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ABSTRACT

The problem in question consists of determining means of solving the
inverse scattering problem where the transmitted field is given and the received
fields are measured, and this data is used to discover the nature of the target.
Particular aspects of this overall problem are considered, such as the effect:
of phase errors upon the determination of the scattering surface, polynomial
interpolation of the scattered field measured at a set of discrete points, and the
testing of a numerical procedure for finding the surface of a conducting body
from the knowledge of the near field. In addition, a review of exact theoretical

treatments for the scalar inverse problem is given.

ii
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THE EFFECT OF PHASE ERRORS

In any practical approach to the inverse problem, the degradation of the
body shape due to phase errors in the far scattered field needs to be considered.
These phase errors would arise either from the measurement process or the data
processing. In the latter case where the scattered field is measured at a finite
set of points, the error would arise from the fact that only an approximate
finite polynomial fit can be made to the scattered field.

In order to investigate the effect of phase errors, the high frequency scattering
case will be considered. It will be assumed that the scattering surface is perfectly
conducting, and smooth except for curves or joins of discontinuity which are
many wavelengths apart (i.e., the body is comprised of long smooth sections).

In addition it will be assumed that in the cone of observations 0 < 6 < 00 , the

high frequency scattered far field can be represented in the form

N
E T~ R }_30(9,¢)
N
iky (6, 9)
_ n
_P;o(e,¢)—z E (6.fe (1.1)

n=1
where En(e, @) are slowly varying functions of the angular coordinates. This
representation corresponds to the decomposition of the far scattered field into
the components that arise from the various scattering centers (characterized
by the subscript n).

The phase errors due to the measurement procedure or the data processing

will be given by

ke (6, 9) (1.2
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in which case the scattered far field will have the form
N

00 => E 6.9 enik(y, 6.0 +c<6.9) (1.3

n=1

The near-zone scattered field is derivable from the far field by the relation

2m
E(¥= 3% g g % E (2,8 sin ododf (1.4

where k = k(sin @ cos B, sin @ sin 8, cos @). This is an approximate expression
which i8 employed when the far field is known only over the cone of observation
06 <90. The errors in using this expression have been discussed in the previous
quarterly, where it was pointed out that the expression was quite accurate in
the high frequency region for determining certain illuminated portions of the
scattering surface.

Taking into account the phase errors in the far field, the near field will

be given by

|me

6
N o 21 .
ik z S tkf (. B E (o, P) sin ededB (1.5
= or e n
0

n=1
where fn(0,¢) = gn(0,¢) + (x sin @ cos B+ y sin @ sin B+ z cos 0).

Since the integral contains a set of terms, each of which has a rapidly
varying phase, asymptotic analysis may be used to obtain an explicit expression
for the near field. The dominant contribution of each term will arise from the
stationary phase point provided that it is in the region of integration. A particular

term which has this property can be easily evaluated as follows:
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6
3 w °F @B
En()_:) = o e En(a,B) sin adadf (1.6)
0
ikf (a, B)
o n(DE (e, B)e (.7
1/2
e, &)/ (@,8)
where (al, B 1) is the stationary phase point given by
8fn afn
=0, =0, (1.8)
da, aBl
and
1 32fn azfn 1 azfn 2
Df(e, B) = - = - (1.9)
sin‘a 80 332 sina 9adf

The factor n(f) is unity unless

2%t 8t

—2 590, —2 50 and Df(a,B) >0
9 2 11

de 331

in which case n(f) = i, and if

azfn a2fn
— <0, —— <0 and Df(e, B) >0
802 832 1’ "1
1 1
then n(f) = -i.

Expression (1.6) may now be used to determine the effect of the phase error
ke upon the near field. First the corresponding expression without the phase error

has to be obtained. Set
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g 0.0 = v 0.0+ (k2 /K

in which case

fn(9.¢) = gn(0,¢) + €(6,0)

(1.10)

Then the corresponding integral to (1.6), for the near-field term devoid of

phase errors, is given by
6 2r

, 0 ikg (a, B)
E(x)=l‘55) S e D
== 2r

0

gn(a, B) sin adadB (1.11)

If (ao, Bo) is the stationery phase point given by

s W
aan aBO

0ga <o, (1.12)

then expression (1.11) reduces to the form

n(g)p_n(a, B)

ikgn(a,B)

E (x)~i
=2

g (e, 8] 1/2

e (1.13)
(ao, Bo)

It will be assumed that the angular variation in the phase error ke is

sufficiently small such that the stationary phase point (al, Bl) is close to the

point (ao, Bo), thus enabling one to express (ozl, Bl) in terms of (ao, Bo) by

expanding equations (1. 8) in terms of a Taylor series about the point (ao, Bo)

as follows:
afn afn
e, - 05 T
1 o}
afn Bfn
— =0=—+(a —
aB1 aBo 1

a)

2 2

d fn 9 fn
ozo) — (BI—BO) 52 o +... (1.19
da o o
(0]
azfn E)zfn
5 3a 9B + (Bl—Bo) — +... (1.19)
00 830
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From equations (1.14) and (1. 15), together with the relations

M _ e
oa oa
) )
My _ o
8/30 de
a first order approximation to al and 81 can be obtained as follows:
82fn 9 E)zf[1 de
@ =a + e _ 3 95 )4 (1.16)
1 o aaoaBo aﬁo 3B02 da
821.n o€ azfn o€
B.=a + - / A (1.17)
1 o 800880 da aQ’o2 830

2
where A= sin aon(ao, Bo).

Keeping only the first derivatives of €. the above expressions reduce to

azg azg
_ n J€ n O0€ . 2
=% % 9B 9P 2 da / [smao Dg(ao, Bo)] (1.18)
o' 0o o aBO )
2 2
g g
- n 9J€ n 0J€ . 2 ]
51 = Bo+ % 0B da 2 3P / [smao Dg (0'0, Bo) (1.19)
o o o aao o

For the general case, only the effect of the phase error € on the phase of the
near field will be considered. The phase error induced in the near field is
given by

kf (a, B) — kg (o, B)



which equals

ke(al, Bl) + k

ke (al, Bl) +k

€
9 <<
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2 2
(@) = ao) o8 9 gn 2 32g
+(a. —a)(B.—B) +(B,—B)
2
aaz 1 o1 oaaoaBO 1 "o 832
! 0 o
2 2 2 2
agn <8€>2+agn<§£_> 826 agn
5 |35 —
50 aBo N 2 aao aaoaBo aaoaBo
o (1.20)
2 sina 2Dg (e ,B)
0 o’ o
In order for the near field phase error to be small, not only must Ik €|<< 1, but
5 1/2
2sina  Dg(a ,B)
2 > 0 o (1.21)
K OB
2
aBo
2eine “ogle 8|
Sma’o g ao’ 0 (1.22)
2
og
k 2
oa
0

which implies that the angular variation in the phase error must not be too large.

To obtain a physical insight into the orders of magnitude of the right-hand

side of inequalities (1.21) and (1.22), a specific example will be taken, The

scattered field En (6,9) will be taken to arise from a spherical cap of radius a,

centered at the origin, with the incident radiation travelling in the negative

z-direction and polarized in thepositive x direction.

phase is given by

ky(6,0) = —2ikacos(6/2).

In this case the far field
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For the point (&,6, f) on the surface of the sphere, the phase factor g(a, B

is given by the relation
gla,P) =a [sin @ sinf cos(f —P) + cosBcosa — ' 2 cos (a/2)_]
The stationary phase point(ao, Bo) then satisfies the following relations

cosa_sinf cos (Bo— #) — cos@sin a_+sin (ozo/2) =0

—smaosme sm(Bo— ) =0
which are derivable from equations (1.12). The appropriate solution is
Qo = 29, Bo = ¢
The following relations may then be derived

82 —a
98 _ —cosf ,

8012 2
o

2
L 0g _ -2 [ cos@ ,
2 2 2
sina 9B
) 0

2
1 9% _

sina_ 80:0830
Dgla ,B) = a2/4
o’ o )

For points on the spherical cap, inequalities (1.21) and (1.22) can be expressed

in the explicit form

o€
k P
(0]

< < (kacos 9)1/2 (1.23)
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k 9€_
sina_ BBO

1/2
ka
<<cose> (1.24)

For phase errors, that have that property that either inequalities (1. 21)

and (1.22) are not fulfilled or that ke > O(1), then there will be a significant
error in the near field, which will cause a significant degradation of the calcu-
lated scattering surface from the actual scattering surface. For perfectly
conducting surfaces, the points on the surface are partially determined from

the necessary condition

. . %k
(E'+E°) x (E+EY = 0 (1.25)
For the special case of high frequency specular scattering where the dominant
scattered field in the vicinity of a portion of the surface can be approximated
by the geometric optics result, then condition (1.25) can be replaced by the

approximate condition
s|2 |.i]2
e e
In this case large but slowly varying phase errors will not affect the result.

In the numerical treatment, condition (1.25) is replaced by the condition
G=E F.F =0 (1.26)
where F is the real vector given by the relation

F=i(E +E%) x(E'+EY)

The numerical approach involves the point by point computation of the positive
function G along the coordinate ray (0 = 60, p= ¢0) of the spherical polar
coordinate system, i.e. G is computed as a function of R, at increments of

AR over a prescribed range. If there are no errors in the computed total field

expression, then the point R = RO(GO, ¢0) for which G(R, 90, ¢o) = 0 would
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yield a point which may be on the surface (since condition 1. 26 is a necessary

but not sufficient condition). To determine the effect that small phase or amplitude
far field errors have on condition (1. 26), let € be the error in the total field due
to such far field errors. In this case, the function that would be computed along

the ray (6 , ¢o) would be

G=FF (1.27)

i, _s * i, 8% *
where L = {[(E+E)xe +t+e€x(E+E) + €x¢ .

The computed expression then becomes
i
G=F-(F+2L)+ L"L (1.28)
andat R=R_ where G(R, 6 ,0¢) =0 ,
0 o’ o’ "o
n
G = L-L (1.29)

The effect of the errors in the total field, upon the behavior of 5, will be to

produce a non zero minimum or a zero minimum at another point then (RO,

00, ¢o). The computing program should search out the minimum of @ rather

than look for the zeros, to take into account the possibility of a non-zero minimum
To obtain more qualitative results, the case where the errors produce a shift

in the zero point of G will be considered. Let n be the unit normal to the

surface at the point Bo' En the normal component of the total electric field,

and H the tangential components of the total magnetic field at I_{o, Expanding

the total electric field E in terms of a Taylor series about the point Bo it can

be shown that
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2
FR) = o (R-R)PR)+OR-R )

% * » %
PR ) = {wu [E H+EH]-1[E nx VE -E nxVEl}.
- =0 0 n-— n— n — - n n- - n

If AR=R - R, and v and the angle between the normal n and the ray
(90, ¢0) then with retention of only linear terms in AR, & will vanish at
the value AR where

_(L . L)O

AR = 2cosY P L

The expression for L simplifies at _130, yielding

%

* *
L=t{Enxe + E exn+exe}.

Except for the case when the error € in the electric field has only the single
component in the normal direction (ylelding L = 0), the shift in the zero point of
G has the following order of magnitiide

l€|

AR ~O COS‘Y[(«JIJOTI:I['*’ IZ En‘]

10
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I

INTERPOLATION OF FAR FIELD MEASUREMENTS

When the far field component EO(O, @) related to the far scattered field

as follows

E = QEI_BO(MD),
R

is known over the complete unit sphere, the near field at a point x in the half-

*
space z> z is given by the representation

-iw o
s i ik-x
E = e

E (e, B) sin adadp -

oo

ot—ryv |y

0

The appropriate region of convergence z > z*, and its relation to the scattering
body is given in the final report (Weston, Bowman and Ar).

In practice, measurements of EO(O, @) will be given at a finite set of points
(On, ¢n), n=1... N, and in most cases these points will be confined to a measure-
ment cone of half-angle.@ such that 0 < Gn g a. It was pointed out in previous
quarterlies that in this case, it is important not only to obtain a good approximation
for 13_0 (6,9) for 6 real, but also for complex values of 6. Thus if _1_’:1_0(9,¢) is
some pblynomial approximation to EO(O, @), one would like to find the best poly-

nomia! fit which would minimize
|E 0.0~ E 0.0)]

not only for 0 <0 <, but also for 6 in an extended region in the complex plane.
The investigation that follows is an initial effort towards this end.
The choice of best approximation will depend upon the asymptotic behavior

of 20(9,56) for IIm 6| —> . This can be obtained from the following representation

11
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for E
=0

XN ”ﬁxzxz@e“&‘i ax!

where k = k(sin8 cos@, sin6 einf, cos6)

and V is a bounded region. If we set

¢ = olf
so that
1 . 1
2cosf =¢+=, 2isinf=¢ — =
g $
then each component of EO(O, f) rise to a function

f(¢) = £(4,¢)

=I3(§. L‘.l

9

1

) exp {A (x)(¢ — ¢

) +B<5>(c+§>}d§

\'

for certain linear functions A, B, and 7 , which is a polynomial in { and l.

¢
It immediately follows that the behavior for Im6 - o is equivalent to the

behavior for | g]-» o; and thus the function f({) which is single-valued and analytic

in the finite plane punctured at the origin, satisfies the growth condition

A (R) <Ae R
where A (R) = Max If(’{)l
1=lelgr .
R

The mathematical problem that will be consideredis the following. Given functions
f(t) which satisfy the above analytic and growth conditions, and which are

measured at points on the arc Ta’ given by

tl=1; larg t|ca<n,

T ;
(04

12
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we wish to find a numeeically feasible way to approximate f({) in any bounded
region, using measurements of f(§) on Ta
Now let us make the transformation

w=-(i/a) log ¢, ¢ = v

The arc T is mapped onto the real segment —1 < w 1; as ¥ teads to zero, Im w
tends to inﬁnity, and as ¢ tends to infinity, Im w tends to negative infinity. The
¢-plane is represented on the strip —m/a <Rew < 7/a. If we defing F by

F(w) = f(!(w»,
then F(w) is periodic, satisfying

F(w + _2(9 = F(w),

and F(w) is entire. Furthermore,

aR

)| ¢x(e®) < ae®

IF(R e
(2.1)
We shall show how to approximate F(w), to within an arbitrary error €>0,

in the disc |w|<(log S) /@. This will yield an approximation, with the same tolerance,
€, for f(¢) in the annulus

" /s<|t|<s/e”, (2.2)
for if we let I(arg §)| < 7 we have

|l =}

<(logs __E>+Z'.
a a a
=lo S

a

2. The Legendre Coefficients of F(w)

The Legendre polynomial of degree n is

13
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n
1 d
Pn(x) T n

(xz— 1)®
2 n' dx )

The Legendre polynomials are orthogonal over E 1, 1] , with

1

0, m#Fn
P )P (x)dx=
n m 2 m=n
-1 2n+1’

The Legendre coefficients of a function h(x), assumed integrable over [— 1, 1], are
1

a = gl j h(x) P, (x)dx
i 2 j
-1

and the formal Legendre series of h(x) is

®
h(x) ~ Z a P (x).
=0 })

We state the following theorem, which is a special case of Walsh (1935).
Theorem 2.1: Let h(z) be an entire function. Then

Q

h(z) = Z aP(z) (2.3)

j=0
{aj} the Legendre coefficients of h. The series converges uniformly in any bounded

set.

We shall need to be able to estimate the coefficients aj in (2. 3) in terms of the

growth of h(z), as one would for an ordinary power series.

The proof of the following lemma is suggested by the proof in Indritz (1963,
Theorem 5.3E). We shall need the identities

P'n+1(x) - P'n_1 (x) = (2n+1)Pn(x) , n>1. (2.4

14
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P(1)=1, P (-1)=(-1)". (2.5)
n n

Lemma 2.1. Let h(x) be infinitely differentiable on [_-—1, 1], with aj the Legendre
coefficient of h(x).
Then

|2a |\< 2 Max (2.6)

RO BT

(k)
) h (t)Pj+r(t) dt

(k)

for 2 <k j-1. (Here, h' " is the kth derivative of h.)

Proof: We have

1
2aj= (2j+1) J h(t)Pj(t)dt
-1

1
j h(t) d {Pj+1(t) . Pj_l(t)}
-1

1

- J h(t) {Pjﬂ(t)—“Pj_l(t)} a,

-1

using (2. 4) and (2.5), integrating by parts. Iterating this operation again gives us

1
(t) —P(t) P (t) - P (t)
%a.= Slh"(t) 12

2j+3 2j— 1 a

then

Ial

Max
rl<2

1
S h"(t)Pj+r(t)dt
-1

15
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which is (2.6) with k=2. To complete the verification of (2.6) we use induction.
Assuming (2. 6) with k<j-1, we have
1

E 200 d<Pj+r+1(t)—Pj+r-1(tD

2j+2r+l

k
l2a l < : Max

57 (25-). .. (25-20+3) Irlgk

-1

1
9k+1)
S h (t)Pj+r(t)dt

k

y 2'2
S @D (Z-2e+3) (2) =2 D) | ll‘i‘;‘H

and the proof is complete.
Now setting k=j -1 in (2. 6) we get

1
j=1
2 pd=1
|29. l( - - — Max j (t)P (t)dt
'S (25-1)(2j=3)...7-5-3 1erea-1 |4,
¢ vax _h0)
S (25-1)(2j-3)...7-5°3 6[_1 i
since lPr(t)Is 1 for -1 <t <1 (Walsh, 1935). Thus
) .
2 (2§=2) ... 42 h(j -1)
|2“j|< (2j=1)...7-5°3 (2j-2) ...4-2 ,f:‘i‘:’_‘l,ﬂl )I
2) ' -
- LR e 19D (2.7

X€ [—1, 1]
Now we wish to apply (2.7) to the specific function F(w) described above. We

need to estimate

Max IF(k)(X)I .

xe [-1,1

16
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Now, assuming R > 2,

<2aR %B® (2. 8)

using (2. 1) in the last step.
Of course, (2.8) remains true if we choose R to minimize the right-hand

member, subject to the constraint R > 2. Let

B(R) = 2AR KeP ™
Then
log p(R) = log 2A -k logR + Be™®
and
-%—'é{)l ol l{P: + Bozea,R .
We have
d2 k 2 aR
—5 log #(R) = tBae
dr R

which is positive, thus @'(R)/@(R) increases, as R increases from 6 to o, from

negative to positive values, and there is a unique number R, such that ¢'(Rk) = 0.

k

17
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k> 2Bae’®

then Rk> 2, so that Rk

R for (2. 8) to be valid.

satisfies the constraint which was necessary to impose on

The equation ¢'(Rk) = 0 -can be put into the form

oR + logR, = log (k/Ba). (2.9
From (2.9) we immediately get
1
R, <7 log (k/Ba), (2.10)

which is an asymptotic quality as k tends to infinity. Now let ko(a) be the first
integer k such that

log(k/Ba) > ae+l. (2.11)

Then for k> ko(a) we must have R, > e. Now by elementary calculus

k

X
log x

> e, X >e (2.12)

since the derivative of the left hand side of (2. 12) is positive for x> e. Thus

aR+logR<RE+ﬂ, R>e
so that for k>/ko(a') ,

1
R [a+ e] >aR, tlogR, = log(k/Ba),

k

and solving this inequality,

e
R, >—TT log(k/Ba) . (2.13)

18



8579-3-Q

We now use both (2. 10) and (2. 13) to calculate ¢(Rk), which is an upper bound
for lF(k)(x)] [k! on [—1,1] , recall, (2.8). We have, assuming of course k>ko(af),

atl\k log (k/Ba)
B(R,) <2A<§e ) L - e2®
Eog(k/BQZI

2 (1r+1)k A ek/a
Eog(k{Baﬂ K

<

l/a k
<2A {Se /log(k/Ba)} . (2.14)
m(w)/k! on [-1,1].

Combining this fact with (2.7), we have for the Legendre coefficients aj of F the

The right-hand side of (2. 14) is an upper bound for F

upper bound
(1
2ir. 2 l/a
2 Ih-l)ll 5e
|aj|< 2oD: Aj{—log _J . >k (@41 (2.19)

We wish to simplify (2. 15) as muchas possible. We have

lG-n112  jg-n

-1n! (2§-1!
_j=1 j-=2 1
2j-1 2j=-2 """ j+l
<1/2j'1
since (j—k)/(2j-k) < 1/2. Thus
j-1 ,
] gl
logJE Qog_lﬁ;

19
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since a<m, and if
j=1>(Bn)°
so that
log(j=1)/Br >3 log(j-1)

we get the more convenient estimate

1/ j-1
20e
|aj| <MD , (2.16)
provided
i>(B0°+1;  j>k (@+1. (2. 16"

Equations (2. 16) and (2. 16') comprise the objective of this selection; bounds
for the Legendre coefficients of the function F(w).

3. Error in Approximating F(w) by a Partial Sum of the Legendre Series

We wish to approximate F(w) in the disc

|w|<i log S , (2.17)

Let SN(w) be the partial sum

N
SN(W) = Z_—\ﬁ. aij(w)

of the Legendre series for F. By Theorem 2.3,

® ® .
E 2 : l/a J=1 .
F(w) —SN(w)l= aij(w) <2A A 20e . lP.(w)l, (2.18)
j=N+1 Mog(j-1)

j=N+1

20
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provided
2
N>(Bm) +1, N>ko(a)+1, (2.18")

by (2.16) and (2.16'). Now we use the well-known inequality (Indritz, 1963, p. 269)
I J
Pj(w)|<12wl . w|>1. (2.19

Substituting in (2. 18), we have

-1
l/a .
[Fw) -5 (w)| < 24 Z (Sl [w]?

N+ log(j-1),

log(j-1)

<4—AlogS <__|____40|we )
j=N+1

wixs 5
< < alog] (2. 20)

for |w|<§log S, N satisfying (2.18").
If N is so large that

/oz

then from (2. 20) we have

l/a
_ 4Ae log S E lo S>

/alo S (
alogN
We have

Lemma 2.2, Let N satisfy the inequalities
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(1) N>(Br)?+1

(ii) N >ko(a) +1, where

_ k

ko(a)-Min {——'——l (k/Ba) >ae+1}
/alo S

(ﬂi) logN>———L

Then

1/a
,F(w)-S (w)l < M < alogllf; S> (2.21)

4. The Beginning Coefficients

Let N1 = NI(S,e) be the first integer N which sat'isfies the hypothesis

of Lemma 2.17, and such that

8Ae P 10gs /206 % 10g 5 <ef2.
a a log N

Then

,F(w)- SNl(w)l < €/2.

To approximate F(w) to within an error € in the disc |w| < (log S)/a, we need

only approximate a, for j <N, closely enough.

) 1N
Let F*(w) be a piecewise continuous approximation, on -1 < wgl, to
Fw), and let a’; be the Legendre coefficients of F*(w). Let
N1

S*ﬁ(w) = Z ai* Pn(w) .

0
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Then, since IP(W)I < l2w|n for |w| >1,

1

N
j
|sN(w)-s§(w)| < ; |aj -a;](?%ﬁ.ﬁ)

N
<N 2 log S 1
—3-—0 Max Ia-a*,, (2.22)

1
PILE
provided
——93—210 S 51,

Now

Iaj-ai*|=’ g {F(x)- F*(x)} Pj(x)dxl
-1

! 1
2 2
< S [Fx) - Frx)] ax - g (2] ax
1 1

by Schwarz's inequality, and the norm of Pj’ as mentioned in Section 2, is
2/(2j # 1, thus

2
25+ 1

|a -a}*l < | F-r| <2|F-mf| . (2.23)

}

(Here, “h” is the inner-product norm over [-1, 1] )
From (2.22) and (2.23) we see that

[SN(W) - Sﬁ(w)l < €/2, lw| < I—O;LS

provided
N

1
1
||F- 7| < y 21:33> ¢ . (2.24)
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Now let us take interpolation points

1
=1+ — = -
X 1 i, j=1-m,

J

and define F*x) by

F*(x)=F(xj)+ nj , x1\<x<xj_'_1 .
Then
R - P | <n+ o Max [P0 (2.25)
S1gtgl

To estimate the derivation in (2.25), we have

_Fw .

(w-t)

R Max lF(W)l

IF'(t)l =
(R- 1) |w| =R

1
ni <

w]=R

and choosing the convenient value R = 2, making use of (2.1), we get

20
[Fue) | <2aeB®
=C . (2.26)
Substituting in (2.26) we get
C
[P - P4 | <ot L. -lgxsl, (2.27)

with C defined by (2.25). Therefore

9 1
lr-m| < S m+ £ )P

-1

2
C C.2
=2[M;1x (nj+ ;1)] = 2n+ r—n)
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where

n = Maxn
j j

(n is to be interpreted as the maximal error in calculating F at the data-

bearing points xj .)

From (2. 24) and (2.27), we see that
_ log S
SN(w) Sﬁ(w) l <ef2 , lw| < ,

provided

N, /2
C 1 a 1
m 2log S
J8N1

5. Statement of the Result

We bring together the above considerations by stating a formal theorem:
Theorem 2.1: Suppose that

. 2 =1 -
(1) xj--1+mj , j=1-m
(ii) FXx) = F(xj)+ nj , xj <x<x:H_1

N
(1ti) S(x) = Z a*P (x),
N 50 1}

where

1
a;‘ = g F(x) Pj(x)dx
1

k
\'/ a) = M n >ae+
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Then, for € >0, we have
log S
F(w) - St(w) | <e, lw| < B2
N a
provided

(v) N> Max {(Bw)2 +1, ko(a) + 1}

and

N, /2
C 1 (a)l
+—
nm<,8N 2 log S {6—‘
1

N1 the minimal N satisfying conditions (v), C defined by (2. 26).
When (2. 28) is satisfied, we have:

If(z)-sN(C)’<e, 1/S<|§|<S,
where

sN( g) = SN(W) ,

w = -(i/a) log ¢

26
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I

ANALYSIS OF THE COMPUTATIONAL RESULTS OF DETAIL
SPECIFICATION (PART I) - SUBROUTINE F6: ET X _I_?_.*,‘r = 0.

In the present CPCEI Inverse Scattering, which is restricted to the identifi-
cation of perfectly conducting targets, the boundary condition Eqx Er *20 was im-
plied where E1 denotes the sum of the incident and scattered electric field vectors,
ie., Ep=E+E.. The near field representation of El and E is obtained from an
expansion into proper vector wave functions, in particular for finite convex-shaped
bodies the approximation representation in vector spherical harmonics is employed.

Using Stratton's notation (Stratton, 1941, Ch.9.25) it can be shown that the
total field Er for the case of a perfectly conducting body can be given with

exp (-iwt) time dependence for

E - X Eoeikz -1 (ﬁosin 6 cosa+ 6 cos 6 cos )
_ ¢o sin § ) ei(chos 6) | (3.1)
as
E, - /ﬁo Eg + 50 E'g + 6\0 E; (3.2)
where

o
P (cos 6)
T 220 +1) [ i s (1) n
ER ) Z n(n +1) l:geinjn(p) * geinhn (p):, p cos §

"
[
©
=]
+
=

)™ ){ ill) P_(cos 6) cos ¢ (3.2a)
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®
T _ 2(@2n +1) (1) Pn(cos 6)
K ; [n(n +1) 2 l:oln jn(p) in "o (p)] sin 6

o

9P (cos 6)

¥ l}:ln[pj (p)] [ph(l)(p)] :' cos @

S (
- 2 St by et Poloos O 4 (11) PPylo0sd
n=1 (o + 1) “sin8 o Jn ___86 cos §
(3, 2)

®
2(2n 2(2n+1) R (o) + (1)( 3Pn(cos 6)
n(n + 1)] oln jn p n p) ——39

P (cos )

+[gil [Pj (P)] el [ph(l)(p):l ] YT sin §

0 0)
Z (zn + 1) ( ) (1) apn(COS 9)
7 n(n + 1) n 20

P (cos 6)
i (1) n
+ - —————————————e
P 9n sin 6 j, sin § (3.20)
where for a perfectly conducting sphere of o = ka:
i
an =1
i,s _ ,.n+1 d(n+1) i,s ,
g eln (i) 2 a; . [o jn(o)] (3.2d)

a = - '
n [c hi)l)(a) l
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b =1
i,s _ ,n nln+1) . i,s n
fin = (1) 5 bn i (o) (3.2e)
pd = . B
" h(l)(o)
n

(1) v (1) .
%(1) (p,0) = - _l;jn(p)[ahnl (G)] j hn1 (o) [Gjn(o)]
n

Ea) ,,

=g
- i2
: (3,20
T
T E:hn (oﬂ
W [0 8 @ - 600) (o]
T b0 - o 3
h " (o) -
n p=0
(1 {P” 6] [ty )] - [o,0] [o10)] }
9} (0, o) = n n n n -0
n G h(l) (Gﬂ ! p=q
n
(3.2h)

It was decided to work with Stratton's representation only and to consider one

test sample exlusively, namely a perfectly conducting sphere of ¢ = ka = 2

where the associated expansion coefficients f:ln' and g:1n are given in Table III-1.

For these values the total field ETwas derived from equations 2 and the

boundary condition ET X I_S,;: = 0 subsequently applied. Since an absolute zero

of this condition cannot be found a minimum searching routine was employed
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which searches for that Xminszmin for which

{ 4 By By 2}

becomes a minimum along a particular aspect angle. In Table III-2 the results
for a perfectly conducting sphere of ¢=2 are presented for T=0°(22.50)180°,

g= 0°(45°)315° where the Xpi, , Were obtained for a searching increment of
AX;=.01 over the range 1.6 <X; <2.5, employing a subsequent researching
subroutine over the angle Xminl' AX; <X, (AX2=. 001) <X on ¥+ AX1 yielding
Xmin2 with Min {-, Erx E'l:,} The results obtained must be considered
excellent, since aside from some isolated critical points, the deviation of X min
from the exact value is less than 1 percent. Table III-2 furthermore presents
|El - | E_sll becomes

a minimum. In Figs. 3-2a,b, c and d, the surface loci are plotted. It can be

those values X, for which the boundary condition

seen that the condition II‘_Ji' - | Esl = 0 fails to yield the exact result in the shadow
region for particular aspect angles, whereas the condition E_,I.x ET = 0 is applicable
far into the shadow region.

Those critical points on the sphere for which the boundary condition IjT X E_; =0
fails to yield the proper results for agiven incident field, will be determined
from Eq.(3.2a - h).

In Weston et al (1966) it has explicitly been stated that the boundary con-
dition Ep x I*_IT
can be shown that for a parallel polarized plane wave H;=x E, / o' exp[i(y sina-Z cosa)]

= 0 is a necessary but not sufficient condition. For example, it

as indicated in Fig. 3-1, (ETx E_T )// = ;?: isin 2 @ - sin (2kzcosa). Hence for

normal incidence (o = 0) the behavior is identical with that of a normally polarized

plane wave where Ep = 0 for Z = 0 and Eq x ET = 0 is identically zero and actually
not applicable. Ko #0, 7/2 (Ep x IQT) = 0, yields

nrw
2k cos «

2 E et B |
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E

5 KK,

7777777F 777777

FIG3-1; PLANE SURFACE CASE
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resulting in an infinite number of planes for which the condition (§Tx E_;) =0
is satisfied, and thus the proper solution: is given for n = 0 only. In the case
of grazing incidence @ = 7 /2, Ex #0at2 = 0 and the nodal point of Er. is off
the conducting surface, however Et x }_Z.f = 0. To determine those isolated
points for which the condition Epx 1_-1_.; = 0 may fail, the following analysis
is helpful. Let p = ¢ in (3. 21, b, c) thus
O, 28m+1) P (cos 6) cos §
n n

or |o hu (aﬂ

T
ER (p =0)
n:

E’;‘(p=a)= E¢(p=a)=0
For =0, 7

@

2(2n+1) P (cos 6)
E':; + ZI 0 2 - "
n=1 o Erhn (a):l '

and since for 8 = /2, Pn(O) =P . 2m(0) = (-1)

m  (2m-1): (3.2a) becomes:

2 m!

@
- 2(4m + 1{2m - 1)

£T. :tfom -1y
m=1 7 2"m'o E:h:ll)(a)]

T
R

which i8 a complex nonzero constant corresponding to the case of grazing incidence

of a parallel polarized plane wave onto a planar surface. For this case Ep x g-;‘ =0,
although Ep = 0. In Fig. 3~6a both {lz:_.rxg.;‘.‘|§= f (Xpn) and {Igil "EJ}”(Ymm)
are plotted versus p = kR, indicating that the first zero of (Epx @if ) = 0 is not identical
with that of {lgil -ll;slf= 0, and the Y, (§ = 0, 6 <90°) has a large deviation as

can be seen from Figs. 3-2a,b,c,d and Figs. 3-6a and 3-7a . The condition

{ I E_il - I‘_Jsl } then only yields the correct result for an exceedingly large number

of expansion terms,
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For 6 = 7/2, § =% 7/2, the boundary condition for a truncated series
expansion of the scattered field E; may work, since E;‘ (p=0,n=N # )#0,
although Eg (p=0,n=N#0, § =t 7/2) = 0, corresponding to the case of normal
incidence of a parallel polarized or an oblique normally polarized plane wave
onto a planar surface. Thus the condition Enx E.; = 0 for n=N# o does work
indeed in this case, however, the minimum searching subroutine will determine
those points for which Eg(p=o, n=N#m, 6#0, 7, §=* 7/2) = 0. The computational
results verify this point to its best, since for a searching increment of X = . 0001,
Pmin= 2- 0000 for all values at § = T 7/2. This property is also verified by the

* -
fact that the values of _E_I,I.x Eqr =0 are by a factor 10 15 smaller. I Figs. 3-5c,

sk 2
3-6¢ and 3-7c the corresponding {-l ngl_i:_Tl and 2 lh_?i | - ll_‘.‘.ﬁll values are
*
presented, also indicating that the first minimum of Epx ET is identical with
that of { lI'_Ji | - ,E‘sli’ and precisely at Pmin = 2.0000. For this particular
a spect angle (f = © 90°) the condition {lgl - | E l } holds also in the shadow
region (see Figs. 3-2a,b, c and d).
*

The distinct singular point for which E’I‘ X E’I‘ =

point of the shadow region or the zenith (6=0), at this particular point the number

0 fails entirely is the focal

of expansion terms as well as the number of digits to which the computation is
correct must be a maximum, otherwise the corresponding minimum may be at
random between 0 < p < due to the slow convergence of the vector spherical

harmonics of this singular point.
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The boundary condition E,, x ET = 0 is correctly applicable for 6 = 180°

Ep
and in fact for all §, yielding identical minima as shown in Fig. 3-4. In Figs
2
sk
3-5b, 3-6b, and 3-7b, the values of {—, Erx ET' } andilgil - |1'_35|& are plotted
versus p=kR for § = 450, 9=135°; 90°;67. 5°, indicating again that the condition

s«
E—TXET = 0 is superior to { | gil - IE_J} since it is applicable far into the

shadow region. Inspecting Figs. 3-2 to 3-7 will show that the boundary condition

*
X Ep = 0, aside from 6 = 0, can be employed to its best. For the particular

value o = ka = 2 the computed values in both the illuminated as well as the shadow

Enx E

region lie within one percent of the exact value. This result may not be obtained
if 0 >> 1 in the shadow region. Since, however, in practical cases the points in
the illuminated region will be considered only, this matter is of less concern.
However, the deviation of p nin > 8 in the dlluininated region or shadow region
respectively needs further interpretation which will not be presented here.

An entirely different question of interest must be answered; namely how
to find the range for which p = ¢ = ka, corresponding to the proper locus, for
which the min x - |E_Tx E_?,; I 2 } may yield the distinct point on the surface of
the unknown target. To do so, Figs. 3-3a,b, ¢ and d will be interpreted, which
present the loci of successive minima over the range 1.8 < p<15.5, resulting
from the boundary condition Et x }_E_,If = 0. It can be seen that the locus of the
first minimum describes exactly the sphere of radius ¢ = ka = 2. All loci associated
with the minima of higher order describe concentrical, asymmetrical hyperboloids,

separated from one another by almost equal spacing. In fact for 6 = 180, and p >2 o,
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Apmln

condition Ex x E-ff = 0 is a necessary but not sufficient condition, may be em-

= const = . 86. This particular phenomena, due to the fact that the

ployed to find the approximate range of the scale size o = ka of the target in
question. Namely, applying the condition ET X E,; = 0 at the backscatter-aspect
angle at fairly large values of p over a few periods should yield the approximate
range of o, since A p nin <o. In addition the properties that! E_il - I Es|= const
for p> o and varies only near p ¢, with a minimum at approximately the

first minimum of of Er x E_.; , may be used as an ultimative check.

Another question of interest is related with the necessary number of expansion
terms as well as the number of necessary digits to which the expansion coefficients
gg m n f8 mn are correct. It has been shown already that proper number varies
with the particular aspect angle. However it can be shown that application of the
condition E, x E'I:: = 0 requires a smaller number of expansion terms as well as
digits. This is indicated in Tables III-3 and III-4 for the particular aspect angle
g =45, 6 = 1359,

It may be concluded from the presented results that the boundary condition
E. X E_.:: = 0 although not restricted to perfectly conducting bodies, is an

T
extremely helpful tool in the problems of inverse scattering.
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Expansion Coefficients foin’ gein for a Perfectly

Conducting Sphere of o = ka = 2,

Re(f . }
oin

]

Re {gein {

={ru

D O W W N e

. 4884982

. 2043585
-2,450365

-.994961. 102

.2126115+ 102

. 3764457 - 10'9

-.6066279
. 7558526
.01002389
-.3155869 10~
-.3013576+ 10~
.8891209. 10~

1
6
9

-. 21764022
-1.341662

. 0308867

+ 04377755
4768353+ 10™°
-.1064619- 107

. 4472206
-, 8292217
-. 4293786
.000191651
,267442 + 1072
9

-.539721+ 10
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TABLE 1I-2:

+o wmlr- g,

0 FOR A PERFECTLY

SURFACE PQIU BS DETERMINED BY}HE BOUNDARY CONDITIONS
HERE O

CONDUCTING

og=2ka =2, AND
N = 5 EXPANSION TERMS

o° ¢° X pinlEp XEx) {-l(g,rx g;)r} Ymm(|§d-|§.l) (E -E)

0 0
22.5° 0 1.079 7.8 -107° 2.7 1.1 1073
4 0 2.000 5.6 -10°° 2.8 2.6 - 102
.5 o0 1.909 2.81- 107 2.3 7.0 -107¢
% 0 2.000 7.2 1072 1.9 7,510
11286 0 2.00 5.27-10°° 2.02 2.3 1074
138 0 2.01 2.19-10° 2.1 618107
18.5 0 2.012 1.00 107 2.05 9.8 -107
180 0 2.0000 1.38-1072° 2.00 110"

—

0 45 p 4
.5 45 1.985 1.67° 10 2.5 9.7 -10
8 45 2.001 4.40-10" 2.8 2.1 -1072
.5 45 1,988 9.88- 10" 2.2 8.4 -10™°
0 45 2.0000 3.6 -10° 1.04 5.5 107
112.5 45 1.984 2.36- 1075 2.04 5.1 -107
135 45 2.009 7.82- 107 2.04 3.5 107
157.5 45 2.001 7.21- 1074 2.0 2.1 -10°°
180 4 2.000 8.25. 10”20 2.00 011107

—_———_———— e ————————

0 90
22.5 90 1.99 1,31 10722 2.000 9.6 -10°°
4 % 2.0000 5.1 1072 2.00 9.14-10°
6.5 90 2.004 8.03- 10723 2.00 6.39-10°°
% ) 2.0000 5.65- 10”24 2.00 1.60- 1074
112.5 90 1.989 2.2 10”22 1.99 .7 107
138 90 1,987 3,31+ 10721 1.76 4.3 -107
157.5 90 1.997 1.15-10-2 1.92 2.3 -10°3
180 90 2.5 4.8 -10~20 2.000 4.11-1075
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TABLE I1I-2:
(Continued)
S U RS T R

22.5 135 1.985 1.67-107 2.5 9.2 -107
45 135- 2.001 4.49-107 2.6 2.1 -10°2
67.5 135 1.988 9.68-107> 2.2 8.45-10™
90 135 2.0000 3.6 -107° 1.04 5.5 -10™
112.5 135 1.984 2.36- 107 2.04 5.1 .10
135 135 2.009 7.32-10° 2.05 3.5 -107
157.5 135 2.01 7.2 1074 2.00 2.1 107
—

0 180
22.5 180 1.968 2.76- 10710 2.7 1.1 -1072
48 180 2,001 1.28-10° 2.8 2.6 - 1072
6.5 180 1.687 6.62°10°° 2.3 7.0 107
90 180 2. 000 1.12-107 1.9 7.5 1073
112.5 180 2.088 5.03- 10 2.0 2.3 -107
135 180 2,081 2.2210°° 2.1 4.15-10°°
157.5 180 2,024 1,08 107 2.08 0.8 1074
180 180 1.999 1.09- 102 2.00 61107
e —

0 22
22.5 228 1,985 1,67- 1074 2.9 9.2 107
45 205 2.001 448107 2.6 2.1 -1072
67.5 235 1,988 9.66- 107 2.2 8.4 107
80 225 2. 0000 3.60- 107 1.04 5.5 107
112,85 225 1.984 2.36- 107 2.04 5.1 +10™
135 225 2.009 7,32+ 107 2.04 3.5 107
157.5 225 2.001 7.26- 1074 2.00 2.1 107
180 228 2.000 8.26 10°% 2.00 4.1 -107
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TABLE 1I-2:
(Continued)
6° ° | X (E_xE)|{-l(ExE* ’ E |-|E -

| FonEr<ED VI EXED| Yo (5 {ED | ([E)E,)

0 200
225 210 1.999 1,04 1072 2.00 9.6 -107
45 270 2.000 8.19- 10722 2.00 9.14- 10
87.5 2170 2.001 1.28.1072 2.01 6.4 *10™
80 270 2.0000 9.03- 10723 2.00 1.6 <107
112.5 27 1.989 5.3 -10°2 1.99 4.7 ~107
135 270 1.997 1.84-10"% 1.96 4.2 107
157.5 270 1,997 1.86- 10" 1.97 2.3 -107
180 2170 2,008 4.0 1070 2,00 4.1 107

0 318"
22.5 315 1.985 1.67- 107 2.5 9.2 +107
45 315 2,001 4.49-107" 2.6 2.1 - 1072
67.5 315 1.988 9.66-107° 2.2 8.4 +10™°
%0 315 2.000 3.6 107 1,94 5.5 +10™
1125 315 1.984 2.36- 107 2.04 5.1 107
135 315 2.001 7.32- 1074 2.04 3.5 -107
157.5 315 2.009 7.26- 107 2.00 2.1 -107
180 315 2.002 8.2 - 10722 2.00 41 107
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SURFACE POIUBS DETERMINED BY THE BOUNDARY CONDITIONS
0 AND ]gil-\gs\ k= 0 FOR o=ka=2 AND

E_XxE

T

6=135°, ¢ =45° AND NEX

*—
-

PANSION TERMS

E *| 2

N Xmin B l—TxET Ymin JEII - IEBI

2 2.05 .36 2. 22 18- 1071

3 2.03 284+ 1072 2.18 .88

4 2.00 18 + 1078 2.09 .32

5 2.00 68 - 1074 2.06 42+ 1072
-6 -3

6 2.00 78 - 10 2,02 71 - 10
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TABLE II-4:

SURFACE POIUBS DETERMINED BY THE BOUNDARY CONDITIONS
%

E.XE; = 0 AND ]1_31| - ‘_@sl = 0 FOR
oc=ka=2, AND 0=135", p =45°, N=6
AND M DIGITS.
*) - )| 2 ( )
M xmin(ETxET) 'IETXET | Ymin 'Ei]- |Es| (l-lgil- Esl )
v -3 -2
2 2.09 .28- 10 2.22 .33+ 10
-3 -3
3 2.07 .33+ 10 2.18 .13+ 10
4 2.02 22+ 1074 2.15 .50 - 1072
=3 -2
5 2.03 .21° 10 2.09 .42- 10
=5 -3
6 2.009 .36 10 2.03 L1110
7 2.001 .78+ 1078 2.02 .34 107
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v

MOTIVATION AND HEURISTIC DEVELOPMENT OF
INVERSE SCATTERING THEORY

Several different methods have been developed for the inverse scattering
problem as is evident from the review article by Faddeyev (1963). The
best known attack is originally due to Gelfand and Levitan (1951). For the
quantum mechanical case, Levinson (1953) has motivated this attack. A
very similar method was developed by Kay (1955) and Kay and Moses
(1955 - 1961) for not only the quantum mechanical problem but also for the
one-dimensional wave-equation. For this latter case, it is possible to
give a more transparent motivation and development in a manner similar
to that used by Kay (1960) in a little known paper. In addition, Moses (1956)
has given an entirely different method which appears more natural to people
acquainted with diffraction theory and which in addition is valid in three
spatial dimensions.

Both of these methods use ideas from perturbation theory as their
starting point and both are limited to the case of perturbation by a real
potential. The reality of the potential implies an analytic continuation of the
reflection coefficient which appears essential for anything like a practical
application. It appears that the difficulties associated with surmounting

this are the chief ones preventing the ~xtension of either method to the case
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of a complex potential.

As is customary, we will denote the self-adjoint extension of the
operator - A by Ho and that of the operator - A + q(x) by H so that
H= Ho + V where V denotes multiplication by the real potential q (x).

Of oourse for H to exist, ¢ must satisfy certain conditions--for our purposes
it will be sufficient to assume that q is locally Hoelder continuous except
for a finite number of singularities and that is in Llr'\ L2 over.E1 or ES'
With these assumptions the results of Ikebe (1960) are valid so that the
interested reader can refer to this paper for detailed proofs of the argu-
ments we are about to give in an attempt to motivate the perturbation
theories underlying the two afore-mentioned approaches to scattering
theory. For simplicity we will also assume that q has no bound states--
for example, q could be a repulsive potential or barrier. Then if l¢ (x,k)
satisfies the scattering integral equation

. ik|x-
) Bxk) = o= X - ;11;; /:E elz—_tl—}il aly| My, dy
Tkebe has established the §ollowing results:
(Part of his Theorem 5)

Let f(x) be an arbitrary L, function. i) Then the generalized

2
Fourier transform

A - —_—
E() = (21) 3/211.me Fxl f(xdx

of f(x) exists and belongs to L2(M) where M is the 3-dimensional space
formed by vectors k .

if) The following expansion formula is valid:

_ A
(= @0 Primfl fen T

iil) fis in the domain of H which is equal to the domain of Ho if and
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A
only if ]k|2 fk) € L, (M) and under these circumstances we have

the following representation of H:

Hf(x) = (2:)-3/2l.i.m.‘/1; | l? # (x,k) ?(19 dk .

Of course, in terms of the ordinary Fourier transform

2) ?O(Q = (21)_3/21. i.m.‘/E. JEE f(x) dx

Ho admits the representation

o2 im WP S
3) Hof = (27) Lim Jo lkl e £ (k) dk

and as Tkebe shows the continpous spectra of H and Ho are unitarily
equivalent. It is this last remark which underlies the approach of Kay and
Moses (1955) and Faddeyev (1963) for it is the basis for Friedrich's (1948)
method based on spectral representers. On the other hand, the Fourier
transform of the scatteting integral equation (1) form the basis for the alter-
nate approach of Moses (1956). By means of its solution, the "eigenfunctions"
P (x,k) of H are expressed in terms of the distorted plane wave "eigen-
functions" exp (i k - x) of Ho' To see that this is not the only possible

linear transformation relating these two let us introduce the linear operator

U defined by the relatiom

-3/2, . A
4) Uf(x = (2m Lim. M f (x,k) f0 k) dk
Then it follows that

03/2

A
5  UHf = (21) llirm.,/;(_)s,li) (HD dk = (2021 1. m.

2
f¢(g5,_lg) {kl (R dk

since it is clear from (3) that

6) mo, = lel“t @

On the other hand, it follows from (4) and @i} above that
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D HWD - e L, /Iklzﬂi(gg,}_{) £ (@ dx

Thus for any f in the common domain of H, Ho

8)

HUf = UHf
0

-1
It is clear here that U = exists so that (8) can be written as

9)
or as

10)

Since

11)

it follows that

12)

or that

13)

Comparison with H§ = k 2 p shows that the operator U takes ¢o
into §,i.e. $=U ¢0 and that ¢o = U-1¢. In the first approach to the
inverse scattering problem the existence of such an operator U is postulated
but since the eigenfunctions @ (x, k) are not known it is sought in still a different
form, namely as I+ K where K is an integral operator with a kernel k(x,y)
in the one-dimensional case. Fredholm operators of this kind are convenient
since the existence of an inverse is necessary for the above argument.

We proceed to develop this approach in detail for the one-dimensional

wave equation

14)

HU = UH
-1
H = U HU
0
2
Ho¢o B |k| ¢o

u! HUf - |l? g

HUP - |k|2U¢O

82U

- 33 - q(x) U(x,t) = 0
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under the assumptions on q noted above. For simplicity we will also
assume q(x) = 0 for x <0 and that initially there are no bound states.

The associated time independent equation is

2
15) wxx(x,k) +[k - q(X)] u(x,k) =0
which, in view of the above, is to be considered as a perturbation of
16) 42 2
— u (x,kk + k u (x,k =0
dx2 o o

Thus we seek a kernel in the relation

17) @
u(x,k = uo(x,k) + / k(x, y) u (y,k dy
-00
or, equivalent in the relation
00
18) U(x,t) = v, (x,1) +/ K (x,y) Uo(y,t) dy
-0

Now if U(x,t) is a right moving transient in the sense that U(x,t) = 0
for x>t, it would seem reasonable to conjecture that it would depend on
Uo( x, t) only through those values of x which the non-zero travelling wave
would have had time to reach at t. That is that K(x,y) =0 for y> x.
The reasonableness of this is less evident for the quantum case since
there is no causility but the conclusion is still true. Thus (18) can be
wtatively replaced by
19) U (x,t) = Uo(x, t) +_/.x K(x,y) U (y,1 dy

-00

Now it is known that under the above hypotheses on q(x) that asymptotically

kx -ikx

20) u(x,k)fh'ei + k) e X=> -

21) ~ t(k elkx X => + 00

These conditions correspond to a wave of unit amplitude incident from the
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left and a transmitted wave of amplitude t(k). We shall suppose that the
reflection coefficient r(k) is given for all real positive values of k. In

addition we shall suppose

) 1k = r(-k Im k=0
ii) (k) = O(1/k) Im k>0
i) [r(R)] < 1, Im k=0
iv) r(k) is analytic and its singularities lying strictly above the
real axis in the k-plane consist of a finite number of simple poles on the
imaginary axis having residues with positive imaginary parts and zero
real parts. It will be assumed that there are no singularities on the real
axis except possibly at k = 0.
v) The Cauchy principal value of the Fourier transform of r(k)
is coninuous with piecewise--continuous first and second derivatives
for —ow< x < © .

These conditions are necessary and sufficient for the solution of the
inverse scattering problem. The proof of their sufficiency is due to Kay
(1955), that of their necessity to Sims (1957).

A few additional comments are in order. (i) will hold automatically
if g(x) is real while (ii) will hold if q(x) has a zero and first order moments.
Finally, we shall initially assume that r(k) is analytic in the half-plane
Im k>0, generalizing our results to the case of (iv) subsequently.

Since the differential equations (15) and (16) agree for x <0 it is
natural to set u (x,k) = uo(x,k) for x<0 and hence U(x,t) = Uo(x, t) for
x < 0. Now the generalized function Uinc = 6 (x-t) is the Fourier trans-

form of the first term of (20) and
o
-i +
23) R(x+t) = 317—;/ ) e KXY g
-0

is the Fourier transform of the second term. It is necessary to use (i)

for the construction of this transform. In view of the (temporarily)
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assumed analytic properties of r(k), it follows from the Paley-Wiener-
Titchmarsch theorem that r{y) = 0 for y < 0. Inserting these expressions
in for U(x,t) = U (x,9) = & (w-t) + R(x+1), x<0 into(18) yields

299 U(x,t)

X
6 (x-t) + R(x+t) + .{; K(x,y) |6 (y-t) +R(y+ t)] dy

®
6 (x-t) +R(x+t) + ,_4: K (x,y) n(x-y) [6 (y-t) +

+ Ry + t)] dy

6(x-t) +R(x +t) + K(x,t) n(x-t) +

X
+ _[: K (x,y) n(x-y) R(n +t) dy

]

0 if z<0
1 if z>0

where n(2)

and where the lower limit follows from the fact that R(y +t) =0 if y+ t <O0.
If we assume that U(x,t) is a right-moving wave that vanishes for x> t,

from the above we obtain the following integral equation for K(x,t):
X
25)  0=R(x+t)+ K(x,t) + .[t‘ K(x,y) R(y+1t) dy

To simplify this equation still further we will note that without appeal to

any special properties of R(y) that it follows from (25) that if R(x) = 0

for x<-2a then K(x,t) =0 for x<-a. Thatisif t<x <-athen t+ x< -2a
so that R(x+t) = 0 by hypothesis. Moreover in the integral above y < x < -a
and this coupled with the fact that t < x < -a implies that y + t < -2a so that
the factor R(y +t) = 0 and thus under these conditions (25) reduces to the

statement K(x,t) =0 for t<x<-a. Applying this to R(y) = 0 for yg0 yields
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the fact that R(x+t) =0 for x +t<0 or x< -t and thus the fact that
K(x,t) =0 for x< -t. Thus (25) can be written as the Fredholm integral

equation
X
26) 0 = R(x+t) + K(x,t) + [x K(xy) R(y+t)dy

By the Fredholm alternative this will have a unique solution if the

corresponding homogeneous equation

X
27) A (x, )+ /_X‘ R(y+t) Alx,y)dy = 0

can be shown to possess only the trivial solution. To see that this is the

case we rewrite (27) successively as

S

& [R(y +t) + 6 (t-yiA (x, y) dy

X (0 0] .

{L ./ r( e KOO gy

28) 0

.,\

-X 27 - o
109)
1 / -ik (y-t)
+ o / o e dk}A(x, y) dy

Now it is readily verified that

a . .
29) / {r(k) e—lk (y+1) + e-lk (y _t)} dk =
-00

Q0 . 0] .
:f (1 —lr(k)lz) elk(t_y)dk+ / (elkt+
0

0 o)

ikt

+r(k) e ) (eiky

frk) o) dk

so that (28) implies that
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@ X ———— X
30)/ {1 - lr(k)l 2} {f Ax, t) e-‘kt dt} {f A(x,y) Q—iky dy} dk +
o -X

-X
X X
ikt -ik
+ / ° f [e +r(k) e ! t] A(x, t) dt { f Piky+r(k) e-hkﬂA(x, y)dy}dk 20
- -X -X
However for real k, conservation of energy demands that
r (k) 2 <1

so that each term on the left above is positive for any function

X .
/ A(x, t) e-lkt dt

=X

unless it is identically zero when x <0 so that (30) implies that
Ax,t) = 0 ifx+t =0. Thus only the trivial solution exists and thus
(26) will have a unique solution and the representation (19) will exist.

In order to find the relation between K (x, y) and the potential it is
merely necessary to apply the differential operator (14) to (19) and to make
use of the fact that

31) dK(x, x) [dx = Kx (x,x) + Ky (x,x)

Thus *

X
a N
= - - = - + — +
32) 0=U Utt qU qUo o {4 Kx(x,y) Uo(y,t)

+ K(X, X) U (XJ t) - K (X, 'X) U (XJ t) -
(o) o

X
-/ K (x,y) U?t (y,t) dy =

X

X
= -qU +j K Uf(yt) +K (x,x) U (x,t) -
(0] XX 0 X 0

- KX (x, -x) Uo(x, t) + i‘dixw Uo(x, t) + K(x, x) g'; Uo(x, t) -

* For clarity, the subsgript o will sometimes appear as a superscript o
in the following.
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SR ey - ke & U -

X
- + + - - - +
qU, ./_; K . U0 Kx( X, X) U0 (x, t) Kx(x, x) UO(X, t)

¢ Fn v o ke Lo -

XK . _ _ Ly 4 -
- & (x, -x) v, (x,t) - K(x,-x) = % (x,t)

K (x, x) U; (x,t) + K (x, -x) U; (x,t) +

<+

‘_ 0 e ) 0 _ / 0 i
Ky (x,x) U (x,t) K”y (x,-x) U (x,t) Kyy U dy

X
=/ (Kxx-Kyy-qK) Uo(y,t) dy +

=X

+ [2 @gdxw - q(x)] U (%) + 2 dﬂ-;‘x';x) U_ (1)

That is, (W) will be satisfied if K(x, y) satisfies the partial differential equation

33 K -K -¢gK =0
) X yyq

subject to the conditions

dK(x, —x dfol X) g‘fxz
34) =0 i = 5

™ =
This Cauchy problem of the second order linear hyperbolic equation has a

solution so that such a K can be found.

N.B.[K (x,-x) = 0 implies -dd;- K (x, —x)]= 0
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Conversely suppose that g(x) is defined by (34) where K(x, -x) = 0 then
applying the differential operator
2 2

d d
o o W

to (26) yields

2 2 x| 2 .
3 K J K 0K 0 K
35) 0 —[ 5 " 9 'Q(X)K] +/ [ 5 T g T

J X ot

- q(x)K] R(y+t) dy

which is the same as (27) if one now sets

) K
A - - —— - aK .
Jd X Jt

It follows from the previous uniqueness argument that

a2K GZK
5 -gK =0

2
Jd X ot

so that any solution of (26) will also satisfy (33).

All of the above can be generalized to the case where the assumption
of analyticity in the upper-half plane is replaced by the condition (iv) provided
that the function R(x) is appropriately defined. Assume in accordance with
this assumption that r(k) has poles at kj = irj where -rj> 0. Taking
for convenience r(k) in the form

r(k) = gl e 2K

where g(-k) = g—(?) for k real and where the residue of g(k) at the above

poles is rj we will now define R(x) by the expression

00} , iryx
s / ik (x +20) Z el
R(x) = o /. g (k) e dKk + A

J
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where the normalization constants A]_ will be chosen so as to make R(x) =0
for x < -2a. Using (ii) we can close the contour in the upper half -plane
by Jordan's lemma and thus obtain for x < -2a that

(04}

1 -ik (x + 20 . Ty + TX
o g(k) o K¢ )dKzlzxj e T

Thus if Ai is chosen so that

1 i wr
— = -ir, e '}
A, j
J
Then R(x) =0 for x < -2a. By our previous observation this will imply

that K(x,t) = 0 for x < -a and hence that

—

q(x) = 2 dK(x,x) /dx = 0 for x<-a .

There is actually no loss of generality in now setting a = 0 so that
the potentials constructed above even in the presence of bound states will
all vanish for x <0. There is also no difficulty in extending the unique-
ness argument for the homogeneous equation (27) to this case--it is carried
out in detail by Kay in (1955). This completes our description of Kay's
adaption of the Gelfand-Levitan approach to the one-dimensional wave
equation. To actually construct q(x) it is of course necessary to solve
(26) by some process such as successive iterations.

The method described above does not appear to offer much promise
for the solution of a large class of electromagnetic problems although
as demonstrated by Moses (1967) elementary transformations will
sometimes permit an electro-magnetic problem to be rephrased in such a
way as to make the above applicable.

In contrast the method developed also by Moses in (1956) seems
more straightforward and perhaps capable of generalizations at least to

the electro-magnetic problems which can be formulated in terms of vector
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integral equations analogous to (1). Cf. Dolph and Barrar (1954) and
Miller (1957) . Moreover there is little difference between the cases of
one and three dimensions so that one may as well develop the theory for

the latter. From (1) it follows that for back scattering, one has asymptotically

that *

Jx ik
36) P (x,k) v —1r + r (k)

(2,)3/ 2 |x
where
37) cw- -w2Y? JEE g TY gk k0

3/2
(27)

Again, although r(k) is defined only for real k> 0 in the event that

q (x) is real it can be shown that

38) r(-k) = r(k k>0
or that
39) r(k,6,8) = r(k,6,8) k>O0.

It will now be shown how the scattering potential can be obtained from
r (l_g) where k is such that it makes an angle less than 1/ 2 radians with the
positive z-axis. This restriction takes care of the over-determinancy
mentioned by Faddeyev (1963).

The first basic equation of this theory is just (1) written in the momentum

repPresentation. More explicitly using the known fact that

S ik'. —ik'.
40) eikléﬂ - f SRR dk'
4m|x-y} ox> 12 2
* To conform with Moses normalization, ell{-.z(- in (1) has been replaced
'k. -
by e == (2) 3/2-
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where the path in the k-plane is the one shown directly below:
+

Y]

T W

V

one multiplies (1) through t\y q(x) and introduces the definitions

4) Tk = L KX q(x) ¢ (x, k') dx
3/2
(2x)

42) V(!(_,l_(_') i} 1 5 /ei(k'—k - X Q(y di
(2x)

8o that (1) becomes (Cf. Morse and Feshbach I, p. 1077, 1954)

43) T(]_{,E‘) = V(b&!) +jV(l_{,E") T (E"E') »
72 |

The second equation of this theory consists in essentially solving this

equation for V(k,k!). We first observe that if

' = 1 f‘i(li"l‘)
4 ¢ & (21)3/2 e § (xkdx

Then equation (1) can be written after Fourier Transform as

45) ¢0(1_{_',Q = 6(k-Kk') + L i, m. 1 T (k'. k)

€-> 0 k2 _k,2 +ie

If for simplicity we again assume that there are no bound states then the

completeness relation

(00)
o S ww ST & - sk

-

will imply the completeness relation
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(e 0]
IR TR o T

0 0)

(00
= 5 (k) f g,k k) § Tk dk = 5 (k) |
-

Now by definition we have that

48) V (k k') = —-IT /ei(lf.'l(_') X q(x) dx
(27)

from which it follows that

49) V(li',li") ¢0(E"’Q dk" = ___13_%(9 “i(li'-h")-i ¢0(K”'1_() dx dk" =

(27)
=/ e-ﬂi',iq (ydx eik",é ¢OQ{-"’ IS) dk"
(2')3/2 (2’_)3/ 2 )
ai e
(51 o - T (K
(21) 3/2 =

in view of (47 ) and the definition of T(k,k'). Therefore we have at once that

50) V(5 k') = f T (o k) § (k) ke

Inserting the expression for ¢o given by (45) yields the solution to (43) in
the form

N - . (k, k") _
5) Vi(kk') = T(k) +/T — . TED a

k" -k

[The correspond expression in the presence of bound state is eq. 7.52a
in Newton (1966), page 189] .
Defining W(k) by the relation

52) Wi(k) = V(kk = -lg-fq(y A2k x) dx
87
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and noting that from this it follows that

53) q(y=vf‘255w(Jdk

we see that (51) can be written as

1/2 k1) ——
54)  W(k) = -(%) r (k) +f—T__;___—‘-‘¢-2'&l T (k k') dk'
K -k

This last equation must be extended to k < 0. We first note that the

property of the potential being real implies that
55) W(k) = W(k) k>0

so that (54) implies that

56) W(_) W(-_) _(___) l‘(_) f k, k') T (k k') dk'
2

Using the definition of n, this can be written as

57) Wk = -é—)l/z ) + ) k) ] T R TG e

2,2 K 242

Equations (43), (52), (53) and (57) form the basis for this new theory. They
. must be solved simultaneously and as in the previous case the method of
iterations suggests itself. One replaces r (k) by € r (k) and makes the Ansatz

that

58) ThK) - D, & T, (& k')
@® ]
n
W(k) = Z e W (k)
& -k
Vigk) = > e = =)

Upon substitution, one sees that Tn and Wn can be obtained from a knowledge
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of r (k) alone while one uses (53) to obtain q (x) .
Alternately, one can use the expression for W(k) as given by (57)

and substitute it into (53) to obtain

59) ate) - 22 [y iR g

+8 »/dli ./q@ Pl ax /q(&") Pl dx' gy (x' +x" - 29)

where
60)
k'-x n(k'} n (k')
) - - / ! {.2__2._ + _2_2_ dk'
(21r) - k' - k'

equations (59) and (1) are the basic equations to be solved. One writes

(00)
61) q(x) = ¢ q ()
2
and
BES .>s s n
62) § (xk)= 2 + ed (xK
(21) Z .

which upon substitution leads to a perturbation series. It can be shown that
to any order of approximation, @ reproduces the-reflection coefficient r(k),
Faddeyev (1963) expresses the view that it is quite probable that this method
of Moses converges for sufficient small r(k). To support this opinion it
should be noted that this procedure is so reminiscent of the Born series
approach to (1) that much of the recent work giving sufficient conditions for the
convergence of this series could probably be extended to equations (61) and
(62),

We note the crucial role played by the relations (38) and (i) in these

theories respectively. Without something like them it seems difficult to see

6
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how a theory could be developed but it is perhaps worthwhile to consider sofe
of the work on the optical model where a complex potential is employed to
give a model of nuclear scattering.

As a concluding remark that Lax and Phillips (1967) give two proofs
of the fact that the scattering operator for the wave equation witﬁout potential
does in its time independent form in fact determine the obstacle under
Dirichlet conditions, The first of these due to Schiffer proceeds along classical
lines and uses the Green's representation theorem of the exterior problem and
also Rellich's uniqueness theorem. An attempt to extract it in detail will not
be attempted here since it involves much of the previous notation and results
of previous chapters of the book.

Since this was written, some recent Russian work has been noted based
on A.N. Tihonov's 1943 paper on incorrectly posed problems. This should
be pursued. See for example:

A.N. Tihonov, 1. Dokl. Akad. Nauk, S.S.S.R. 39, 1943, p. 176.

2. Sov. Math 4, 1963, p. 1035.
3. Sov. Math 4, 1963, p. 1624.

A.T. Prilepko, Sov. Math 7, 1966, p. 43l

1



8579-3-Q

REFERENCES

Barrar, R. and C.J. Dolph (1954), Rat. Mech. and Anal. 3. p. 726.
Faddeyev, L.J. (1963), Math. Physics, 4, p. 72.

Friedrichs, K.O. (1948), Comm. Pure and App. Math. 1, p. 361.
Gelfand, I. and B. Levitan (1951), Am. Math Soc. Trans. 1, p. 253.
Hille, E. (1962), Analytic Function Theory, Vol. II, Ginn and Co.
Ikebe, T. (1960), Arch. Rat. Mech. Anal. 5, p. 1.

Kay, 1. (1955), "The Inverse Scattering Problem", New York University Report
No. EM-74.

(1960), Comm. Pure and App. Math 13, p. 371.

(1962), "The Three-Dimensional Inverse Scattering Problem", New York
University Report No. EM-174.

- and H. Moses (1955), "The Determination of the Scattering Potential from
the Spectral Measure Function, Part I: Continuous Spectrum,' Il Nuovo
Cimento, Vol. 2, p. 917.

- and H. Moses (1956, "... PartII: Point Eigenvalues and Proper Eigen-
functions", Il Nuovo Cimento, Vol. 3, p. 66.
- and H. Moses (1956 , "... Part Ill: Calculation of Scattering Potential

from Scattering Operator for One-dimensional Schrodinger Equations,"
Il Nuovo Cimento, Vol. 3, p. 276.

- and H. Moses (1957), "... Part IV: 'Pathological' Scattering Problems in
One Dimension, ", Il Nuovo Cimento, Supp. of Vol. 5, p.230.
- and H. Moses (1961a), " ... Part V: The Gelfand-Levitan Equation for

Three-Dimensional Scattering Problems.' Il Nuovo Cimento, Vol. 22, p. 689.

- and H. Moses (1961b), "A Simple Verification of the Gelfand-Levitan Equation
for the Three-Dimensional Scattering Problem", Comm. Pure and Appl.
Math., Vol. 14, p. 435.

Lax, Peter D. and R.S. Phillips (1967) Scattering Theory, Academic Press.

Levinson, N.(1953), Physics Rev. 89, p. 755.
Morse, P. and H. Feshbach (1954) , Methods of Theoretical Physics, McGraw-Hill.
Moses, H. (1956), Physics Rev. 102, p. 559.

78



8579-3Q

Moses, H. (1963), "Properties of Dielectrics from Reflection Coefficients in One
Dimension", M.I. T. Lincoln Laboratories Report No. TR-322.

Mueller, C. (1957), Grundprobleme der Mathematischen Theorie Electromagnetischer
Schwingungen, Springer-Verlag, Berlin.

Newton, R. (1966), Scattering Theory of Waves and Particles, McGraw Hill.
Sims, A. (1957), J. Soc. Indust. App. Math 5, p. 183.

Walsh, J.L. (1935) "Interpolation and Approximation by Rational Functions in the
Complex Domain', Amer. Math. Soc. Colloquium Publications, Vol. 20.

Weston, V. H. and J.J. Bowman (1966) "Inverse Scattering Investigation - Quarterly
Report, 1 April - 30 June 1966", The University of Michigan Radiation
Laboratory Report No. 7644-3-T.

79



8579-3-Q

DISTRIBUTION

Electronic Systems Division
Attn: ESSXS

L.G. Hanscom Field
Bedford, Mass. 01730

Electronic Systems Division
ESTI

L.G. Hanscom Field
Bedford, Mass. 01730

27 copies

23 copies



UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body ol abstract and indexing annotation must be entered whon the ovorall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 28, REPORT SECURITY CLASSIFICATION

The University of Michigan Radiation Laboratory, Dept. of Unclassified

Electrical Engineering, 201 Catherine Street, 25, GROUP
Ann Arbor, Michigan 48108 N/A

3. REPORT TITLE

INVERSE SCATTERING INVESTIGATION
Quarterly Report No. 3

4. DESCRIPTIVE NOTES (Type of report and inclusive datea)

Third Quarterly Report (3 July to 3 October 1967)

5. AUTHOR(S) (First name, middlo initial, last namo)

Vaughan H. Weston, Wolfgang M. Boerner, and Charles L. Dolph

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
November 1967 79 25
8a. CONTRACT OR GRANT NO. %9a. ORIGINATOR'S REPORT NUMBERI(S)

F 19628-67-C-0190

b. PROJECT NO.

ESD-TR-67-517, Vol. II

c. 9h. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)

d. 8579-3Q

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is

unlimited. /W

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Surveillance and Control Systems
Electronic Systems Division, AFSC, USAF,
L.G. Hanscom Field, Bedford, Mass. 01730

13. ABSTRACT

The problem in question consists of determining means of solving the inverse scattering
problem where the transmitted field is given and the received fields are measured,

and this data is used to discover the nature of the target. Particular aspects of this
overall problem are considered, such as the effect of phase errors upon the determination
of the scattering surface, polynomial interpolation of the scattered field measured at a
set of discrete points, and the testing of a numerical procedure for finding the surface

of a conducting body from the knowledge of the near field. In addition, a review of

exact theoretical treatments for the scalar inverse problem is given.

FORM
DD 1 NOV 651 4 73 Unclassified

Security Classitication




Security Classification
ub KEY WORDS LINK A LINK B LINK C
ROLE wT ROLE wT ROLE wWT
Inverse Scattering
Electromagnetic Theory
Unclassified

3 3 :
Security Classification




