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Abstract

The transient waveforms radiated by step voltage excited linear antennas,
loaded non-uniformly and continuously with resistance, are investigated by
numerical means. The input time varying excitations considered are step
voltage, Gaussian pulse and gamma pulse types, Current distributions on the
harmonically excited antenna are obtained as functions of frequency for different
values of the loading, The transfer functions of the antenna and the spectral
densities of the radiated waveforms are obtained as functions of frequency and
the loading for two values of the antenna thickness and for different directions in
space. Finally the time dependent radiated waveforms produced by the antenna
are obtained by using fast Fourier inversion technique. The effects of the various
antenna parameters on the radiated waveforms are also investigated. Some of
the results are compared with available approximate analytical results,
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I

INTRODUCTION

The transient far field waveforms radiated by linear antennas, loaded
non-uniformly and continuously with resistance, are investigated in the present
technical note. The antennas considered are finite length thin cylinders excited
symmetrically by unit slice generators having unit step function type of time
dependence. Emphasis is given here to a specific type of resistive loading in
which the amount of loading increases continuously towards the antenna end
points where it becomes infinitely large.

Resistively loaded long and thin dipoles may be used as simulators (RES)
to radiate intense electromagnetic pulses of desirable shapes. Basic design
considerations and limitations of pulse radiating long dipoles have been discussed

?

by Baum In any pulse radiating finite antenna, the reflection effects at the
antenna end points produce undesirable features and distortions in the radiated
waveforms. One way to reduce such distortions is to attenuate the outward
traveling current waves on the antenna to an insignificant amount by the time
they reach the end points. A possible method of obtaining this is to load the
antenna with resistance; reactive loading being frequency sensitive is ruled out
from the wave distortion point of view. It is also clear from physical considera-
tions that uniform resistive loading is incapable of eliminating the wave reflections |
at the antenna end points although it may reduce the effects of such reflections to
a certain extent. It has been shown by Wu and King3 and by Baum4 that with a
special type of non-uniform resistive loading it is possible to obtain a reflection
free antenna, i.e., the antenna sustains only single outward traveling current
wave. As discussed by Baum4, such an antenna may be used to radiate intense
electromagnetic pulses of desirable shape. The motivation of the present
research has been to investigate and obtain quantitative results for the various

effects of the resistive loading on the transient radiation from such an antenna.
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1

BACKGROUND

Rigorous analytical solutions of similar time dependent boundary value
problems are extremely difficult, if not impossible, and are available only for
some highly restricted cases. Wu5 and Morgan6 have derived theoretical
expressions for the transient current distribution on unloaded infinitely long linear
antennas excited by a step voltage across an infinitesimal center gap. Brun-
dell7 treated analytically the more general problem of determining the fields
anywhere in space for a step excited unloaded dipole. Transient radiated fields
for unloaded and uniformly loaded infinite linear antennas with similar excita-

I

tions have been discussed theoretically by Latham and Lee The waveforms
radiated by a Gaussian pulse excited infinitely long dipole have been obtained
numerically by Harrison and Kinglo. The time dependent far fields radiated

by unloaded and uniformly loaded finite linear antennas with Gaussian pulse
excitation have been obtained by Bennett and Auckenthaler11 by applying direct
time domain numerical analysis. Transients in step voltage excited unloaded
cylindrical antennas have been investigated both theoretically and experimentally
by Schmittlz. Schmitt's theoretical time domain radiated waveforms are of
limited value because of the fact that he arbitrarily truncated the frequency
domain results at kL. 225, where 2L is the length of the antennas and k =-%L-

is the free space propagation constant. By applying the moment methods in the
time domain Sayre13 obtained the waveforms radiated by unloaded and loaded
dipoles for step excitation. Taylor and his group14’ 15 obtained by numerical
means some results of limited application for the case of discretely loaded
linear antennas excited by step voltage. Transient waveforms radiated by dis-
cretely loaded linear antennas with step excitation have also been studied numer-
ically by Merewetherm’ 17.

Transient waveforms radiated by a non-uniformly loaded finite linear

12



antenna with step voltage excitation have first been investigated analytically

by Baum4 who used the transmission line model for the antenna. The trans-
mission line model simplifies considerably the analytical investigation of the
antenna and led to the development of the special non-reflective loading which
significantly improves the radiated waveform4. However, because of the basic
approximations involved the results obtained from the transmission line model
are rather approximate.

In the following sections we investigate numerically the waveforms radiated
by a step voltage excited linear antenna which is continuously and non-uniformly
loaded with resistance along its length, At first the radiation fields produced by
the harmonically excited antenna are obtained. The far field waveforms pro-
duced by the step voltage excited antenna are then obtained numerically with
the help of Fast Fourier Inversion technique. The effects of the loading and
other physical parameters of the antenna on the radiated waveforms are also
studied in detail.,

Numerical investigations of the waveforms radiated by similar antennas
with short pulse excitations and analytical results for the Gaussian pulse excita=
tions were discussed in our two previous reports. In view of their limited
accessibility,and also for completeness, these two reports are included here
as Appendices A and B without any significant editing.
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BASIC RELATIONS

Let us assume that a linear antenna of length 2L be aligned along the
z-axis of a rectangular coordinate system with the origin located at the center
of the antenna and that it is excited by a unit slice generator located at the
origin. The far electric field produced by such an antenna is directed entirely
in the -direction. In the time harmonic case the far electric field is given
by the following:

F ='f‘e(r, 0, w) ejwt , (1)
where,
-jg r w
o~ jwnosine o c o joz'cosd
= ! ]
Fo(r, 0, w) ro - I(z',w)e dz', (2)
o
n0= E— is the intrinsic impedance of free space,
o

c= ﬁ is the velocity of light in free space,
oo

w is the radian frequency of excitation,

r, 6, § are the spherical polar coordinates of the far field point

with the origin located at the center of the antenna,

'f(z', w) is the current distribution on the antenna due to the har-

monically time dependent unit slice generator.

In Eq. (2), %"e(r, 6, w) is the time independent far electric field produced by the
antenna. For convenience we define the antenna transfer function in the following

manner:;
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~ ~ jc r
fo(O, w) = rFe(r, 0,w e
A)
jwnosin C] - j;z' cos 6
= I(z', w) e dz' . (3)

4mc

Notice that in the transfer function given by Eq. (3) the dependence of the field
amplitude on r as well as the phase shift suffered by the field in traveling from
the antenna to the far field point are both suppressed. As a result of this all the
field quantitites in our subsequent discussion will be independent of r.

Let the slice generator have arbitrary time dependence such that the input
signal voltage in time is represented V(t). It is now assumed that V(t) is Four-
ier transformable. This means that the following relations hold:

VW) = V(e Mgt | (4)

Vit = 51- Ve du . (5)
T .

=@

After making use of the linearity of the system along with the superposition theorem
and the concepts of Fourier transform technique, it can be shown that the time de-

pendent far field produced by the antenna excited by a unit slice generator signal
V(t) is given by the following:

e, 0= 5= | 7.0,V e* du

= o 3’9'(9. w)ej“"t dw . (6)

15



In Eq. (6) the quantity 3'9(9, w) = 'fve (6, W V(W) may be looked upon as the spec-
tral density of the far field waveform. Notice that, by definition, e 9(9, t) and
3'9 (6, w) are related to each other by the following transform relationship:

%’O (9, w) = T(6, W) V(W)

jwt

2 eew,we' dt . (7

=@

In the present problem the transient voltage at the é-gap located at the

center of the antenna is represented by

vt) = £(t) , (8)
where,
Yp . 0gtgT
£(t) = )
0 , otherwise

For sufficiently large T (usually T =few times 7, where 7= %= the transit time
on the antenna) the radiated waveforms may be identified with those radiated by
the same antenna when excited by a unit step function voltage in time, i.e.,
V(t)=U(t). For convenience of numerical computation, the rectangular pulse
type of excitation has been used here to obtain the step voltage response from the
antenna. With the input signal of the form given by Eqs. (8) and (9) we have,

~ sinwTy, ~JWT,

V) = _JI‘/_Z— e (10)

as the spectrum of the input voltage signal.
As can be seen from the above, the first step in the analysis is the deter-
mination of the current distribution T(z', w) on the antenna when it is excited by

a harmonically time dependent unit slice generator. Let us assume that the an-

16



tenna is loaded with distributed resistance such that its internal impedance may

be expressed as rs(z') ohms/meter for 0 _<_|z'l < L. Under this condition it

can be shown that the current distribution I(z', w) on the antenna satisfies

the following modified Hallén's integral equation:

| 12
-j% Ez - z')2+ az]
'i'(z', w) £ dz' = Bcoskz
4r [(z-z')2+ a2]1/2

-?"Z sin k|z|

+-ni- T(e, w)r, () sink(z-5) 4§

0
0

where,

k= is the propagation constant,

o |E

B is a constant to be determined from the end condition
T(+L, w=0,

a is the radius of the antenna element.

17
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A NOTE ON THE LOADING

The antenna is assumed to be resistively loaded such that its internal
impedance may be expressed as:

rs(z') = 1_—;;0-,‘-/; ohms/meter, -L<z'<L , (12)
where r =T (0) ohms/meter and is referred to as the loading parameter. Eq.
(12) predicts that the internal resistance of the antenna increases continuously
from the value r0 at the input end to infinity at the antenna end points. The
rationale behind this particular type of resistive loading is as follows. It is
known3 that for a linear antenna loaded according to Eq. (12) there exists a
critical value of ro, depending on the thickness parameter 2 =2¢n % of the
antenna, for which the loaded antenna excited by a harmonic slice generator
sustains a single wave of current traveling in the direction of increasing z' ,
i.e., from the generator towards both ends of the antenna. In other words, for
this type of loading there is no reflected wave on the antenna traveling in the
opposite direction. For this reason the antenna loaded according to (12) and
with this critica41 value of r is sometimes referred to as the reflectionless
antenna. Baum arrived at the same conclusion from his transmission line
analysis of the same antenna. For I less than the above critical value the
antenna stops being reflectionless and sustains a standing wave type of current
distribution. From theoretical considerations Shen and Wu18 have found that
for ro larger than the critical r the antenna sustains a progressive wave of
current whose distribution may be expressed as a hypergeometric function. Our
previous numerical investigation of the problem (Appendix A) essentially con-
firmed the above observations, In the present study we investigate in detail

18



the effects of the variation of the loading parameter ro on the transient far

field waveforms radiated by the antenna.
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BRIEF OUTLINE OF THE NUMERICAL METHOD USED

As mentioned in Section II we have used numerical techniques to obtain
the solution of the problem outlined in Section III, Detailed discussion of the
numerical methods is given in Appendix A, In this section we give only a brief
outline of the numerical techniques used to obtain the various quantities,

Standard numerical techniqueslg’ 20 are used to solve Eq. (11) for
o~

I(z', w). For this purpose the integral equation (11) is reduced by moment

methods to the following set of N simultaneous algebraic equations:

N
Z f Tz, w) G(zj, 2') dz'

=l Az
n

= Bcos:kz, - L sink]zjl

Jo2ng
'
+“sz 7(z',w)r (z')sink (z,-2') dz' , (13).
uR 8 ]
n Az
n
j=1, 2,..... » N,
where, / ,
1/2
e-j k ﬁz,- z')2+ a2]
Glz, z')= 1 (14)
47 sz-z') + a]
N/2
-z , for js% ’
1] n=j
= i . (15)
n
2 , for j>% .
n=-121+1

d 20



and it is assumed that N is an even number and z'eAzn. Eq. (13) implies
that the antenna of length 2L is divided into N sections, the numbering of the
sections increasing from 1 to N along the antenna length from ~L to L.

It is now necessary to make an appropriate approximation to the current
distribution T(z') (for simplicity we use the notation T(z2") for T(z', w)) in each
of the sections Azn. We make the following quadratic approximation to the un-

known current in each section:

Tz)=A +B (z2'-2 )+ C (z'-z )2 , for z'eAz ,
n n n n n n
(16)
=0 , otherwise,

where An, Bn’ Cn are the three unknown constants. These constants are
determined by requiring that the continuations of T(z') expression given by

Eq. (16) into the centers of the adjacent sections give the appropriate current
values there. After evaluating the constants it can be shown (Appendix A)

that the current in each section is given by the following recurrence relation:

o) = 1 1 1 1
1(z") In-lxn(z )+InYn(Z)+In+lzn(z) , zeAzn s (17)

where, 2
z'-zn (z'—zn)
)= o 1
Xn(z) Az + 5 , Z eAzn (18)
2Az
(Z'--zn)2
1) = ] @ ——— ]
Yn(z) 1 2 , z €Azn (19)
Az

z' -z (z' -zn)2
Zn(z')= onz | > , z'e:Azn (20)
2Az

~
I(zn) = In etc.,

Az is the length of each section,

21



n}l, N,

For the two end sections Az1 and AzN the currents are given by the following
(Appendix A):,

Tiot) = 1 (ot = 1
| I(z") IlYl(z )+I2 Zl(z) , forz'eAz, , (21)
CN) = ' (o) + 1 (" 1
I(z") INYN(z) IN—IXNZ) , for zeAzN , | (22)
where,
(z'-zl)2 (z'-zl)2
1 {o1) = - 1
Yl(z) 1+ N 2 > for z'eAz, , (23)
Az
(z'- zl) 2(z'- zl)2
1 (nt) = 1
Zl(z) o + 5 , for z eAzl , (24)
3Az
2
(z'- zN) 2(z'- zN) _
' = 1w - !
YN(z) 1 Az 5 , for zeAzN' (25)

Az

2
(2' =2z 2(z' -2z
N) + N) for z'eAz__ . (26)

3Az 2 ! N

X' (z')= -
N 3Az

After substituting Eqs. (17)-(26) into Eq. (13) we obtain a set of N simultaneous

1 12,..., IN.
The extra unknown constant B is now determined by applying the end condition

algebraic equations involving the N unknown current coefficients I

T(L, w) = 0. By using Taylor series expansion for the currents at the centers of
the last four sections and retaining four terms in the series, we obtain the follow=-

ing extra equation:

=51y g+ 211 =35I ,+351.=0 . (27)

We now have N+1 equations for the N+1 unknowns and the system of equations
are solved by usual matrix methods for 11, 12. cees IN and B.
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The transfer function ?;(6, w) given by Eq. (3) can now be evaluated
numerically with the help of the following relation:

N W
(0, 0) = i 21 jcz'“coaGA (28)
PALTI R s n® %

n=1

where we have used the notation T(zn, w) = In and z'= z is the coordinate of
the center of the section Azn.

The spectral density ’é‘e(e, w) of the radiated waveforms is obtained by
using Egs. (7), (10) and (28). Finally the time dependent radiated waveform
e 6(6, t) is obtained by carrying out the integral given by Eq. (6) with the help
of Fast Fourier Inversion technique.

During the numerical computation the antenna of length 2L has been
divided into N equal length sections. Time domain results have been obtained
for L =1 meter so that the antenna is 2 meters long. The frequency domain
calculations have been truncated at the highest frequency fo such that Az =

A
2
?L "’"-Eo , where Jto is the free space wavelength corresponding to fo. In

the next two sections we discuss the various results obtained.
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VI
'CURRENT DISTRIBUTION 1z, )

It is instructive to study how the loading effects the current distribution
on the harmonically excited antenna. Figures 1 and 2 show the amplitude and
the phase distribution, respectively, of the time independent current on the
linear antenna of length 2L = 52, % =~ 156 and roct 318. Under these condi-
tions the antenna approximately satisfies the non-reflecting criterion3’4’ 21.

The approximate theories of Wu and King3 and Baum4 predict the existence of

a pure traveling wave of current with linearly decaying amplitude distribution
on the antenna. The results shown in Fig. 1 indicate that the amplitude distri-
bution of current may be considered to be approximately linear except near the
feed region where it is significantly different. The linear variation of phase in
Fig. 2 indicates the existence of a pure traveling wave of current in the antenna.

Figures 3 and 4 show the amplitude and the phase distribution of the cur-
rent on the harmonically excited antenna of length 2L = 3A, l:= 156 and for
different values of the loading parameter I For ro <318, the reflection
effects on the current distribution become appreciable; the results for r = 120
clearly indicate that the antenna sustains a standing wave type of current distri-
bution. For ro > 318, the amplitude distribution of the current resembles an ex-
ponentially decaying function and the phase distribution, although not linear, is
progressive along the length of the antenna. In this sense it is proper to say that
for T, larger than the critical value of the loading parameter (i.e., larger than 318
in this case) the antenna maintains its non-reflecting properties, but it supports.

a progressive wave of current. It should be noted that the critical value of the
loading parameter T, is different for an antenna with different value of %.

For a given non-reflecting antenna with -L;= 156, ro = 600, the amplitude
and phase of 'f(z, w) are shown in Fig. 5 for two values of frequency w such

24



[T(z", w)| IN MILLIAMPERES/VOLT

0 ! R B | 1 L | L
0.1 o2 03 04 05 06 07 08 09 10 'L

Figure 1: Amplitude of the current distribution along a non-reflectively

' loaded antenna, ¢ =156, %= 5r, r =318,
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PHASE OF T(z', w) IN DEGREES

A
180
100 [~

1 1 ] ] I 1 ] ] 1 ;IZVL

0.1 0.2 0.3 0.5 0.6 0.7 0.9 1.0

—
-100 -
-180

Figure 2: The phase variation of the current along a non-

reflectively loaded antenna. %= 156,

ro= 318.
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|T(z", v)| v MILLIAMPERES/VOLT

0.0

0.25 0.50 0.75

7’

Figure 3: The amplitude of the current distribution along the antenna

~ as a function of the loading parameter. %: 156, %L= 3.
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PHASE OF T(z', w) IN DEGREES
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Figure 4: The phase of the current distribution along the antenna

as a function of the loading parameter. -]i:= 156, QCL= 3.
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IT(z, w)l for QCL= 10

\ —&—8— Arg I(z, w) for %Ii= 10

— IT(Z, w)| for-%-l‘-'= 30

4,0 - e e e = Arg I(2, W) for %I-"=30

\ \ — 180
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\ \ \ i :
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L
Figure 5: The amplitude and phase of the current distribution along a non-

reflectively loaded antenna for two different frequencies. -IZ‘= 156, r_= 600.



that %= 10 and %= 30. It is found that the antenna retains its non-reflecting

characteristics within the range of frequencies considered in Fig. 5.
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VII

TRANSFER FUNCTION OF THE ANTENNA ?'6(9, w)

In this section the magnitude and phase of the transfer function of the
antenna are given as functions of wL/c and for different values of the loading
parameter I Figure 6 a gives the variations of the magnitude and phase of

?;(0, w) in the broadside direction (6 = 7/5) of the antenna of length 2L and

%= 156 and for three vélues of the loading parameter. Similar results are
shown in Figs. 6b-d for the same antenna and for three different directions.
The corresponding results for an antenna of length 2L and %= 100 are shown
in Figs. 7a-d.

In all the curves, |f 6(6' w)l approaches zero as w approaches zero
which is consistent with the fact that there is no radiation at zero frequency.
For higher frequencies the mean value of If 0(9, w)I tends to increase with an
increase of frequency. In general, the mean value of the phase of f 9(6, w)
appears to decrease rapidly for small values of wL/c and then assumes a
constant value.

In each case for r = 240 both the amplitude and phase of ?;9(9, w) oscil-
late with "’L/c. With increase of T, these oscillations are smoothed out. It is
interesting to observe that the oscillations in the amplitude and phase of ?;( 6, w)
appear to be smoothed out for r0 > the critical loading parameter.

The increase of the parameter -I: tends to increase the amount of oscil-

lation in the curves.
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v

SPECTRAL DENSITY 'é‘e (6, w)

The spectral densities ’é‘e(e, w) of the transient waveforms radiated by
the step voltage excited antenna under various conditions are discussed in the
present section. For three given values of T, and L= 156, Figs. 8a-d show
the envelope of ‘e (6, w)l vs. “’L/ for four values of the observation angle 6.

It is found from Fig. 8 that in general the envelope of I e (6, w)l vs. "’L/ has

a dominant peak at the low frequency end for all values of 0 and r. After the
initial peak l e (6, w)l decays at first rapidly and then slowly with increase of
wL/c . Dependmg on thg values of ro and 6 there also appear some minor
peaks inl?a'e(e, w)‘ for large values of WL For the purpose of discussing

the behavior of I'é'e (6, w)| let us define the frequency regions larger and smaller
than the frequency where the initial peak appears as the high and low frequency
regions, respectively. Critical study of the results shown in Fig. 8 reveals
the following observations:

(a) As 6 decreases away from the broadside direction 6 = 900, the low
frequency content of |'é'9(9, w)‘ decreases and the high frequency content decreases.
Also for a given loading, as 6 decreases the amplitude of the initial peak de~
creases. For a given ro, the position of the initial peak appears to be indepen=
dent of 8. As 6 decreases from 90° the minor peaks in 3'9(6, w) become appre-
ciable.

(b) As r increases, the low frequency content of 'e (o, w)' and the initial
peak in e (o, w)l decreases significantly. The rate of decrease of le (6, w)l in
the high frequency end appears to be almost independent of ro.

(c) In the broadside direction the position of the initial peak in I'é'e (6, 7r/Z)I
increases with an increase in the loading parameter T For example, from
Fig. 8a it is found that the initial peaks are located at “Lj, & 1,56, 2.4 and
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2.6 for r0 =240, 480 and 600, respectively.

The above observations will have implications in the corresponding
time dependent waveforms. Figures 9a-d show the corresponding results
for the antenna with %=100. The general behavior of these results is simi-
lar to that of the results shown in Fig. 8. On comparing the results of Figs.
8 and 9 it is found that the decrease of % tends to make the minor peaks in

I'é‘o (6, w)l less pronounced.
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X

TIME DEPENDENT RADIATED WAVEFORM e 0 (6, t)

Figures 10a~d and 11 a~d show the time dependent waveforms in different
directions radiated by loaded linear antennas for %= 156 and 100, respectively,
and for various values of the loading parameter r. In each case L =1 meter
so that 7= 3. 33 ns and the width of the input rectangular voltage pulse T = 20.94
ns. It has been found that for T 2 37, the time dependent radiated waveforms
due to the discontinuities at the two ends of the input pulse do not interfere with
each other. Hence, the results shown here for T =20.94 ns may be identified
with the transient waveforms radiated by the antenna for step voltage excitation.

The undulations in the waveform for r = 240 (for example, Fig. 10a) are
attributed to the existence of reflected current waves on the antenna. In general,
the existence of reflection effects causes the waveform to cross the zero axis
more than once, as can be seen in the r = 240 waveform in Fig. 10a. For
r0 > the critical value, the radiated waveform has only one zero crossing. It
has been found that for a given angle 6, the increase of r has the following
effects on the radiated waveforms:

(i) decrreases the initial amplitude e 6(6, t). This conclusion is based
on the numerical sense, In the asymptotic results obtained from analytical
studies it is found9 that e 6(6, t) =< \'/-El-" as t—>0.

(ii) increases the rate of decay of e 9( 0, t) after the initial rise,

(iii) decreases the first zero crossing time to and consequently decreases
the pulse width, b

(iv) decreases the amplitude ee(e, t) for t> / T.

For a given value of the loading parameter L the decrease of the ob-
servation angle 6 from the broadside direction (6 = 7/p) has the following effects
on the radiated waveforms:

(i) increases the rate of decrease of e 9(6, t) from its initial amplitude and

decreases the zero crossing time to. Consequently, the pulse width decreases,
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(1) the initial amplitude of e, (6, t) increases.

The shape of the waveform radiated by a non-reflecting antenna can be
adjusted by adjusting the zero-crossing time to. For this purpose it is of
interest to study the variation of t0 as a function of the various physical para-
meters of the antenna. Figure 12 shows the normalized zero crossing time as
a function of loading with the observation angle 6 as the parameter. Notice
that results are shown for values of -Iai= 156 and 100, As far as the zero
crossing time is concerned, it is found from Fig. 12 that the decrease of 0
has similar effects of to as the increase of ro, i.e., to decreases with a
decrease of 6. In the broadside direction, to is found to decrease with the
decrease of %. In this direction the spread between the to values, for the
two values of % shown, increases with an increase of T

It is interesting to compare the time dependent waveform obtained by
numerical means with that obtained by analytical means from the transmission
line model of the same antenna as done by Baum4. For comparison the wave-
form produced by the loaded antenna with r =690 are superimposed in Fig.
10a. It appears from Fig. 10a that the transmission line model predicts
slightly slower decay of e e("/z, t) for t < t0 than our values. For t> to’
the approximate model predicts a higher value of e 9(7’/2 ,t) . These discrep-
ancies may be attributed to the fact that the transmission line model assumes
a linearly decaying current amplitude distribution on the antenna. Our numer-
ical investigation indicates that the amplitude of the current distribution of
the antenna is, in general, approximately exponentially decaying.

The early time behavior of e 0(9, t) is compared with Latham and Lee's
asymptotic results for uniformly loaded infinite dipole antennas. It is assumed
that the infinite dipole antenna is loaded uniformly in such a manner that the
internal impedance of the antenna is ro ohms per meter. We compare the
early time behavior of the waveform radiated by this infinite antenna with that
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of the waveform produced by the non-reflectively loaded finite antenna for

t <<7. It is assumed that the paramater 'a' is the same for both antennas.
The results are shown in Fig. 13 which indicates that the Latham and Lee
theory predicts faster decay of e 9(6, t) for early times. With the assumption
that the antenna is loaded uniformly with ro, the decay rate of the field for
early times should have been slower. This discrepancy indicates that the
nonuniformly loaded finite antenna may not be approximated by a uniformly
loaded infinite antenna for t <<7.
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X

CONCLUSIONS

Transient waveforms radiated by a step voltage excited resistively
loaded linear antenna have been investigated by numerical means. Results
have been obtained in different observation angles from the antenna and for
different values of the loading parameter. It has been found that for an an-
tenna of given % ratio there exists a critical value of the loading parameter.
If the loading parameter is equal to or larger than the critical value, the
antenna becomes non-reflecting. The waveform produced by the non-reflec-
tively loaded antenna shows only one zero crossing. The zero crossing time
as well as the radiated pulse width depends upon the loading parameter and
the observation angle. It is hoped that these observations may be found use-
ful in designing a pulse radiating dipole antenna.

It would be interesting to compare our time dependent results with
those obtained by the singularity expansion method (SEM). In particular, the
relationship of the critical loading parameter with the natural resonant fre-
quency (or frequencies) of the antenna should be investigated.
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APPENDIX A

NUMERICAL INVESTIGATION OF WAVEFORMS RADIATED BY
A PULSE EXCITED RESISTIVELY LOADED LINEAR ANTENNA

ABSTRACT

The waveforms of the radiation field produced by non-uniformly resistance-
loaded finite linear antenna excited by pulse signals are investigated by numerical
means. The antenna model considered is a thin cylinder loaded symmetrically and
continuously with resistance and is assumed to be excited symmetrically by a slice
generator supplying a time dependent signal of arbitrary shape.

Current distributions and the transfer functions of the antenna are obtained
as functions of frequency for different values of the loading. Spectral density of
the radiated waveform produced by the antenna is obtained as a function of
frequency for two different types of input pulse and for different values of loading
and widths of input pulse. Finally the radiated waveforms produced by the antenna
for the particular input pulse are obtained by using Fast Fourier inversion tech-
nique. Far field waveforms are obtained in 6=7/2, #/3, x/4, =/6 directions
and for different values of the loading. Three selected values of the ratio of the
input pulse width to the\ transit time on the antenna have been used for a Gaus-
sian pulse, while one specific ratio value has been used for a Gamma pulse.

pulse.
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APPENDIX A

1. INTRODUCTION

The waveforms of the radiation field produced by non-uniformly resistance-
loaded finite linear antennas excited by pulse signals are investigated in the present
Appendix. The antenna model cohsidered is a thin cylinder loaded symmetric-
ally and continuously with resistance. Emphasis is given to a specific type of
loading in which the amount of loading increases continuously towards the an-
tenna end-points. The antenna is excited symmetrically by a slice génerator
supplying short pulse type time dependent signals.

Analytical solution of such a boundary value problem is extremely difficult.

A similar problem with step input excitation has been analyzed by Baum4 from the
transmission line point of view. Analytic results for both unloaded and uniform
resistively loaded antennas with step excitations are given by Latham and Leega’ %
only for cases when the antenna lengths are infinite. Bennett and Auckenthaler11
reported some results for uniformly loaded finite linear antennas obtained by
applying numerical technique directly in the time domain. By applying the moment
methods in the time domain Sayre13 obtained results for unloaded and uniformly
loaded linear antennas of finite length. Taylor and his group14’ 15 obtained some
results of limited application by numerical means for the case of discretely |
loaded linear antennas.

In the present Appendix our approach to the problem has been numerical,
At first the radiation field produced by the antenna excited by harmonically time
dependent slice generators are obtained numerically as a function of frequency,
The far field waveforms produced by the pulse excited antenna are then obtained
numerically with the help of Fast Fourier Inversion technique.
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2. METHODS OF ANALYSIS

In this section we give a brief discussion of the method of analysis and also
define a few terms that will be used throughout. Let us agsume that the linear
antenna of length 2L be aligned along the z-axis of a rectangular coordinate
system with origin located at the center of the antenna and that it is excited by
a slice generator located at the origin. In the harmonically time dependent case
the voltage signal supplied to the antenna by the unit strength slice generator
may be represented by ejwt volts, where w is the radian frequency. Let the
current distribution on the antenna due to this source be I(z, w) ejwt . The far
electric field produced by the antenna under such conditions, will have only a

6 - component and may be written formally as follows:

1-*-'%‘6(r,(.))ej“’t , (A.1)
where, L
jnwsin® -jkr .
~ .0 e . jkz'cosb . ,
Fe(r,w) pym - fl(z,w)e dz' .(A.,2)
-L
where,

M .
no = ’:‘9— = intrinsic impedance of free space,
0

c= = velocity of light in free space,

R
\/.No o

k= % = propagation constant in free space,

(r, 6, §) = the spherical coordinates.

Let the slice generators have arbitrary time dependence such that the in-
put signal voltage envelope in time is represented by V(t). It is now assumed
that V(t) is Fourier transformable 1i.e. '

V(t) eV (w) (A.3)
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which means that the following relations are true,

[0 0]
?fl(w)= fV(t)e-jwtdt , (A.4)
- Q0
(0 0]
v(t)=31— f?"(w)ej“’tdw . (A.5)
m
- Q0

Assuming the linearity of the entire system and using the superposition theorem,
it can be shown that the far field produced by the antenna when excited by a slice

generator having arbitrary time dependence is given by the following expression:

™
Ee(r,t-i')*-‘.z'l-”'f'fe(r,w)?/‘(w)ejwtdw . (A.6)
-m

Notice that E o° as given by Eq. (6) is dependent on the parameter r, and also
that it is delayed in time with respect to the input by -g- which is the retarded
time taken by the signal to reach the far field point from the antenna. It is found
convenient sometimes to remove both of these effects from the final result. This
can be done as follows.

~
Let us define a quantity f p which is related to %‘6 in the following manner:

W
. HoT
fe(G.w) = r'f"e(r.w)e ¢

jnowsin 0

c 4n

L
I I(z',w)ejkz'cosedz' . (A7)
L

Similarly we can remove the dependence of r and f from Eq. (A,6) and define

the following modified field quantity produced by the antenna excited by arbitrary
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time dependent input signals:

) .
ee(e,t)--gl; f r’i"e(r,w)ec '\\/"(w)ejwtdw
-®
(00)
\"2%? f?’e(e,w)'\'?(w)ej“’tdw . (A.8)
-Q

Thus, formally if the field ?; (6, w) produced by harmonically time dependent
excitation of unit strength is known, then the field produced by any other time
dependent signal can be obtained with the help of Eq. (A.8). Of course, it is
assumed that the time dependent signal must have a Fourier transform.

From the analogy with signal transmission through linear system, we shall
call ?6 (6, w) given by Eq. (A.7) as the frequency response or the transfer func-
tion of the antenna and '5'6(9, w) = ?'9( 6, w)?](w) as the spectral density func-
tion of the radiated signal for arbitrary time dependent input signal. Note that
according to this definition e 0 (6, t) and '39(6, w) constitute a Fourier trans-

form pair, i.e.

eo(e,t)H‘Bfe(e,w) ’ (A.9)

3. BRIEF OUTLINE OF THE REPORT

It can be seen from Eq. (A, 8) that the knowledge of the transfer function of the
antenna under consideration is necessary for obtaining the waveform radiated by
the antenna for arbitrary signal input. Equation(A.7) indicates that the current
distribution I(z, w) on the anteﬁna for the harmonic time dependent excitation
must be known so that ?0(0, w) may be evaluated. In the following sections we
at first determine the current distribution I(z, w). This is done by numerically
solving a modified form of Hallen's integral equation.appropriate for the antenna
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under consideration. The transfer function 'f;(B, w) is then obtained by numer-
ically evaluating Eq. (A.7). The spectral density function 'é'e( 6, w) is obtained
by multiplying the transfer function by the Fourier spectrum of the input signal.
Finally the waveform of the radiated signal is obtained by numerically evaluating
Eq.(A. 8) with the help of Fast Fourier Inversion technique. Two input waveforms
have been assumed in this work. They are the Gaussian and gamma pulse rep-

resented by

-t?'/2cr2

Vl(t) = e (A.10a) |

V,(t) = te dtu(t) (A.10D)

where the constants parameter o and 1/ d are proportional to the width of the
input pulse and U(t) is the unit step function. The Fourier spectra correspond-
ing to the signals given above are, respectively,

~ _wz 2/2

Vl(w)' J27r ce ¥ (A.11a)
n 1 )
Vz(“’) = o+ d) (A.11b)

4. INTEGRAL EQUATION FOR THE CURRENT DISTRIBUTION I(z, w).

In this section we discuss briefly the integral equation for the current dis-
tributions on thin cylindrical antennas continuously loaded with resistance. As
before we consider a linear antenna of length 2L oriented along the z-axis of
the Cartesian coordinate system such that z =0 is at the center of the antenna.
Assuming azimuthally independent excitation, Hallen's integral equation for the
current distribution on a linear antenna excited by harmonically time dependent

slice generator of unit strength is given by:

L z

fI(z',w)G(z.z')dz' = B cos ke -j/n IE“(E)aink(z-E)dE
(i

'L 0 (A.12)
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where, Es z is the electric field on the surface of the antenna due to the induced
currents. G(z, z') is the free space Green's function and B is a constant to
be determined from the end condition I (+L) =0, a is the radius of the antenna
element and €o is the free space permittivity. Since the dipole is electrically
thin, i.e., 2¢ 0.01, we can assume the current to be located at the axis of the

antenna. This implies that the Green's function is approximately given by:

1/

2

-jk [(z-z')2+a2]

G(z,z')= 2 (A.13)

/2
47 [(z-z')2+a2]

If the antenna is loaded with distributed resistance Rs (z) ohms/meter, then the

total tangential electrical field on the surface of the antenna is given by:
= = + o
Ez(z) I(z,w)Rs(z) Eoz(z) Esz(z) (A.14)

where Eoz (z) is the field due to the externally impressed source. In the
present case the external source is assumed to be a unit slice generator with

harmonic time dependence, i.e.,

Eoz( z) = 6(z) , where 6(z) is the Dirac delta function.
Under these conditions, the integral equation for the current distribution on a

symmetrically loaded linear antenna is given by:

1/,
2, 2
1(z',0) e IX L(z-z ) +a]

1/
4 [_(z - z')2+ a2]

= B coskz --Z-‘anlnklz] +
0

=

dz!

!
-
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Z

+ J'nl—fI(E,w)RS(E)sink(z-E)dg (A.15)
(o]
0

Eq.(A.15) is the desired integral equation for the current distribution on the loaded

antenna when excited by slice generator of unit strength having harmonic time de-

jwt

pendence e
In the next section Eq.(A. 15) will be solved numerically for some assumed

values of Rs(z ). The loading function of special importance to us is of the form:

Rs(z) = (A. 16)

L -|z|

Note that according to the previous notation of Eq. (12), ro= C/ L. For some
special value of C, the above loading gives rise to a pure outward traveling wave
at a specific frequency on the antenna as discussed by Wu and Kingg. For this
reason the antenna with this special loading is sometimes referred to as the
reflectionless antenna. Baum1 arrived at the same conclusion from his trans-
mission line model analysis of this antenna, We shall consider in detail the
effects of the loading of the type given by Eq. (A. 16) for various values of C

including the value corresponding to the reflectionless case.

5, EVALUATION OF THE CURRENT DISTRIBUTION I(z, w).

Standard numerical technique19 is used to solve Eq, (A. 15) for I(z, w).
For this purpose the integral equation is reduced by moments method to the
following set of N simultaneous algebraic equations:

z f I(z', w)G(z z')dz!

n=1

71



t
+j/noz f I(Z', w)Rs(z') Bink(zj_zl)dz'

n Az
n

j=1,2,...,N (A.17)

where the summation on the r.h.s. of Eq. (A, 17) 1s interpreted as:

N@
z" - Z ,» for j< N
n n=j

(A. 18)
j

= 2 for j > N/2

n=N2+1

and it is assumed that N is an even number and z'e Azn . Eq. (A.17) implies
that the antenna of length 2L is divided into N sections, the numbering of the
sections increasing from 1 to N along the antenna length from -L to L as

shown in Fig. A-l,

z32-L z=0 z=L

) e | —m—=-=-=-=--- ° ® | = = = == = - ®
n=1 n=2 n= N/, | n=N

FIG. A-1: Division of the antenna into N-sections.

It remains now to make an appropriate approximation to the current dis-

tribution I(z') in each of the sections Azn . When the antenna length is small
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electrically the usual pulse approximation20 to the current in each section pro-

vides sufficient accuracy. Since our preliminary results have been obtained by

this method we give here a brief discussion of the appropriate expressions used
in this method.

Pulse Approximation Expressions

In this method the unknown current in each section is assumed to be a rec-
tangular pulse, i.e.,

I(zg') =1 z'e Az n=1,2,...,N
n n

(A.19)
=0 elsewhere

Using Eq. (A.19) it can be shown that the general integral equation given by Eq.
(A. 15) can be transformed into the following N simultaneous equations:

N
ZIn G(zj,z')dz"Bcoskzj-Ejn-sink(zj)+
n=1 Az 0
n
f
2 [ -
/nq z I R (£)sink (z,-8)d¢
A2y (A. 20)
j=1, 2,...,N
]
where the meaning the summation 2 is as explained before. In general the

n

unknown current I(z) and the unknown constant B are complex quantities.
Let us assume:

I(z) = IR(z) + jIC(z)

(A.21)
B-BR+jBC
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Separating Eq. (A. 20) into real and imaginary parts we obtain;

i f cos k
IR
n

n=1 Az
n

~ i

1/2
(zl—z')2+a2

4x

dz'- B_coskz
1/2 R j

—

™k

(210" +a

C

-— 1 -
" /%210 f R (€) stk (z, - £) d&
n a Azn

n=1

g L
% f ska(zj-z')2+a2]
+ I = = dz' = 0 (A.22)
Cn B 1/2 z
nxl AZn 47 L_(zj-z‘)2+a2
~ 1/
2
Al cosk|(z,-2') +a2]
z IC = 1/ dz'-BC coskzj
D %Az 2 2"
n 4rn Lfzj-z') +a
1 el
L ZIRI R (£)stnk (z - £)dE
(\ n
n Az
n
.y L
z f sin k (z -2 ) +a
- I dzl
R 1
n=1 [:z-z') +a] /2
1
-y sink|z | (A.23)
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where the upper (lower) sign is used for j < Ni (j >Nj) respectively.
The above sets of equations along with the end conditions have been solved
numerically for the unknown currents. The results will be discussed later.
Pulse approximation method provides farily accurate results for small antenna
lengths. However, if the antenna length is long electrically, to obtain suffi-
ciently accurate results, N must be chosen very large. Hence to obtain
accurate results without taxing the computer capability a different type of
approximation should be used. In the next section we discuss such a method.

Quadratic Approximation Expressions

As mentioned before, when the antenna length is large, the computer
capability makes it inappropriate to use the pulse approximation method. For
the present problem of resistively loaded linear antenna, it is known from theo-

?

retical considerations ’ ~ that the current amplitude decreases linearly towards
the ends of the antenna.
For this reason, we make the following quadratic approximation to the

unknown current in each section:

2
)= A + -z )+ - '
I(z?') An Bn(z zn) Cn(z zn) s for z eAzn

(A.24)
=0, otherwise,
where An’ Bn' Cn are three unknown constants. These constants are determined
by requiring that the continuation of I(z') expressions given by Eq. (A.24) into the
centers of the adjacent sections give the appropriate current values there. Thus
we obtain the following:

I(zn) = In = An

2

Iz _,)=1 _,=A +B (2 - z )+C (z -2 ) > (A.25)
2

I(zn+1)- In+l ) An+Bn(zn+1-zn)+ Cn(zn+1-zn) J

15



After eliminating An' Bn' Cn from Eq. (A.5) with the help of the relations given

by Eq. (A. 6) we obtain the following recurrence relation for the current in each

section:

) = 1 ' 1 1
I(z'") In-lxn(z )+InYn(z )+1 1Zn(z ) , forz eAzn (A.26)

nt
where
z'-zn (z'-zn)2
X (z')= = + - , z'eAz (A.27)
n 2Az 2Az2 n
(z'-2 )2
Y (z')=1- 2“ , z'eAz (A.28)
1 Az
z'-zn (z'-zn)2 )
') = + ' . (A.29
Zn(z) e 5 s z EAzn
2Az

where it has been assumed that each subsection is of equal length Az. In view

of the fact that in Eq.(A, 26) the value of the current in section Azn is related to
the currents In Y In-l in the centers of the adjacent sections Az o+l -1
respectively, the current values at the center and hence the entire two end sections

Az1 and Az

and Az
n

should be treated separately. For this purpose we make use of the

N
two sets of current coefficients I-L’ Il’ I2 and IN-l , LN' IL for obtaining the
currents in the sections Az1 and AzN respectively. Using these two sets of

current coefficients we obtain the following from Eq. (A. 24) to determine the currents

in the two end sections:

1) = ! ! ! ! ' .30
I1(z') IlYl (z )+12.Zl(z ), for z eAz1 (A.30)

I(z')=lNYl:I(z')+IN-1xI'¢(z') ) for z'eAzN , (A.31)

where,
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(z'-zl) (z'-zl)
t ] = - 1]
Yl(z )=1+ e 2 5 , z eAz1 s (A.32)
Az
2
(z'-zl) 2(z'-zl)
' 1) = 1
Zl(z) 3As + 5 , z'edz, (A. 33)
3Az
pA -2y 2(z'-z_)
1 ] = - - ]
YN(Z )=1 Az 5 s z'eAzy (A, 34)
AZ
2
(z'—zN) 2(z'-zN)
1 1) = = t
XN(z ) 3AD + 5 , z eAzN . (A. 35)
3Az

After substituting Eqs. (A, 26)=(A. 35) into Eq. (A.17) the following set of N simul-

taneous equations are obtained:

I f Y'l(z')G(Z', zj)dz'+ fxz(z')G(z', zj)dz'

Az1 A22

+12 fZ'l(z')G(z', zj)dz'+ sz(z')G(z', zj)dz'+ fXB(z')G(z',zj)dz'

Az2 Az3

N-2
+ z In (z')G(z' zj)dz'+ fYn(z')G(z',zj)dz'+ f Xm_l(z')G(z',zj)dz
r3

Az Az o+l

f (z')G(z' z )dz' + f (z')G(z',zj)dz'+
AZ AZ
+ IX'N(Z')G(Z',zj)dz' +

AzN

1



+IN {f Yh(z')G(z',zj)dz'+ f ZN_I(z')G(z',zj)dzJ

Ay AZN-1

v, Jue
* Booskz - E;; sin k| zjl T VHL N Y| (2)F(dz'+ | X, (2")F(z')dz’

Az1 Az2

+ szlz [I _Z'l(z')F(z')dz'+ I Yz(z')F(z')dz'+ IX3(z')F(z')dzZ|

Az1 Az2 Az3

N/2
+2 Hn,jln [f Zn_l(z')F(z')dz'+ fYn(z')F(z')dz'

3 Az Az
n

n-1
+ f X ml(z')F(z’)dz'} } for j < N/2

P Azn +1

j
+ j/no< z Hn,jln|:f Zn_l(z')F(z')dz'+ f,Ym_l(z')F(z')dz'-i- f Xm_l(z')F(z')dz}

m%-*- 1 az oz Az 1

\
+HN—1,jIN-1 [f ZN_z(z')F(z')dz'+ f YN_l(z')F(z')dz'
Az

N-2 AZy1

+ f Xk(z')F(z')dz'jl

AzN

+HN,ij [I ZN_I(z')F(z')dz'+ IYi{(z')F(z')dz'] . (A.36)

Azv1 Azy
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for j>N/2 ,
j (as the subscript) = 1,2,3,...,N

where

1, for j>m
H

m, J 0, for j<m

—C -
F(Z')= L"lz" sin k(zj Z') . (A.37)

The above is a set of N algebraic equations involving the N unknown current

coefficients Il’ 12, ..

determined by applying the end condition I(-L)=0. By using Taylor's expansion

.o I'N and the extra unknown constant B which is to be

for the currents at the centers of the first three sections we obtain the following:

(zl+L)2

I(zl) = I1 -(z1+L)I'(-L)+ 5 I"(-L) , (A.38)
(z2+L)2 \

I(zz) =L = (zz+L)I'(-L)+ -_E_I"(-L) , (A.39)
(23+L)2

I(z3) = 13 = (z3+L)I'(-L)+ —2-——1"(-1,) , (A. 40)

where we have already used the fact I(-L) = 0. The derivative terms in

(A. 38)<A.40) can be eliminated and we obtain the following extra equation:

- + = . .41
313 1012 1511 0 (A.41)

Thus Eqs. (A«36) and (A.41) constitute a set of N+1 equations for the N+1 unknowns
(i.e., Il' 12, cen "IN‘ B). The system can now be solved by standard means.

If the end condition is applied at the other end of the antenna, i.e.
I(+L) = 0, then the following equations should be used instead of Eq. (A.41):
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151 - 10 +3L ., =0 . (A.42)

Eqgs.(A.41) and (A, 42) will be referred to as the 3-point end condition formula, In
order to estimate the accuracy of the results, computation has also been done

by using 4-point and 2-point end condition expressions. These have been obtained
by applying the end condition I(+L) = 0 and retaining 4 and 2 terms in the Tay-
lor's expansion respectively. The relevant expressions for these two cases are:

~5Iy o+ 21L. =35I  +35I =0 , (A.43)

3L -Io, =0 . (A.44)

The above completes the theoretical discussion on the numerical procedure
to be followed in the determination of the current distribution for the loaded

linear antenna.

~
6. EVALUATION OF THE TRANSFER FUNCTION fB( 6, w)

In the previous section we discussed the numerical method of obtaining the
current distribution I(z, w) on the antenna for the harmonic time dependence
case. After introducing the sampled values of I(z, w) in Eq. (A.7), fe( 6,w)
is obtained numerically with the help of the following equation:

o sin @ jczncose \
f(O w)= j'— 4n ZIne Azn R (A.45)

Cc
n

where we have used the notation I( zn) = In and z'= z is the coordinate at
the center of the section Azn. The pulse approximation is good for transfer

function calculation because the current distribution is linear as mentioned before.

7. PRELIMINARY NUMERICAL RESULTS

In this section we discuss briefly some preliminary numerical results
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obtained for a few simple cases. The motivation behind this section has been
mainly to ascertain the correctness and accuracy of the numerical technique used
for later investigation.

7.1 Uniformly Loaded Antenna L =)/2.

For the case of uniformly loaded dipole of total length 2L =2, there is no
variation of loading along the antenna, i.e., Rs(z) = ri ohms/meter. Fig. A-2
shows the real and imaginary parts of the current distribution on a uniformly
loaded dipole for two values of ri . These results have been obtained by using
Egs. (21)-(23) with N=30. In Fig. A-2 we have used the notation ¢i= Zkrilno
where A is the wavelength and no is the intrinsic impedance of free1 2space.
The results shown here compare very well with those of King, et.al. . Thus
it proves the correctness of the computation followed here.

7.2 Non-Reflecting Loaded Case L=AX.

Here consider a one wavelength long linear antenna non-uniformly loaded
according to Eq.(A. 16), The radius a of the antenna element is chosen such
that Q = 2 Ing-;L-x 11.5 . This value of Q is chosen so that our results may
be compared with some available published results. Wu and King3 predicted
from theoretical considerations that a purely outgoing traveling wave of current
is sustained on the antenna loaded according to Eq. (A. 16) provided the constant
C is chosen to be equal to 60 Yya with Yya=5.3 . In other words the antenna
considered in this section is loaded as follows:

Rs(z) = (A.46)

80¢a
L-| z| ’
with ya =5.3 (Note: in this notation, r0= 60 wga/ L). The Ya notation is used
here to correspond to that used in Wu and King . Figure A-3 gives the amplitude
of the current distribution on the antenna as obtained by numerical computation
using pulse approximation with N =30, The current distributions obtained for the

same antenna by Taylor23 and Shen18 are also shown in Figure A-3 for compari-
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DAV

FIG. A-2: Real (I ) and imaginary (Ic) parts of the current distribution
on uniformly loaded dipole. L=x[2,  0=9.92, ¢i= ar/ nye
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son, The results of Shen have been obtained experimentally and those of Taylor
have been obtained by numerical solution of Pocklington integral equation for
the current distribution. Figure A-3 indicates that our computed results agree
fairly well with Shen's experimental values,

7.3 Exponentially Loaded Case

Fig. A~4 shows the current distributions on a one wavelength long monopole

loaded exponentially. The loading function used is

Rs(z)"c'ea’IzI , (A, 47)

where c' is a constant and o is another constant which determines the rate

of loading. In order to compare the results of Fig. A~4 with thﬁse of Fig. A-3 the
constant c¢' is chosen tobe c¢'=604a=60x5.3. Fig. A-4 shows the current dis-
tributions obtained numerically with the help of Egs. vi (A.21)-(A,23) with N =30 for
two cases with «=2.2 and a=-2.2. The case with a=2.2 corresponds approx-
imately to Shen's18 and it clearly shows the existence of a traveling wave type of
current distribution. For a =-2.2, the loading decreases towards the end and

the current distribution obtained is of standing wave nature.

7.4 Phase Distribution of the Current

Fig. A-5 shows the phase variations of the current along the length of the an-
tenna for the different non-uniformly loaded cases considered above. The pro-
gressive linear variations of phase for the non-reflecting case indicates the exis-
tence of a pure traveling wave of current in the antenna. It is interesting to ob-
serve from Fig. A-4 that for the exponentially loaded case with ¢' =60 x 5.3,

a = 2.2 the antenna may be considered to be approximately non-reflecting. This
observation may have significant implications for theoretical analysis of such
antennas. No such conclusion can be made from the phase variation for the

exponentially loaded antenna with a=-2.2.

7.5 Results for a Long Antenna 2L =5A

In the previous sections numerical results have been given for an antenna
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having total length 2L =2A. During the process of obtaining the transfer func-
tion of the antenna as a function of frequency, the effective length of the antenna
becomes very large at the high frequency end. The computer capacity as well
as the accuracy of the numerical results restrict the highest frequency for which
the transfer function can be evaluated. For long antennas, the computer program
should be modified for retaining satisfactory accuracy of the results without tax-
ing the computer. For small antenna length the usual pulse approximation for
the current in each section Azn provides sufficient accuracy as has been found
in the previous sections. As discussed in Section 4, for long antennas we use the
quadratic approximation to the current during the numerical evaluation of the
current. We study the accuracy of this procedure in this section. In addition
to this we also investigate the use of 4-, 3- and 2-point end conditions for the
long antenna case. The results of a sample computation done for the case with
2 L =5) with different values of the loading parameter in Eq. (A. 16) are discussed
in the present section.

Figs. A-6 =- A-8 show the current amplitude distribution, the current phase
distribution and the transfer function respectively of the non-reflecting loaded
linear antenna of length 2 L = 5A with the loading parameter C=60x 5.3. All
these curves have been obtained by using Eqs.(A. 36}with N=30. Ineach case
the results obtained by using 4-, 3- and 2-point end condition expressions are
also shown in Figs. A=5~~A-7. It can be seen from Figs. A-5- A~-7 that the results are
not appreciably different among the three cases. However, near the end of the
antenna the results are found to differ with each other slightly. From a study of
Figs. A=5 and A-6, in particular, the phase variation near the end of the antenna as
shown in Fig. A-6 it is concluded that the 4-point end condition expression given by
Eq. (A.43) is more accurate and hence should be used during the numerical com-
putation of the transfer function of the antenna for high frequencies. Figure 'A-9 shows
the amplitude of the current distribution on the antenna as a function of the ldading
parameter C =60ya obtained by Eq.(A, 36) with N =30 and the 4~point end condition.
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It is intoresting to obsorve hore that on the basis of King's work, the ex-
pansion factor ¢ 1is a fixed value for one particular size and frequency. That
means only at this specific value of loading (60ya) and specific frequency, we
can have a reflectionless current wave on the antenna. For C < 60x 5, the
reflection effects on the current distribution become quite appreciable as expected.
While C >60x 7, Fig. A-9 tells us the nonreflective nature. The higher value of load-
ing on the antenna supresses the small amount of reflection that occurs due to the use
of a value of { slightly different from the specific value referred to above.

On the basis of the results given in this section, we have decided to use the
4-point end-condition expression during the numerical computation. Six subsections

per wavelength to divide the antenna is required to guarantee the accuracy.

8. CURRENT DISTRIBUTION I(z, w) ON THE LOADED ANTENNA

In this section we give the numerical results obtained for the amplitude of the
current distribution I(z, w) for the harmonically excited loaded antenna. The
loading used is of the form given by Eq. (A.16) with C variable. Figures A-10a-
A-10d show the amplitude of the current distribution on the antenna with antenna
length as parameter for different values of the loading.

The amplitude of the current in general increases as the frequency is in-
creased. The value of the magnitude at the same frequency is surpressed by the
higher loading as expected. The current distribution is not strictly linear as
those of the transmission line found by Baum. It is due to the factor { which is
a function of the thickness ratio of the antenna and the frequency used. So it is
not possible to excite a traveling current wave for all frequencies on an antenna

of fixed size.

~
9. TRANSFER FUNCTION OF THE LOADED ANTENNA fO( 6, w).

In this section the magnitude and phase of the transfer function of the antenna

are given as functions of wL/c for different values of the loading parameter C.
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These have been obtained numerically with the help of Eq. (A.45) and the sam-

pled values of the current distributions discussed in the previous section. Figures

A-11a-A-11d give the variations of the magnitude and phase of the transfer func-

tion in the broadside direction (6= 7/2) of the antenna and for four values of

the loading parameter c¢. Similar results are given for 6=7/3, 9=7/4,

6= 7r/ 6 in Figs. A=12--A-14 respectively. Each figure contains four different

values of the loading factor C. In all the curves shown,|‘f~9( 6, w)l approaches

zero as w approaches zero, which corresponds to the fact that there is no

radiation at zero frequency. For higher frequencies, ﬁ;( 0, w )l appears to be

an oscillating function and tends to decrease with increase of the frequency. The
~

fG

the asympotatic value of the transfer function is a constant. However, within

phase of f (6, w) falls steadily to a positive constant. Wu and King3 proved that

the range of the computations covered here the transfer function in Figs. A-11~-A~14
does not reach its asymptotic value especially for 6=7/6. For an unloaded

thin linear antenna, we know that the transfer function would be zero for L =nA

at the broadside direction (where n is an integer) when the current is sinu-

soidal. Fig. A-lla shows that the values at kL =27, 47, 67, 87 are minimal.

For higher values of C, the loading reduces the ringing which is due to the

reflection from the end. /

It is appropriate to mention here that the impulse response of the antenna
may be obtained by numerically carrying out the inverse Fourier transform.
However, the data for ?;(0, w) obtained so far is not sufficient to get reasonably
good results. Taylor has shown that the transfer function reaches its asymptotic_

value at a certain frequency which is beyond the value wL/c =25 considered here.

10. NUMERICAL RESULTS

In this section we discuss the numerical results for two different shapes of
voltage input. Spectral density is obtained by multiplying the transfer function
with the input pulse spectrum. The waveform of the radiated signal is then
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obtained by using Fast Fourier inversion technique.

10.1 Spectral Density ?a'e (6, w) and the Time Domain Solution e 9( 6, t) of the

Radiated Field Excited by Gaussian Type Pulse

In this section, results are given for the spectral density 'é'e( 6, w) and the
time domain solution 'é'e( 6, t) excited by a Gaussian pulse input. The form of
the input pulse and its Fourier transform are given by Eqgs. (A.10a) and (A.11a), For
the time domain results shown here, the antenna length is taken to be L =1 meter.
This implies that the transit time on the antenna for centerfed case is 7= L/c=3.33
nanosecond. The radius a of the antenna element is chosen such that
Q=21In 2?L= 11.5 in all cases.

The spectral density 'é'e( 0, w) of the radiated waveform shown here has
been obtained by multiplying the transfer function of the antenna by the Fourier
spectrum density function of the input signal. The waveform e 0( 6,t) of the
radiation field produced by the antenna excited by the Gaussian signal has been
obtained by numerically carrying out the integral in Eq. (A, 8) with the aid of Fast
Fourier inversion technique.

The results shown here have been calculated in the directions 6= 7/2,

7/3, m/4 and 7 /6 from the antenna, where 6 =7 /2 corresponds to the broadside
direction. Three different values of the width of the Gaussian pulse have been
considered for 0=17 / 2, while only a narrow pulse ixas been obtained for the other
directions. These pulses are chosen such that the spectral density will converge
to zero at high frequencies. Four different values of the loading constant are used
in each case. Figs, A-15——=A~-17 show |?a'(1r/ 2, w)l versus kL and e 6(7r/2, t) ver-
sus t for these cases with ¢ =0.471 nsec., 1 nsec., 3.33 nsec. respectively.
From the frequency domain results, we observe that for a wider pulse only the
low frequency portion of the transfer function is responsible for the overall
response. For example, when o =3.33 nsec., we only have to consider the
frequency spectrum up to kL = 3.5 as shown in Fig. A-17. For a narrow pulse,

a wider frequency domain of the antenna transfer function has to be considered.

However, if the width of the pulse is too narrow, then the computing time re-
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quired becomes excessive. For practical consideration of the computing time, we
we have chosen ¢ =0.471 nsec. such that the upper frequency spectrum limit
corresponds to kL =25.

Fig. A-15a shows |e9( 7/2,w)| for ¢=0.471 nsec. For values of C=60x 4
and C =60 x 5, the ringing phenomenon enters the picture. For C exceeds 60 x 8
the ringing disappears.

From the time domain results shown in Fig. A-15b, it appears that the
initial part of the waveform represents predominantly the time derivative of the
input Gaussian pulse. The general shape of the waveform depends on the radio
o/T as expected. It is also seen that after the second zero crossing, e(r/2,t)
remains positive for all positive values of t and the magnitude decreases with
the increasing C of the resistive loading.

Corresponding results are shown in Figs. A-18--A-20 for three other directions
with ¢ =0.471 nsec. and for four different resistive loading. The general charac-
teristics are similar to those discussed above. Due to the difference of the path
length, the reflection occurs at different frequenciesré'e( 6, w)| . The strength
of the far field is maximum at 6 =7 /2 and decreases as 0 deviates from the
broadside direction. In every case, the effect of loading in general reduces or

eliminates the ringing.

10.2 Spectral Density ©.(6, w) and the Time Domain Solution e 6( 0, t) of the
U
Radiated Field Excited by a Gamma Pulse

In this section, we consider an input voltage function represented by a Gamma
pulse. The equations which define this pulse and its transform are given by Egs. (A, 10b)
fand (A. 11b). Unlike the Gaussian pulse, the Gamma pulse is defined here for positive
rvalues of t only.

The spectral density %'9(6, w) shown here, again, has been obtained by
multiplying the transfer function of the antenna with the Fourier Spectrum of the
input signal. Then Fast Fourier inversion technique is used as before.

The results shown in Figs.;A-22 - A=25, correspond to one particular pulse widf.h
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at four different directions. For each direction in space, four values of loading
have been considered. The width d of the gamma pulse is chosen to be
1.7x 109 [ sec. which approximates the same width as that of a Gaussian pulse
with ¢ = 0.47. Figure A-21 shows the input gamma pulse reproduced by using the |
Fast Fourier inversion program. This computation is to show the round-off
error involved in the F.F.T. program for sharply rising pulse. The truncation
of the high frequency portion of the spectrum also induces error. The error
results in the oscillating portion for negative value of t and the shift of the
starting point to the left instead of at zero. Similar error would be introduced
in computing the time domain solutions based on gamma pulse input.

Since gamma pulse does not converge to zero as fast as Gaussian pulse,
the spectral density shows small oscillation at high frequencies as shown in
Figs, A-22=--A-25, The truncation of a gamma pulse also introduces a larger error
than that of a Gaussian at the same truncation frequency. Except for these minor
variations, the general behavior of the time domain solution presented previously

for the Gaussian pulse also applies to the gatha pulse.

11. CONCLUSION

The waveform of the far-zone field radiated by a non-uniform resistively
loaded linear antenna excited by a voltage pulse has been investigated by numeri-
cal means. Results have been obtained for a Gaussian pulse with three different
pulse width and for one particular‘gamma pulse at four directions of observation.
Various values of the loading parameter have been considered.

In general, the resultant waveform corresponds to the convolution of the
harmonic response and the input signal. The initial portion of the resultant wave
however, appears to be proportional to time derivative of the input signal. \\

The result shows that the amplitude of the current distribution on the har- \\ ‘

monically excited antenna is almost linear, being independent of the loading resis—
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|tance when the latter exceeds certain value. The phase of the current represents
the characteris