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MEMO TO: File

FROM: Jovan Zatkalik

SUBJECT: Non-Specular Radar Cross Section of the Discontinuity
in Surface Impedance. Part B: The Case of Real
Impedance.

In this memo the far field scattering from the discontinuity in surface
impedance is treated for the case of real impedances. The case of reactive
impedances was treated in the memo numbered 011764-508-M (Ref. 1). The
reason for such a separation lies in the fact that in the case of reactive im-
pedances, the exact evaluation of some integrals can be carried out, while
in the other cases the exact solution cannot be obtained except in the con-
vergent infinite series form. Besides this form of solution, it is attempted
here to get the approximate solution for the far field in the closed form,
along with the estimation of error.

The forms of integrals defining the decomposition functions F{' (;-8)
and F2_ (£) (Ref. 1, page 15) depend on the choice of the integration contours
and branch cuts. We have tried a lot of contours seeking to find the solution
in the simplest form and have finally chosen two contours: ‘_one the same as
in Fig. 5 of Ref. 1, and the second as in Fig. 1 of this memo. The notation
and the meaning of various quantities are the same as in Ref. 1 to which we

shall often make reference. |

The First Integration Contour

In this case we shall put:
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and for the function Fl- (), where £=KcosO, or £=Kcos 60 , we have the

following expression (Ref. 1, Eq. (33)):

Q0 .
o L KR 1 g
: ¢-K
1d=00

It is easy to show that Fl- (§) is real, if IE | < K. Namely, by taking

the same contour as in Fig. 5 of Ref. 1 we obtain from Eq. (1):

2 2 |
- 1 i W
F1(§)=-E'1. In 5= "o-F . (2)
o =K +ijl

In Eq. (2) the real part of the integral is zero, for:

2 .2
-ib| _1 +
] a +b

so we have:

-KR KR
TR 1 L )| do__
F1 (§)=- o arctg( s 2)- arctg( > 2) =

1 \ _ do
2)0_5 (3)

and FI—(E) is real.
If we put:

o= Kchx R, = sina

do =Kshx §=cos9



011764~510-M

the function Fl' (&) becomes:

- 21 sina\ shx
F1 (Kcos §) = T arctg (shx}chx-cose (4)
Consider the infinite series:
(04)
2 p21 1 sin(2i-1)t_ iarctg 2psint ’ (5)
2i-1 2 1-p2

i=1

given in Ref. 2, page 41, which is convergent for 0 <t <27, and p2 <1. 1f

we put:

p=e "~ (x >0, and p <1 accordingly)

t=a
we obtain from Eq. (5):
ot -X
-(21—1)x sin(2i-1)a larct 2e 'Sina=larct sina
2i-1 2078 ax | 2 T%8(ahx
i=1 t-e

1
which is precisely (save factor 5) the first factor in the integrand for

Fl_ (Kcosh). So we have from Eq. (4):

@
- 2 ~(2i-1)x sin(2i-1)a| = _ shx
K (K cos 6) = T 2 2i-1 chx-cosf & * (5a)
i=1

It is easy to prove that in Eq. (5a) the conditions for changing the order of

integration and summation are fulfilled, so we have:
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®
- .2 sin(2i-1)a -(2i-1)x shx
Fi (K cos 6) = T 2 2i-1 © chx--cosGdX ’ (6)
i=1

The integral in the brackets we shall evaluate on the basis of integral:

“u (0]
e 2 2: sinnt
chx - cost smt u+n

n=1

(see Ref. 2, page 357; no. 3545.2). After some manipulation we obtain:

®
e-(Zi-l)x shx o _ 2 sinnd sinn
chx-cos@ \ sin® 2i-2+n  2i+n
n:
__ L sin6 , sin26 | 2 sinnf smne ()
sin@ \ 2i-1  2i sm9\ -2+n 21+n )

The terms in the brackets, which we shall designate by F (6, i), can be

rearranged as follows:

@ ®
‘) = sin(2+n)f-sinnd _ _ . 2 cos(ntl)f _
F(O, 1)‘2 %i+n = 2sinf _._____2i+n =
n=1
QO ®
= 28in 6 sin(2i-1) 6 z smr:lne + 28in0cos (2i-1) z co:in m6
m=2i+1 m=2i+1

where we have put: m =2i+n.

We know that:

ll

2

1.9
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(see, for example, Ref. 2, page 38) so we have after some manipulation:

2i

F(6, i) = 2sin6sin(2i-1)0 7';9 _2 SmHIIne )

m=1

2i
. . . 0 cos mf
- 2sinf cos(2i-1)6 | fn sm'é'+ = | (8)

m=1

With Egs. (6), (7) and (8) the function Fl' (K cos 8) becomes:

©
- _ 2QQ¥sin(2i-a) |_1 | cos@ A i (Of -
Fl(Kcose)- 12 -1 [2i-1+ i +2f1(6,1)sm(21—1)0—
i=1

- 2f2(9, i) cos(2i-9ﬁ =

(00) ©
2 zsin(zi-a) _ 2cosb z sin(2i-0)
T 12 T i(2i-0)
oo, (2i-1) .
1:1 1=1

o
L2 z cos [(2i-1) (e+8)] _ cos l(2i-1) (@ -6}
T

21-1 2i-1 f(0, 10+

Q
N % 2 sin(2i-1) (e+6)} , 5in [(2i-1) (c -6)] L6, ©

2i-1 2i-1

where:
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2i
o _T=0 sinm@
£,(6,1)= 75 m
m=1
2i
£(0,1)= tn sin 2+ zw
2 2 m
m=1
Using relations:
®
cos(2i-1)x _ 1 X
2 21 g lnetgy
i=1
®
2 sin(2i-1)x _ 7
2i-1 4
i=1
we can transform Eq. (9) into:
Rl- sin6 ,
- =f_(0)+ e ¢ +f 10
F1 (K cos 0) f2(6) fl(B)In RF ~ind ,f3 (@) cos 6 4,foz) (10)
where:
(04) o 2i
1
f (e)-—zf (8, i) —-Q-—z 2 inmf
2 T
i:]_ i=]. m=1
o | o 2
£ (6)-—2f (o, 1)'—lnctg2 z c0s mo
i=1 i=1 m=1

L (@) = z 1n§2i-1)a

(21-1)
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@
2 sin(2i-1) o
f4(‘")"7r2 (2i-1)1 (11)
i=1

with a = arc sinR1 .

In this way, all functions fi in the above expression are the functions
of one variable only (6 or ).

The corresponding expressions for Fl_ (Kcos 00), F2' (Kcos 6) and
F2 (Kcos 00) can be obtained from Eq. (10) by simply changing 6—>Oo and
R,~™R_. With the aid of Eq. (39) in Ref. 1 we can obtain the desired

1 2
expression for radar cross section o.

The Second Integration Contour

As it was pointed out in the beginning, the form of the integral to be
evaluated is strongly dependent on the contour chosen. Here we are going
to take the integration contour and branch cut as shown in Fig. 1. This con-
tour represents the proper deformation of the basic integration contour from

Fig. 4 in Ref. 1.

a = o+ jT plane
~ - — branch cut

— integration contour

N
[

o=E&(pole) o=K

Fig. 1
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We now have the pole on the contour at o =&, so we introduced the
indentation above it. Along the right and left-hand sides of the j7 axis,

the function vy has the values:

Y= +,/(jﬁ2- K2 = +j /72+K2
Y=- /(j7)2— K2 = -j /72+ K2

respectively, while along the upper and lower side of the o axis, 7 is,

2 2
7=J',/K-0
2
Y=-j Kz-o .

So we have from Eq. (1) and Fig. 1:

respectively:

72+ Kz— KR

1
F (§)=-—1@§ In -
1 2mi \/72+K2

(12)

where we used the well known formula:

b
fla) ., _. f(o)
fa_g da-Jﬂf(§)+PIG—§ do
C a

in which C is the part of o axis between a and b, with indentation above pole

o =&, and P stands for the Cauchy principle value of the integral.

From Eq. (12) we obtain, after simple manipulation:
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The first and second integrals in Eq. (13) are real. Namely, 7 in them goes

from 0 to o, and we take R, <1, so the factor under log cannot be negative.

1
The third integral is real from ¢=0 to ¢ =K l-Rl2 , and from K /1 -R12 to
K it is complex because the factor under log is negative. However, from Eq.
(3) we know that Fl' (§) must be real, so the imaginary parts in Eq. (13) have

to cancel each other and we have:

_d7_

. +
72+ 52

Sk KR,

+=—T , (14)

where T, and T, represent corresponding integrals in Eq. (14). Let us

1 2
evaluate integral T2 first. We have:
r_ —
E-€
T2= 7P d_cg =7 lim d—og + d_(_yg =
' (0} €0 o 6cr
- /_ 2
Ky/1 R1 I 1 R1 i
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=7in
K /1—R12-E

Integral T1 is much more difficult to evaluate. Moreover, it turned
out, after many attempts, that integral T1 cannot be expressed as a finite
combination of elementary functions. So, we shall give here two solutions:
an exact one, but in the form of series, and an approximate one which is in

closed form, more suitable for our purposes.

We have:
72+K2-KR
1 d7
T,=f fn 22, 2 2
T +K +KRl T +§&
If we put:
T+ Kshx
we obtain:

R, = sina (16)

(Y

where « is real and 0 < o < <1, so we can write:

On the other hand, ' %

[3

| 2
1-(%) %coszﬁ (17) °
and T1 becomes:
T = i Chx-s%na. » Ch3%dx : i (18)
1 Chx+sina 2 2
8 Ch x-cos fB

t

10
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which is the more suitable form for evaluation.
From Bateman's Tables of cosine transform (Ref. 3, p. 36, No. 50)

we can write for the first factor under integral in Eq. (18):

Chx-sine) _ shay
{ <_—Chx+sina) 2 1 cosxydy . (19)
yChy 7y

Putting Eq. (19) into Eq. (18) and changing the order of integration (which is
obviously permissible here) we obtain:
00

shay Chx

1
y ChE Ch2x - coszﬁ

cosxydx | dy (20)

The integral

T, = sz cosxydx

Ch2x -cos B

can be evaluated exactly on the basis of the integral:

= J cosaxchx . _ _ shaf
T4 Chx - cos B dx = -7 ctg b shaw

given in Ref. 2, p. 506, No. 3.984.2. After simple manipulation we obtain:

T = —T [sh,8y+sh(7r-[3)ﬂ= _7__ Ch(B-7/2)y
3 2sinf shry 2sinf Ch%y

which, after introducing in Eq. (20), gives:

shafy-Ch(B-g)y i sh—2%t- Ch(%rﬁ -1)tdt
T =-= — y= -
1 sinf yChzgy sinf - Ch2t

11
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where we put gy = t. Using the relation:

sha-. chb= -;' [sh(a+b) + sh(a-b)]
we can write:
T
T e [:T5+ Te] (21)
where:
T, - S—héLt dt (22)
tch t
T, = ﬂ%'i dt (23)
tch t
with:
_ 2(atB)
p= -1
T .
(24)

Integrals T5 and T6 cannot be expressed by finite combination of elementary

functions, but they may serve as the basis for approximate evaluation, as will

be shown later. The exact expression for T5 and T6 can be obtained in the

form of convergent power series in the following way. Consider the integrals:

- 8T5 2 chpt _ aTG 2 § chat

T, =—== dt; T.= ——== dt
7 Oa T : 8 %o 7w 2
cht cht

which can be evaluated exactly on the basis of integral No. 3.514. 3 given in

Ref. 2, p. 345. We have, after simple manipulation,

12
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T
p.22° 1 2o
+8) T +
7 ﬂsin%p cos (@+B) T cos(a+p)
(25)
I
T = Zq - 1 +_2_ a-8
- T -
8 singq cos (@ -=B) cos (a-B)

It is known (see Ref. 2, p. 190 and Ref. 4, p. 47) that:

oo\! 2i+2
E, |x 2 4 .6 .8 10
T9=I x Bl x* , 5x  6lx 1385x

X
= = — 4+
cosx (2i+2)(2i!) 2 42! 6.4!' 8.6' 108

b=0

where En are Euler numbers which are well tabulated in standard Mathematical

Tables (for example, Ref. 5, p. 810). On the other hand we have (Ref. 4, p. 40):

b
fdx = Intg (7r/4+x)=%log'1—s-1-llz

cos X 1-sginx

So we have:

_ - 1 1
T+ TG_I EI‘,#TJ da_f[:;zos(a+3)+cos(a—[3;_] der -

atp a-p ] da =
)

cos (a+f) " cos(a-B

-
+ -
1+sin@B  14sim2=E

SR LY

='1'£n 2., 2. |.
+ -
2 L_l—sing'-z"E 1-sin%§

(2i+2) (2i!)

®
=0

_;2;2 2i Ba+6)21+2-(a-3)21+2] .
i

After some manipulation we obtain, with the aid of Eq. (21):

13
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sing+cosE
T =T, 2 2 1 2 1+2’) 2(i-n) +1 32n+1
1" 2sinf " .o B sinf (21+2)(21')

SIDE "COS2 i=0

(26)

Taking into account Eqs. (14), (15) and (26), we can write for the function
F, (§):

F, (&) = —ln a
/ 'g" +KR sin-z--cos
[0 0) N
(21+1)]E \
K 2i
i=0

where:

i 2(1—n)+1 2n+1
F(ar B)= 2 (2n+1)! (1 n)!

If we put in Eq. (27):

We obtain for the function Fl— (K cos 0):

1 sinf - Rl ,/1 -R +f+s1n0 1+ 008 0
Fl_(-Kcos6)=§ln e . > -é (Rl’ 6)
S1 1 \/1- /1 Rl-‘ /1+s1n0 )1 R1+cos9

(28)
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where:
®
(2i+1)‘E \
o1 2il
Q(Rl’ 6) = cos 6 2 2 ll/i(Rl’ 6)
i=0
and:
1 (arcsin R1)2 (i-n}1 (n/2 —6)2n+1
v, (Ry, 6)= 2 (20+1)! (i-n)!

n=0

The remaining functions we need, i.e., Fl' (-cos 90), Fé' (-cos 0) and
F2 (-cos 60), we can obtain from Eq. (28) by simply putting cos 90 instead of
cos 6 and R2 instead of Rl' For evaluation 6f ¢ we need not directly F1 (-cos 6)
2F1 (-cos 0)
but e , according to formula (39) in Ref. 1. So we have:

N1- + 14 -
2F(Kcos0) sin @ - R R [s1n9 . 1+cos9 . 2@(R1,6)
+
s1n0 R1 ﬁ- /1 R \/1+sm6\ﬁ R+cost9

The obtained formulas are rather cumbersome and are not suitable for

(29)

practical application, so we are going to find some approximate and simpler

ones. We shall start with the integral T5 and T6 in Egs. (22) and (23). For

T5 we have:

sh pt Q shpt dt
dt =
tch ¢ ch 2t l

For approximate evaluation of T_. we shall try the following method: find an

5
integral, say T1 0’ for which we can prove that T5 < T1 0° and a second
integral, say T!' 10° for which we can prove that T5 > T1 0 Suppose that we
can evaluate TlO and T'10 exactly and find the difference between them. It

may happen that this difference is small in which case the difference between

15
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1
T5 and T1 0’ or T5 and T1 0 is small also and we can take T5«—T1 0’ or

T5 = Tl' 0 with a good estimation of error.

Consider now the integral:

: shptdt
Ch Ch2t

which differs from T5 in missing the term % in the denominator of T5. It is

clear that:
T.<T

5 710
On the other hand, from Eq. (25) we know that the exact form of T_ is:

5

oT

T a—sdf =at | ap =
P ’ cht

y/
B IPLERE BN S T w1 (12K
m P (2K+1)! T2k 2P

siny, p

A Y. SRS S S ! LAY
—W[Z p+(2p) Y 3'+7( ) W 5!+31(2p) 3.7.7!+...] (30)

where Bi are Bernoulli numbers, tabulated in standard Mathematical Tables
(for example, in Ref. 5, p. 810). If we denote by T the sum of the first

few terms in the above infinite series, we are sure that.

> 1
Ts > T

because all the terms are positive.

So we have:

To< T < Ty

16
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If we can now prove that the difference A between T. . and T'. is

10 10
small for the whole range of p, then the difference A 1 between T1 0 and
T5 is still smaller and we can have:

T5 ~ Tl 0

which has the exact and relatively simple solution:

pr  w 1+tg 8”
= = ———
T10 24n tg(8 +-4) 24n -

1-tg IS!L

(see, for example, Ref. 2, p. 351, No. 254.24).
After some computation we found that taking the first four member of

series T_, the maximum value of:

5)
Tl
n= A 100 percent = (1 - ﬂ) 100 percent
Tio Tio

which represents the maximum relative error in percent, is less than 8 per-

cent, for all values of p between 0 and 1. So we have:

1+th Co1+EE

TR 2m = 24n
° +-tg &I 1- B2
€8 8

with additional error of about 2 percent, and

1+4%

214n 8
6 l_gﬂ
8

The integral T, after some manipulation becomes:

2
4(@+2)°-(B -I)

T1~ -sinB In

4<a-z>2-(6-§>2

17
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The function Fl' (-K cos ) is now:

: i 2 0.2
- +9) (=
e (econt) <L 1n sin 6 Rl. 1+ 080 .(arcstl 2) (2)2
2 in6+
1 5in 6 Rl /1 -R?+cos(9 (arcsian-Z)z- (g)l
while the function KI(-K cos 6) 2 is:
2F  (-cos0) |sin6-R ( 'R+2)2-(Q)2
_ | (-co i ) 1+ 008 8 arcsinR, 5
Kl(—Kcose) = e ol Prevye . 5 . BN
1 1—R1+cos6 (arcsinR1-2) -(5)

which is much simpler than Eq. (28) and accurate enough. The corresponding
function KI(-cos 60), Ké(—cos #) and Kg (-cos 90) can be obtained from KI(—cos 0)
by simple change of variables. With the aid of formula (39) in Ref. 1 we can

obtain the desired expression for radar cross section o.
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