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16 October 1973

MEMO TO: File

FROM: Jovan Zatkalik

SUBJECT: Non-Specular Radar Cross Section of the Discontinuity
in Surface Impedance. Part A: The Case of Reactive
Impedance.

Besides wedges, discontinuity in curvature and creeping waves, there is
another source of non-specular reflection --discontinuity in surface impedance.
While the first three have been extensively analyzed, and the diffraction coefficients
have been established -~ from which non-specular radar cross section of corres=
ponding structures, including combining effects, can be deduced —-the last one
has attracted in the past much less attention, at least from the radar cross section
point of view. The case of 5"surfaée reactance discontinuity has been analyzed in
connection with surface wav;e scattering which gives rise to the radiation phenomena
and is of great applicability in the field of surface wave antennas (Kay 1957, Trenev
1958). As it was pointed out by Knott et al, (1973), in connection with the analysis
of non-specular radar cross section reduction by introducing impedance boundary
conditions on a part of a body surface, the discontinuity in surface impedance
may cause an undesirable appearance of hon-specular scattering. So, it seems to
be of some interest to have a quantitative analysis of the scattering phenomena at
the discontinuity of surface impedance not only for the surface wave, but for the
uniform plane wave and, accordingly, to have some estimation of the associated
non-specular radar cross section at such a discontinuity.

For the quantitative analysis of non-specular scattering phenomena at the
discontinuity of surface impedance, we shall choose such a diffracting structure
in which no other non-specular scattering could appear and in which we can easily

discriminate between specular and non-specular reflections. It is evident that these
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conditions are fulfilled if we choose for our structure an infinite plane, half of

which has the surface impedance Z., and the other half surface impedance Z_,

1 2
and upon which a plane electromagnetic wave is incident. In this case we can
easily divide between specular and non-specular reflection, the former may be
obtained exactly by simple geometrical optic methods. On the other hand, there

is obviously no non~specular reflection except one we are interested in. This

structure, along with the coordinate system, is represented in Fig. 1.

Ay

Surface Impedance Z 1

Figure 1.

The z=-axis is the d1v1d1ng line between half planes with the surface impedances

Z1 and Zz,

90 to the x~axis.

and the plane wave is incident normally to the iqxis, but at an angle

If we imagine that the structure in Fig, 1 is equivalent, from the non-specular
scattering point of view, to a cylindrical diffraction structure upon which a unit

amplitude plane wave is incident, we can write for the far zone scattered field ¢s:

5 j(KR-g)
¢S= P(OO,O)/‘ERe . (1)

The radar cross section of such a structure is then:
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p
o=lim 27R ;S = lim 21rR|¢S|2 (2)
(R o)\ i

where P1 s PS are the power densities of the incident and scattered fields respec-

tively at a distance R from the structure. From Egs. (1) and (2) we get:

%x2lpig, 0 . (3)
In Egs. (1) and (3) 6 is the angle of observation point, 60 is the angle of plane wave
incidence, so Eq. (3) represents the bistatic radar cross section. For monostatic
radar cross section we shall put 6 = 60 .

As was pointed out at the beginning, the problem of scattering of a given
surface wave (supported by the structure) by the discontinuity in surface reactance
‘has been treated by Kay and Trenev by application of essentially the same technique:

representation of the scattered field by a spectrum of plane waves which leads to
the dual integral equation for the field amplitude. According to the definition of
radar cross section, we need the solution not for incident surface wave, but for
incident uniform plane wave. Although this problem could be treated in the same
way, we chose for our analysis the so-called "Jones's method' which consists of
application of the Laplace transform directly to the ‘wave equation and solving for
the transformed field by Wiener-Hopf technique. However, instead of the Laplace
transform we shall apply the Fourier transform in the complex domain, which
is extensively used by Noble (1958). After the solution for the transformed field
has been obtained, the inverse transform should give the real near field.

It is important to point out that the structure in Fig. 1 is a special case of
a wedge with different side impedances when the angle between the sides is equal
to 180°, This general case is treated by Malyuzhinets (1958) which introduced into
the solution some special functions which are impractical for our purposes. Treat=
ing this special case of a wedge separately leads to the éblﬁfioh in which only

elementary functions exist.
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The case of H-polarized field is treated in detail. The solution of the
E-polarized field can be obtained from the formexr by appropriate transformation

as will be shown later.

Mathematical Formulation of the Problem

Suppose that a uniform plane electromagnetic wave with z~directed H field
is incident from infinity to the structure in Fig. 1. The diffraction problem is

essentially a scalar one, so we can put for the incident field:

-jKx cos 0 -]Kysme

Hzi= e ©= ¢ (x, y)
;1) (-JJE —‘Q)—(;‘-y— = sin 90¢1(X,Y) *Z, Sin90 # (x, y) (4)

y J_—M—J—L:-—-cose ¢(x y)=-Z cos 0 ¢ (%, y)

where:

the convention e"Jwt is used,
and K is the propagation constant and Z0 is the intrinsic

impedance of the homogeneous medium above the plane y = O'

We are, of course, interested in ""pure' non-specularly scattered field
which represents diffracted field (i.e., the total field in the presence of a struc-
ture) minus the incident field minus the specularly reflected field from both half
planes. Several attempts have been made to achieve such a separation at the
outset, in which case the solution would have contained the desired ''pure' non-
specularly scattered field. Unfortunately, all of these attempts failed due to im-
proper domains of regularity of some functions when the Wiener~Hopf technique
was hoped to be used. We discovered that only separation which gives the proper

domains of regularity is the following: for the case of incidence as in Fig. 1 (i.e.,
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60 is between O and 7/2) we can, at the outset, subtract only the specularly
reflected field from the right half plane, so the solution for the scattered field
will contain the specularly reflected field from the left half plane. For the case
of incidence 7/2< 60< 7 the role of both planes are interchanged. However, we
can detect the presence of the non-specularly scattered field in the solution. More~
over, if we are sufficiently away from the line 7 -60, where specular reflection
takes place, we can take the obtained solution for the field as purely non-specular
and the obtained radar cross section as non~-specular, especially in the backscatter~
ing direction.

We can now formulate our diffraction problem in the following way: Upon
the structure in Fig. 1 a field ¢1 is incident which consists of the primary incident
field §' and the field ¢r reflected from the right half plane y=0, x > 0. Find the
far scattered field.

We have:
g, (x, y) = i x, )+ (x, v)

where § is given by Eq. (4), whereas ¢ is:

r -jKx cos 60+ jKy sin 60
¢ (x,y)=R-e ,
with:
o Zosme—zla smeo--n1
P T
, Zosme Zl sme0 nl

where n is normalized surface impedanée. After simple manipulation we get:

-jKx cos 6

¢l (x, y) = ;ﬁ:ﬂ— [sin 60 cos (Ky sin 60)-j n sin(Ky sineo;]e (5)
o 1

The total field is:

0" x, y) = B, (5, 3)+ Blx, y) (6)
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where @(x, y) is the desired scattered field, for which we can write:

8% (x, y) + 5°9(x, y) _

8x2 8y2

Kz, y)= 0 . (7)

With the following boundary condition in terms of the total fields:

At
nlzo(nAE) for x>0

E'-(8.E).h= . for y=0  (8)
mzzo(nAE) for x<0

where n and n2 are normalized surface impedances.

At
In our case ﬁ=§r and gt= Zo¢ (x, y), so forming the scalar product of Eq.
(8) with 2 we get:
t
n ZO¢ (x,y) for x>0

E:: t for y=0 . 9)
nzzo¢ (x,y) for x<0

Using the relation:

E%..L,ﬂ’f!&_y_) . (10)

X Wwe oy

we can get from Eqgs. (5), (6) and (10) after simple manipulations the following

boundary conditions for @(x, y):

90 (x,y) +iKn.f(x, 0)=0 forx x>0 1
oy 1 >
y=0
9P (x, y) +an Bx, 0)= j2K sin Go(nl-nz) -jKxcos 90
3 N +
oy =0 2 SanO r’fll
for x<0 . (11b)

]
So our problem can be formulated as follows: Find the formal solution of

the wave equation (7) with the mixed boundary condition (11), and from this formal

solution find the exact expression for the magnitude of the far field.
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Formal Solution of the Wave Equation

For the medium above the plane y > 0 we shall eventually adopt free space
with eo, Moo but for the present we shall assume that there is a slight conductivity
o, in space, find the solution, and then by the limiting process oo-> 0 come to the

final expression. This is a standard procedure which makes possible certain

integrals to be convergent. It is easy to prove that adopting time convention e-Jwt,

we have, with finite o

K=K, +jK

1 2

where:
K.>0
K>0

which is important to note,

Before proceeding further it is necessary to examine the asymptotic
behavior of @(x, y). We shall take two different regions in the half space y > 0,
one definedby 0<6 <7-6 , and the other 7r-90< 0 <7. In the first region §
by definition consists of only non-specularly scattered field with the asymptotic
behavior (because of the cylindrical structure):

jK.r =K_r
(1) 1 ™ ™
¢r:ooAl° H (kr) ~ A,z e e

r= /x2+ yz' and A 1 and A2 are constants.

So we have in the first region:

| ~K2‘ /x2+y2
. (12)

r¢|<A3e

where:

In the second region @ includes the reflected waves so we have: \

K2x cos 60- K2 y sin 90

[¢|<A4e : (13)
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As the x in the second region is negative, while y is positive, @ has the
proper asymptotic behavior in both regions, which makes possible the + and -
Fourier transforms of the function @(x, y) be regular in appropriate domains. By

definition we have:

@ (e, y)x‘/__ #(x, y) ejaxdx

¢ (e, y) ‘—'\,%‘f #(x, y) ™ ax (14)
-0

dley)= 0, (@ y)+d (@)

where a=0o+j7, and (ﬁ represents Fourier transform in x of @(x, y). From

Eqs. (12) and (13) it is evident that @) L is regular in the upper half planer 7> -K2 ,
and @_ is regular in the lower half plane 7<K_cos 8, while the @ is regular in

2 (i}
the strip -K2 <7< K2 cos 90 (see Fig. 2).

@J’ is regular AT
d) T= K cos 9 a=-plane

f///////////////{{éé{//// /
p / 7

7=~K v
Figure 2. " is regular

By inversion we can get @(x, y) from the known Q(ar, y):

oo+]'r

P(x, y) = J—;—; Q(a, y)ee ' (15)

0+ jT
0
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with 7 in the strip =K_<7<K_cosf .
0 2 2 o

Apply now the Fourier transform in x to the wave equation (7). It is easy

to find that the transformed equation is of the form:

d2<I)(a', y)

dy2

-YZQ (@, y)= 0

2 2
where: Y o= az-K

with the solution:

dla, ) =Aly) e+ Blye Y

which contains two branch points: «,=+K, and ar2= ~K, and we have to choose

1
the appropriate branch cuts in such a way that @(a, y) remains bounded in the

strip =K _<71<K_cos 60 as y=>+m, so we can apply Eq. (16) to get #(x, y).

2 2
If we choose the branch of v such that y=>+o0c and a—>+mo for o in the strip
-K2 <0< K2 , then to assure that 'y—>|o| as o=>-o for o in the same strip,

no branch cut can pass through the strip, so the branch cut must go from +K2 to
o in the upper half plane and from -K2 to oo in the lower half plane, as is repre~

sented in Fig. 3.

AT [ | branch cut
a=-plane
—_——— e e | — - _;IE_ _______
& 7o
. -K
branch cut Figure 3.

In an o plane so cut it is evident that the function @(a, y) has to have the form:
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P e, y) = Blae Y (16)

i.e., we are obliged to put: A =0, The constant B(e) remains to be determined
from the boundary conditions.

By applying + transform to the boundary condition (11a) and ~ transform
to the boundary condition (11b) we get:

! i = 17
Q_*_(ar, 0) +]Kle+(ar, 0)=0 (17a)
2Ksin6 (n,=n_.)
1 72 1
! + j = 9 = f(a)
B (e, 0+1Kn,§_(o, 0= 7= ing ) o= Koasd, (a
(17b)
where:
d9, (e, y)
B! (e, 02 ———
y y=0
; dd (v
t (a,, 0) R —
- dy y=0
and ﬂ is regular in the upper half plane; 7> -K2, while (I)L and f(a) are
regular in the lower half plane 7< K2 cos 00 .
From Eq. (16) we have:
q5+(a, 0)+ §_(e, 0= §le, 0)=Bla) , (18a)
$e, 0+ ¢ (@, 0==7. Bl . . (18b)

The four equations (17) and (18) are sufficient to form a standard Wiener-Hopf

equation of the type:

C(a)w_l_ (a)+ D(a)¢_(a)+ E(@)=0

where:

10
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Y N () is regular in the upper half plane,
v () is regular in the lower half plane,
C, D, E are regular in the common strip of regularity of ¢ A and ¢_.

Multiplying Eq. (18a) by jKn, and adding (18b), we get, with the help of
(17a):

B(a) (jKn,=7) = y_a) (19)

where:
v_(e)= @' (2, 0) + jKn, §=(e, 0) . (20)

By multiplying Eq. (18a) by jKn, and adding (18b), we, get with the help of
(17b):
B () (jKﬂz"’Y) = ¢+(o:) + f(a) (21)

where:

v, (@)= ink, B, (@ 0+ §} (00 . (22)

Eliminating B (o) from Eqs. (19) and (21) we get the functional equation:

jKn

jKn 1
)w_(a)+(1--7)f(a)=0 (23)

Kn1

(1’jT)W+(a’)'(1“ 2

Y
which is of the proper Wiener-Hopf type and holds in the strip -K2 <7< K2 cos 90 .
According to the standard Wiener-Hopf procedure, we have to factorize the
following quantities:

Kn1
v K1+(a)- Kl_(a)

1-j

Kn (24)

1-j—2x K, () K, ()

+ -
where Ki and Ki (i=1, 2) are regular and non-zero in upper and lower half

planes respectively. With Egs. (23) and (24) we obtain:

11
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Qm K- (o) K (o)
v, (@)=—"—y_(a)+ ——- fla) =0 . (25)
K; (@) K1 () K2 ()

The function f(e) according to (17b) is regular in the lower half plane

7<K_ cos 90 but has only one simple pole at o =Kcos 00 in the upper half plane

2
7>~K,, soif we add and subtract in Eq. (25) the function:
KI (Kcos 60 )
f(a). "
K2 (Kcos 00)
we can write Eq. (25) as:
K () K (@ K'(Kcosh)
1 1 1 0
Y, (a)+ f(a) - =
K () K@ K (Kcos6)
2 k 2 2 o
- +
K () K, (Kcos 60) ,
===y (a)-fla)- " (26)
K, () K (Kcoseo)
The left hand side of Eq. (26) is regular in the upper half plane 7> =K_, and the

2
right hand side is regular in the lower half plane 7< K2 cos 00, with the common

strip of regularity -K2 <7< KZ cos 60 . By the principle of analytical continuation
both sides must be equal to a function y(a) regular in the whole a-plane. The
nature of y(a) can be determined from the asymptotic behavior, say, the left
hand side of Eq. (26) as a—>m along a path in the upper half plane. As the
functions K*l'(a) and K; (o) are quite similar (see Eq. (24)), their quotient tends
to a constant as ¢ . From Eq. (22) we can conclude that {, (@) has the same

* 90(x, y)

behavior as the + Fourier transform of the diffraction field @ (x,0), and By
\ y=0
i.e., as HZ and EX fields. It is shown for example in Noble (1958) that if some

function f(x) has the behavior:

fx)~ A-x1 (x—0)

12
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where -1 <n <0, then for the + Fourier transform F + () we can write (Abelian
theorem):

1
- Sriln+1) _
F+(ar)~A(27r) 1/2 |“'(n+l) e2 P (a=> o).

It can be proved that near the origin y=0, x=» + 0 the fields EX and HZ have the

behavior 1

E,H’VCx2 x=>+0 .,
X' 'z

The justification for this assumption lies in the fact that we can consider the sources
of the diffracted field as a collection of equivalent charges accumulated along line z,

and that for small x the field behaves as a static field. Now we have

23
Y (@< C,a 2
20

From Eq. (17b) it is clear that as o=>» co:

-1

f(a) Cza
so we have:
yl@=»0, as a-»wo

i.e.,

y(a)=0

by Lionville's theorem. From Eq. (26) we now have:

K, (a) K’]':(K cos 00)

K; (@) K’g (Kcos 90)

Y_(a) = £(a)

and from Eq. (19):

- +
Ha) Kl(ar) . Kl(Kcos 60)

B(a) =~ (27)

v=jKn, - +
1
K2 () K2 (Kcos 60)

while from Eq. (16) we get:

13
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(@, y)=Bla)-e 17 . (28)
$

Applying the inverse Fourier transform (15) to Eq. (28) we obtain:

+ o jT -
e 1) 1 K1 (K cos 90) 0 £(a) Kl(ar) oy i
X,y ""‘J-z—?r N Y-iKn i ce de (29)
K (Kcos 8 ) ) 1 K ()
2 0 +]'ro 2

with the 7 in the strip =K_<7<K_cosf .
(0] 2 2 o

Equation (29) represents the formal solution of the wave equation (5) with the

boundary conditions (11).

Calculation of the Far Field Magnitude

Let us take in Eq. (29) T = 0 and perform integration along the o-axis. Putting:

X=1rcosf

y=rsinf
Eq. (29) is transformed into:

K (Kcos 6 ) KI(G)

P(x, y)=- f
E_K (KcosG) /0 - -JKnl K;(o)

Evaluating integral (30) asymptotically by the method of steepest descent, the saddle

2 2
_ _ B+
o r( /o =K sinf6+jocos ) o
(30)
point being:

o ==K cos6
s

we come, after simple manipulation, to the solution:

o T . + -
Sis, 3)m 7 e]K:r:' iz . s1n60 ‘ Kl(KcosGo) . Kl(Kcose) . sin 8
in@ + - + inf-n,) °

\V 7Kr s1n60 ul KZ(KcosGo) K2(-Kcos6) (cos 6 coseo)(sme nl)

(31)
The solution (31) is still formal, for the function K';(ar) and Ki‘(ar) are unknown,

although we know that they exist. It we put:

14
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JKn1

Fl(a)= anl(a)= In (1~ )

Fz(ar) = !nK2(a) z In (l -——==

V arz K2
jKn,
Vozz- K2

we have by definition:

J'Kni
ictoo In(l- )
1 §2-K2
F' () = tnKt(a) * — ¢
i i 27 {-a
ic=0
id+
- 1
F, (o) ==— Ln(l-
i 27 ‘72 2 § a
id=oo
where: -K2<C < T<d<K2.
Now we have:
F, (o)
Ki'l'(a)= et
F_(a)
K (@)= e
i
E@+F (@ Lo
K1+ () Ki"(a) =e = e = K(a)

From Egs. (32) and (33) one can easily conclude that:
+ = -y
F (o) = E (=a)

so we need only, say, F (a), or K (a).

Introducing Eq. (34) into Eq. (31) we get, with @ *Kcosd or Kcos 90:

i J(Kr-7r/4) sinf (nz-nl) sin 6 F(O,(—)O)
B(x, Y)ﬂ/ Kr e

: + in 9+
s1nt90+n1 (cos 6 coseo)(sme nl)

15

!

(32)

(33)

(34)

(35)

(36)

(37)
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where:

F (0, 60) =F (-K cos 60)+F1 (=K cos 6)-F2 (K cos 90) —‘F2 (-Kcos8) . (38)

Comparing equations (37) and (1), we can conclude that we have obtained

the desired form of the field in the far zone.

According to formula (3), for the calculation of radar cross section we
need not a complete expression for the far field but only for the function P(GO, 6) 2
which can be easily obtained from Eq. (37), taking the square of magnitude. We
come finally to the expression:

2 sin26 2+ RealF (0, 60)
e (39)

2
sin” 6 .’%’H

|P(0'¢)2= 2 2 2
sin 60+ nll (cos 8+ cos 60) ‘ sin 6+ nll

where Real F (0, 90) means real part of F (6, 00), and F (6, 60) is given by the

expression (38).

So, the problem of finding the exact expression for {P(6, @) \2 is reduced to

the problem of finding the real part of the function Fi" (o). If we take now, by the
limiting process, the imaginary part of K to be zero, as it is in free space, we
have to solve the following problem: find the real part of the function Fi" (@) for
real o= §=Kcos 00, or §=Kcosf. Taking K as a real number means that
the branch points +K and -K lie on the real axis, which must be carefully taken
into account along with the proper rule of choosing branch cuts (see Fig. 3). For
example, with the cuts from (~K to -0) and (+K, +o) which is the limiting case
of proper branch cuts from Fig. 3, the path of integration along the real axis
must go just above the real axis in the interval (-, ~K), and just under the

real axis in the interval (+K, +). On the other hand, taking o as real peans
that we introduce a pole in the integrand (32) and (33), if the path of integration

goes along the real axis in the interval 0 - K. This example is shown in Fig. 4.

16
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AT
a=plane
integration path
~——Dbranch cut
+K/b}'anch point
o
____.’\_____J-\ f.\_\[_.__.\___*_
‘_‘K\“ >
branch point
¢ p Pole o = €
Figure 4.

By a different choice of branch cut and by suitable deformation of the basic
integration path of Fig. 4 we can transform the contour integrals (32) and (33)
into various kinds of definite integrals (with, possibly, principal values).

We shall examine three cases of surface impedances nl , n2 separately:

(a) The case where n, M, are purely imaginary,
(b) The case where Ny, M, are purely real,

(c) The case where n, N, are complex.

The reason for such separation is that each solution has its own peculiarity.
For example, in case (a) we can get the exact solution, while in the other cases
it is impossible.

In this case the plane y =0 is a reactive plane with n1= jX, for x >0, and

1

n2= sz for x <0 where X1 and X27 are real, and we shall take them to be posi~

tive (inductive reactance). For this case we shall deform the path of integration
in the upper plane. The path is shown in Fig. 5 and we have no pole on the contour.
With = iX

L e have, for Kl(oz):

17
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AT
a-plane
branch cut
+K
va
j — = —— — =0
pole branch point
Figure 5.
KX,
Kl(oz) =1+ = (40)

a «-K

Along the integration path, and with the cut as shown, the function /012- K2 has the

ozz- K2 z - Lz- K2 on the upper side
LZ_ Kz = + /cz- K2 on the lower side
with o > K.

So according to Eq. (33):

value:

i

- 1
BO=m] 0-Tm3) 0
o -K

NN L S
erif " 2 2 o-E

3
1 G_KZ-KXI do
“omf ® [z 2 -F
m _K +IQ(1 g

18

So we have:



2
\/" "K-KX 4 1
In > Py ?71—'11m\J
P,
K\/l+nl2

Real (FJ(E) =551

where:

2
+
Kln1

The integrand in J 9
positive and we have:

=0 .
Im'Y2

In J,

log(-a)=loga+j(2n+1)7
and we have, with n=0 (the principal value of log):

K 1+”i2

Isz= n
K

Now Eq. (41) becomes:

K /1+x12-§

Real F (§) = "ln

Now we have:

19

12711m2
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1

I.J (41)

is always real because the factor under the log is always

the factor under the log is always negative. We know that:

(n=0, 1,...)
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2
noal (6. 0) = l cos6+,/1+X cos O+ /1+X 1+cos6 1+cos 6
ea s — n
° 1+cos€o 1+cosd cost9+/1+X22 cose+/1+X

cose + /1+X cos 6+ /1-+X
. (42)
cos@ + /1+X cos 6+ /1+X

| and from Eq. (39) and Eq. (42):
2 cos O + /1+X12 2 cos 9+\/1 +Xi2

=
,l

|
(X Xz) sin 9 A sin20
|p(ee) 2 .2 2 2 2 2. o2
in 0+ X cosO + [1+X " (cosB+cosO ) (sin"0+X.) cosh+/1+X
o 1 [0} 2 (0) 1 2
2 .2 2
- +X 4+
(Xl X2) sin 60 ,/1 Xl cos 90 sin26
T R ) 2 5 5
sin“6 +X 2 1+X_ +cosf (cosB+cosf) (J1+X“=cosB)(J1+X°+cos0)
o 1 2 o o 1 2
Radar cross section is now:
2,2 2
- +X 4+
v 2 5 9 (Xl X2) sin 90 X1 cosf)0 sin26
Y LACLN) i 2 [ .2 ' o [ .2 5
4 T sin“g +X 1+X_+cos 9 (cosO+cosd ) (fl1+X -cosO)(|1+X " +cosh)
o 1 2 0) 0 1 2
(43)

One case which is of special importance is when the right half plane is perfectly

With X. =0 and X2= X, we get:

conducting. 1

1+cos@ sin 5

2 0 . .

o 4
—:—.X o ——————
AT 2 2 2

1+X +cosGo (cos9+cos00) (/1+X"“+cos )

For monostatic cross section we can get from Egs. (43) and (44) the following

(44)

expressions:
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2 p) .2 2
- + .
(Xl X2) 1+X1 cos (-)o sin 90 tg 90

1
%’5; 2 [ 2 2 (45)
sin“9 +X2 V1+X%-cos0 (,/1+X2+cos0)

o 1 1 o 2 6]
2
tg 0

g, 1 2 o_, 1 2,2 1 . 1

)t=21rX —_—=x =X ———————— , (46)

20 2 2 20 2
o 1+X%+ - +
tg” 0k (J1+X +cos 90) 1-tg % (J1+X +cos 60)

From the above equations one can easily notice the presence of the singularities
in the solutions for 6 = 7~ 60, and it has to be attributed to the specularly reflected
wave from the right half plane, which we could not avoid. This was discussed at
the beginning. However, the expressions (43)~(46) give us the quantitative idea
of the non-specular reflection and the corresponding cross section if we are

sufficiently far away from z- 90 direction.

(The solutions for cases b and ¢ have been prepared for this memo but the
author discovered some errors in them, which will take some time to correct.

A future memo will discuss these solutions. )
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