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ABSTRACT

This work contains a revision of the treatment of the eigen-function
expansion of dyadic Green's functions previously discussed by the author in
his book [1] The singular terms which are missing in the previous treatment
have been amended. By starting with the differential equation for the dyadic
Green's function of the magnetic type only two sets of solenoidal vector eigen-
functions are needed to determine the complete expressions for both the electric

and the magnetic type of dyadic Green's function.
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I INTRODUCTION

Professor Per-Olof Brundell of the University of Lund, Sweden, has
kindly called the author's attention to an error in the treatment of the eigen~
function expansion of the dyadic Green's functions described in the author's book
[1]. In that work only two sets of solenoidal vector wave functions are used in
the expansion of the dyadic delta function I 5(R-R'). Since the latter is non-
solenoidal, the use of solenoidal funetions to represent such a quantity is not
sufficient or complete. As a result of this error the singular behavior of the
dyadic Green's functions is not properly formulated in the author's book.

In this work, the correct expressions for various dyadic Green's functions
are derived by means of a revised method which removes the shortcomings found
in the previous treatment. In the case of a rectangular waveguide the results has
been verified by Collin [2] who has independently found the solution for the field

in a source region based on the method of potentials.



I GENERAL FORMULATION

For clarity we introduce two types of dyadic Green's functions designated

by —E—e , the electric type, and Em, the magnetic type which satisfy the equations
VxG = G (1)
VxG_=T16(R-RN+K“G (2)

m e

where T denotes the idemfactor defined by

N>
N>

I= RX+IT+

2 2
and k=wu e .
oo

These equations are the dyadic version of Maxwell equations as applied to har-
monic fields due to infinitesimal current sources. The relationship between Ee ,

_E—m,?a(}_{—ﬁ') and E, H, J are

G -EM2+E g4 Es (3)
T =ion @P2+EV 54572 ()
m 0
Ts(E-R) - iwuo[:‘x‘x’§+3‘y’9+3‘2)2] (5)
=(x) —=(x) . -
where E° and H ' represent the electric and the magnetic fields due to an
infinitesimal current source with a current density ._I(x)= —1— §(R-R")X and

_ _ o
similarly for the other triads. By eliminating Gm or Ee between (1) and (2)

we obtain
VxVxE;-kzﬁ(;TG(ﬁ-ﬁ') (6)
x9S 2E -vx ?5(ﬁ—'ﬁ')] | (7)
m m



Equations (6) and (7) differ from each other in the inhomogeneous term. Further-

more, we have

—-13 V. [?5('}?-?@ z - Lva(ﬁ—ﬁ‘)
kz

thus Ee is nonsolenoidal while Em is solenoidal.

The dyadic Green's functions are classified according to the boundary
conditions which they must satisfy on an assigned surface. The functions of the

first kind satisfy the Dirichlet boundary condition

ﬁx-_-d- =(
el
= (8)
xG =0
ml
and the functions of the second kind satisfy the Neumann condition
fixvxG _=0
e2
_ (9)
AxvxG__=0 p
m2

If the region under consideration is open, it is assumed that the radiation condition

prevails at infinity

LimR = LA
- = O °
R—> @ [VXGel lkHXGel]

The same applies to Ee , Eml and Em . If the region has a limited open space,

2 2
such as in an infinite waveguide other forms of radiation condition are assumed to
be existing at the open ends. Because of (1) and (2), the functions of the first kind
of the electric type are related to the functions of the second kind of the magnetic

type, thus



VxG .= G (10)

el m2
= = — = Q=
= -R!")+
VxGm2 I6(R-R')+Kk Gel (11)
and similarly
= =
vVxG .= G (12)
e2 ml
vxG .=16®-R)+KG . . (13)
ml e2

The dyadic Green's functions are introduced mainly to facilitate the integra-

tion of the vector wave equations for E and H:

VxVxE-szs iwuo'J_, (14)

Vx vXﬁ-kz'ﬁa vxJ . (15)

The integration can be carried out with the aid of the dyadic Green's identity in the

Iff[fﬁ VxVx-a-(VxVx'f’)-a] dv =*#ﬁ- [T’.XVX_Q-HVXEX :5] ds (186)

This identity can be derived by superposing three vector Green's identities of the
form described by Stratton [3]

IIIP VxVxQ-(VxVxP). Q] dv ='# PxVxQ+(VxP)xQ]ds (17)

o) Q () and Q , three distinct vector functions, and

then introduce the dyadic function Q defined by

where we let @ be equal to Q

Q= Q(X)Q+Q(y)" —(z)g .

With the aid of (16) we can integrate the equation for E, (14), by letting P= E and



Q =€e1 where _E_e satisfies Eq. (6)and the boundary condition (9). The result

1
is given by

E(R)= iwuofffﬁel(ﬁ/ﬁ') « J(RY) dv' - ﬂ&xﬁez(ﬁ/ﬁ') . ﬁxf(ﬁ'ﬂ ds'. (18)

In arriving at this expression we have already made use of the symmetry relations

~d

G, (R/B) = T, (R/R)

and N
v'xG_,(R/R) = VxG_,(R/R')

where the sign '/~~"' denotes the transpose of a dyadic function. The derivation of
these symmetrical relations is found in Ref. [1] If the surface S corresponds to
the site of a perfectly conducting surface where AXE =0 only the volume integral

in (18) remains, that is,

E(R)= iw“offfael(ﬁ/ﬁ') J@RNdv' . (19)

The magnetic field H can be obtained either by using VxE= iwuoﬁ with E given
by (18) or by letting P=H and Q =ﬁe2 in (16) and the relations (10) to (13). In

either case we obtain

H(R)- f f f G_,(R/R)- T(E)av

L el RARY. B TR
- fon, [VxGml(R/I_i) an(R')} ds' . (20)

S
While most of these formulas have been derived in Ref. [1], the presentation here
emphasizes the distinction between the two types of dyadic Green's functions which
was not stressed before, In fact, neither the subscript notation 'e' and 'm' nor

Egs. (1) and (2) were introduced previously.



In the remaining sections we shall present the eigen~function expansions
of various dyadic Green's functions. The topics will be arranged in the same
order as they appeared in the author's book. Some of the basic formulas, such
as orthogonal properties of various vector wave functions, the circulation theorem

involving the product of Bessel functions and many other mathematical theorems

will not be reviewed here.



IIT RECTANGULAR WAVEGUIDE

We start with the equation

vxVxG_.-k°G .= Vx|Ts (R-R) (21)
m2 m2
for the magnetic dyadic Green's function of the second kind Emz which satisfies
the boundary condition
fx Vx? =0
m2

at the walls of a rectangular waveguide corresponding to x =0 and a; y=0 and b.

The function also satisfies the radiation condition

VG _=a

A =
m2~ % 2¥Cpy
_ A _ (22)
or Gm2= B szxGmz

at z=+o00. These conditions correspond to the radiation condition of the TE or TM
modes in a rectangular waveguide where o and 8 are two sets of constants.
Since V- Vx[T6(R-R")| =0, the generalized function Vx| T 6 (ﬁ-ﬁ')-] can

be expressed in terms of the vector wave functions M (h) and N (h) defined
omn emn

by
M (h)=Vx|y (h)z]
omn omn
—_— 1 [ A
emn(h)- K VxVx Lwemn(h) z]
where
cos nr X coS ar y
a b ihz
¢ (h)= e
®mn sin nr, sin i
0 a b y
K = h2+ k
c



Applying the Ohm-Rayleigh method we let

Q
vX[T—a(ﬁ-R"}I Z[M (WA ()+N (WB (h)|dn (23)
omn omn emn emn
- mh,n

where A, B are two sets of unknown vector coefficients to be determined. By

taking the anterior scalar product of (23) with -1\71'0 (-h') and integrating through

m'n'
the entire volume of the guide we obtain, as a result of the orthogonal property of

the vector wave functions

(1+6) 7 abk'2
0 c -

v M! “ht) = !
vixM' (k') 5 om'nt &
2 2
1 1
where K12 (M) - (n—")
c a b
1, m'orn'=0
and 60=
0, m'andn'#0 |,
Hemce @-5) (2-6 )K _
Aomn(h)= 2 V'XM-:)m (-h) = I Nl)mn(—h) (24)
1rabkc mabk

where the primed function is defined with respect to the primed variables x', y', z!
pertaining to R'.

Similarly, by taking the scalar product of (23) with ﬁem (-h') and performing

lnl
the integration, we obtain

_ 2- 5, ‘ (2-6)K
Bemn(h) ) 2 v Xﬁ—:emn(_h) N 2 M'emn(-h) ’ (25)
wab kc 7ab kc

thus



(0 0]
Vx[Ta(R_-ﬁ')}IZC K[l\_’f (h)N'  (=h) +
mn omn omn
-

m,n
+N (b)) M (-h;_]dh (26)
emn emn
(2-60)
where Cmn 5
7abk
c
To determine Emz(ﬁ/ﬁ') we let
©
G . (®R/R")= z C KE M (N (-h)+
m2 mn omn omn omn
—p mM,N
+b N (h)M (—h)]dh . (27)
emn emn emn

Substituting (26) and (27) into (21) we find

a =b = 1
omn emn 2 2

K-k
Having obtained the eigen-function expansion of ﬁmz we can determine gel by means
of (10). The term Vxﬁm2 is given by, in view of (27),
© K2 -
vxG_ = C N_ (N (~h)+
m2 mn_2 .2 | omn omn
K =k
-00 Im,n
+M M (-
Memn(h) Memn( h)] dh (28)

where we have made use of the relations

VM (h)=KN__ (h)
omn omn



and VxN (h=KM (h)
emn emn

The expression for VxG_. as given by (28) has a singular term which can be

m2
extracted from the expression. For that reason we split (28) into two parts

(0]

6 M' =N _ N |dh+
mn e h2 ot ot
-~ @0
< 2 2 kz-kc
+ C M M+ N'
f mn K2-k2 e e K2_k2 h2 ot ot
o m.n
+N N +N N +N N dh (29)
ot oz oz ot 0z 0z

where Fot and ﬁoz denote, respectively, the transversal part and the longitudinal

part of N.o . It can be shown that

0 0]
2
= o == , K< =
I 6§(R-R')= C M M'+ =N N |dh
t mn e e h2 ot ot
$o m,n

and the second integral in (29) can be closed at inﬁxiity in the h-plane which yields

a residue series. The final result can be written in the form

V/x'G'm2 Ta(R R')+k S (R/R") (30)

where

. 2-6
SRR = 4 A - 1 T
S(R/R') E [M (+k )Memn(+kg) +

emn— g

(+k ) N ('Fk)] , 222",
omn—g omn g

Substituting (30) into (11), we obtain

10



G, ,(R/R") = S(R/R- (31)
The singular term - 2726 (ﬁ—_ﬁ')/k2 is missing in the old expression for Eel(R—/ﬁ')
discussed in Ref. [1]. The residue series S(R/R') is the same as the one defined
by Eq. (8), p. 79 of that reference. The singular term vanishes when R % R'. When
the point of observation lies inside the source region the singular term must be

included in evaluating the electric field for an arbitrary current source; that is,

E(R) = iup f f f ﬁelm'/ﬁv)- T(R") dv' (32)

The method described in this section can be applied to all other dyadic Green's
functions., Omitting the details we list below the complete expressions for these

functions together with some of the essential formulas.

Cylindrical Waveguide

(0]

Vfo&(ﬁ-R')] =f AKAM (h)N n>L(-h)+
o Lo °

+20KT\T ()M (-h)| dh
oK eny  Cnu
n,u o o

N, <h>=vX[ (h)z]
Vx [‘ﬂ (h) z]

cos ¢ e1hz

where

1
gnk K)\
wen (h)= J ( )
(o)

= =q- - +
J ()Lr) 0 at r a, K). l h

11



M (h)= Vx [we (h) eihz]
oI o

N, (h):%vaX v (h)elhz]
®nu Y gnu

_ cos ihz
lﬂe (h) = Jn(ur) oin nfe

o
9J_(ur)
n - Ll 2,2
or =0 at r=a; Ku—u +h
2-60
C =
A 47T2H2]X
i 2 |03 (A1) 2
a n
L= Jn()tr)rdr=—2 or
2 r=a
2-60
C =
Hogrt
7
a
2 2
2 2 2
1= (ur)rdr=2= (" -%) 5 (ua)
u n 2 2 'n
2u a
0

The origin of these functions or coefficients is found in Ref. [1] .

Q

_ C
T, ®/R)- f > ;K"zm W, )+
m -k €nx €ni
o n,XKA 0 Y
C K

+ -—;‘—%we (h)M' (-h)| dh
K -k onu gnu
nu M

12



2= =

vxé'mz('ﬁ/ﬁ')=‘ft5(f€-'ﬁ')+k S (R/R")
'\ 5 _R!
T, (R/R) = T(w/my - 222 (B=R) (33)
K
(00) 0]
S(R'/ﬁ')ri;z 2(2-5)
n=0 m=1
S - — _ -
N )N' (+ )+ M (tk )M' (+k)
Xk).]x k). k). M“ on“ M gnu M
zzz'

‘ 2 2 / 2 2

= -, k =/k - .

k)l y U

The residue series S(R/R') is the same as the one described by Eq. (5), p. 89 of

Ref. [1] .

Eigen-function Expansion of Free-space Dyadic Green's Funetions Using Cylindrical
Vector Wave Functions

— A
Menk(h)=Vx Epenl(h) z],

0 0
—_ 1 N
Ngn)t(h) =% VxVx E/jgnl(h) z]

K2= h2+ hz; h and A both continuous.

Q
Vx[:fé(ﬁ-ﬁ'ﬂ=fdh d)tzCXK
-0 0 n

/M, ()N (-h)+N (b)) M (-
[MgMHNgM( )+ R, ) 5}

gnl onk

13



We denote the free~space dyadic Green's function of the magnetic type by

(Tmo(R—/ R') and the function of the electric type by E:eo(ﬁ/ RY).

_ Q Q CAK
G (®E)= | @& ‘“2 :
mo f f K2-k2
- 0 n
‘IM (AN (-h)+ N (A)M' (=h)|, 35
[ en{ ) enf ) enf ) en; %] (35)
(0] (o] (0]
_ ® CAKZ
VxGmo(R/IT')= f dh d)tz R
K -k
- n

(N ()N (-h)+M_ (W) M' (-h)| .
R

For cylindrical problems, we remove the A-integration which yields

vXEm()(ﬁ/ﬁ') = i S, (R/RY + 22 5 (®-RY)

where

w
FPmw (w+x?
nn  ©€nn €nn gnn

(0] 0 (o]
onn  Snn

rzr' . (36)

"

N ()N
e e
oM 0

“(-h)+M_  (h) M
nn o

Functions with superscript (1) are defined with respect to the Hankel function of

the first kind and n =/k - h2 .

14



- __ TsE-®
GeO(R/R') = Sh(R/R') - —-—kz——

(37)

The integral of the residue series given by (35) is the same as Eq. (5), p. 96 of
Ref. [1]
For flat earth problems, we remove the h-integration in (35) which yields

et —_ = 2=  — e = = -
1) = 1 -R?
VxGmO(R/R) k SX(R/R)+It6(R RY)
hence

2

_ — AA = =
Eeo(ﬁ/ﬁ') = 's'h(ﬁ/ﬁ')- 228 (R-R') (38)
K

where o
S (R —_' B —— — 0
S, (F/f) = 1 f dkz ™
0 n

M ()M (—h1)+ﬁe (h

N' (-h,)
gnkl gnl 1

nA 1) €n
0

o >

Z<Z‘ (39)
"IM. (-h)M' (h)+N_  (-h)N' (h,)
e 1" e 1 e 1" e 1
onk onl onk onl

where h1= /{;2- )Lz . Equation (39) is the same as Eq. (1), p. 103 found in Ref. [1]

Eigen~function Expansion of Free-space Dyadic Green's Functions Using Elliptical
Vector Wave Functions

vxG_ (R/RY = K’ S(R/RY) +2% 6 (R-R)

Ita(ﬁ-ﬁ')
2

Geo(R/R') =S (R/R") - (40)

?(ﬁ/ﬁ') is the same as the one given by Eq. (3), p. 118 of Ref, [L].

15



Perfectly Conducting Wedge

vxG_(R/RY = SR/ + 28 5 (R-TY)
— __ —__ TsR-R)
Gel(R/R')= S(R/R") -_1?— (41)

S(R/R') is the same as the one given by Eq. (9), p. 123 of Ref. [1].

Eigen-function Expansion of Free-space Dyadic Green's Functions Using Spherical

Vector Wave Functions

@ n 4
VxEmo(ﬁ/ﬁ')“ z zcmn KZdKz )
K-k
0

n=1 m=0

‘M oM ®+N ®E (K (42)
gmn gmn €mn €mn

where

M, (K= Vx [:pgmn(K) R]

(o)

— 1 _
Ngmn(K) =% VxVx [:ll/gm,n(K) R]

. cos m
Wemn(K)- Jn(KR) ain mf P (cos )
C _2_60(2n+1) (n=-m)! 5 = 1, m=0
+ 1
mn 2ﬂ2 n(n+1) (n+m)! ° Yo, %0 .

Equation (42) has a singular part in the integration with respect to K represented by

(04} n
5 (R/R") = 2 ZC KM ®M (K] dK =
1 / mn [emn €mn ]
0 n=1 m=0 o 0

16



(00) n
- 1
=M22 c @m m (43)
2R2 mn €pmp €mn

n=1 m=0 Y Y
where
m m
B = mPn (cos 0) o np@- apn (cos 0) cos m¢6
emn sin6 cos 00 sin )

o

It should be pointed out that the function 6 (R-R') is a one-dimensional delta

function resulting from

76(R-R'")

2

sz (KR) jn(KR') dK =
n 2R

0

Having recognized the singular part of (42), we can evalute the remaining part by

contour integration. Thus, we obtain

o o n
e R/R!) = 2[zF M
VxGmo(R/'ﬁ ) = f 2 zcmn K [Memn(x) Memn(K)] dK +
o (o)
0 .

n=1 m=0
Q0 n 9
+ 2 ZC El2=% 0¥ ®
mn K -k mn mn
0 n=1 m=0 o
1
+ = ZN (KN'  (K)|dK
K°-k° omD  °mn
(44)
—— = - 1 [AA — —_ y—
G_(R/R") =S (R/R")-—|RR §(R-R') +E_ (R/R") (45)
eo k2 2
where @ n
=Rt
5 (R/R) - ZUB=R) c Gxm ) Bxm ).
2 2 mn €mn mn
2R n=l m=0 o 0



and S(R/R') is the same as Eq. (18), p. 174 of Ref. [1].

Cone
T .(®/AN=S@E/Mm) -+ [ﬁ R 6(R-RY)+
el k2
6(R R') 2 A ]
(Rxm XR'xm' )| (46)
u(u+1)I gmu gmﬂ
where

G0 w W

=== ik 1 eml em
S(R/R') = 27r2(2"‘5o) zk(x+1)1m< ° 0(1) *
m (k) M' (k)

by ‘NT
\ omh
él) (k) N‘é (k)
+2 —— (o™ o™ (lpzm
u(u+1)1mu _ —Q)
N (k) Né (k)
gnu oDk

P;n(cos 00) = 0, characteristic equation for u
2

1=0 (P™) sin6do

1 u

m P (cos ) 9P (cos ) A
8 I co

- A
m =¥ —H——5810 gy Bmp g
€m sin 6 cos 00 sin
M
) P;“ .
—8-6— =0, at@-= 60, characteristic equation for A

T
2
5=I(P;”) sin6do
00

18



— _ i m cos . —
M, m)fk) = Vx [:]X(kR) P>L (cos 6) «in mf R—]
o

- 1 ) —_
(k) = -vaX[] (kR)P™ (cos ) °° m¢R‘J .
emy k M T sin
0
Functions with superscript (1) are defined with respect to spherical Hankel functions
of the first kind, The residue series S(R/R') is the same as the one given by Eq.

(22), p. 191 of Ref. [1].

Rectangular Waveguide with a Moving Isotropic Medium

Because of the incomplete sets of functions used the residue series derived
in the book was wrong even where it is applied to regions where there are no current

sources. The correct expression for @:1(1_{/1?') is found to be

G, (/R =S(R/R) - —152’25(1'1' “RY) (47)
k
where
_ . 3 2-6
S(R/R) = =2 —0,
xoyo k k2
mn ge

% (+k )b N' (Fk)+M  (+k)b. M ‘('l_'kﬂ
omn= g omn g emn— g €mn &
o
zzz' . (48)

The terms involving the N functions are different from the corresponding terms in
the residue series given by Eq. (14), p. 219 of Ref. [1] The parameters in (48)

are defined as before. They are:

LY
2
k = (azk2 -ak2>

g c



V)

M (h)=Vx[w (h)’z‘]
emn emn

— 1 A
N mn(h) = Kan Vx [womn(h) z]

cos mrx cos ary
" (h) = o) o ihz
®mn . myx . Dmy
o sin sin
xo o
2 2
K2a2= h2+ ak2 R k2= (M) +(M)
c c xo y0

x=0and X,
walls of guide:
y =0 and Y,
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