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ABSTRACT

SECOND ORDER DIFFRACTION BY A RING SINGULARITY

by Eugene F. Knott and Thomas B. A. Senior

For a ring discontinuity in slope as at the base of a right circular
cone, the second order (re-) diffracted field is examined in the general case
of bistatic scattering. It is shown that the ray paths are specified by a quartic
equation whose solution is discussed. Selected results are presented, and an
expression for the field contribution of any one such path is derived. An alter-
native formulation of the problem using equivalent currents leads to a compact
expression of the complete secdnd order field as a double line integral which,
when evaluated by the stationary phase method, gives precisely the wide angle
contributions previously obtained. However, the integral expression is also
finite in the direction of the axial caustic and can be used to find the caustic
matching functions in second order GTD. These take the form of complementary
Fresnel integrals whose practical effectiveness is verified by a comparison of
the results of a numerical evaluation of the integral with the caustically-matched

expression for the field in the particular case of backscattering.
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I
INTRODUCTION

The geometrical theory of diffraction is a valuable ray technique for
estimating high frequency scattering., It differs from geometrical optics in
its inclusion of diffracted rays created whenever an incident ray strikes a
surface singularity. These rays may in turn strike another singularity, or
another element of the same singularity, producing second order (or re-)
diffracted rays, and so on. A particular surface singularity of interest is
the discontinuity in slope at the base of a right circular cone or the edge of a
disc. Second order diffraction is then produced by rays diffracted across the
case of the cone or across either face of the dise, and this report is devoted to
a detailed examination of such diffraction in the general case of bistatic scatter-
ing.

The first task in any GTD analysis is the determination of the ray paths.
This is discussed in Chapter II where it is shown that the second order paths are
specified by a quartic equation whose solution can only be obtained numerically,
In general there are either two or four such paths whose positions are functions
of the angles of incidence and scattering. The problem is greatly simplified in
the particular case of bistatic scattering in the plane of incidence. An analytical
solution is now possible, and whereas two of the paths remain fixed in the plane
of incidence, the other two (when they exist) rotate in opposite directions with
increasing angles of incidence or scattering. The four paths always exist in
backscattering and the latter pair are then the 'migrating' paths first discovered
by Knott et al (1971),

The field contribution attributable to any path can be found using standard
GTD techniques and this is determined in Chapter III for an arbitrary second

order path. Not surprisingly, the expression is rather complicated, with the
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main complexity coming from the form of the divergence factors. These
factors are an essential feature of all ray-optical techniques and are one
source of the numerical inconvenience common to them all, In addition, a
caustic occurs whenever a divergence factor becomes infinite, and since the
axial backscattering direction is such a caustic, the field expression obtained
in Chapter I is basically a wide-angle one.

An alternative approach to the determination of the second order con-
tribution to the field is to use the concept of (GTD) equivalent currents. A
method for specifying these currents in first order diffraction was developed
by Knott and Senior (1973), and by repeated application of the same procedure,
a compact expression of the complete second order field is obtained as a double
line integral. This is discussed in Chapter IV and, as required, a stationary
phase evaluation of the integral yields the precise wide angle contributions
previously found. Moreover, the integral expression is a continuous function
of the incidence and scattering angles, and since it is finite even in the direction
of the axial caustic, it provides a means for determining the caustic matching
functions in second order diffraction. These take the form of complementary
Fresnel integrals and, in the particular case of backscattering, are similar
in form (but not in detail) to the matching functions postulated by Senior and
Uslenghi (1971) based only on physical reasoning. The practical effectiveness
of the new functions is verifiedin Chapter V by a comparison of the results
of a numerical evaluation of the integral with the caustically-matched expression

for the field.
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SECOND ORDER RAY PATHS ACROSS A DISK OR CONE

The prescription for finding the diffracted fields from edges via GTD
is straightforward enough that the method can be applied repeatedly in order
to account for multiple diffraction due to interactions between edges. In prin-
ciple this can be done for as many interactions as are desired, but the geo-
metrical complexities of doing so, coupled with the asymptotic nature of the
diffraction coefficients, have inhibited the exploration of all higher order
interactions beyond the second. In this chapter we examine the nature of
second order ray paths across flat circular surfaces, such as the bg_se ofa
right circular cone or the face of a disk, Evaluation of the second order far
diffracted fields is reserved for Chapters III and IV.

( GTD” irs a sbé:éular 7théory, ih that incident and diffracted rays must

|
'subtend equal angles with respect to the local edge tangent. There are only two

/' such points on a ring discontinuity where this special condition is satisfied for

‘}( singly diffracted rays, and they are called ''flash points". The situation is much

" more complex for double diffraction, however, for there may be as many as eight
flash points on the rim, the consequence of four distinct, admissible ray paths cros-
sing the face of the disk or cone. In studying second order backscattering contri-
butions from a metallic disk, Kvnotiti ef al. 77(7197 1) discovered the existence of two
pairs of flash points, of which one pair migrated with changing aspect angle while
the other pair remained stationary. This happens to be a specialization of the
general case of bistatic scattering and we now know that the four flash points
actually include a total of four coincident pairs. Moreover, all eight flash points,

when they exist, move with changing bistatic angles.

In certain bistatic regions only two pairs of flash points exist and, as
will be shown in a moment, this is the consequence of the mutual annihilation of
two pairs. Of the four pairs that can exist, three pairs move in a forward direc-

tion with changing angle while one pair moves backward; when the retreating pair

meets an advancing pair, all four suddenly disappear and only two pairs survive.
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The particular orientations of the incident and scattering directions at which
this occurs have not yet been determined analytically, but the abrupt dis-
appearance will cause a jump in the far scattered fields, unless, of course,
the diffraction coefficients become zero there. This is one of the short-
comings of wide-angle GTD.
Figure 2-1 illustrates the geometry of a single ray crossing the face of a

disk or the base of a right circular cone. Although the incident and scattered rays

FIG. 2-1: Geometry of a ray crossing the face of
a ring discontinuity.

T and 8 are shown as lying in the plane of the diagram for purposes of illustration,
both T and § are inclined to this plane in the general case. An incident ray ’1\

strikes the rim at some angle 8 measured from the local tangent vector ? and,

1
according to Keller's theory, spawns an infinity of rays all lying on generators of
a forward cone whose half angle is precisely 3 and whose apex lies at the flash
point. Only one of the diffracted rays is of interest, namely the one that traverses

the face of the disk. It does so along a vector we call d and upon reaching another
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point of the rim excites another cone of rays whose apex is fixed at the second
flash point. We are concerned only with the single ray on this second cone that
moves off in the direction ’s\, the direction toward a remote observation point at
which we seek to find the total scattered field. The two cones of diffraction must
have the same half angle (.

The locations of the flash points may be found by demanding that incident
and diffracted rays subtend the same angles at the flash points, which is tantamount

to

=7t =4t =4t =31t 2.1)
COSB—ltl— tl— t2—st2, .

where the subscripts refer to flash point P1 or Pz. If we denote by ¢1 and ¢2
their angular positions, then 8 = % (¢2-¢1), and it is our task to determine all
# | and [bz that satisfy (2. 1).
The incident and scattered directions may be expressed as
= -)'Esin'yi-?cos'yi , (2.2)

A A A . A
=xsiny cosfP +ysiny sinf +zcos s 2.3
s v,e0sf_+ysiny sinf_ v, (2.3)

where ‘Yi’ Y, are polar angles measured from the z-axis, ¢s is the azimuthal
angle of the scattered direction and, without loss of generality, incidence has been
constrained to lie in the xz-plane. At the flash points unit normal and unit tangent

vectors may be constructed,

A A A, A A A .
n —xcosjl§1+ysm¢1 ., n, xcos¢2+ys1n¢2 )
AN, S A A A

t; xs1n¢1+ycos¢1 - xs1n¢2+ycos¢2 .

Thus, from (2. 1) we have

cosf = s1n'yis1n;?51 = s1n'yssm(¢s-¢2) , (2. 4)

or, since we may express ¢2 in terms of ¢l and f3,
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cosfB = sin'yisiny)l = sin*yssin(jés-j?)1 -28) . (2.5)

In this case, the two unknowns to be found are ¢1 and 8, from which we may also

determine ]bz.

More symmetry can be obtained than is revealed in (2.4) and (2. 5) by

choosing another pair of angles as the unknowns. Specifically, let

¢1=Q-B s (2.6)

so that

cosf = sin'yisin(a-B) = sinyssin(fbs-a-ﬁ) ) (2.7)
The first of (2.7) may be expanded as
cosf = sin'yi(sinacosB—cos asinf) , (2.8)
while the second is
~ cosp = siny_{sin(}_-a)cosB-cos(f_-alsinB 2.9)
s s 7 s
Equating (2. 8) and (2. 9) 'produces

siny,sina- sin Y, sin(¢s- a)

tanf = (2. 10)

sinvy,cos a-siny cos(ps- @)
From (2. 10) we may express sin 8 and cosf in terms of @, and substitution of the
results into (2. 8) or (2. 9) now yields

sinyicosa—sin'yscos(’bs— 0) +sin'yisinyssin(2a-¢s) =0  (2.11)

A solution of this transcendental equation for the roots o is now the problem,
Although the solution of (2. 11) is the basis of the results to be given in a

moment, an attempt can be made to produce a more symmetrical expression by

setting o« = 6+6, where 6 = ¢S/ 2. Figure 2-2 shows that the new variable 6

is the difference between the bisector of the azimuthal scattering angle and the

bisector of the angle between the flash points. Making this substitution we emerge

with
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(sin Y, +sin'yi)sin 6 sin 6 +(sin A sin 'Yi) cos 6 cosf -2sin yisin yssin fcosb =0

A (2.12)
2 /
o/
/
)
1
FIG. 2-2: Illustration of the relations between @, S and 6.
If we let
p= (sinys+sin'yi) siné
q = (siny -siny)cosé ,
s i
r= 251n'yismys ,
then the equation is
psin6+qcos6-rsinfcosf =0 ., (2.13)

From (2, 13) we may obtain four variants of a quartic equation,
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2 2, 2 2
p2z4+2pqz3+(p2+q -r )z +2pqz+q =0, A
2 2, 2 .2

r2x4-2prx3+(p +q2-r )x +2prx-p =0,
) (2.14)
2 4 3 2 2 2 2 2
ry -2qry +(p +q -r)y +2qry-q =0,
4 .. 9 .
rw -2(p+igQw +2(p-igQw-r =0 , y,
where

X =cosf ,

y = sinf ,

z =tan@ ,

i6
=e .

Note in the firgt three equations that the coefficients of the second degree terms
are all the same, while the second degree term in the fourth equation is missing.
There are always at least two real roots 6 and there may be an additional pair
under certain conditions. To understand why, it is convenient to return to equation
(2. 13).

Letting P = p/r and Q = g/r, (2.13) is

Py+Qx =xy ,

which is the equation of an equilateral hyperbola whose center lies at x = P,
y = Q. Its focal axis is parallel to the line x =y for Q> 0, and parallel to the
line x = -y for Q <0, as illustrated in Fig. 2-3. The origin may be shifted to the

center of the hyperbola by choosing a coordinate system (u, v)
u=x-P, vVEy-Q,
whereupon the equation of the hyperbola is
uv = PQ .

However, since the variables x and y are rigidly related, not all x and
y, and therefore not all u and v, are permitted. Specifically, it is the inter-

section of the unit circle
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with the hyperbola that produces the quartic equations listed above. In the u,v

system, the unit circle becomes

(u+P)2+(v+Q)2 =1,

and its center (u = -P, v = -Q) lies on the left branch of the hyperbola. The fact
that the center lies on the hyperbola itself guarantees that there are always at
least two real roots, each corresponding to an intersection of the circle with the
left branch, as shown in Fig. 2-3.

Additional roots occur when P and Q are small enough, and the center
of the circle close enough to the origin that intersections with the right branch

also occur. For this reason it is of interest to introduce scaled coordinates 8,t

s =u/\PQ , t = v/\[PQ
so that the hyperbola becomes the unit equilateral hyperbola
st=1,

The unit circle becomes

(+VP7Q F+(+/arp ¥ = yra .

Thus the radius of the circle may grow large enough for small enough P and Q
that intersections with the upper right branch of the unit hyperbola may now occur.
The distinction between the two cases is illustrated in Fig. 2-4,

The positions of the flash points depend, of course, on ‘Yi’ Yy and ¢S, SO
that their motion is difficult to display unless two parameters are fixed and the third
is regarded as an independent variable. Fixing Yi and A at 30 and 35 degrees,
respectively, produces the plot of Fig. 2-5, with ¢s ranging from zero to 180 degrees.
In the plane of incidence (i.e., ‘for ¢s = 0) there are a total of eight flash points,
implying the existence of four distinct ray paths, and we have assigned them the
names A, B,C and D in order to distinguish one from another. Note that, as
¢S increases, six flash points move forward and that two move backward. Near
whereupon all

¢s = 42 degrees flash point ¢2c meets P, ., and ¢lc meets f

2d’ 1d’

10



011075-1-T

2,91 4,93

FIG. 2-4: Depending on the specific values of P and Q, the scaled circle
may intersect the unit hyperbola atoelther two or four points. The
circles shown here are for v =30 and g = 350.

11
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200 T

azimuthal position, degrees

-200 | % 4
2
4, dogroes 120 180

FIG. 2-5: Flash point positions as a function of § for v, = 30°, 7, 35°,

12



011075-1-T

four disappear. Among the advancing flash points, 9 moves faster than the
others, at least for ¢s less than 90 degrees or so.

A more graphical display of the ray path motion is shown in Fig. 2-6.
When ¢s =0, ray paths A and C coincide and the remaining pair are symmetric-
ally disposed; all four have a common point of intersection. As ¢s increases,
ray path A swings quickly in a positive direction (counterclockwise) while B moves
more slowly. Note that C and D move toward each other and are fairly close at
¢s = 38 degrees, and that the ray paths, in general, do not have a common point
of intersection. Beyond ¢s = 42 degrees, C and D no longer exist, but A and B
continue to move. As they do, their point of intersection moves toward the rim of
the disk and eventually A and B cease to intersect. The motion continues until,
at last, A and B both lie on a diameter (in the plane of incidence), and propagation
across the ring is in opposite directions. Note that A moves through a full half
circle from =0 to § = 180, but that B moves only slightly more than half this
angular range.

Fixing v, at 30 degrees and ¢s at 35 degrees, with Y being the variable,
produces similar changes in the ray paths, as shown in Fig. 2-7. Initially (for
g = () there are but two paths and they move clockwise with increasing Yy Near
Yy = 27 degrees, rays A and D are "born'" and they commence moving apart
rapidly, A in a clockwise direction and D counterclockwise. D soon meets C,
and they both disappear, leaving only ray paths A and B, which move very little
after the disappearance of C and D.

Although the above plots were obtained directly from equation (2. 11) by
indexing o from zero to 27 in a search for the roots, it is possible to solve any
of the four quartic equations by following established procedures. The resulting
solutions are not expressible in any convenient analytic form and, by way of

demonstration, we examine the quartic

2
r x4 -2prx3+(p2 +q2 - rz)xz +2prx - p2 =0 , (2. 15)

where x =cos 0. If r = 0, the expression reduces to a quadratic whose solution

is trivial and need not concern us here. Assuming r2 # 0, we may divide by r2

13
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cl* 7]A

FIG. 2-6: "Snapshots" of the ray paths for o/ =30° and T = 350, with
ﬁ' being a variable. -

14



011075-1-T

B

FIG. 2-7; More "snapshots”, this time for Y = 30° and $ = 30°, with
g being variable. 8

15
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and move all save the first two terms to the right side to obtain

2
x4-2Px3 = (1-P2-Q2)x2-2Px+ P . (2. 16)

The method of solution is to now add a function to both sides of (2. 16) such
that the left side becomes a perfect square of a second degree expression in x while
the right side becomes a perfect square of a first degree expression. One such
function is

(P2+u)x2 - Pux +u2/4 ,

where u is yet to be determined, whereupon (2. 16) becomes

2 2 2
(2 - Px+u/2)% = (1-Q2+ux -P(2+wx +(P+u’/9) . (2.17)
The left side is, of course, a perfect square and the right side can also be if u is
adjusted such that the discriminant vanishes. This implies that u must satisfy
Bra-p2-Aul-apiQ? =0 . (2. 18)

Equation (2. 18) is known as the reducing cubic for the quartic and any one of its

three roots can be used to obtain the roots of (2. 15).

For convenience in notation we set b = (1-P2- Qz)/ 3 and d = PQ so that

(2. 15) can be written

u3+3bu2-4d2 =0 ., (2.19)

A standard procedure for solving any cubic is to first remove its second degree

term. This is easily done by defining a new variable v = u+b, whence

-3+ -4d) =0 . (2. 20)
We now form the coefficients

(2d b)+2d(d b)l/2

B = a2 -b3)-2a@-b3 Y2

16
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and compute the three roots of (2.20) as

v, = (A)l/?’+(B)1/3
v, AR

v, =P rum)/?

i2m/3

where w = e Thus the roots of (2. 19) are

u, = w3e@3p
u, =o@) 342

ug = wz(A)1/3+w(B)1/3-b .

The coefficients A and B can be complex but since B is the complex

2
conjugate of A, the root u 1 will be purely real. If d < b3, implying that b > 0,

then
3 i 3 =i
A=b em, B=bem,
where
2.1/2
_ 2d(b3-d ) /
tann = 73
2d -b
Hence

= n_
u b(ZCos3 1),

a real number, If d2 > b3, then both A and B are real and again u, is real.

and ignore u, and u,, to find the roots of (2. 15).

Thus we shall use only u 9 3’

1’

17
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Since u_ satisfies (2.18), the right side of (2. 17) will be a perfect square

1
for u = u,. This implies that the right side can be written as
2 2
(~ex+f)” or (ex-f) , P(2+u1) >0,
2 2
(~-ex-f)" or (ex+f)" , P(2+u1) <0,
where
1/2
e = (l+u -Q2) / , f= u2+4P )1/2/2

1

Thus the roots of (2. 15) are

X1,2 = % {(p+e) ¥ /(P+e)2-2(u1+2ﬁ }
(2.21)
X3 4 = % {(P-e) + \/(P-e)2-2(u1-2f) }
for P(2+u) >0, or
X1,2 = %{(P+e) + \/(P+e)2-2(u1-2f)} s
(2.22)

X, = %{(P-e)fJ(P-e)z-Z(u1+2f) }

for P(2+u) <0,
Observe that
2
P (2 +u1)2
2 2 ’

+
u1 4P

l1+u -Q°=
ulQ‘

which, being the ratio of two positive quantities, is always positive so that e and

f, and therefore all parameters, in (2,21) and (2. 22) are real. The radicals, how-
ever, can produce complex terms. The results (2. 21) and (2. 22) are computable
of course, but are not convenient expressions to use in gaining any insight into the

nature of the roots or the ray paths.

18
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On the other hand, the quartic equations can be solved quite easily
when the directions of incidence and scattering are co-planar with the ring
axis, for then either p or q may vanish. For example, if one seeks the
diffracted field for directions in the forward half plane of incidence ¢s =,

the second of eq. (2.14) reduces to
(rx—p)2 (xz—l) =0,
whose roots are simply
x=cos@ =+ 1, p/r, p/r
The double root exists only if | p/r | <1, and since

E=l( 1 + 1
r 2 sin v, S

this can occur only for e 7 /2, corresponding to incidence in the plane

of the ring. Since this set of directions corresponds to a caustic, we immediately
discount the existence of any additional pairs of flash points. Thus, for
diffraction in the forward half-plane, there are but two ray paths and their

flash points are fixed at

1 1
Moo, g0,

2 2
I

The situation is more interesting for scattering in the backward half
plane, ¢s =0, Inthis case p = 0 and the third of equations (2. 14) becomes

19
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(ry—q)2 (y2-1) =0,

having roots

Since
g_1 ( 1 1 )
r 2 sin v, sy
the repeated roots exist only for
1 1
—_— - ' <2, (2.23)
siny, siny | =

which is a relatively small range of angles for modest values of A and g

Provided the condition (2.23) is satisfied, the roots of eq. (2.11) are

(1 (2) (3) (4)

a)=1r/2,a zer/2, @ =a', @ =w-a',

S Y I | 1 1
a'=gin ( T(— - — )y .
2 siny,  sin vy

From eq. (2.10) we find that

where

(1) (4)

g pg@ g, 8o g, g -p,

where

20
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B! tan

Thus the flash point locations are

(1) ’
2
¢(I)"7r,

¢(f’) =ét -7 +Bl‘

(4)

% 1,1
siny, siny
11 L 21
4 sinyi_sin'yS
1
i =,
2
)
) <o v7 - g,
g =x -0 vp

g

o —g! - R
] “T-a B!,

The disposition of the ray

paths is typically as shown in the upper

left diagram of Figure 2-6. In this particular instance, Y < s and if

the values oA and vg Were to be interchanged, we would find that path B

would become the opposite of path D, and vice versa; paths A and C would

remain unchanged.

The special case of backscattering can now be obtained trivially by

-1
setting L whereupon o' =0 and B'=tan (1/sin v); note that B

can never be less than 45 degrees for this case.

The flash point locations

are then
o <o, ) =,
92 - 1, # o,
B < x vl By et (),
¢§4’=n-tan'1(g¥n-1—,y>. 319 =7+t ( slin'y) .

21
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These positions, which will come into play in the remaining chapters in

the calculation of doubly diffracted fields, are illustrated in Figure 2-8.

FIG. 2-8: There are 4 ray paths for backscattering overlaid
by pairs. The vertical pair shown here shift to the
right (toward the center of the circle) as incidence
approaches the ring axis.

22
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III
WIDE ANGLE CONTRIBUTION

The direct derivation of the second order contribution to the far zone
bistatic field at wide angles, i.e., away from any caustic in the field, can be
carried out using standard GTD techniques. The first analysis of this type was
performed by Knott et al, (1971) in the particular case of backscattering from a
circular disk and was followed shortly afterwards by a similar analysis by Senior
and Uslenghi (1971, 1973) for the base of a right circular cone. These investiga-
tions first revealed the existence of migrating ray paths in addition to the fixed
path along the diameter of the ring lying in the plane formed by its normal and
the direction of incidence and diffraction.

Although the ray paths in bistatic scattering are much more complicated
and, in general, cannot be analytically described, it is possible to develop an
analytical expression for the contribution to the field of any two points on the ring
defining a permissible second order path. Such a path is illustrated in Fig. 2-1,
and by inserting the azimuthal coordinates ¢1 and ¢2 of the specific points P

1
and P, on the ring at which the diffraction occurs, the explicit contribution of

this p:th can be found. For given directions of incidence and diffraction, there
will be either two or four such paths, and the complete second order expression for
the bistatic field then follows by adding the contributions of the individual paths.

As in Chapter II, the ring singularity of radius a is chosen to lie in the
xy plane of a Cartesian coordinate system x,y,z. The origin is at the center of
the ring and the ray path considered is across the face z = -0. The plane wave

is assumed incident in the xz plane and is written as

i ikt e ' a
E =3,e =, H1=Yh,e
- i - 0i

)
ki-r 3.1)

where

23
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A A R A A ., .
ei = .xcosyismp-ycosp+z s1n'yis1np s

. . . (3.2)
hi = =X COS 'yi cosp+ysinp+z smvicosp s

in which p and q are polarization angles as defined in Fig. A-1 of the

A
Appendix. The propagation vector i is defined in eq. (2.2) and, of course,

A A 74
i=e ah, .
lA 1

The incident electric field at the point P1 having position vector

) =a(§cos¢1+§sin¢1) (3.3)

is therefore

.kt\
1IKl1.T

8 e 1
il )

The diffracted rays which are produced all lie on the surface of a cone of half

angle Bl with vertex at P_ and at a point P, a distance d (>\) along one of these

1
rays, the diffracted electric field is

2

A
: _ ik(i-x, +d)
e17r/4 |

_—& ____[.,A-8, e (3.4)
sinBl\/ 2mkd rﬂz il

(Senior and Uslenghi, 1971), where ri 19 is the divergence factor and A is the
diffraction tensor which, for a wedge-like singularity, is given in the Appendix to

the above reference. Although (3.4) represents the total diffracted field at P2 and
would normally constitute the incident field for purposes of re-diffraction, the fact
that Pz is itself on the same planar surface as P1

reflected field. The incident electric field 9'1 9 at P2 is therefore one-half that in

(3.4), and by a further use of the tensor sz, the electric field at a distance s from

requires us to suppress the

P2 along a (re-)diffracted ray is found to be
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= iks

ei7r/4 _
i sinBZ\[ZWks rlzsA &i9° (3.5)

where rlZs is the divergence factor and 32 is the half angle of the Keller cone
at P2.
For sufficiently large s,

A
S=r -s‘r
0 =2

where r0 is the distance of the observation point from the center of the ring, S is

the unit vector in the direction of observation defined in eq. (2. 3), and

L, = afk cos p, + sin g,) (3.6)

is the position vector of P_. If we also introduce the concept of a linearly polar-

9°

ized receiver whose electric and magnetic polarizations are described by the unit
A

vectors ar and ﬁr aligned such that § = é\r A hr’ the received signal associated

with the rediffracted field will be
(3.7)

where S is a scalar scattering function. From egs. (3.4) through (3.7) it now
follows that

A A
1k(1-_1;1-s ‘I, +d)

. -1 1/2 = = A
(sinB1 s1n32) (s/d) / ril2r12s {A-(A-eil)} e e .
(3.8)

= i
5= 4
Each factor in this result can be expressed in terms of the angles defining
the directions of incidence and diffraction and the azimuthal angles ) and ¢2 of
" P. and P, and for some of the factors the task is rather trivial. From egs.

1 2’
(2.2), (2.3), (3.3) and (3.6),

/'\- =A. = - i i -
ir =s-r, a{sm'yicosﬁl'l-smyscos(gbs ¢2)} ,

and since d is, by definition, the (positive) distance [P le], the phase factor
in Eq. (3.8) is
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9,

2

sin

exp[ika{z

The angles Bl and Bz of the Keller cones can be found by using the conditions for the

- siny, cos ¢1 -siny_ cos(ﬂs-’bz)}J . (3.9)

existence of the diffraction path P 1P2. If ? is a unit vector tangent to the ring in

the direction of increasing f, so that at P 1

t=t = Rsinf, +jcosp, (3. 10)

the condition that must be satisfied for energy to be diffracted towards P2 is

where
p+ g +p
N
d= Qésin 12 2 +y cos 12 2 (3.11)
with ¢ ‘¢
sin 22 1
Q = —_¢ -¢ R (3.12)
. Ta 1‘
sin —
implying

sin'yisinjl)1 = cos L. cosB1 . (3.13)

2

Similarly, at P2’

n A A, A
t=t, -xs1n¢2+ycos¢2 (3.14)

and the condition for diffraction in the direction g is

which can be written as

g, -9

2
2

siny sin([éS -¢2) = Qcos L = cos Bz . (3. 15)
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Hence,

B, = Bz (3. 16)

2 ¢2'¢1
2

sinB1 sinBz = gin (3.17)

Turning now to the divergence factors, we have

P, /2
i12
|"i12 = <———p. " d>‘ (3.18)
i12

where pi12 is the radius of curvature of the diffracted wavefront at P1 in the

plane of the ring. Since the incident field is a plane wave

. 2
asin Bl

Pz ™ T-B -8, .19

A
where 1 1 = -'1'1 is the inward (principal) unit vector normal to the singularity at

Pl' Hence, from egs. (2.2), (3.3), (3.11) and (3. 17),

asin 5
Pigg ™ ¢2_¢1 (3.20)
sm'yicosﬂl- sin = l
and by using eq. (3.13) it can be verified that Piio <0. On the other hand,
g, -9
. L2 "1
p. -9 |2siny, cosP. - [sin
+d = a [sin 2_1 2 L 2 (3.21)
Pi12 2 B8, :
sm'yicos¢1- sin — ,

can be either positive or negative, and this fact must be borne in mind in inter-

preting the final expression for rilZ’ viz .
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sin

-9, | 1/2

2

i

sin

(3.22)
¢2-¢1'
2

2siny, cos{b1 -

The divergence factor for the rays which are rediffracted at P2 is

1/2
12s p128+s

where p128 is the initial radius of curvature of the rediffracted wavefront in the

plane of the ring. At large distances from the singularity, can be neglected

p12s
in comparison with s, in which case

P /2
/0P, = <%>1 . (3.24)

Since the field incident at Pz is not a plane wave, the expression for p 125 is

a sinZB 9
Plog = P, = (3. 25)
8/ T ot
2
where 32 = -92 is the inward unit vector normal at P2 and tz is the circum-
N

ferential distance at P2 taken positively in the direction t2' Knowing the focal
point of the rays diffracted at P T which is therefore the point in the plane of the

ring where the rays incident at P_ appear to originate, and by considering two

2
adjacent rays one of which arrives at P2 whereas the other arrives at a point P'2
displaced a small distance t2 around the ring, it can be shown that
A sin2 ¢2 -¢1
A od 2
at,+ — =a —mm} ., (3.26)
+
2 % Pipptd

When this is substituted into eq. (3.25) and eqs. (2.3), (3.6), (3.11), (3. 16) and
(3. 17) employed, we have
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1/2

(S/ d) r12s -

0,9, 2
sin 2siny.cosf_ - |sin

2 i 1 2
Pyt

sin—= '}—sinvicosﬂil

sin
2

¢2-¢1l

i os(® - 2 si -
siny cos(f ’bz){ sm'yicosfbl
(3.27)

To evaluate the factor A. (Z é\i 1) in eq. (3. 8) using the diffraction
matrix for a wedge-like singularity, it is necessary to choose edge-based co-

ordinate systems at each of the diffraction points P ! and P2. Thus, at P_, we

1
[ )
choose a set of mutually orthogonal base vectors T P i\ ’ B1 with
A A /1:1' A % _ A
Ty =t 17Ty 1=
in terms of which
A S . A +"
i= Tlsm'yis1n¢1-lem'yicosﬁi1 B cos Y,
A A ¢2-¢1 Ao ¢2-¢1
d= Tlcos 3 -lem 5 Q

>

N ) A
= i i - + - i
eil Tl(cos 'YiS].npS].npl Ccos pCOS ¢1 Nl( CcoS 'YiSl.anOS ¢1

A
-cosp sin¢1) +B1(- sin -yisin p .

We can now invoke the results in Appendix A of Senior and Uslenghi (1971) with

= m(1-n/2). Comparison of the incident ray directions leads to the identification

cosfB = siny, sin[b1
sinBsina = siny, cos’?i1

sinfcos @ = cos Y

and a similar comparison for the diffracted ray directions gives
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6 = 3r/2

cosy = Scos 5

sinf = |sin 5

Hence

B=8,

as expected, and

sina = sin'yicosjli1 cosec —

cosec
2

cosa = CcoS ’Yl

implying

tan o ==ta.nyicos¢1 . (3.28)

With the above values of @ and 6, the scalar diffraction coefficients X Ty are

such that
1 Vs T 1 37 -1
X=Y= —sin-{cos—-cos "(01- -—)} =X. , say (3.29)
n n n n 2 1
and
0 0 0
A=| 0 0 0

0 -2X1cosa -2X18ina

from which we obtain

= a
Ae,

_ . + .
i 2X1 {(cos'yismpcosjﬂl cosps1n¢l)cosa

A
+sin'yi sinpsina} B1 . (3. 30)
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la!
The diffracted ray in the direction d proceeds to the point P2 where it

constitutes the incident ray and is again diffracted. At P_ the appropriate base

A

A N
vectors are T2, N2, B2 where

2

n N N N A A
== N, =r B,=z=-B

T
2~ T 2~ T 2 1

V) A
The choice of N2 is obvious and the reversal of T2 follows from the reversal of
N

B.. In terms of these vectors

2
-9 g -9
a)
d=<—% cos 2 1+I’\}zsin 22 1 Q

2 2

A A A A
s = -T,siny_ sin(¢s - ¢2) N, siny cos(¢s - ¢2) +B,cos v
and
&9 = eiZﬁZ = %Z 811 (3.31)
with
€9 = -X1 {(cos Y sinpcos ¢1 +cosp sin¢1) cos a+sin A sinpsin a} . (3.32)

A
When the incident and diffracted ray directions, d and é‘ respectively, are com-

pared with those implied by the diffraction tensor, we have

B=m-B,, a=-n/2
and
sin@ = siny cos(p -@.)|cosec 2_1
S s "2 2
$y-4,
cosf = = oS cosec — ,
so that
tan6 = -tany_ cos(¢s-¢2) . (3.33)
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For the above values of o and 6 with 6 = -7(1-n/2),

1 .7 T 1 ( 7\] -1
= = - — — - — + - =
X=Y - sin {cosn cos 6 2)} X2, say (3.34)
and
0 0 0
A= 0 0 -2chos 6
0 0 -2X2sin9

from which we obtain

= A A
A-giz = -2X2e 12(N2 cos t‘)+B2 sin 6)

= -2X,e 12(1'?cos 6 cos ¢2 +¥ cos 6 sin ¢2 +2sin6) . (3.35)

From egs. (3.30) - (3. 33) and (3. 35) it now follows that

- - p. -9
A-(A-311)=-4XX cosec2 2_1

: + .
X5 5 (sinpcos ¢1 cos v, cos ps1n¢1)

A A A
X in#_-72 si -
{x cos y_ cos ¢2 +ycosy_sin ¢2 zsiny c:os({l’S ¢2)}
(3.36)

where X1 = Xl(a) and X2

interest to note that (3. 36) is simply

= X2(9) are given by eqs. (3.29) and (3.34). It is of

= = A _ 2 " .I\ A A
A (A-eil) = 4X1X2008ec Bl(hi tl)(s,\ t2)

implying

{Z_ﬂ (E 'gi 1)} . gr = '-4X1X2 coseczﬁl(ﬁi -%1)(31‘ '?2) (3.37)

and this more compact form is an immediate consequence of the equivalent current
approach discussed in the next chapter.
Having now determined the individual factors in the expression (3. 8) for a

general second order contribution, the only remaining task is to assemble the final
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result. Although the expressions for ri 12 and rlZs have a factor in common,
some care is necessary in cancelling this out since, with the present time con-
vention, \Fi = -i. However, by considering the various possible cases we have,
from eqgs. (3.8), (3.9), (3.22), (3.27) and (3. 37),
sin ¢2 -¢1
mT

¢2-¢1 3 . .
cos —2——l sm'yS cos(¢s~¢2) 2s1n'yi008¢1"

_
S _,_leXz

p-p.(l-1/2 . , . p,-9
..sin'yi cos¢1 sin 22 1 l (hi "t\l)(hr -'t\z) exp ika.{ 2|sin 22 1 ‘
- sin, cos ¢1 -sin ys(¢s -¢2)}] (3.38)

where the upper sign must be chosen unless pi 12+d >0 and p 125 <0.

In the particular case of backscattering ('ys =Y, =% say; ¢S =0), the

above expression becomes

¢2'¢1
2

eel|

3
(sin

Y2

cosec 2sinycos ¢1 cos ¢2

- i
=3 E 5%

- (cos ¢1 +cos ¢2) 3

Pf .
sin — -(cos¢1+cos¢2)s1n'y (3.39)

@ 2@ -t)explikad2
X h r-zexpla

and this can be checked with the results previously obtained by Senior and
Uslenghi (1971, 1973). For the fixed ray path across the diameter of the ring in
the plane of incidence, ¢1 =0 and ¢2 =7 implying @ = v and 6 =7+y, or

¢1 =7 and ¢2 =0 implying @ = -y and 6 = 7-v. In either case

-1
(LT m_ . 13, \]-1 cosl-cosl<3_”- )} -G
X1X2 (n s1nn)2 {cosn-cosn<2+7)} { n a\ 2" Y (),

(3. 40)
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where G is the function defined in eq. (31) of Senior and Uslenghi (1971).
Since Pi19 +d and P1og both have the same sign (positive if sin y<1/2,
negative if siny >1/2), the upper sign in eq. (3.39) is required, and

g = S0 2ika

2msiny (3.41)

. A A, A
sinp(xcosy-zsiny) * e e

This is zero when sinp =0 corresponding to an E-polarized incident field.
The migrating ray paths provide two differing contributions. If ¢1 =,
¢2 = 2r-@ where

sinf = (1+sin2'y)-1/2, cosf = -sin'y(1+sin2'y)-1/2, (3. 42)
. . . =1, . 2
implying a =a,, 0 = 7r+oz0 with o, = sin (sin ), then
2 37+2a, |2
X. X =(lsin1r) cos = - cos =E (%) (3.43)
12 n n n 2n v

where E is the function defined in eq. (38) of Senior and Uslenghi (1971). Since

p112+d >0 but Plgg < 0 for all v, the lower sign in eq. (3. 39) is required and

2 .1/2 2
S=i 57{'11—(,’13; (1+sin v) / cos(y+p)(~x sinycos y-§ cos y+Z sin 'y)-é\r

2
X exp {Zika(l +sin 7)1/2} . (3. 44)
Similarly, if ¢2 and ¢1 are interchanged, the lower sign in eq. (3.39) is

again required, giving

= -i E() +'21/2 RV 4+ +A.2_A
S l_L—Zwsiny (1+sin )’ cos(y-p)(-x sinycosy+ycosy+zsin v) e,

X exp {Zika(l +sin2'y) 1/ 2} . (3. 45)

The results in eqs. (3.41), (3.44) and (3. 45) are in agreement with those of Senior
and Uslenghi (1971) as corrected (Senior and Uslenghi, 1973).
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v
THE EQUIVALENT CURRENT METHOD

Many of the analytical difficulties associated with the second order
contribution can be avoided by using the concept of equivalent currents. The
currents for first order diffraction by a ring discontinuity in slope were derived
by Knott and Senior (1973) and lead to an expression for the field as a line inte-
gral around the singularity. Although the currents were deduced by reference to
the wide-angle GTD result, the integral expression is finite even in the vicinity
of the axial caustic, and can therefore be used to determine the caustic matching
functions that must be applied to the GTD result to produce a smooth transition
into the axial caustic. The detailed derivation is given in the Appendix.

These same currents also provide a simple and revealing way of obtaining
the second order contribution as a double line integral around the singularity. As
in the case of the first order result, its determination does not require a knowledge
of the ray paths, and since the expression is finite everywhere, it can be used to
obtain the hitherto unknown caustic matching functions applicable in second order
theory.

As shown by Knott and Senior (1973), the diffracted field at a point r'

resulting from first order diffraction at the singularity is

(1) (v, (1)
E @) =VAVAT +ikZ V') 7
~e 0 ~m 4. 1)
ﬂ(l)(g') =V AVIA 1;1) -ikYOV',\_wil)
where
: k|r'-z|
D er) = 12 det.p X=X e '|
T ok ~ sin%g 1E'-I]
Vg c sin B
| | (4.2)
. ikjr'-r
(1)( ) = 1 A X+Y = a
27k sin’g LI



011075-1-T

The integration is around the ring C, r being a variable point on it; X ty are

the scalar diffraction coefficients and are known functions of £ and T'. First
order stationary phase evaluations of these integrals yield the precise wide angle
GTD expressions, whereas numerical evaluations with 8 treated as constant gives
results which are indistinguishable from those of the caustically-corrected expres-

sions. The constant value assigned to 8 is that associated with the ray paths:

2 2
sinB=1-¢-H2=1-@.D% ,

but for the purposes of the present discussion it is desirable to write f = Bl in

eq. (4.2) with Bl still unspecified.

If the point r' is on the plane surface bounded externally by the ring,
Y = X as can be seen from the form of the diffraction coefficients. This corresponds
1
to diffraction across the metallic surface and implies that gé )(g’) = (0, In particular,

if r' is a point on the ring

Dien =0
. ikd
n(l)(_') _ _1_2 Dt -9) X2 e_d__ at
“m .
7k c sin Bl

where d =|r'-r |, and on the assumption that kd >> 1,

A
V'AF ~ ikd AE,

giving

Z ) ikd
E(l)(ﬁ') ~ - _0 (’i\/\i:\( 1.?) X e at

T — L2 d

c sin B
(4.3)
ikd
1 1 A . i
Y~ -2\ Sadade D X ar
C sin B].

When divided by a factor 2 (because of grazing incidence), this represents the field

incident on the singularity at the point r' after diffraction at r, and a further
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application of the single diffraction formulae (4.2) with (say) B = 82 now
leads to the expression for the second order contribution.

If t' is the unit tangent vector at r',

(a/\ i’) . {3\' =0
since { and f‘ are coplanar, and thus

E ' =0

()

showing that the electric Hertz vector lre (30) for the second order contribution is

identically zero. Also

1 7A AA A 1 A A 1
a{d A(dat) ) -1 = a«é‘-?) @8 - ¢ f= 5 sinp

since d = 2a sin 8, implying

. . . 2ika sin B
ged =L\ @l hx SR8 d
- 4ra — L2 8
o sin B,
Hence, for the doubly diffracted contribution at the point _1;0 we have
@, | _
T (50) 0
(4.4)
. NPT
(2, . 1 Aved & oo, sinf 2ika sinf 1k|_0r £l
T (r.)=- t'(H -t) XX e e
™m0 A, - sin’B, sinB |
c v 1518 Py |5o7x|

where we have used the fact that for diffraction at r', Y' =X'. In particular, in

the far field,

giving
ikr

(2) A i A : s . _ A
Im (r))~ - t'(I_il-t) XX! L e tk (22 sin B - 5 °£')d£d1'

r 2 2 2
0 4 i
TkaC C smBlsinB2
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from which we obtain

. . s A A
N\ B DD oo ERE_ HZa B LIS gy
471 a cde sin Blsm BZ
(4.5)

Note that the second order contribution is determined only by the magnetic
current.

In spite of the attractive symmetry and simplicity of the above formula,
an evaluation of the double integral expression is impossible without a specifi-
cation of the angles B, Bl and Bz. From the geometry, however,

(4.6)

SinB=g

and for any valid doubly-diffracted ray,
B =B,=B .

This identification is analogous to the one made in the integral expression for
first order diffraction and is sufficient for an analytical evaluation of (4.5) by
the stationary phase method. Nevertheless, it is inadequate for a numerical
evaluation since the integral is then proportional to d-3 and becomes infinite
when r'=r. We take up this matter again in Chapter V.
To evaluate the double integral in eq. (4.5) either analytically or numer-

ically it is convenient to use the azimuthal angles § and §', 0<¢, §#' <2,

as variables of integration around the ring. Since we now have B = -;- (¢- ¢,

eq. (4.5) takes the form

27
s=-K8 |\ gg,006280. g (4.7
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where
. !é - Ql
) A AA A sin ™
£(4,9") = l:hr *(x sin §' -y cos ¢')] [hi * (X sin § - ¥ cos ¢)] 5
sin Blsin Bz
(4.8)
g@, 9" = 2|sin Q%E -sin'yicos[b-sin'ys cos(¢s-¢') . (4.9)

Given a double integral of the form (4.7) having an interior stationary
*
phase point § = ¢1, gr = ¢2 at which 8y = By =0, the double stationary phase
(D. S. P.) method yields the asymptotic expression

2

-1/2 .
S~ - 5,; (g¢¢) / <g¢,¢,- _gg¢%> f(¢1,¢2)e ! (4.10)

(Papoulis, 1968; p. 241) for large ka, where all derivatives are evaluated at the
D.S.P. point. The manner in which (4.10) is written is that which results if the
¢ integration is performed first and for the expression to be valid it is necessary

that gm(ﬁ) X ") does not vanish identically for all §', and that

g¢,¢, ) g¢¢ 7‘ 0

=9
-

1

—

|
=
(V)

%
Suffices f, §' are used to denote differentiation.
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From eq. (4.12),

g¢(¢,¢') = -Qcos L;'E+sin'yi sin¢
(4.11)
g¢,(¢,¢') = Qcos p:z-m -sin»ys Sin(¢s_¢c)

where 2 is defined in eq. (3.12). Equating the right hand sides of the egs. (4. 11)
to zero yields two equations specifying a D.S. P, point § = ¢1, g = ¢2. Com-
parison with eqs. (3. 13) and (3. 15) shows, as expected, that the D.S.P. point is

simply a coupled pair of flash points in second order diffraction. Also.

¢

sin L;E-

8-

2

o
2

6408 =3

+siny, cos p

sin

g¢|¢1(¢’ gy = - %

tsiny cos(jﬂs -#" (4.12)

sin

g¢¢|(¢:¢') = %

giving

bt

sin L;ml} . (4.13)

According to the square root rule, \f-_l' must be interpreted as -i. If we

g¢¢g¢ g = g;¢, = % {sin Y, cos (¢S- ¢1)[? sin ¥;cos ¢ -

-siny, cos )

now invoke this, it follows that

1/2

2 \-1/2
-1/2 Eggr ~ 2 -
g \Gpp” g¢¢> = = CygFpgopp)

with the lower sign only if

2
Edar

g4p and g 1, -
A

are both negative, and this enables us to write eq. (4.10) in the more compact

and symmetrical form
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. _1/2 ikag(f.,9.)
L gy g s
From egs. (3.20) and (3.21), however,

sin ¢22- ¢1 '

Pipgtd

1
S 2

Pi12

at the D. S. P. point, and since pi12 <0, we have gm <0 if and only if

pi12 +d > 0. Likewise

¢2'¢1 d

p12s

which is negative if and only if p is. The condition for having the lower sign

12s

in eq. (4.14) is therefore pi12 +d > 0 with p 125 <0. This requirement is the same
as that for eq. (3.38) and on using eqs. (4.8), (4.9) and (4. 13) it can be verified
that eq. (4.17) is, indeed, identical to eq. (3. 38).

We have thus shown that a D. S. P. point of the integral expression (4.5)
for S coincides with the coupled flash points in second order diffraction and that
a stationary phase evaluation of the integral yields precisely the wide angle GTD
result derived in Chapter III. These properties are analogous to those demanded
of the first order expression in order that the currents be truly "equivalent".

A particular advantage of an integral expression for S is that it remains
finite even at the axial caustic. It is therefore automatically a caustically-
corrected result and, in the case of first order diffraction, this fact can be used
to develop an analytical form for S valid uniformly in angle. The analysis is
given in the Appendix and the result displayed in eq. (A.7). It is observed that
the caustic matching functions which must be applied to a wide angle GTD expres-
sion to reproduce the correct caustic behavior are the Bessel functions J 0’ J 1
and J,,. This particular combination of functions was originally obtained by

2
Ufimtsev (1958) in analyzing bistatic scattering from a disk in the plane of incidence.
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In second order diffraction, the required caustic matching functions are
unknown. Based on physical reasoning, Senior and Uslenghi (1971) postulated
Fresnel integrals intheir study of backscattering by a finite cone, but we can now
use the integral expression (4.10) for S to obtain an analytic form valid uniformly
in angle from which the caustic matching functions can be deduced. The procedure
is similar to that described in the Appendix and is in one respect simpler: since
the diffraction coefficient Y does not appear in the integrand, all amplitude factors
are given their values at the D.S. P. point.

To illustrate the method, consider

2m
1) = £(g,9" eikag(¢’p') ag . (4.15)
0

Let § = ¢1(¢') be a stationary phase point such that
for all §'. When p* = ¢2, ¢1(¢’) is simply the angle ¢1 used originally, Ex-
panding g(f,$") about ¢1,
50,90 = 6090 +5 B-8) ggg8 .90+
) 1: 2 1 ¢¢ 1, )
and if ¢1 is the only stationary phase point in the range (0, 27),
1r+¢1
i1 .
I(¢') ~ f(¢1’ ¢:) el ag‘(¢,¢ )d¢
i,
where we have used the fact that g(f,$") is a periodic function of @ of period 2.

Hence,
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ikag(@_,¢" 7'+¢1 B&(¢_¢)2g @,,0"
1 o 2 1 5gp1 d

1) ~ 1@, 9" e g

-

ikag@ 00 07 2

= 21(4,, e 1 el A 4o (4.16)
0
where
1
A= Ekag¢¢(¢1,¢') . (4.17)

If the process is repeated for the ﬁ' integration assuming @' = ¢2 is the

only stationary phase point in (0, 27 ), we find

do deé*

ikag® ,0.) 0P L2, 02
S~-k—;f(¢1,¢2)e 1 gel(e A+6"'B)
T

0

where

2
O
B =k GM' g¢¢> , (4.18)

and both A and B are evaluated at the D.S.P, point § = ¢1, = ¢2. Defining

now the complementary Fresnel integral

T

2
'3‘(7)=§ M H (4.19)

(0]

in terms of which the standard Fresnel integral is
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00

i’ i /4
F(T)-= S * & % Jr e —'3'(7) s (4.20)
T

it is a trivial matter to show that

1o
£(h, . Py) e h(g,, ) (4.21)

S - % |aB|
Y §

where, for A, B>0,

1
h(f,, f) ="t |A] /2) Y |B|1/2) : (4.22)

I A and/or B is negative, the corresponding complementary Fresnel integral
must be replaced by its complex conjugate (denoted by an asterisk in the following).
For sufficiently large | A| and |B| , the Fresnel integrals in eq. (4.22) can be

replaced by the leading terms in their asymptotic expansions, giving

(‘

i if A>0, B>0

NS

h(¢1, ¢2)~<-i if A<0, B<O

NNTEY

if A<Oand B>0, or A >0 and B<O,

]

.
Eq. (4.21) then reduces to (4.17) with the sign alternatives concretely displayed.

The above analysis has been carried out under the assumption that there is
just one D. S, P. point in the range 0<§, §'< 27r . In practice, there are either
two or four such points since each corresponds to a valid second order path (see
Chapter II). If two D.S. P. points exist, the §§ integral (4.15) must be split into
two parts with each range of integration spanning one point only. From each

integral f(§, §') is removed with § given its appropriate value, and though it is
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impossible to arrive at a result which is precisely equivalent to (4. 16) for

(11) and ¢{2) s

which is equally valid for large and small A(l)"(z) is

arbitrary locations of the D.S.P. points § an approximation

2 . (n) /2
ikag(@, ',9" 2, (n)
1) ~ 2Zf(¢(1“),¢'>e ! T (4.23)
n=1

0

The §' integration can be carried out in a similar manner.
The extension to n D.S. P. points is now obvious and leads to the follow-

ing approximation for S:

ikag (%), gt2))

-1/

c.f. eq. (4.21), where, for example,

1 1
g, g8 3% a0 gz () (4.2

The general result (4.24) can be illustrated by considering the special
case of backscattering for which Y5 =Y (= v, say) and ¢s =0, There are
now four D.S. P, points whose locations are known (see Senior and Uslenghi, 1971).

For simplicity, we shall assume siny<1/2,

W ¢ =0, fx

(1 _ 1.1

AT =-Ska(5-siny) <O
-1

B(1)=%kasin27(';'-sin7) >0
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implying

(1) (1) (—kasm 7)

gD, ¢(21))=- G (y) ['ﬁr : 9][’1}. : 9]

where G (y) is defined in eq. (3.40), and

W, 8 -

Since n =4, the resulting contribution to S is

S 2c2;(v) [’\r g][hi.'\] e-?ikag*@i (2 - sin w)'&({ sin y k—g(é-smv)'1>-

7 siny
(4.26)
(ii) ¢(12)= T, ¢32) =0:
(2 _ 1 1, .

A ~—2ka(2+sm'y) <0

2 =%ka sinz'y (% + si.nq()—1 >0
implying

A? % ka sin v)°
and

f(¢(2) ¢<2> G(,Y)[ ,;,][g._/y\]

1

2 2
(2, 42 <

as in (i). The corresponding contribution to S is
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2) _2G(y A A 2ika —
2 _ ﬂzs(m),},[ﬁ 9][ ] a3 <Zf—2(2+sm'y)>'3<—sm'yJ—(—+s1n7) >

(4.27)

(iii) ¢(3) ¢ ¢(3) =27 - § where a/ is defined in eq. (3.42):

A(3) = - % ka (%+ sin2 7 (1+ 1sin2 7)_1/2 <0
p3) =—%ka(';:+sin2'y)_1( 1+sin27)1/2 <0
implying
A(3) B(3) =(éka e;in'y)2 s
and

f(¢(2) ¢(3) -E(y) (1 +sin v) h [/ﬁ (X~ sinv)][ﬁi- (§+981n7)]
¢<3) ¢(23)) - 9(1+sin2 y) 2

where E is defined in eq. (3.43). The contributionto S is

. 2 1
7 sinvy

1, 2 2 1
-+ in ]'n 2
N[ T ka 2 S v wf @ . ka (1 +sin’y)
3 5 Y[ Lsiny [2 —mo— |,

(1+sin2'y)1/2 4 2 %+sin2'y

(4.28)
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(4) _

~ (4 _7 ~
(iv) ¢ 27 - §, ¢2 =¢ where @ is as before:

All quantities are the same as in (iii) except for f, which now takes

the form

The expression for S(4) is therefore trivially deducible from eq. (4.28) and

the combined contribution is

S(3)+ S( ) _ i_EL'.Y_(l.,. 'Y) /2[ )(h x) -sin 'y(h Y)(h Y)]
sm'y

1 2
3t
21ka(1+sm v) /23: T |ka 2 sin T in Ea;(1+sin21)1/2
42 2 P\ 4% 2T 2
(1+sin %) §+sm'y
(4.29)

The complete second order contribution to the backscattering amplitude is

now

(1)

S=8 (2)

C I

+(S (4)

+8 ) (4.30)
where the individual terms are given by eqs. (4.26), (4.27) and (4.29). This
result has been obtained by a quasi-analytic evaluation of the integral expression
(4.7) that is in part asymptotic and closely parallels the derivation of the first
order formula (A.7),

For v >0 (as we have azss)umed) and ka >>1, the first Fresnel integral
2

in the expression (4.27) for S’ can be replaced by the leading term of its
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asymptotic expansion for large argument. Similarly for the first Fresnel
integral in (4.29), but we can do the same in (4.26) only if sin v is bounded

away from 1/2. If this assumption is made,

Y/ ~
.9][31.9] o 2ika -1 Jry %sin'y/—zkg(%—siny)l

s GO 4
3/2 . r
7' sinvy

ka 1 . -1
+3 fsmy\/—z(§+sm'y) >

+_-_7_§/;E“ (1 + sin 1/2[(11 W% - siny (0 - i, Y’]

T sin vy

21ka(1+sm ¥) 1224 iTh '3* T in ka (L+sin’ ) 12

4 2 %"'Slﬂz’}’

(4.31)
If /ka siny>>1, the remaining Fresnel integrals in (4.31) can be re-

placed by their asymptotic expansions and we recover the wide angle expression.
But if ka >>1 yet /ka sin v <<1, implying sin ¥ <<1 a fortiori, each integral

can be approximated by

T .
2 ka sin vy

and when this is substituted into eq. (4.31), we obtain
~ 1 ,Q -7y A A [/\ A| 2ika
S=3l7 © G(y) [hr-y] h.-y| e
A ]GZika(1+sin2'y)1/2

+ Elo) (1+sin) 2 [(ﬁr.ﬁxﬁi:ﬁ) - sin’y (h_$(h,-)
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When v =0,

S =-%- f—;-f' e -i 7'21 G (0) l:(ﬁr.Q)(ﬁls\r) + (ﬁrg)(ﬂl.;‘()] e2ika (4.32)

where we have used the property E(0) = G (0).. Equation (4. 32) is in agreement
with the corrected (Keller) expression for the second order backscattering con-
tribution from a finite cone at axial incidence ( Senior and Uslenghi, 1973).

The fact that eq. (4.7) reproduces the known results for both axial and
wide angle backscattering is a striking demonstration of the power of the equiv-
alent current approach. This power is combined with a certain simplicity of
derivation and from the analytical results we have obtained we can also deduce
the caustic matching functions appropriate in second order GTD. In bistatic
scattering these are the functions h (¢1, ¢2) given in eq. (4.22), but in the

special case of backscattering with sin y < <<, a somewhat simpler form is

2'
possible, Thus, from eqs. (4.26) and (4.27), we have
~ 1 2ika - i 7}
V), B 1 J'% G (7) [ﬁr-fr]tﬁi.g‘f] g2l - 1 AfH('y) (4.33)
£ ) = % FA) (4.34)
with .
A= ’i /f;a siny , (4.35)

and from eq. (4.29)
2.1 A 2 A
s(3) + s(4) ~ %/_% E (7) (1+sin”y) f2 [(hr-;c)(’ﬁi-:?)-sin Y (ﬁr-'g')(hf?')]

2ika (1+sin2'y)1/2—i

i/
/s £.(7) (4.36)
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where
sk

- (v) . (4.37)

fE('y) =f
The asterisk again denotes the complex conjugate. The simpler matching
functions fH('y) and fE(y) which are here obtained are in contrast to the
forms involving modified Fresnel integrals postulated by Senior and Uslenghi

(1971).
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A
NUMERICAL COMPUTATIONS

The complementary Fresnel integrals correctly reproduce the known
wide angle and on-axis scattering and provide a smooth transition between these
two extremes. In the particular case of backscattering the caustic matching
functions are the functions fH('y) and fE('y) defined in egs. (4.34) and (4.37),
and to see how effective these are for intermediate values of /\ , we shall now
compare the resulting values of the far field scattering amplitude S with data
obtained from a numerical evaluation of the double integral expression (4.7).

It is convenient to consider separately the two principal polarizations.

For backscattering ('yi =Y ¢S = 0) with E polarization,

8-8 -3
i~ %7y
implying
A A A A A A A A
hi-y=hr-y=0, hl-x=—h-x=cos'y

and the integral expression (4.7) then gives

1ka<2 Isin%g'l—siny(cos §+cos ¢')}

S —QE—YS sinf sin §'w(B) XX'e dgag’

E
(5.1)
where
w(p) = —228 (5.2)
sin Bl sin Bz
with
sinB=lsin-¢7'-¢—'l . (5.3)
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Similarly, for H polarization

A A A
hi-hr—y

and the integral (4. 7) becomes

a 4 ika{2 lsin %@l-sin’y(cos f+cos ¢')}

S5 S cosfcosf'w(B) XX'e dpdg
4r

° (5.4)

The B's that occur in the expression (5.2) for w(B) are due in part to
the form of the equivalent currents and it must be remembered that these were
derived by requiring that a stationary phase evaluation of the radiation integral
produce exactly the far field, wide-angle GTD result. Because GTD is a
specular theory, the incident and diffracted ray paths subtend the same angle
with respect to the local tangent vector and there is no distinction between
them. With the equivalent current approach, however, such a distinction can
be drawn and the choice that is made affects the value of the integral. Thus,
the factor sin2 Bl in the denominator of (5.2) is associated with the primary

diffraction at P1 (see Fig. 2-1) and can be interpreted in any one of three ways:

- A
where Bi is the angle made by the incident direction, i.e., Bi = cos 1(? .t)

and Bs is the corresponding angle made by the scattering direction, i.e.,
BS = cos“1 ({i\ -%). Similarly,
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A
1( g-t). From the geometry it is

-1,A A -
where Bi =cos (d -t') and Bs', = cos
evident that B; = BS = B. There are now nine possible expressions for
w(B) and of these the following four are important:

/ .
sin B

2 2 _.
smBismBs

1
{ sinBsinBisinB's

w(p) =
1

. 2 < o

sin BismBS
1

. L2,

g smBism BS

In order to decide which form is the most appropriate, we numerically
evaluated the integral expression (5.1) or (5.4) for the particular case of
axial backscattering by a 15-degree half-angle cone as a function of frequency
using each of the above choices. Since sin Bi = gin B's =1 on axis, the three

forms that were actually used for the evaluation were

1
sinf

w(p) = 1

sin B

The results are plotted in Fig. 5-1 and we note that the first two produce an
oscillatory variation as a function of frequency, while the third shows a
monotonic behavior. On axis all incident rays arrive at the ring singularity
with the same phase, and all second order diffracted rays leave with the same

phase. There is consequently no reason to expect an oscillatory behavior and

54



10 1og ( 181%/x)

10

-10

FIG.

i w(p) =

011075-1-T

AN

sin B

w(p) =sin B

5-1: Comparison of the 3 forms of w (B) for axial

backscattering from a 15° half angle cone with
a base radius of 4.997 cm.
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on this basis the third of the three choices (5.5) was selected as the most likely
prescription for w{B). The resulting interpretation of «{f) for arbitrary angles

of incidence is therefore

sin 8

w () = (5.6)

sin” B, gin’ B;

where sin 8 is defined in eq. (5.3) and
sin2 Bi =1- sinz'ysinz 'R
sin’ BL=1- sin’ 'ysinz g .

With v (B) specified in this manner, the double integral expressions
(5.1) and (5.4) were evaluated numerically as functions of vy for 15° and 40°
half-angle cones and the results are displayed in Figs. 5-2 and 5-3. The corres-
ponding formulae provided by the quasi analytic evaluation and incorporating the
caustic matching functions fE('y) and fH(y) can be obtained from eqs. (4.30),
(4.33) and (4.34). They are

. N
S, =- 3 /5;‘1 E () (1+sinZy) 2 cos?y e2lke¥sin ) - in/4 £ (5.9

. . 2.1
Sy *3 /% {G 0 28814 ¢ () B (Lrsin’y V2sm®y 21002 Y iﬂ/‘le(Yﬁ

c.f. eqs. (1) and (2) of Senior and Uslenghi (1973). Data computed using these
expressions are included in F1gs 5-2 and 5-3. The agreement with the results

of the numerical evaluation is particularly good for E polarization, the difference
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FIG. 5-2: Comparison of numerical (—) and analytic (---)
evaluation of the integral for E-polarization for
two different cones.
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5-3: Comparison of numerical (—) and analytic (----)
evaluation of the integral for H-polarization for
two different cones.
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being less than 0.3dB over the entire range of angles considered, and though
the H polarization curves do differ by as much as 0.5dB for the 40° cone at
200, it should be remembered that the precise form of the matching functions‘
fE’H('y) was based on the assumption siny <<1, Moreover, for all practical
purposes the accuracy of the results (5. 8) appears adequate.

The caustic matching functions in bistatic scattering are also complementary
Fresnel integrals as indicated in eq. (4.22), but any attempt to compute the
scattered field in this manner would require a knowledge of the ray paths, just as
in the case of wide angle scattering. As we saw in Chapter II, the determination
of these paths is a difficult matter involving the solution of a quartic equation,
and the expression for the field contribution of each path is also rather complicated
(see eq. 3.36 or equivalently, 4.21). In contrast, the equivalent current method
leads to a relatively compact expression for the bistatic field (see eq. 4.7), and
though the numerical evaluation of such a double integral is not a task which is
lightly undertaken, it is well to note that it does not require a knowledge of the
ray paths nor does it involve the computation of divergence factors. Moreover,
it is a continuous function of the incidence and scattering angles, and since it
is finite even in the direction of the axial caustie, it provides a means for deter-
mining the caustic matching functions in second order diffraction. In the particular
case of backscattering, these functions are f E('y) and f H('y) and are similar in

form, but not in detail, to the functions postulated by Senior and Uslenghi (1971)
based only on physical reasoning.
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APPENDIX

QUASI-ANALYTICAL INTEGRATION
OF FIRST ORDER EQUIVALENT CURRENTS

The first order equivalent ring currents deduced by Knott and Senior (1973)

are

TS | . ., 2
1= -2t (E B(X-Y)/lkZosm B,

Coeagd s . 2
1= 2t (H t)(X+Y)/1kY0smB

where 1 is a unit vector tangent to the edge of the ring, g‘ and El are the incident
electric and magnetic field intensities, X and Y are diffraction coefficients whose

form shall be examined in a moment, Z . = 1/ Y0 is the impedance of free space

and B is the angle subtended by t and th?e direction of incidence. We denote by
unit vectors é\i and ﬁi the electric and magnetic polarizations of the incident
wave, and by é\r and ﬁr the polarization orientation of a remote, linearly polar-
ized receiver, as shown in Fig. A-1. If we let T and § be the directions of
propagation of the incident and scattered waves, respectively, then the signal

detected by the receiver is proportional to

271' . AN A
_ka elkan (i-s)

2T 2

. e (X-Y)+h h (X+Y) d¢}, (A.1)
0 sin B

it

where S is a far field scattering coefficient, a is the radius of the ring, nisa
unit position vector directed away from the ring axis and the subscript t signifies
the tangential component.

If equation (A. 1) is evaluated by means of the method of stationary phase,
the wide-angle GTD result is recovered. A more accurate evaluation of the
integral can be carried out if the diffraction coefficients are represented in terms

of their Fourier series expansions about the angle ¢1-¢, where ¢1 is the
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FIG. A-1: Geometry of incident and scattering directions,
and incident and receiver polarizations,
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the angular location of a flash point as given by wide-angle GTD. In the analysis
below, the denominator of (A.1) is considered constant and equal to the value it
takes on at a flash point and may thus be removed from the integral. Numerical
studies of the integral have shown that this is justifiable, but since sinzB is not

permitted to vary with ), we regard the analysis below as "quasi-analytical.

The diffraction coefficients are

1 .
S sins
x= vy
T
CcoS — - CoS
n
1 .«
S sin
Y__
¢/+‘//0
CoS — - COS
n

where nr is the exterior wedge angle of the singularity and wo and ¢ are the
angles between one side of the local wedge and the projections of T and § onto
the plane perpendicular to the local wedge axis (i.e., perpendicular to ?) The
variations of X and Y around a ring are plotted in Figure A-2 for an arbitrary
set of parameters involving mixed polarizations and bistatic directions not in the
plane of incidence. It can be seen that X has but a small sinusoidal variation
that undergoes two complete cycles in one circuit of the ring, while Y exhibits
a much stronger variation. Figure A-3 shows that Y= C+W+Z has essentially

only the two sinusoidal components

W= Dcos(¢1-¢) and Z =Ecos 2(¢1-¢) :
in addition to the constant coefficient C. Thus quite good approximations of the

coefficients are :
X = A+Bsin2(p -f) (A.2)

Y = C+Dcos (¢1-¢)+E cos 2(¢1-¢) . (A.3)
As required by (A. 1), these coefficients must be multiplied by the polarization
factors eite and hithrt’ and then combined. In order to obtain explicit

rt
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functions for these factors, we designate the polarizations of the incident and
scattered electric field by a pair of angles, p and q, as shown in Figure A-1.
Angles p and q measure the amount by which the unit electric vectors depart
from being perfectly normal to the planes of incidence and scattering, both planes
being in turn normal to the ring and containing T and ’s\, respectively. We find
that

e, = (cos Y, cos ]Di sinp+sin ¢i cos p) sinf - (cos A sin}lﬁi sinp -cos ¢i cos p)cos f ,

- o e . N
e, = (cosy cos ¢Ss1nq sin ¢scos q) sinf - (cos 'yssm]bssmq cos ¢Scos q)cosf ,

hit = -(cos v,c08 ¢icos p- sinjbisin p) sinP +(cos 7isin¢icos p+cos ¢isin plcosP ,

_ +ei . Cd4 : _ :
h, (cos v c08 ¢Scos q+sin ¢Ssm q) sinf +(cos v, sin ﬁscos q-cos jbssm q)cosf ,
with the angles v,, v, ¢i’ ¢s as defined in Figure A-1,

Since the coefficients X and Y are expressed in terms of the angle
¢1-¢, the above polarization components must also be represented in terms of

this angle. By means of the identities
sinf = sin]l)1 cos(¢1- p) - cos pl sin(¢1— )

cosf = cos ﬁlcos(¢1—¢)+sin¢1sin(¢1-¢) ,
the polarization terms become
_1 .
e 8. = Z{Fe GecosZ(ﬂi1 ;15)+Hesm2(¢1 ¢)} ,

1
hoh =5 {Fh-thos 2(¢1-¢)+Hfsin2(¢1-¢)} ,

where
-F =-(1+ + -p )+ + in(p+q) sin(@. -
Fe F ( cos v,co8 vs) cos(p+q) cos(jbi ﬂs) (cos*yi cos ys) sin(p+q) sm({ﬁi ¢S)
+F o= -(1- ) _d )+ _ C N
Fe Fh (1 c0s 7,C08 'ys) cos(p q)cos(’?)i ¢S) (cosyi cos 'ys) sin(p-q) sm([lii ]DS)

G- G, = (1-cos v;c08 'YS) cos(p+q) cos(2¢1- ¢i- ¢S)

+(cos v,~cos ys) sin(p+q) sin(2 = ¢i- ¢S)
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+G = (1+ - -¢ -
Ge Gh (1 cosyicosys)cos(p q)cos(2¢1 ¢i ¢s)

+(cos 'yi+ cos vs) sin(p - g) sin(2§ " ¢i- ¢S)

- = -] - + i - -
He Hh (1 cosyicos'ys)cos (p+q) S1n(2¢1 ¢i ﬂs)
+ - in(p+ 20 -9 -
(cos v, cos 'ys) sin(p+q) cos( ¢1 ¢i ¢S)
+ = (14 - i - -
H H (1 cos'yicosys)cos(p q)sm(2]l§1 ¢i ,bs)

+(cos Y tcos ys) sin(p- q) cos (2¢1- ¢i- ¢S)

Thus the integral to be evaluated is

2
ka g -ikaTcos(ﬂl-ﬁ) ‘

S =- e

2
47sin B 0

1 1
. {[A(Fe+Fh)+C(Fh- Fe)+ 3 E(Ge-Gh)+-2' B(He+Hh):|
1
+[-2- D(H, - He)] sin(¢1- ()]
+[D(F -F )+lD(G -G {]cos(¢ -f)
h e 2 e h 1
+ E&(He +H)+B(F +F ) +C(H, - He)] sin2(¢1— )
+[£(Fh-Fe)-A(Ge+Gh)+C(Ge-Gh{]cos 2(¢1-¢)
1
+[§- D(Hh- He)] sin 3(¢1 )]

+B D(Ge - Gh)- cos 3(’151 -§)

1 1. N
o[ E(H, -H )~ B(G_+G,)|sind(p, -$)

+l_21 E(G -G,)- % B(H_ +Hh)_ cos 4(sz$1 -¢)} d(¢1 - . (A.4)

. 2
where T = sin27i+2 sin'yisin*yscos(¢s-¢i)+sin 'ys}l/ 2 and is independent of f.
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All of the terms in (A.4) can now be evaluated by means of the relations

27

cosnye
0

iz coswdw _ in27rJn(z)

27

izcos y

sinnye dy =0 ,

0

where Jn(z) is the Bessel function of the first kind of order n. The resultis

ka _
———4 sin23 ’{ZA [(Fe + Fh)J 0 + (Ge +Gh)J 2]— 2C EFe - Fh)J 0 + (Ge Gh)J 2]

S = e
+E [(Ge- G )y +2(F - F )3, (G -G)J 4]
+iD [Z(Fe- Fh)J1 - (Ge- Gh)J ) +(Ge - Gh)J3]

+B [(He+H'h)(JO-J4)]} , (A.5)

in which all the Bessel functions share the common argument, kaT, which

argument is implicit. The coefficients

h, h )

+F )-(G 4G ) = +
(F *F)- (G *+G) = 2(e; e ) +h b))

it1%rt1 " Rig1Prer)

- - - =9
(Fe Fh) (Ge G,) (e

where the subscript '1'" signifies that the polarization components are to be
evaluated at a flash point. Furthermore, by virtue of the recursion relations

for the Bessel functions,

2J1(kaT)
Jo(kaT)+J2(kaT) = T

4J2(kaT)
Jl(kaT)+J3(kaT) = Tt
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6J 3(kaT)

+ = —=
J 2(ka.T) J 4(ka.T) KkaT ,

2J, (kaT)  6J,(kaT)
JO(kaT) -J 4(kaT) = -

kaT kaT
Thus (A.5) can be written
5=- {A(e it1%rt1 TRyt 1Ppp s T2 2T
sin B
e it rtl)[(C+E)J (kaT) -1DJ (kaT)]}
' {[A(F +F,)-C(G_~G,) +E(F_-F )]J (kaT)
T sin B

1
+ 3 [E (Ge - Gh) +B(He +Hh):| {J l(kaT) - 3J3(kaT)]
+iD(Ge - Gh) Jz(kaT)} . (A.6)

For kaT sufficiently large, the second collection of terms may be neglected in

comparison with the first and the scattering is given essentially by

5w - {A(eltl €1 T R I AT)
sin B

+(e )[C (C+E)J ,(kaT) - iDJ (kaT)]}

it1%rt1 " Dt 1Pt
(A.7)

The approximation given by (A.7) is quite good, even for modest values
of kaT, as demonstrated in Figure A-4. The solid trace was obtained from (A.7),
while the dashed trace was computed via a numerical integration of (A. 1), for an

arbitrary set of polarization components and bistatic directions. The two curves
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are virtually coincident, with but a slight discrepancy for small values of g
We conclude that the quasi-analytical result of (A.6), and even the approxi-
mation of (A.7), are quite good representations of the integral (A.1). By
virtue of the form used in (A.2) and (A.3), the coefficients required in (A.7)

are simply

A=X =X, ,

1
C+E = 2(Y1+Y2) ,

D=

N =

(¥,-Y,)

where the subscripts denote that the diffraction coefficients must be evaluated
at flash points 1 and 2. The above identification is appropriate for a range of
bistatic angles spanning the backscattering direction, and an alternative identi-

fication is required when the angles embrace the forward direction.
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