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SECTION I
INTRODUCTION

One of the more difficult problems in electromagnetic theory is the penetration
of an electromagnetic field through an aperture into a finite cavity beyond. These
difficulties are present even in the idealized case of a spherical shell with a circular
aperture illuminated by a plane wave at symmetrical incidence, but in a previous
report (ref. 1) a method was used based on the expansion of the interior and exterior
fields in spherical wave functions.

The method is an extension of one developed by Chang and Senior (ref. 2).

The conditions that the tangential components of the electric field are continuous
across the entire surface r = a are imposed explicitly, and relate the coefficients

of the interior and exterior expansions. The remaining conditions that Etan =0 on
the shell and Htan is continuous in the aperture produce four infinite series relations
which are solved for (say) the exterior mode coefficients by applying weighting factors
to each relation and using the method of least square error. To improve the numer-
ical gunvergeice of vhe scheime, the known ficld behavior close $o the edoe of the
aperture is analytically extracted, and as shown in reference 1; the method is then
capable of providing data for the fields at points within the cavity.

Even with this modification, however, the method is still a poor one from a
numerical standpoint. The program is expensive to run and the data are sensitive to
the number of terms retained in the expansions. This sensitivity was particularly
apparent when we came to use the complex frequencies necessary for the calculation
of the eigenvalues. Moreover, the scheme itself is not well suited to the singularity
expansion method because of the spherical mode expansions employed and the
intrinsic involvement of the incident field throughout. Since one of the main purposes
of our renewed study was the determination of the eigenvalues and their dependence on
aperture size, it was felt desirable (if not necessary) to explore other approaches.

One such approach is to construct integral equations for the tangential

components of the electric field in the aperture. If

E, = f(6) cosf E¢ = g(6) sinf



for r=a, 0<6< 90 where r, 0, ¢ are spherical polar coordinates with origin at
the center of the shell, two coupled integral equations can be derived (ref. 1) having

the general form

0
0
f {f(a)Kl(a, 6) +g(a)K2(a, 9)} de=T() , 0<6<6
0 - =0

where T(6) is known and, for example,
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For large n, the nth term in the first part of the series is O(no), and the series for
Kz(a, 6) is still more divergent. Even the analytical subtraction of the edge behavior
does not produce convergence, so that the interchange of integration and summation
which was assumed in the derivation of the integral equations is mathematically unjusti-
fiable. Perhaps more to the point, the method is numerically worthless. This was one
of the reasons why Chang and Senior adopted the circuitous approach that they did, and
hints at the convergence difficulties which even their method has.

Although it is by no means impossible that the divergent portions of the kernels
Ki could be analytically summed, the only real advantage of this type of integral equation
is that the integration is limited to the aperture rather than to the larger shell. Ona
physical basis it is convenient to think of the interior fields as generated by the field in,
or 'passing through', the aperture, but mathematically it is more natural to attribute
them to the currents which are induced in the shell. From the resulting expressions
for the scattered field, integral equations are obtained by allowing the observation point

to lie on the shell, and the relative simplicity of the kernels more than compensates



for the larger region of integration.‘ In addition, the basic format is now conducive to
the calculation of the interior and exterior resonances.

The effectiveness of the direct integral equation approach to the cavity problem
has been verified (ref. 3) in the analogous two-dimensional problem of a cylindrical
shell with a slit aperture, and with the confidence that this has brought, we here apply
it to the three-dimensional problem of an infinitesimally thin, perfectly conducting
spherical shell with a circular aperture. Because of the necessity for using the E
field integral equati(;n, the formulation is not trivial, and two alternative versions
of the coupled integral equations are explored. The one found most convenient is then

particularized to the case of a plane wave at symmetrical incidence.



SECTION II
GENERAL FORMULATION

Consider an infinitesimally thin, perfectly conducting shell constituting the
open surface S. This is illuminated by an electromagnetic field E (r), gl(g) , and
if #(r), 7%(r) are the electric and magnetic Hertz vectors respectively of the

scattered field,

() =0 (1)

since the surface is perfectly conducting, and

iz |
7 () =k—°ffi(£')g(£|£'> ds' )
S

. -iwt t .
where a time factor e bas been assumed and suppressed. In eq, (2), ZO is the

intrinsic impedance of free space,

ikR
1 - e—-——-
g (£]£ )= TR (3)

is the free space Green function with R = l r-r' l , and

J=n @ -H) (4)

is the total current borne by the shell, i.e. the strength of the equivalent electric
current sheet. Integration is with respect to the primed coordinates and over one

side of the shell ( see Figure 1).



=>

Figure 1: The geometry

In terms of 7, the scattered field is E_S (r) = V\ V7, Es(g) = - ik Y Yz
and hence the total field is

E (r) = E (x) + k !!:T (r') g (z|r") ds' ’ (5)

H (v) =}_Ii @+ Y ffl " g (glg') dst . ' (6)
S

If r is noton S, we can interchange the order of differentiation and integration. In

particular,
H(r) = Ei (x) - ffg ('), Vg ds' (7
S

since the differentiation is with respect to the unprimed coordinates of the observation
point.
To obtain an integral equation for J, it is natural to consider the tangential

components of eq. (7) and then take the limit as r tends to a point r on S. Since (ref. 4)

im A A

S S



with the upper or lower sign accordihg as r o is on the positive or negative side of S,

SA " ) A5 €)* % I)- {fﬁA{g (", Vg} ds (8)

where the slash across the integral sign denotes the Cauchy principal value. Sub-
traction of the two equations contained in (8) produces only the identity J(r 0) =J (¢ O) ,
and addition is also fruitless without some prior knowledze of a connection between
the tangential components of H on the two sides of the current sheet. It is therefore
necessary to turn to an electric field integral equation.

For r noton S, the differentiation in eq. (5) can be applied to the integrand to

give
. iz
E'()-E () = - TQ ng" v,\{g (") g} ast

.'Z LY A Y

:kOj

{(1 ). V')Vg - kz J (") g} ds'. . (9)

We now form the tangential component and let r — r o Since (ref. 4)

g J (" g ds'

is a continuous function of r even for r on S, and i A}_E_(g 0) =0 from the boundary
condition,

. A i 2 (A lim A ff

kY nE (r)=k !n,\i @ gds'-  MmJJE ). v)Vgds. (10)
- 0 S

This is an integral equation for J, but a rather unpleasant one, not least because of

the higher order non-integrable singularity of the second integral in the limit r=r.



It could therefore be helpful if we cotld reduce the order of the singularity even at the
expense of introducing surface derivatives of J , a process equivalent to an integration
by parts.

To see whether this is possible, we return to the situation in which r is not

on S. Since

_I=ff(J(;'_')-V')ngS' = ?}I(ﬁ}\[g]). Vg ds'
S _ S

+ -
where [E] =H (" -H ("), we have
_ A
1=V ]fn‘- ([a], v ) as
- —JA
S
-l {ei ] - v o) o
S
1 . - A+ -
Dut {«‘3 . VA' gf’ = - VS’ - K7 where ;K_.+’ = G/\H ’ is the surface current and

and ,

;=-ff(vst.g)ngs'-vffﬁ'.v',\(g [1_{] as' . (11)
S S

For a closed surface S, the second term on the right hand side vanishes, as can be

seen by application of the divergence theorem. For an open surface, however, appli-

cation of Stokes' theorem gives

v ‘gﬁ' V' (g [H] ) dst

A
¢Vg [H] Ltrde

C

Poe ity 1) (12
C



where the integration is around the (closed) edge C in the positive direction defined

A
by the unit vector t'.

We are now left with

iz )
E()-E@=-—> Sf{k I g+ (.9 Vg} as'
. iZ
- ?Vg (Ant) . J (@) aet (13)

for rnoton S, from which an integral equation can be obtained by allowing r —» r o
and applying the boundary condition. The result is identical to the integral equation

given by Poggio and Miller (ref. 5) if and only if the line integral vanishes. This is

true for a perfectly conducting surface by virtue of the edge condition, in which case

SN \
ikYO il " g IAI oAl /a.\" ) g (‘TS i) v tenydst . (14)

EI}

For an imperfectly conducting or resistive surface, however, the line integral in (13)

C‘l

is in general non-zero *, and since its singularity for r on S is a non-integrable one,
the resulting integral equation is much more difficult to handle.

Either of the equations (10) and (14) is a possible starting point for an analysis
of the spherical shell problem. Equation (14) is superficially simpler and has a less
singular kernel, but the price that is paid is the occurrence of surface derivatives of
the currents in addition to the currents themselves. In contrast, (10) involves only

the currents, but because of the highly singular kernel, the limiting operation is more

It is of interest to note that a derivation from the Stratton-Chu equations does not
produce a line integral under any circumstances by virtue of the requirement of a
closed surface of integration. The validity of the resulting integral equation for a
perfectly conducting shell should therefore be regarded as fortuitous.



difficult to perform. Nevertheless, as shown by Liepa et al.(ref. 6), the second
derivative singularity which (10) contains can be handled numerically; the equation
can also be trivially extended to, say, a resistive shell, but even in the present
circumstances it is not self-evident that (14) is a more convenient equation to use.
We shall therefore pursue each in turn, starting with (10), and specialize each to

the case of an open, perfectly conducting spherical shell of radius a.



_ SECTION II
INTEGRAL EQUATION (10)

On introducing spherical polar coordinates with origin at the center of the shell,
the coordinates of the observation point become (r, 6, @) whilst those of the integration

point are (a, 6', §'), implying

R = r2+a2-2racos'y (15)

where cos v = cos 0 cos 0' +sin 0 sin 6' cos (B' - f). (16)
A A ‘

Let (" =J,0", pror+a, @, pn g . (17)

On expressing the unit vectors in terms of the corresponding vectors at the observation

point, we have
J () = [Jl{sin 6 cos 6' cos (#*-@) - cos 0 sin 9'} - J, sin 6 sin (¢'-¢)] 7
A
+ [J1 { cos 6 cos 6! cos (f'-@) + sinf sinb" } - J, cos 6 sin (¢x_¢)] )

! o3 1 1 a
+ [J1 cos 6" sin (§'-p) +J, cos @ -¢)] P,

. A_A
and since n=r,

ﬁAl(')=-[J

r , cos 6" sin @'-p) + 4, cos(¢'-¢)] 8

A
+ [J1 {cos 6 cos 6! cos (§'-f) + sin 6 sin 9'} - J, cosé sin (¢'-¢)] g

(18)
Also, from (17),

d-Vg-=

O |-
=

10



But %Ie-{, = EI% {cos 6 sin 6' - sin 6 cos 6* cos (¢'-¢)> ) (19)
OR _Ira . o i ot in (6=
o R S 6 sin 6' sin (@*-f) . (20)
Hence
J-V')g =[J.1 {cose sin 6" - sin 6 cos ' cos (¢'-¢)}+ J, sinf sin (¢'~¢)]% gg_
and since
A 1( A 1 3 A3
Z e |- — ) —
BV 2 " %56 of P36
with
.@-B’ = .I_‘.g' 3 1 3 1 |
% - R {sm 6 cos 6' - cos 6 sin 8" cos (§'-f)
oR ra | . .
o = -3 sin 6 sin 6" sin @-9

it follows that

QAV [(Q.V')g] = [chos 6" sin (§'-P) +J, cos (¢'-¢)} %

el

v B Lo
=

+ [Jl {cos 6 sinf' - sin O cos ' cos (¢'-¢} +J,sin0 sin (¢'-¢)] sin 6" sin(g'-4)

2
ra 9_ (lég) 5
R OR lROR
+ | |-J, { sinf sin6'+cos 6 cos 6" cos (F'-B)) + I, cos 8 sin (f'- @) 1%
1 2 R oR

+ (9, {cos 0 sin 6* - sinf cos 6' cos (¢'-¢)} +J, sinf sin (¢'-¢)]{sin 6 cos 6"

- cos 0 sin 6* cos (¢'—¢)} %3% (Il{ ?R) 6 . (21)

When the results of eqs. (20) and (21) are substituted into (10), the electric field

integral equation becomes

11



A

where z, is a point on S and

2 1 oo
= i i ! 1 | - a2
f, {sm 6 sin 6' + cos 6 cos 6" cos (f ¢)}(k gt BR)

-{cose sinf* - sinf cos6' cos (f* -¢)}{s1r\0 cosf' - cosh sinb' cos (f'- ¢)} 1}:1 E?R

(23)
1 g

S - 14
f sin (§'-§) cose(k $+: om

12

+ sin B{Sine cosf' - cosb sin 0! cos (¢'-—¢)} % 2 (—1- g—g) (24)

dR |R oR
2 1 0g
= si L. ! = §
f,, = sin (#'-9) |cos 6 K'g += 52
'( . ¢ ‘ we A 1 A.. -}
- in 6! - si —f)y Z& < ; °F
+s1n9icos6sm6 sin 6 cos 6" cos (f ;?5) R P RBRJ (25)
2 1 og 1 oz
= | O —_— 2 - t | — —_——
foq = cos (@ ¢)(k gty 3p| - sinOsind sin’ @r-p) == = aR = BR) (26)

If a neighborhood A of the point r o (a, 6, ¢) is excluded from the integration
in (22), R will remain finite over the rest of the surface even in the limit r = a, and
the limiting operation can be applied to the integrand directly. This is equivalent to

putting r =a, in which case

R=a‘/2(1-cos7)=2a|sin%| . 27)

At the point 6' =6, §* =§, however, R 1is infinite when r = a, and the resulting
singularity is a non-integrable one of the form encountered by Liepa et al (ref. 6). We
are then forced to estimate the contribution of the self cell analytically, and the result

will actually become infinite as the dimensions of the cell shrink to zero.

12

ikY n E (r )- 2 hm ff{(fllJ1+f12J2)8 (le 1 f22J2)9}s1n6' det dg' (22)

19g
R oR




Within this cell, 6* - 6 and §' - § are small, and hence

o[ 2, s 108, 0 g2 rad (10
1 {kg+R8R+(6 9 R %8 R0

tg % - @) {COS 0 (g +2 gg) - (6*-6) sin 6 %'a%i ili %}

. ' (28)
£y, ('¢'-¢){cos 0 (kg % g%) +(0'-6) sin 6 .%a_ ;;R (1.1{_ %";’.{)}
et X epop oo 2 (1)

Also
R ﬁ/sz + ra{(@'-@) 2 4 sin” 6 (¢‘-¢)2> | 29)

where, for brevity, we have written r - a =€ . It will be assumed that € is a small
non-zero quaniity, but it is important that no approximation with respect to r. e.g.

replacing ra by az, be made at this stage. Furthermore,

k2g+l§g=-—1-— 1-ikR-(kR)2 eikR
RO 3
47R
= - 13{1+O(T<_R2)} (30)
47R
and
ra (1 0g|_ 3ra [ . 1. 2| ikn
R R RBR) 5{1 IR 30‘3)}‘3
47R
=—§5§—{1+0(_k§2)} . (31)
47R

13



To illustrate the evaluation of the self-cell contribution, consider

ff-——-(ef-e) do* dft = ———— ff XdXdy %

rasm9 (€+X+)

where we have written x = /ra (0'-6) , y = /ra sin 6 (§*-f) . If we now approximate

A by a circular disk of radius £ , the substitution x = pcos @, y = p sin @ reduces the

1 2r pf 3 2ozd do T ! 3d
I=—§—2——"*f f £ o8 p—z =55 f .P__B__ST_ :
. J ; 2
r a sinf b 0 (€2+p2) ra sin6 b (€2 +p2)

which can be evaluated to give

integral to

f——(e*-e) o dft = ——— {3 3 + S }
302 22 sing U€! (£2+€)1/2 (ﬁﬂ)o/Z ’

2
where 7{ isthe area of the cell. Similarly,

2
—-—<¢-¢) do' dft = ——2——r {3 S __ 4 ¢
f 3r av.2 sm3 0 N (£2+€2)1/2 (2 4+€2) 3/2

whereas

f —15(9'-9) @*-f) dor dgt = 0
g

and

1 2 1 1
— deo! d¢' = — _.____7__
i 1
f R3 ra sin 6 ||e | (12 +€2) 2
whereas

”—% @' - ¢ dor af* = 0

A R

14



Using these results in conjunttion with egs. (28), (30) and (31), the self cell
contribution to the integral in (22) is found to be

f(f I TNB -, 3 +, J)Ssine'de'dw
T\ 1171 1272 21°1 2

: 2
1 A 2 2 3 €
=-—(J¢J9){ —17 ti - + }
4r el (02 +€2)1/ el (£2+€2)1/2 @2 4+ e )3/2
2 ¢
1 2 A A
=- J,¢-3,6) . (32)
2 1 2
4ra (£2+€2)3/

For £ # 0 this tends to

1

4a2 yi

A A
(J1¢-J2 6)

ase >0 ,

The integral equation (22) can now be written as
R N A
1Y o E ©, P = Y {Jl ®, 9 a - J, (6, )] 9}

|
a AL
+k o A{(fll J1+f12 9 Q 21J1+f JZ) 6} sin 6! d6! d¢‘ (33)

leading to the following two scalar but coupled integral equations for the current com-

ponents J1 and J2 :

. 22
iYoEZ(9,¢)= 4sz 3,6, ¢)+ fj’{fllJl(e'gé')-!flsz(G' ¢)} sin 6'd6' df' (34)

iYOEk . = 4k!Z 9500, ¢)+— .U{le 1(6% ')+f22J2(e',¢')} sin 6'de'dg' (35)

15



Numerical techniques for the solution of integral equations with this type of self-cell
contribution have been discussed by Knott and Senior (ref. 7) and Liepa et al (ref. 6),
and apart from the fact that the integrals are now surface integrals, the equations
have the same character as the ones which they have treated.

Nevertheless, the kernels k etc are rather formidable (see eqs. (23)

through (26)), and because of the derilv}cltives which they contain, it is natural to think
of eliminating at least some of them by integration by parts. This can indeed be done
using egs. (19) and (20), but in view of the disk-like approximation to the self cell
which (34) and (35) imply, it is easier to carry out the integration prior to taking the
limit r —1r o Not surprisingly, the end result involves surface derivatives of the

currents and is precisely that which could have been obtained by starting with the

integral equation (14).

16



'SECTION IV
INTEGRAL EQUATION (14)

If we again introduce the spherical polar coordinates (r, 6, #) and use eq. (18),

the integral equation becomes
iy & gl = im S — )8
ikY n E (}'_O) tor ® {( [J cos 6* sin (f* - §) + J, cos @ -9|6
M2
+ [J1 cos Ocos 6 cos (f-f) +sin6 sin 6'} - J, cos Bsin (¢'-—¢)] ¢)k

—L 2y sing?)+ = L 225, 18512 et aorapt . (36
asin6' | 39" ¢r “rsing op ' r 00

8’

Since the integral is continuous as r - r o the limit can be applied to the integrand
. . ers o oo
directly, as was done in writing (14). Moreover, —fj = - (—3‘5, , which allows us to
O
eiiminarte this derivative using integration by p4ris. The resuit then is the pair oi

coupled integral equations

pn
ikY E (0,0) ="} {{1 cosfcosf' cos (f'-@) +sin 6 sm@} Jycos fsin (¢'—¢)]k azsme'g
s

+[—a% (9, sin 67) +a¢' } }de' agt , (37)

i f
kY E%(E), $) =j!{[J1 cos 6' sin (f'-§) +J, cos (¢'-¢)] k2a2 sin '
2 ) J2
[39 rop (J sm6 "+ a¢!2 ]}g derdgr . (38)

These are identical to the ones obtained on integrating (34) and (35) by parts and there
seems little doubt that they are preferable to (34) and (35) for numerical solution. We

shall therefore concentrate on them.

17



. SECTION V
PLANE WAVE AT SYMMETRICAL INCIDENCE

For a plane wave incident at any angle, the incidence electric and magnetic
fields can be expanded in Fourier series in the azimuthal angle @ using a cylindrical

mode expansion. Each such mode then excites currents J., and J2 having the corres-

1
ponding ¢ dependence, and this allows us not only to eliminate the ¢' derivatives

from eqs. (37) and (38) but also to convert the surface integrals to one-dimensional
(line) integrals.
A special case is that in which the incident field is a plane wave at normal

incidence on the circular aperture, and this is the one that we pursue. Let

E-l =f e-1kz ) E1 - /}} Yo e-1kz ' (39)

Then on the shell

E; (6, P) = cos 6 cos o 1ke cos 6

Eflb 6, §) =-sin g e"ika cos 6

and, from symmetry,

30,9 =30 cosp,  I0 8=7,0sinf . ' (40)

Writing ¢! =@' - §, we have

cos B! = cos y' cos § - sin ¢' sin @

sin B! = sin y' cos § + cos y* sin §

18



and since g is a periodic function of ¢! with period 27, terms which are odd functions

of y' integrate to zero. When these terms are eliminated, eqs. (37) and (38) become

ikYocose e-1kacos6 =ff{(ka)2 sin 6' [Jl(e') (cosB cosb' cosy' +sinb sind') cos !
S

- JZ(G‘)cose sinzw'] g+ {89' ] s1n8‘) +J (9')] cos :,//‘—ag aetdy' ,

ikYoeqkacosQ = ff{(ka)zsin 6! [JI(B') cos 6' sin2 Y- J2(9') cos2 w‘}g
S

[89: (J sin 6') +J (9‘)] cos ¥ }de' dyt
which can be written as

) T
ikYo cos 6 e-lka cos 6 f {(ka)z sin 6! [JI(G') cos 0 cos 6! K, (6, 6"

0
0

. N
s s Ot n\ . - !
+sinfsin6' K, (o, 9)) I (6") cos e{Ko (6, 6" K, (o, 9)}J

[89' (@ sm@') +J (6')] 9 K (9 9')} dé' (41)
. T
ikYoe-lka cos @ f {(ka)2 sin 6'[J1(61) cos GY{KO(G,G') - K2 (6, 61)>
6
0
- J2(0') K2(9, 9')] [:6' (Jlsme’) +J (6’)} K1 (6, 9‘)} de! (42)

where 60 is the half angle of the aperture and

27
K_(6,6" = f g cos™ Yt dyt m=0, lor2, (43)

0

19



The eqs. (41) and (42) are cotpled integral equations similar to those obtained
by Sancer and Varvatsis (ref. 8) for a solid body of revolution illuminated by a plane
wave at axial incidence, and though the present problem is more complicated because
of the infinitesimally thin shell and the consequent necessity of using the E field
integral equation, it is somewhat disappointing that the spherical geometry has not
produced a greater simplification.

Part of the difficulty lies with the functions Km (6, 0", and it would certainly
be nice if these integrals could be evaluated analytically and conveniently. Unfortunately,
the only obvious method of evaluation other than numerical introduces expansions in
spherical modes and produces the divergent series which we have been at pains to avoid.

Since (ref. 9)

in (ka) hfll)(kr) s r>a

j () 'Y (ka)

0 0)
L
1y = = +
g (EIE) 4 (2n+1) Pn (cos )
n=0 A ,

r <a

where Pn(cos 7v) is the Legendre polynomial, and

n
(n-m)! _m m
= 1 _— 1 1
Pn(cos v) Pn(cos 6) Pn(cos o) +2 mZ 1 (atm)! Pn (cosh) Pn (cosB') cos my
it follows that
. (1)
27 o4} ]n(ka) hn (kr), r>a
1 ! = ik + ?
f g (_1;]3) dy 5 Z(Zn 1) Pn(cose) Pn(cose) jn (kr) hr(11) (ka), r<a
0 n=0

This diverges when r = a regardless of 6 and 6', and differentiation with respect to 6
or 0' only makes things worse.

In actual fact, the integral expressions (43) are infinite only when 6' = 6, re-
flecting the singular nature of the integral equations, and though the singularities of

(41) and (42) are integrable, it is necessary to estimate the self cell contributions

20



analytically in any application of the ‘method of moments. The dominant singularity
is that provided by 8K l/ 96 in eq. (41), but since

9R R oR
1 == = T -
cos Y' 25" = - 5o +cot 6 siny oyt
it follows that
2x 6,0 = -2 K (6,61 - cot 0 K, (6, 0
00 1 86' 1 ’
Hence,
T
1) — 1 1t = o 1 1 1 1 1 1
fA(G) 89K10 6') do f A(6Y) 89,1& (6,6%4d6" - cot 0 '(! A(B)K1(6,9)d9
% 0 (44)
where
A(6Y) =— 8"' J, sm 8" +J oM .

and if the self cell extends from 6 - 61 to 6 + 61, the self cell contribution to the first
term on the right hand side of (44) is simply

A (6) {Ko(e, 6-5,) - K_(, e+5l)}.

For the second integral, the usual disk approximation to the self cell yields

6 + 61
AOYVK_ (5, 0" do' = —— (45)
m 2
0% 23
1
where
sin 6 6162
L =3

is the equivalent radius of the cell.

No attempt has yet been made to program eqs. (41) and (42) for numerical

solution.
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