common are

pointed out.
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I
INTRODUCTION

During the last half century a considerable number of 'surface waves' have
been discovered, and in spite of the many properties which they have in common
there appears to have been little attempt to relate them to one another. Recent years
in particular have seen a proliferation of such waves and in order to analyze the
scattering behavior of relatively general bodies it is now customary to introduce
such terms as Goubau waves, traveling waves, creeping waves, etc. Each of
these originated in an analysis of the solution for a particular body, and whenever
the general surface has the appropriate features (as regards curvature, for example)
it is assumed that the corresponding wave will be excited, leading ultimately ( or
perhaps hopefully) to a complete description of the surface field. It is obvious that
an approach which is as piecemeal as this is at best only an approximation, but
equally important is the fact that since the relation between the various constituents
is not known, the underlying unity of the physical field is lost. Under these circum-
stances it is difficult to estimate the extent to which a change in the radii of curva-
ture at a point will lead to the reflection of one wave from the discontinuity, or to
the excitation of another wave beyond the point,

It is the purpose of this report to examine anew the properties of these sur-
face waves and to consider the general wave of which each can be regarded as a
particular case. The general wave is of relatively simple form in spite of its all-
enbracing character, and should prove of value in studying the scattering produced
by highly conducting bodies. For the present, however, we shall consider only the
qualitative behavior of the fields, and the solution of actual boundary value pro-

blems is reserved for a future report.
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o
SURFACE WAVES

The term 'surface wave' is used here in the sense of a wave which is guided
by a surface. It is usually characterized by an exponential attenuation in the direc-
tion normal to the surface which serves to confine the energy»to the immediate
vicinity of the body, and although in some cases the attenuation may only become
apparent at large distances from the surface (so that the guiding is of a somewhat
tenuous character), it is desirable to include such waves within the general cate-
gory. Along the surface, however, the wave may propagate with or without attenua-
tion depending upon the shape of the surface and the material of which it is com-
posed.

As long ago as 1899 Sommerfeld pointed out that a straight cylindrical body of
finite conductivity can act as a guide for electromagnetic waves. The idea attracted
little attention for practical purposes until 1950 when Goubau investigated the pro-
blem anew and showed that a wave can be launched along the cylinder by taking the
conductor to be the extension of a coaxial line whose outer surface is terminated in
a flared horn. The launching efficiency is reasonably good and if the surface of the
conductor is modified so as to appear reactive to the field, Goubau (1950, 1952)
found that the attenuation could be reduced to an almost insignificant amount, leading
to a relatively loss-free method of guiding electromagnetic energy. When the radius
of the cylinder is so small that the conductor is merely a wire (radius << wavelength)
the resulting field has been called a Goubau wave, and we shall see later that this is
equivalent to the 'traveling wave' which has been employed in aerial theory for
some time, and which has recently been used (Peters, 1958) as a basis for calculat-
ing the radar scattering properties of long thin bodies at near nose-on incidence.
When the radius is very large compared with the wavelength, the wave is directly

analogous to the one which can be supported by a flat surface of non-zero impedance.
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The propagation of electromagnetic waves over a flat surface has been studied
for many years and because of the intrinsic importance of his problem, together with
the fact that a flat surface is more amenable to rigorous analysis, the bulk of the
literature on surface waves has originated in connection withthis problem. The first
significant contribution was provided by Zenneck in 1907, who showed that a wave
which is a solution of Maxwell's equations could propagate over a surface of non-
zero impedance without change of form, and if the surface is dissipative the phase
velocity exceeds that of light., Such a wave is produced by the incidence of a plane
wave on the surface at the Brewster angle (corresponding to zero reflection), and
suffers only slight attenuation in the direction of propagation, but is rapidly atten-
uated in the direction normal to the surface. The wave was originally thought to be
the vehicle by means of which a field is propagated over the earth's surface at large
distances from the transmitter, and that this is not so only became apparent at a
much later date,

The more practical problem of a vertical dipole over an homogeneous ground
was solved by Sommerfeld in 1909, and to bring out the physical significance of the
solution he divided the expression for the field into a 'space wave' and a 'surface
wave', The latter varies inversely as the square root of the range and was imme-
diately identified as the radial counterpart of the Zenneck wave. Althoughboth parts
of the solution were necessary to satisfy the conditions of the problem, the surface
wave was the dominant contribution near to the surface of the ground.

A further twenty-five years were to elapse before it was discovered that
Sommerfel. '3 solution was incorrect. As a result of the increasingly obvious dis-
crepancy betw >n the measured values of the field and those calculated using
Sommerfeld's formula, Norton (1935) was led to re-examine the derivation, and

found an error in sign arising from a choice of square root incompatible with the
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branch cuts used in the analysis (see Niessen (1937)). The correction served to
remove the surface wave which was present in the solution, and it is now accepted
that the Sommerfeld surface wave (or the radial Zenneck wave) does not appear
explicitly in the field of a vertical dipole over a conducting earth. On the other hand,
the true field near to the surface can in fact be interpreted as a Sommerfeld wave
diffracted under a screen extending down to the image of the transmitter in the earth
(see Booker and Clemmow (1950)), so that the surface wave does play a part, albeit
a concealed one.

With all the above surface waves an important factor is the (complex) surface
impedance, and if this is zero the waves cannot, in general, be supported. In addi-
tion, the properties of the waves which are present are governed by the phase of the
impedance, and a change from a dielectric to a conductive surface (or a conductive
to an inductive one) will vitally affect the nature of the waves. A full discussion of
this in relation to the waves over a flat surface has been given by Wait (1957),

When analysing the radar scattering properties of metallic bodies it is com-
monly supposed that the surface can be treated as perfectly conducting, and thus for
a long thin body it is assumed that the traveling wave will be excited even if the
surface impedance is zero. This is clearly not so if the traveling wave is indeed a
Goubau wave, and it is therefore of interest to examine the role of the surface im-
pedance in this case.

There is also the problem posed by creeping waves, since these would appear
to be supported by perfectly conducting structures and to have at least some of the
characteristics of surface waves. If the radii of curvature are everywhere infinite,
so that the body is merely a flat surface of infinite extent, a surface wave is pos-

sible only if the surface impedance 7 is non-zero, and the wave is then generated
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by the incidence of a plane wave at the Brewster angle*, The properties of such
waves are reviewed in Chapter IM, and it is found that they can be supported no
matter how small 7 is providing it is not zero. However, as the impedance ap-
proaches zero, so does the Brewster angle, hereby increasing the difficulty of
launching,

If one of the radii of curvature is infinite, but the other finite, a surface wave
is again possible if 1 # 0. The wave can be launched by a plane wave incident at
the Brewster angle, and travels along the generators of the cylinder with a small
amount of attenuation in this direction, but no decay in the circumferential direction.
On the other hand, if a field is incident in the plane perpendicular to the axis of the
cylinder (or on a body both of whose radii are finite), it would seem that even with
a perfectly conducting surface a wave is launched at the shadow boundary and pro-
gresses around the body with a form of decay (both radially and circumferentially)
which is similar to that for a surface wave. In the absence of absorption it is ap-
parent that the loss of energy must occur due to radiation (rather than dissipation,
as in the normal surface wave), but this apart, is it possible that the curvature in
the direction of propagation is mathematically equivalent to a surface impedance ?

To answer this question is one of the aims of the report.

"If the Brewster angle is complex, a complete spectrum of plane waves may be
necessary for the launching in practice.
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I
PLANE SURFACE WAVES

It is convenient to begin by considering the surface waves which can be sup-
ported by a flat surface of infinite extent the impedance of which is not zero. This
is one of the more basic problems in electromagnetic theory and various aspects of
it have received quite extensive treatment in the literature. The present discussion,
therefore, is only in the nature of a survey.

To achieve the generality which we shall later require, the surface is assumed
to be anisotropic and to have constant impedances n and n2 inthe x and y di-
rections respectively, where x and y are Cartesian coordinates in the plane of the
sheet. The physical interpretation to be attached to the two impedances will be
made clear later, but for the moment we remark only that at the surface z = 0 the

boundary conditions which are assumed are

E =‘T’12Hy (3.1)
E = n2ZHX (3.2)

(Senior, (1960)), where Z is the intrinsic impedance of free space.

To determine the type of surface waves which can exist it is sufficient to con-
sider a plane wave incident upon the sheet and deduce the surface waves from the
condition that the reflected field be zero. Since any three-dimensional plane wave
can be broken up into two quasi three dimensional fields each of which is obtainable
from a single-component Hertz vector, it is natural to carry out the analysis in
terms of these, and in view of the boundary conditions which have to be satisfied, it

is convenient to take
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g0 - (o, y, -p) KlOx T By F¥2) (3. 2)
Zg(l) i (QZ “1, 0B, a ) eik(a/x+ By + vz) , (3.2b)
g@ - (4,0, ) lKlex T By T Y2) (3.33)
z0? = (e, B2-1, By) & FEXTBY T2 g g

where 012 + 82 + 72 = 1 and the time dependence is e-iwt. Because of the inter-
pretation of the above as incident fields, < will be regarded as having negative real
part.

If both n and n, are zero, the only possible expressions for the total elec-

tric field are

(

Y (e, 8,1 + Y (e, 8, -7) (3. 4a)

and

(

£? (e, 8,1 + E? (e, 8, -1 . (3. 4b)

Each of these independently satisfies the conditions of the problem, and in each of
them the second term represents a reflected wave. Since this is present whatever

the values of o, B and v, it follows immediately that a perfectly conducting

sheet cannot support a surface wave.
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If n = 0 but nzf 0 the possible solutions are

2
Y+ n,(l-a)
E(l) (e, B, v) + 2 5 E(l)(oz, B, -v) , (3.5a)
Y - n2(1-oz )
E?0,8v + 5?08, -1 , (3. 5)
E(z) (a: O: 'Y) + E(Z) (Q‘, 0: _'Y) ’ (3.50)
together with the 'coupled' solutions
2
E(l) (o, B, 0) + 1-a E(z) (o B, 0) (3. 5d)
af
(1) vy () (2)
E " (o B, v) + 2aBn2 {E (@, B,v) + E (o B, -V .
(3. 5e)

Of these, (3.5b) and (3.5c) are analogous to (3.4a) and (3.4b) in that the surface
appears perfectly conducting, and (3.5d) reduces to the null field when the reflec-
tion coefficient is put equal to zero. This leaves only (3.5a) and (3.5e¢) and here

the reflected fields can be removed by taking

Y = —n2(1—az)
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The resulting field is simply

E(l)(a, B, -, [1-012:[)

which of its own accord satisfies all the conditions of the problem. Since

af2+Bz+ 72=1,wehave
2 1 2
B =t(1-2") -
2 2
l-o
and the field components * are
1 .2
0, n,, + )explk ax - (1af)y —nz-n(l-a)z
2 L2 2

(3.6a)

=(1,+F a‘/ 2 nz,an2)exp[ik{axf(1-a2)w 12-772—772(1-&2)2}] .
l-a

(3. 6b)

This field is entirely self supporting and providing Im Ny < 0 it has all the char-

acteristics of a surface wave.
If Ny = 0 but n # 0 the solutions of the boundary value problem are sim-

ilarly

2

v+ n (1-8)
D, b1+ —— P, -7 (3.7a)
- n (1-57)

" For convenience an amplitude factor 012 -1 is omitted
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£ 0, 8,v) + (0, 8, -7) (3.7Tb)
£ (e, 0,7) + P (0, 0, -v) (3.7¢)
2) 1-6% (1)
E"" (e, B,0) + E " (a, B, 0) (3.17d)
B
( 'Y+ n (1'32)

2) 1 (1) (1)
(aa B:‘Y) + 20 Bnl {I_E (a: B: ’Y) + I_E (a: B; -7)}
(3.7e)

(cf Egs. (3.5a) through (3.5e)), and the only case in which a surface wave can be

excited is that in which

v = -m -8,

giving

The resulting field (of type '2') is

E = ——"Tl )exp[lk{ (1- B) ————n1+ By - nl(l B )z}]
bl B v -B
(3.8a)
+ 1 2 2 2
ZH = (- B\|—=-n,, -1, -Bn )exp|ikd+(1-B )Xv——'—-n'Jr By-n,(1-8%z ]
\}1_32 1 1 [ { L2 1 }
(3.8b)

10
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This is also self supporting and has the characteristics of a surface wave providing
Im U < 0. Observe that whereas the field (3. 6) propagates in the x direction un-
affected by the impedance but is attenuated in the y direction, the reverse is true
of the field (3. 8), and this is in accordance with the interpretation of n and n2
as impedances associated with the x and y directions respectively.

For the general case in which both n. and n2 are non-zero, the solutions

1
are
Y+
eV 0,8,v)+ —2 M0,6 -7 (3.92)
Y - N,
1+ vn
(1) 2 (1)
E (Q‘: 0,7) + 'i_—-'Y—T]ZE (Q’, O, "'Y) (3.9b)
1+vn
(2) 1 .(2) }
_E_: (O’B"Y) + 1_77,’1 E (O:B: ’Y) (3.90)
Y+n
E(m(a: 0,v) + ! E(?')(a, 0,-v) (3.9d)
Y -
2
Y+ nz(l- a’)

eV (e, 8,7) +

(2) (2)
203,”2 {E (Q/, :B:'Y) + E (Q/, B: -'Y)}

2

20’61”2 (Q/, B:’Y) - E(z)(a: B: "Y)} (3.99)

11
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2
E<2 v+ nl(l-B){(l)

(e, B,7) + rapr (a,B,v)+E(1)(a,B,-v)}

2
+ -
n2(n1’y 1-a)

(1) (1)
2&3’71 {E (a, B,7v) - E " (e, B, —v)} . (3.9)

The last two are valid if of3 n,, #0 and of n # 0, but if either angle is zero the
coupling disappears and the solutions revert to the forms shown in (3. 9a) through
(3.9d), whilst if nl =0 or n2= 0 the solutions become identical to those listed
previously.

In order that a surface wave be generated, it is necessary for the field to be

incident at the angle corresponding to the zero of the reflection coefficient, and

taking first the coupled solution (3.9e) the requirement is

Y+ T72(1-C¥2) =0 , (3.10a)
2
ny Y+ 1-g =0 , (3.10b)
implying
(v + n2)( v+ 1/n2) =0 (3.10¢)
If v= =My then from (3.10a) and (3.10b),
a=0,B="1 1-n§

12
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and the condition is the same as that imposed by (3.9a). Similarly, if v = -1 /nz,

then o =71 Vl -1/ ng , B =0, which could otherwise have been obtained by tak-

ing (3.9b) and putting the reflection coefficient equal to zero. Consequently, as
regards surface wave generation, the coupled solution (3. 9e) is equivalent to (3. 9a)
and (3.9b), and (3. 9f) is equivalent to (3.9¢c) and (3.9d). The basic surface wave

solutions are therefore

5 (o, t‘\fl-n2, 1) (3.11a)

(1)(+‘\’1 1/ , 0, 1/n2 (3.11b)
g(z)(o, T \’1—1/772 , '1/”1> (3.11c)
g(2)<i’ \I1-n2, 0, '”1) (3.11d)

and associated with these are the exponential factors

exp ik{f y Vl -nz - nzz}] (3.12a)
exp ik{ixvl -1/n§ - z/nz}] (3.12b)

!

13
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exp ik{“:y\’g - 1/nf - z/nl}] (3.12¢)

L

-

exp ik{‘l';Vl —n? -, z}] (3.12d)

L

respectively.

It is clear that for complex n and Ny two of these waves are exponentially
increasing in the positive z direction, and are therefore inadmissible both as sur-
face waves and as solutions of a scattering problem. If n is the surface impedance

for a material of permittivity € , permeability u and conductivity o, then

n = L
M
V(e
u 60 wo

where € and M, are the permittivity and permeability respectively of free space,

(3.13)

and hence

-

7 Sargn <0

with the lower limit corresponding to a perfect conductor and the upper limit to a
pure dielectric, If, on the other hand, the impedance is produced not by the mate-
rial constants of the surface but by some form of loading (for example, by corruga-

tions or by coating a perfect conductor with a dielectric) then

14
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so that in general we may assume

T
—Sargnl, arg n

<
- <o . (3.14)

2

It now follows that of the waves listed in (3. 11a) through (3.11d), only the first

and fourth are allowable, the field components of which are

E = (0, nz,f 1"73) exp [ik{t yﬁ- nzz}] s (3.15a)
ZH = (1, 0, 0) exp [ik {nyl—_ng‘- nzz}] ; (3.15b)
E = (711, 0,7t l—nf) exp [ik {fx\/l—?t nlz}] s (3.16a)
ZH = (0, -1, 0) exp [ik {fV;—_n?- nlz}] . (3.16b)

These are the basic surface waves which can be supported by the anisotropic sheet,
and it will be observed that (3, 15) is the limit of (3.6) as a—> 0. If, therefore,
the impedance nl is zero, a surface wave can be excited by a wave incident at any
angle to the x axis, but if nl is not zero, the field must be incident at the
Brewster angle for this impedance, thereby specifying the angle of incidence com-
pletely. Similarly, (3.16) is the limit of (3.8) as S—> 0, and the fact that the
number of conditions on « and B which must be satisfied for a surface wave to be

generated is directly proportional to the number of the non-zero impedances is in

15
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accordance with the statement that n, and n_, only affect the electric vectors

1 2
in the x and y directions respectively, and can be chosen independently of one

another,
A final remark is necessary concerning the exceptional case of a dielectric sur-
face. The impedances nl and n_, are then real so that all four of the fields

2

listed in (3.11a) through (3.11d) are now possible, If n and n, are less than

unity, as will be true in most practical circumstances, the fields corresponding to
the exponential factors (3.12b) and (3.12c) are rapidly attenuated in the direction
parallel to the surface, but propagate in the normal direction. As such, the fields
still do not qualify as surface waves, but even here the association of nl and 7

2
with EX and Ey respectively still stands.

16
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Iv
TRAVELING AND GOUBAU WAVES

The concept of a traveling wave has played an important role in antenna theory
for many years and lies at the root of the standard treatment of radiation from long
thin conductors. In practice, however, the wave is used only as a physical descrip-
tion of the means by which a current is produced whose amplitude is constant and
whose phase varies linearly with distance along the antenna, and seldom is any con-
sideration given to the field of which the current is merely a consequence. Pro-
viding the antenna is sufficiently long it is assumed that it can be represented by a
cylindrical conductor whose radius and surface characteristics do not affect the
current distribution to any significant extent, and from the agreement between the-
ory and experiment it is apparent that this is a valid approximation for a number of
antenna systems. Thus, a single-wire antenna terminated in its characteristic im-
pedance must have essentially this type of current, as may also a terminated rhom-
bic antenna or even a long helix. Nevertheless, in most textbooks on antenna the-
ory (see, for example, Kraus (1950)) the current distribution is merely assumed,
with little attempt to justify the choice and no discussion of the actual waves which
the antenna can support. In short, a traveling wave is only a term applied to a
particular current behavior , and one might conclude from this, for example, that
the phase velocity of the 'wave' is determined by the nature of the excitation and
not by the properties of the actual conductor.

In view of the similarity between problems in radiation and diffraction it is not
surprising to find that the traveling wave picture also proves useful in analysing
the scattering properties of long thin bodies illuminated near to nose-on, and per-
haps the astonishing thing is that the application was not appreciated for so many

years. Prior to 1956 it was believed that for ""any pointed object of revolution that

17
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has a smooth surface at the geometrical shadow with all appendages well within the
shadow, the dominant back scattering comes from the point" (Hansen and Schiff,
(1948)), but in 1956 Peters showed that this could only be true when the contribution
due to the traveling wave mode was negligible. A corrected version of the latter re-
port was published in 1958,
By likening the body to a traveling wave antenna Peters was led to an expression
for the back scattering cross section which is proportional to the squares of the
gain, the wavelength, and the current (or voltage) reflection coefficient at the ap-
parent location of the terminals of the antenna, If the traveling wave is assumed to
be the same as for a long thin wire, the gain can be calculated in terms of the rela-
tive phase velocity, so thatthereare now three parameters present in the formula
for the cross section: the phase velocity p, the reflection coefficient < and the
effective length L of the wire (which will differ from the actual length of the body
only when the body departs significantly from a cylindrical shape). Unfortunately,
it is not always easy to estimate the values which these should have. Taking first
the parameter L there is the question of whether this is determined by the over-
all length of the body or by its surface length in the plane of the incident propagation
vector and the axis, and a small variation can have a marked effect on the location
of the nulls in the calculated scattering pattern as a function of aspect. For the
relative phase velocity, it is customary to choose a value which will match the time
of travel along the equivalent wire to that of the actual wave along the body, so
giving an average matching between the corresponding phase planes. But even this
depends on a knowledge of the current path (including the point of reflection), and
will certainly be a function of the polarization and may well vary with aspect. Fi-
nally there is the reflection coefficient v, and although it produces only a scaling

in the overall scattering pattern, the estimation of this parameter is perhaps the

18
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most difficult of them all. It will clearly depend on the point at which the current is
reflected (which will usually be taken as the 'location' of the antenna terminals), and
may therefore vary with aspect angle. It will also be a function of the current path,
but probably the most important factor is the curvature of the body at the actual
point of reflection. Some idea of the magnitude of vy can be obtained from the
experimental results of Peters (1958) and it would appear to range from unity for
bodies which are so terminated (for example, in a disc or a baffle) as to prevent
radiation from the rear, to a lower limit of about 1/3 for bodies whose rear is
pointed. In reality, however, < will almost certainly be complex, and the phase
will then modify the electrical path length and hence the chosen value for p.

In spite of these ambiguities (of perhaps because of them), traveling wave the-
ory has proved remarkably effective in explaining the enhanced scattering from slen-
der bodies at aspects near” to nose-on. Peters (1958) found that for a polyrod an-
tenna of dimensions 6X by (approximately) )/4 terminated in a disc (so as to
give y= 1) the formula is in excellent agreement with experiment out to angles of
about 30° off nose-on, Similar agreement was obtained for a metallic rod 39A by
A/4 with v = 0.32 and p = 1, and here the value for the reflection coefficient was
determined experimentally by comparing scattering patterns with and without a disc
termination on the body. Even for an ogive of 30° angle and length 39X the
agreement was quite good out to about 20° if the phase velocity was taken as 0,99,
although the measured reflection coefficient of 0.7 produced a calculated scattering
cross section whose maxima were some 2db higher than the experimental ones,
and the theoretical nulls appeared only as shallow minima in practice. A further

application of the theory (to a 10 to 1 prolate spheroid) is given in Siegel (1959) ,

"It should be noted that one of the shortcomings of the theory is its prediction of a
null at nose-on incidence even for bodies of asymmetrical shape. This is a direct
consequence of the assumption of a thin-wire current distribution, and rules out any
enhancement of the scattering from the nose at this aspect.

19
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Notwithstanding the uncertainties which are associated with Peters' theory, it
has served to pinpoint a physical mechanism for producing a scattered field from
long thin objects at near nose-on incidence. It has also focussed attention on the
importance of guided waves in a common type of radar scattering problem, but it
would seem that a basic study of such waves should throw some light on the true
value of the phase velocity and the manner in which the wave (or the current) is re-
flected at places where the radius of curvature of the body changes sharply. To this
end we shall now briefly consider the properties of waves which are guided along a
cylindrical surface, and in the course of this show the identity of traveling and
Goubau waves.

In terms of the cylindrical polar coordinates (r, 6, z) the cylinder is defined

by the equation r=a and at its surface the boundary conditions are taken as

=
i

—nZHZ (4.1a)
E = nZHQ (4.1b)

(see, for example, Senior (1960)) , where n is the surface impedance. In seeking
to satisfy the conditions it is convenient to consider two basic fields each of which

is derived from a single-component Hertz vector. The first of these is obtained
from the electric Hertz vector

7 =(0,0,7 )
Z

2

with

L Hm(hr) exp{iézukz—h2 + m@)} , (4.2)
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and to provide the necessary continuity throughout the free space region m must
be an integer (m = 0, g 1, To,.. . Hm(hr) is the cylindrical Hankel func-
tion of the first or second kind depending on whether h has positive or negative

imaginary part respectively, and the resulting field components are

(1) ( hﬂH‘ H__r_n_ x th hH)exp{(z\jk -h +m9

(4.34)
2 - Brl‘ H_, ikhH] o) exp{i<t \i2-n2+ m9>} (4. 3b)

where the prime denotes differentiation with respect to the argument hr. Simi-
larly, from a magnetic Hertz vector whose only non-zero component is (4. 2), we

have

g@- (2K gy ienm o) exp {16 szz-hz ¥ mG)} (4.4a)
= r m m

,M ' - 2 2 M '
ZH(2)=<t ih 2-h2H' ,+ X kz-h H ,hH )exp{i(i' V/ 2-h2+ mf))}
= m r m m

(4.4b)
and the most general field can be expressed as a superposition of the above
(1) (1)) nd (E(2) (2))

necessary to satisfy the boundary conditions, and the admissible values of h

If m 7‘ 0 and n # 0 a combination of (E

are then given by the roots of the transcendental equation

"We are here ignoring the discrete frequency spectra obtained from the solutions
of the equations H (k a) - 1nH' (ka) = 0, H (ka) -+ H' (ka) =0 as functions
of k. m nom
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ik 1 ik 2 2 f m 2
{Hm(ha) -5 FH'm (ha)} {Hm(ha) - H;n(ha)} +(k -h") {EHm(ha)} =0.
| (4.5)
Unfortunately no general method for solving this equation is available, but it is
nevertheless apparent that the roots are discrete and form a two-fold infinity. The
corresponding fields are the natural modes of the system and are quasi-longitudinal
(in the sense that neither the electric nor magnetic vector is transverse) with cycli-
cal periodicity around the cylinder. For most practical purposes these modes are
not important since the energy is mainly confined to the interior of the cylinder,
leading to an extremely high rate of attenuation.
In the particular case of a perfectly conducting cylinder (n = 0) Eq. (4.5) re-

duces to

H (ha)H' (ha) = 0
m m

and modes ot the transverse electric or transverse magnetic type are now possible.
The appropriate values of ha are given by the zeros of the Hankel function or its
derivative (which requires m > 1 for such zeros to exist), and since these are
complex the resulting modes are attenuated in the z direction.

When n # 0 transverse modes can'only exist if m= 0 and this is a situa-
tion of some interest in surface wave theory. Taking first the transverse electric
mode, substitution of the field components (4.4) into the boundary conditions (4. 1)

gives

H (ha) - ﬁH‘ (ha) = 0 (4.6)
0 hn o
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as the equation from which to determine the admissible values of h. In the prac-
tical case to be considered, n is a small impedance prodﬁced either by a finite con-
ductivity or by a small amount of surface loading accidentally or intentionally intro-
duced into the structure, and as such its argument is restricted to the range [_—7r/2, O].
A typical value for ln] can be taken as »10—6, corresponding to the conductivity
of copper at a frequency of 1 Mc, and unless ka is of the same order of mag-
nitude (or smaller) the only solution of Eq. (4.6) occurs for ha >> 1. The pre-
cise root can now be found by inserting the asymptotic expansion of Ho(h a) for

large ha, from which we obtain
h = I k/n (4.7)

with the upper sign if the Hankel function is of the first kind and the lower if it is of
the second. Because of the restriction on arg n, each of these implies a field
which builds up exponentially away from the cylinder through a factor e—ik r/ n,
and which therefore violates the radiation condition. Moreover, since the propaga-

tion constant is

t k4 n 2 (4.8)
n
it follows that if the mode could be excited, it would be damped out almost imme-
diately in the z direction.
Although this result is well known, it is of interest to note that the behavior of
the field in the normal direction is precisely the same as that of the plane surface

wave (3.11b) and indeed the dependence on the mutually perpendicular coordinates

r, 6 and z is identical with the dependence on the coordinates z, y and x
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respectively which the field (3. 11b) exhibits. For a large cylinder such a corre-
spondence would come as no surprise, but in the present instance the solution is
valid even for cylinders whose radii are as small as A l n| , where A is the free
space wavelength,

Considering now the transverse magnetic mode, the equation from which to
determine h is

H (ha) - X nH' (ha) = 0 (4.9)
0 h 0

which differs from (4. 6) only in having n replacedby 1/n. If ka isvery
large compared with unity (it is sufficient if ka > 5/ ]nl ), a solution can again

be found by inserting the asymptotic expansion of the Hankel function, and this gives
h = | kn (4.10)

where the two signs apply in the same manner as those in Eq. (4.7). Both solutions
correspond to a wave which is exponentially attenuated in the radial direction

through a factor

o HkT 1 (4.11)
and since the propagation constant in the z direction is
+ 2
tk\1-n (4.12)

the field travels along the cylinder with relatively little attenuation and with a phase
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velocity which is infinitesimally less than the velocity of light. It almost goes with-
out saying that the field is directly analogous to the surface wave which can be sup-
ported by a plane structure (c.f. (3.11a)).

The above analysis is only valid if ka|n|>> 1 and in many cases of practical
interest (particularly those to which traveling wave theory might be applied) the
transverse radius of curvature is not large enough to satisfy this condition, If
ka [n ] < <1, however, an alternative method of solving Eq. (4.9) is available. This
is based on the expansion of the Hankel function for small argument and taking, for

example, the Hankel function of the first kind, we have
2i —2
Ho(ha) =1+ — (logha - v) + O(halogha)
which can be substituted into Eq. (4.9) to give

§{1+0(§)}10g8 + i—k;"—‘ne”{1 + O(Elog‘é)}: 0 (4.13)

Here,
2
h .
e (5 (.14

and v is Euler's constant (=0,5772157.. . .), and providing terms in £ log &
are negligible compared with unity, (4.13) can be written as
ika 2y

Elog & + ——ne =0 . ‘ (4.15)
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For simplicity let us further assume that arg n = -7/4, corresponding to the im-

pedance of a highly conducting metallic surface. Equation (4.15) then becomes
ka in/4
Elog & = - —-2—[n|e (4.16)

and the solution of this has been discussed in some detail by Goubau (1950).

If b and [ are real quantities defined by the relation
£ = pellT/4-B) (4.17)

Eq. (4.16) can be broken up into the two real equations

blog b = —%Inlcosﬁ (4.18)
_m/4-B
tanf = Togh (4.19)

and for ka|n| < 10_3 (say), B is so small that (4.18) and (4. 19) can be approxi-

mated as

b log b

- %l”l» (4. 20)

T/4

B = T logh (4.21)

The first of these can be solved by a simple graphical approach, and B can then be

obtained by substituting the resulting values of b into (4.21).
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Equation (4. 16) , on the other hand, is actually valid for a somewhat wider
range of €&, and bearing in mind that the only restriction is for £ log & to be smalﬁ
compared with unity (say, less than 0.1 in magnitude), Eqs. (4.18) and (4.19) can
be used even for ka|n| as large as 0.1. When ka | r)| exceeds 10-3 the approx-
imations leading to (4.20) and (4.21) are no longer justifiable, but by working with
the complete Eqs. (4.18) and (4.19) it is again possible to determine b and S by

graphical means., In Figures 4-1 and 4-2 the values of .l;a%ﬂ' and [ are

plotted as functions of k a|n , and from these it is seen that the condition on
€ log £ is indeed satisfied if ka| nl < 0.1 approximately.

To calculate the phase velocity v and the attenuation coefficient X it is nec-
essary to specify the value of ]nl , and to illustrate the dependence of these quan-
tities on the parameter ka we shall choose |n| = 10_6. Since v and X are

given by the formulae

<
1

= c{l- 2b e-zycos(%—ﬁ)}, (4.22)

(ka)?

2

X = k22 "2V gin 1’--3) ) (4. 23)
1
(ka)

both of these can now be obtained from Figures 4-1 and 4-2, and in Figure 4-3
v X 5 v
- — — < - —
log10 (1 S ) and log10 . are shown for 0.2 <ka <10, Both 1 5 and

T decrease with increasing ka, and throughout this range the attenuationis insigni-

ficant, with the phase velocity differing infinitesimally from that of free space. In

-6
fact, it is necessary to go down to values of ka of order 10 before either be-

comes as large as 10
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An interesting feature of the results is the relative smallness of the interval in

ka separating the ranges for which Eqs. (4.10) and (4.15) are applicable. For

ka > > 1/|n],
v = c{l— % Renz}

X = -k% Imn2

-i /4

- 6
and if n=10 6 e the above formulae are valid for ka> 5,10 . The cor-

responding values of 1 - % and % are zero and 5Xx 10—13, which are in ex-
cellent agreement with the trend indicated in Figure 4-3.

It is now apparent that in any application of traveling waves to radar scattering
problems in which the transverse radius of curvature is more than 10-5A (say) there
is little justification for taking the phase velocity to be other than that of light., In
addition, the attenuation can be ignored. If ka is very large (greater than, per-
haps, 5/ | n]) the surface wave has the same characteristics as the wave which
can be supported by a flat sheet, including the same type of radial dependence, but
for ka less than this the behavior of the field in the radial direction does differ
from that of the plane surface wave. In particular, the exponential decay does not

set in until the radial distance r is suchthat kr> 5/|n| approximately, and at

distances less than this the field amplitude oscillates or may even increase with r.
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\'
CREEPING WAVES

The term 'creeping wave' was first introduced by Deppermann and Franz (1954)
to describe the type of wave which can be supported by a circular cylinder or sphere
of large radius. Once launched, the wave travels around the body indefinitely,
spilling off energy in the tangential direction as it goes, and thereby contributing to
the scattering cross section of the body. As a consequence of the leakage, the
wave is exponentially attenuated along the surface, and the form of the attenﬁation
(as regards its dependence on radius) is, perhaps, the most characteristic feature
of a creeping wave.

To obtain an expression for the wave it is only necessary to apply a Watson
transformation to the standard solution for the current distribution on a cylinder or
sphere. After a deformation of contour the solution then appears as a residue
series each term of which can be interpreted as a wave originating at the shadow
boundary and traveling around the body. The attenuation is determined by the cur-
vature of the surface, and no surface impedance per se is necessary to support
the wave. In this respect traveling* and creeping waves are quite distinct, but in
both cases the wave is merely a term used to describe a mode in a representation
of the current distribution, which representation proves convenient for mathemati-
cal purposes. Little attention is paid to the field behavior of this wave, and not-
withstanding the fact that it is a valid solution of Maxwell's equations, there are
those who doubt whether it has any physical reality, To them at least the resolution
into creeping waves is no more than a mathematical device for obtaining a more

rapidly convergent expansion for the current.

0

"\Assuming that the mathematical analogue of a traveling wave is a Goubau wave
(Goubau, 1950, 1952).
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In that no method has been found whereby a single creeping wave can be excited
in the absence of the others, there is something to be said for this viewpoint, but
nevertheless the concept of creeping waves has proved extremely useful in diffrac-
tion theory. The essential feature of these waves was discovered as long ago as
1946 by Fock who, in discussing the diffraction of a plane wave by an arbitrary con-
vex cylinder, showed that the field in the neighborhood of the shadow boundary could
be approximated in such a way as to give a parabolic equation in a variable related
to one of the components. Depending upon the polarization considered, the field on
the surface of the cylinder is then given in terms of one or other of two basic func-

tions whose argument is

al/Sx
S(kz—> a

where a is the radius of the cylinder at the boundary, and x is measured in the
direction of propagation. These functions servé to bridge the gap between the geo-
metrical optics current in the lit region and the exponential attenuation character-
istic of the shadow, and both have been tabulated by Logan (1959). Within the sha-
dow each function is essentially the sum of the appropriate creeping wave terms,
and can be resolved in this manner, but for a more detailed discussion of the re-
lationship between Fock theory and creeping waves the reader is referred to
Goodrich (1959).

One of the most striking demonstrations of the usefulness of the creeping wave
concept is provided by the geometrical theory of diffraction (Keller, 1957), This is
basically an extension of ray theory, but one of the tenets of the method is that for

a body of large radius the diffracted rays follow geodesics on the surface, with a
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'birth weight', attenuation and 'radiation strength' determined (to a first order) by
the local properties of the surface. It is assumed that these parameters can be ob-
tained by reference to selected canonical problems (for example, diffraction by a
circular cylinder). In this way Keller has been able to derive the dominant terms
in the high frequency expansion of the diffracted field for a wide variety of bodies,
and additional correction terms have also been obtained by using the creeping
wave expansions for bodies of varying curvature (Keller and Levy, 1959; Franz and
Klante, 1959).

In order to examine the form of a creeping wave, consider a circular cylinder
of radius a whose axis coincides with the z axis of a system of cylindrical polar
coordinates (r, 6, z). If the propagation is confined entirely to the (r, 6) plane the
problem is two-dimensional, and solutions are then possible in which the only non-
zero component of either E or H isinthe z direction. In the former case (E
polarization)

39 _ a¢
36° " 35’ @ (5.1)

|-

Y
E - (0: O: ¢) F) _I:_I - 1k<
and in the latter (H polarization)
_ Y (1939 3¢ ) ]
E = — T ae: ar:o ) E (0: 0: ¢) (5.2)

where @ satisfies the equation

1 9 riﬂ)
r Or or

+

2
9_.%+k2¢:0.

1
2
r 060
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The most general solution of this is of the form

J - Hfjl) kr)e”? (5.3)

where the Hankel function is chosen in accordance with the requirement of outgoing
radiation at infinity, and as long as 6 is restricted to the 'physical' plane (say,

0 < 6 < 27), continuity demands that v be an integer. On the other hand, if the
0 plane is unrolled, allowing 6 to range from - to o, and a Riemann surface
constructed of which only one sheet is the physical plane, there is no longer any a
priori restriction on v, and this can now be chosen to satisfy the boundary con-
ditions at the surface.

If the cylinder is perfectly conducting the boundary conditions are

and taking the case of E polarization, the equation from which to determine v is

H (1)

) (ka)=0 . (5.4)

On the assumption that ka > > 1, the solution can be found by replacing the Hankel

function by its Airy integral approximation, and is (see, for example, Franz, 1954)

1/3

1/3 . 2
ka) in/3 6 -ir/3 q — -1
= + —_— - — —_—
v = ka = e q (k> e w5 * O(ka ) (5.5)
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where q =q, is a zero of the Airy function

1 (® i@r-rd)
Ai(q) = —2-j e 4 dr . (5.6)
-0
The zeros are real and infinite in number, and if they are ordered according to their

magnitude, then for large n

qu % {77' (4n - 1)} 2/3 . (5.7)

For n=1,2,. . .5 the precise values of the qn are

3.372134
5.895843
7.962025
9.788127
11,457423

but even when n=1 the error in using the asymptotic formula for the q, is less
than 1 per cent.

It is now apparent that an infinite number of solutions of the form (5.3) are
possible, and these are in fact the creeping waves. Each satisfies the wave equa-
tion, the boundary conditions on the cylinder and the radiation condition, but does
violate the requirement of continuity throughout the physical plane (0 < 6 < 27),
Consequently, if the body is closed a field of the above type can only exist in com-
bination with such others as to remove the discontinuity, and in practice it is almost
certain that an infinity of these modes will be excited. Nevertheless, it is still of
interest to investigate the properties of a single creeping wave, and this we shall

now do.
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Continuing with the case of E polarization, the 6 dependence of the nth

creeping wave is

which can be written as
ika(a +iB )6
n n

e (5.8)

where kozn is the propagation constant (so that c/ @ is the phase velocity) and

Bn is the attenuation coefficient per unit length., From (5.5) we have

o =1+7 -——7'2+0(73) (5.9)
n n

B =7V?{1+31—7 +0(73)} (5.10)
n n

where
q 2/3
r =8 _3l_ (5.11)
n 3 \4ka : :

The phase velocity at the surface of the cylinder is therefore less than the velocity

of light and is, in fact,

6 2 3
c <1 - 'Tn+ —'rn + O(’rn)} s (5.12)
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which decreases with increasing n. This is also equivalent to the wave having tra-
veled with the velocity of light around a cylinder of larger radius aa , and hence,
as ka— o, the velocity approaches c.

The attenuation coefficient is given by (5.10) and its non-zero value is a con-
sequence of the radiation of energy in the direction tangential to the cylinder. As
n increases, Bn increases, but for increasing a the attenuation decreases and ul-
timately becomes zero in the limit of a flat plane. This suggests that some insight
into the behavior of the field can be obtained by comparing its properties with those
of the surface wave which an impedance sheet can support. For such a sheet the

tangential field variation is of the form

1' 2
i k 1-
el X n

where x is measured in the direction of propagation and 7 is the surface impe-

dance™ (see Eq. (3.15). Comparison with (5.8) now gives

2 .
V - = +
1-n a/n i Bn
from which we have

+ -i7/3 8 in/3 2
= - — + .
n 2V7’n| e {1 157ne O('rn )y, (5.13)

and if the upper of the two signs is chosen, the impedance is of similar type to that

produced by corrugations. It is therefore possible to associate the tangential

"An alternative is to interpret n as the reciprocal of the impedance, but the re-
sulting field either violates the radiation condition, or corresponds to an impedance
which is not realizable in practice.
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variation with either the curvature of the body or the loading of a flat surface not-

withstanding the fact that the origin of the attenuation is quite different, being radia-

tion in one case and dissipation in the other. For a complete identification, however,
it is necessary to examine the radial variation,
As a function of kr for r > a the field is given by

H (kr)
v

but since v is complex any direct computation is out of the question when ka is

large. This is similarly true of the Airy function representation

5 -i1/3/6\1/3 .
Hv (kr)~ —e (E;) Ai(q)

6\ 1/3 -in/3 . :
where q= T e (v-kr), although here the series expansion for small
arguments can be used to cater for small values of r=a,

In seeking to calculate the radial variation the approach which has been found

most convenient is to replace the Hankel function by its tangent approximation

H (kr)~2i v_____Z____ sin [kr (sine- acos a) —7r/4] (5.14)
v mkr sin o

(see, Sommerfeld, 1949), where

Vv = kr cosca (5.15)

and o has a positive real part whenever it has 2 negative imaginary, Providing

ka is sufficiently large, o is small near to the surface of the cylinder and
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accordingly

-i7/2Y 2
a™ ¢ i/ v——(v—kr) .
kr

Since

a/3
sinoa - acosa = £l

we now have

5/4 -ir/4 .
H (kr)~ 1/22 174 77 Sin {% - ;—[2(1/-kr)(kr)‘1/3] 3/2}
7' (kr) ' (v-kr)
(5.16)
the zeros of which are given by
2171 - %— [Z(U—kr)(kr)—l/S] 3/2: nr,n=1,2,3. ...
When r=a the expression for the zeros is
13
1 i 2/3
v = ka+ 3 (ka)e' ”/BB (4n—1)7r] /f (5.17)

which agrees with the first two terms of (5.5) if qn is replaced by its asymptotic
formula (5.7). In the following it is therefore assumed that ka is so large that
terms O(l_<—a_4/3) can be neglected in comparison with unity.

Using Eq. (5.16) it is a simple matter to compute Hv (kr) when k(r-a) is
small. On the right hand side of (5.16) r can be replaced by a except in those

places where v-kr is involved, and if we further define 6 by the equation
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2/3
kr = ka + -;—(ka)l/?)[ (4n —1)7r] 5 (5.18)

(5.16) becomes

2(§>1/2 e-i7r/4 3 >3/2
H (kr)~ mn[—{ ~i(4n-1)e /02 }]
T Py ]1/6< /3 )1/4 (

For small values of 6,

. 3/2 .
<el /3 ) / ( i 7r/§ | 5. 20

and if indeed 6 differs only infinitesimally from zero, the sine can be replaced by

(5.19)

its argument to give

2) [ (4n- 1)%]5/6

(ka)l/g

n e17r/36

H (kr)~ (-1) (5.21)

indicating a linear increase in field strength immediately away from the surface. In

| particular, for n=1

1
97 /3

le(k r)|~3.2'1/2 (— (5.22)

4ka

and this is valid for (say) 6<0.2, As ¢ increases further but remains consis-

tent with the approximation (5. 20), the sine becomes dominated by the positive
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exponential contributed by the 6 term, so that

1/2 : -
(2) e /6 -in7 + —:il—ﬂ(‘in‘l)e—l W/S‘S
- 8
Hy(kr) / 176 €
1/3[3
(ka) [1(4“‘1)”] (5.23)
implying
1/3
i )] ~ 22 <——2 2> L8 m5's (5.24)
Skarm

for n=1, and the linear increase has now given way to an exponential build-up in the
radial direction,
This last result assumes even more significance when expressed in terms of the

parameter T The appropriate expressions for v and kr are then

i7r/3)

<
I

= ka(l+ 271 e
n

kr

ka(l + 27 §)
n

(cf (5.17) and (5.18)), which can be substituted into (5.16) to give

-ir/4 . 3/2 , . 3/2
2e . Jr 8i in/3
Hv(kr)'v 72 sm{z "5 ka T (e - ) }

(7rka)1/2 Tn1/4 (ei 7r/3_6 )
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The formula corresponding to (5. 23) is therefore

-ir/12 - i(8Bka T 3/2

. 32 -i-’?f (5. 25)
/5 _1/4 exp i(’.illka'rn e
(rka) T

the radial dependence of which is of the form

Hv(kr)~e

e1k(r-a) n

with

n = 27,[11/2e'1 /3 (5. 26)

It will be recalled that this is one of the two values of n compatible with the tan-
gential variation of the field, and consequently, near (but not too near) the surface

of the cylinder the field variation is

. . ‘\ﬁ 2!
elk(r—a)n + ika6¥l -n (5. 27)

where 7 is defined in (5.26). This has precisely the same mathematical form as
the surface wave which can be supported by a flat sheet, through it should be empha-
sized that the phase of the impedance is not one which could be realized in practice.
In effect the surface appears 'active! leading to an increase in the field in the nor-
mal direction and the ultimate violation of the condition at infinity, but if this con-
dition were dispensed with, some information about the creeping wave behavior near
to the surface of the cylinder could be obtained by taking a flat but non-perfectly con-

ducting surface as a model.
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2

‘Hv(kr)‘ ~ _;_ egﬁ/lﬁ 7o

(5.30)

and these are plotted as functions of 6 in Fig, 5-1. Also shown are the 'exact'

values obtained by direct computation of the expression in Eq. (5.29), together with

the small

6 approximation derived from Eq. (5.22). The extent to which the

various formulae are applicable is at once apparent,
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