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ABSTRACT

The low frequency scattering of electromagnetic and acoustic waves by
rotationally symmetric bodies is considered. By conocentrating on certain
quantities such as the normalised component of the induced electric and mag-
netic dipole moments, it is shown how the first one or two terms in the far
zone scattered fields can be expressed in terms of quantities which are func-
tions only of the geometry of the body. Each of these is the weighted integral
of an elementary potential function which can be found by solving an integral
equation. A computer program has been written to solve the appropriate
equations by the moment method, and for calculating the dipole moments, the
electrostatic capacity, and a further quantity related to the capacity. The
program is described and related data are presented.
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1. INTRODUCTION

When a plane electromagnetic wave is incident on a finite perfectly con-
ducting body, or a plane acoustic wave incident on a finite acoustically soft or
hard body, the scattered field in the far zone can be expanded in a power
series in the wave number k if k is sufficiently small. The determination of
the first few terms in these series requires the solution of certain elementary
potential problems. We here consider the potential problems associated with
the first ( Rayleigh) term in the electromagnetic expansion and the first two
terms in each of the acoustic expansions, and show how in the case of a singly
connected body of revolution all of these terms can be deduced from the solu-
tions of just five potential problems. If the body is not singly connected, only
the axial component of the induced electric dipole moment is affected, and for
a body consisting of two separate parts, an expression for the modified compo-
nent is obtained.

Each potential satisfies a simple integral equation. Computer programs
are described for solving the equations by the moment method, and since most
of the equations are of first order type, the computational procedures are rather
similar to those of Mautz and Harrington (1970). The appropriate elements of
the electric and magnetic polarisability tensors (Keller et al, 1972) are then
computed, along with the electrostatic capacity and a quantity vy related to this,
and these are sufficient to specify the electromagnetic and acoustic scattering
for any direction of plane wave incidence and any direction of scattering. For
relatively simple geometries, the entire computation takes about 3 seconds on an
IBM 360 computer.

In our presentation we first examine (Section 2) the problem of a plane

electromagnetic wave of arbitrary polarisation and incidence direction, and
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isolate the potentials necessary for a complete description of the leading term
in the far zone scattered field. This is followed (Section 3) by similar treat-
ments of the acoustic problems, but here we seek the first two terms in the
expansions. In Section 4 the integral equations satisfied by the potentials are
cast into forms appropriate to digital solution, and the manner in which the
body is specified is also described. Section 5 is concerned with various aspects
of the computer program, a complete listing of which is given in the Appendix,
and some of the numerical results obtained so far are presented in Section 6.

This work was supported in part by the National Science Foundation under
Grant GP-25321.
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2. PERFECTLY CONDUCTING BODIES

2.1 FORMULATION

Let B be a finite, closed, perfectly conducting body of revolution about
the z axis of a rectangular Cartesian coordinate system (x,y,z). Interms of
the cylindrical polar coordinates (p,#,z) where

L2 2 y

p= Jx +y ¢=arc’canX ,

the surface will be described by the equation
p=p(z)

where p can be a multivalued function of z as, for example, in the case of

a disk or a re-entrant shape, but is never infinite and is zero outside some

interval in z. Let r be the radius vector to an arbitrary point in the domain

U exterior to B and let N be a unit vector normal to the surface drawn into V,
A linearly polarised electromagnetic wave is incident with electric and

magnetic vectors

A A A A A A
where k, a and b are mutually perpendicular unit vectors such that b =k A
Y is the intrinsic admittance of the homogeneous isotropic medium ( of permit—

tivity €) exterior to B and a time factor e"i"Jt has been suppressed.



013630-9-T

For k small but kr large, the resulting scattered field _ES, _I-_I&3 can be
written as ( Kleinman, 1965)

(2)

2

ikr
s e 21X A A A
a.s K {e (r,p) - rA(rA_lg)}

where p and m are the electric and magnetic dipole moments respectively.

As shown by Keller et al (1972),

A A AA
P=ce¢ {Plla + (P33-P11)(a.z)z}

(3)
A AA A
m = -Y {Mllb + (M33- Mll)(b.z)z}

11 P33, M1 1 and M33 are functions only of the geometry of the body.

For a given body, Pll’ P33, M1 1 and M33 are constants whose values are

where P

as follows:

9
(i) P, = ff x 3= (x-) ds (4)

B
where (I)l is such that

V2@1=O 1!12/

Q1=x on B (5)
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@1 = O(r-z) as r— o
(ii) Py, = f] z -;—n (z~§>3) ds (6)
B

where (p 3 is such that

vi g, =0 in )

(I>3=Z+7 on B; (7)

v is a constant chosen to make

[f
30 ds = 0, (8)

B
implying zero total induced charge on B, and ensuring that

Q = o(r™ a8 r=»® .

(iid) ff x(x-‘{f) ds (9)

where ‘111‘1 is such that

v? qu = 0 in )
0

"Pl ’ 9x on B (10)
on on
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\Fl = Q(r_z) a8 r —o .

(iv) M, = ffﬁ.ﬁ(z-‘}é) ds (11)
B

where @'3 is such that

V2 °~Il’3 = 0 in U

)

2123 - & on B | (12)
-2

'\Ins = O(r ") a8 r — .

Although the values assumed by the potential function ‘Ifg on B are quite distinct

0 0
from those of '\Irl , 1 and _qi_3_ , nevertheless, as shown by Karp
on an

(1956) and Payne (1956),

1
M33 = 3 P11 . (13)

This obviates the need for solving the potantiél problem (iv) if the only purpose
for finding 1}'3 is to calculate M,, .

There is one other electromagnetic quantity of interest and this is the
electrostatic capacity C of the body in isolation. If the body is raised to the
potential unity, the surface charge density is

]
p. = ~€ QO
8 on

(14)
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where (}0 is an exterior potential function satisfying the boundary condition

§0=1 onB . (15)

The electrostatic capacity is then equal to the total charge induced on the sur-

0
C = -¢ ff q)o ds . (16)
on
B

Note, however, that if all portions of the surface are not in electrical contact

face and is

with one another, charge can no longer flow freely over the entire surface, and
additional ( mutual ) capacities can be defined. In particular, such electrical

separation has a profound effect on the calculation of P and the modifications

that result when the surface is disjoint are discussed ir? 3Section 2.

The five quantities listed in eqs. (4), (6), (9), (11), and (16) can be
computed by solving five separate potential problems of a rather standard nature,
and the manner in which this is done is as follows.

Let V be some potential function satisfying V2 V=0 outside and on B,
and let V° be the regular part of V. v°is therefore an exterior potential

and we can regard

v-v®a=vy! (17)

as an incident potential. Green's theorem applied to the function V in the region

V then yields

i L 9 (i} _ L1 o '
V)=V (z)+ yp ffé(g )8n' 3 T ALY )}ds
B

(18)
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where R=|r - r'l

If the boundary condition on the potential V is
v(r) = 0 , r on B, (19)
eq. (18) reduces to

v(g)=vi(_r_)-;}- f—~-a.v(r‘) as' (20)

B

and since the integral exists for all r including points on B, we can allow r

to lie on B and apply the boundary condition (19) to obtain

vi(y) = ff == v(x') as' , (21)

which is anintegral equation of the first kind for %‘r{_ .

If, on the other hand, the boundary condition on the potential V is

'?—V(r)=0 , I on B, : (22)
on = -

eq. (18) reduces to
V(r)=v (r)+—— ff ") 39— )dS' ,  (23)

and because of the non-integrable singularity of "5%1' ('11{—) at r "= r,

eq. (23) is valid as it stands only if r is not on B. To obtain an integral

equation for V, we allow r to approach a point on B in the direction of the
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inward normal, in which case it can be shown that

lim t\ O 1 ' ' 9 |1 t
_ | + V —_— ) —1dS
f] vz on | R ds’= 27 V(xr) JJ () on'| R
r—B B

B

where the bar across the integral signs denotes the Cauchy principal value. Hence

V(z) = zvi(;)+§—”—Hv(£') 33; las' (20)
B

for r on B, which is an integral equation of the second kind for V.

2.2 PROCEDURE FOR P11

The solution of problem (i) and, hence, the computation of P 11 isa

straightforward application of the integral equation (21).
If

8
\Y% x , V = -Ql
then V=x-()l=V1 (say) (25)

with V 1 =0 on B. Since x=pcosf@ and the equation of the surface is indepen-

dent of §, the potential V. must everywhere have the same § dependence

. 1
as Vv 1, implying

Vl(g) = Vl(p‘ z) cos P . (26)
oV
This is true also of _é_x-x- , and we can therefore write
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9

9
3;, Vl(E') 3 — Vl(p', z') cosi?il

on'

= Tl(s')cos¢' (27)

where s' is arc length along a profile of the body. Moreover,
2 1,2 1/2

R = {(p-p") '+ (z-2")"+2pp'(1-cosy) (28)
with

y=p-p
and since

as' = p'dp'ds' ,
the integral equation (21) now takes the form

2T 8
1 1
pcosf = e Tl(s') O—O;J— p'dp'ds’
0 0

27 8
L 1y cos (y-§) '
rpe f Tl(s ) R p dyds
0 0
8

= 1 p'KlTl(s')ds'cos(O
27 0

where the kernel is
T
K. =K. (p,z;p',2") = o8y dy (29)
1 1 R
0

10



013630-9-T

and the integration is along the profile of the body. The integral equation
for T, (8) is therefore

8

f p'KlTl(s')ds' = 27p (30)
0

which can be solved to determine T1 (8) . Interms of this quantity
P, = x == v(r)ds
11 on =
B
27 s

= f f p20082¢T1(S)d¢dS
0 0

which reduces to

2
P T p Tl(s)ds . (31)
0

2.3 PROCEDURE FOR P__ AND C

33
The solution of problem (ii), leading to the calculation of P33, involves
two successive applications of the integral equation (21).
In the first case we consider an incident potential
Vi = V21 x gz (32)

and seek the corresponding total potential V2 satisfying the boundary condition

11
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i
V2 =0 on B. Since V2 is everywhere independent of @, it follows that

AV
V2 and o

are likewise { independent. We can therefore write

8V2
s T (s') | (33)

and the integral equation (21) now becomes

T 8

2
1_ t _]; PPLIE
= f sz(s)defDds
0
8
1§ ] 1
f p KOTz(s)ds
0

m

K, = Ko(p,z;p',Z') = f %‘L . (34)
0

where the kernel is

The integral equation from which to determine T2( s) is therefore

S

f p'KOTz(s')ds' = 27z . - (35)
0

12
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The second of the two basic problems is that in which the incident potential
is

vV =V, =1 . (36)

We again seek the total potential V,_ satisfying the boundary condition V= 0

3 3

on B, and writing

3V3

dn'

= T3(s') , (37)

the integral equation (21) takes the form

8

I p'KOTB(s')dB'=27r , (38)
0

from which T3 (8) can be found.

In problem (ii), however,
i
+ -
V=z+y and V = (§3
Thus,
(39)
implying

V=YV + v, , (40)
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and if we write

aVv

3';1'1 (41)

= T(s')

?

then

T(s)=T2(s)+‘YT3(s) (42)

where Tz(s) and T3( s) are the solutions of the integral equations (35) and
(38) respectively. The constant v is determined by the condition (8) for zero

total induced charge on B, viz.*

d i
ff—a-;- (V -Vv)ds =0 . (43)
B
ff—-dssff-a—(+)ds=0 (44)
on 20 Y ’
B

as can be seen by application of the divergence theorem; moreover
2r 8
oV 4
dn
B 0
8
T f pT(s)ds
0

* We are here assuming that the surface is not disjoint.

But

T(s)pdf dS

14
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<) S

= 21rf pTz(s)ds+ 21r'yf pT3(s)ds
0 0

and hence, by virtue of eqs. (43) and (44),

8

f pTz(s)ds
0

vE - S : (45)

f PT3(s)ds
0

Since Tz(s) and T3(s) can be found from the integral equations (35)

and (38), the constant vy given in eq. (45) now completes the specification

of the surface field T(s), and in terms of T(s)

9
P, = ffz 5y V(r)ds
B

8

. 21r'fvsz(s)dS
0
s 8
P33= 21rf szz(s)ds+27ryf ZpTB(S)dS . (46)
0 0

A valuable by-product of the above analysis is the electrostatic capacity

Hence

15
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C defined in eq. (16). This fact is apparent on recalling that the determination
of C requires us to find the exterior potential qO satisfying the boundary
condition ( 15) on B, and this can be accomplished using the integral equation
(21) with

so that

v=1-§, (=0 onB).

The problem is therefore identical to the second of the two basic ones

considered above, and indeed

QO = 1'V3 (47)
implying

3¢ , v,

on T n T T3(8) (48)

where T3( s) is the solution of the integral equation (38). Hence, when the
body is at unit potential, the surface charge density as a function of arc length
is

8
C= 27¢€ f pT3(s)ds . (50)
0

We observe that the denominator of the expression (45) for v is simply

16
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C /(27 €), which ensures that Y can never be infinite.

s
Some simplification of the preceding results is possible. Since V2 and

V3S are both exterior potentials, Green's theorem can be applied to the region

) exterior to B to yield the reciprocity relation

5 av; . avz
V, —5— ds = V, 5o ds (51)
B B

(Van Bladel, 1968). But

8
8V2

on

A A
= Tz(s) - n.z

and

ov°

on

= T3(s) ,

and from the boundary conditions on V 0 and V3

on B, Substituting these into eq. (51), we have
ff 2 T,(s)dS = ff {Tz(s)-ﬁ.'i}ds
B B

which reduces to

<] S

f pTz(s)ds = f szS(s)ds . (52)
0 0

17
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With the aid of this result, the constant ¥ of eq. (45) can be expressed

in terms of the surface field T 3( s) alone:

s
f sz3(s)ds
0
y = - (53)
8
f pT3(s)ds
0
i.e.
8
2Te
Y= - c fsz3(s)ds , (54)
0

but whilst this reduces from four to three the number of separate surface field

integrations involved in the calculation of P there is no way to avoid

33’
entirely the determination of the surface field T, (s). Indeed, the simplest

expression for P33 is

s
2 C
P33-21r fszz(s)ds - T . (55)
0

2.4 PROCEDURE FOR Mll

The solution of problem (iii) leads to the calculation of M11 and is a’
straightforward application of the integral equation (24). If

viex e Via-F

18
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Since x=pcosP and the equation of the surface is independent of @, V
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\% =x-*{rl =V, (say) (56)

= 0 on B as a consequence of the boundary condition (10).

4

i
must have the same (} dependence as V' , namely, cos §. In particular,

on the surface

V4(g)=V4(s)cos¢ (57)

which enables us to write eq. (24) as

21 8
V4(s)cos¢-29cos¢+'21—ﬂ ff V(s')cos¢'-a?;, (%)p'd[ﬂ'ds .
0 ®0

But

where

so that

A
2' = cos a (?{cos¢'+ ysin §') —Qsina' (58)
- 1
al = tanl 'QL (59)

u
i
o OV
o
@
Q
©
i
©
o
o
1]
<
1
w
(=
=
Q
—~~
N
{
N
—
fop)
=)
S

19
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with ¥ =@ - @' asbefore. Hence

2 27
0 1 0 1
1 — - t — -
cos f 0 | R’ d?) = cos¢] cos Yy == | g |4V
0

= 2cos §- {p cos o' 92 + [:(z'—z)sina'-p‘cosa':] Ql}

where
T
Q. =Q (p, z;p', 2') = L8 Y gy, (61)
1 1 3
R
0
3 2
Q =Q _(p,z;p',2') = »m dy . (62)
2 2 3
R
0
The integral equation from which to determine V 4( s) is now
V (s)= 2p+-l- V,(8') (pcosa'Q + Ez'-z)sina'-p'cosa'j]ﬂ p'ds’
4 g 4 2 1
0 (63)

and in terms of V4( 8):

A A
M, = ffn.xv4(£)ds
B
2r s
= ffcosav4(s)cosz¢pd¢ds
0 #0

20
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S

i.e. M11 = wf pV4(s)cosads ) (64)
0

2.5 PROCEDURE FOR M33

Although it is not necessary to compute M,  directly because of the

relation (13), the integral equation which the cc?fresponding potential satis-
fies must be solved if the second term in the low frequency expansion for an
acoustically hard body is to be evaluated. It is therefore appropriate to des-
cribe the determination of this potential function here.

Once again we have a straightforward application of the integral equation

(24). ¥

viz g and VS=-'-'\I‘"
3

then

V = z-"["3 = v, (say) (65)

0 .
with Vs /dn =0 on B. Since V. must be independent of #, eq. (24)

implies
27 8
V(B)'ZZ'*‘L V(sl)._a_. l p'd¢'d8'
5 2w 5 on'\R
0 ¥0
But
27 2w

o
m'm
=]
=) Lo

1 0 1
d¢’f_a?Rd‘1’
0

21
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= 2{)cosa"91+[(z'-z)sina'-p'cosaE] QO}

where Q. is as defined in eq. (61) and

1
T
Q, 2 Qo(p,z;p',z') = ig . (66)
0 R

The integral equation from which to determine VS( 8) is therefore

1
V5(s)=2z+;f V5(s') pcos o' Ql+[(z'-z)sina'-p'cosa] QO p'ds!'

0
(67)
and we note in passing that
A A
M., ffn.z Vs(s)ds
B
2w 8
= -f fsinav5(s)pd¢ds ,
0 0
8
i.e. Mg, = —wapvs(s)smads . (68)
0

2.6 DISJOINT SURFACES

So far it has been assumed that all portions of the surface are in electrical

contact with one another, and if this requirement is not met, the analysis is no

22
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longer valid. Thus, for example, an application of the above procedures to a body

consisting of two separate spheres leads instead to the solution for the two spheres

joined by an infinitesimal wire along the axis of symmetry, and though the presence
of the wire ( producing electrical contact) does not affect the values of M., and

11
Pll (and hence M by virtue of eq. 13), it does have a profound effect on

P33 . This is not uiiatural since P33 is proportional to the longitudinal ( z )
component of the induced electric dipole moment.

The breakdown in our formulation when B has several distinct parts stems
from the imposition of the zero induced charge criterion (8). If charge cannot

, B

flow freely between the n parts B1 R

. Bn’ eq. (8) must be replaced
by the n equations

i

Since this obviously affects only the potential Q 3 and leaves the procedure

ds = 0 i=1,2,...., n. (69)

(and results) for Pll' M11 and M33 unchanged, our efforts will be directed

at P33 alone with the objective of finding an approach which is applicable when

B consists of just two electrically isolated portions B1 and B2 . So that we may
use to the fullest extent the work that we have already done, it is desirable to
have this new approach as similar as possible to that appropriate when the two
portions are electrically connected.

By analogy with problem (ii) of Section 2.1, the task is to find an exterior
potential (f 3 satisfying the equation V 2 Q 3 = 0 in the domain V exterior

to B, together with the boundary conditions

x +
q)s z Y on B (70)

vq>3 = z + 7, on B (71)

23
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where the constants 'Yl and 12 are such that

Hfiids .
= ds = 0, (72)

0

B1

ff B(P?’ ds = 0 (73)
on )

B2

The quantity P__ is then given by eq. (6) as before.

33

Because the boundary conditions on B1 and B2 differ, it is no longer

convenient to think in terms of incident and total potentials, with the difference
representing the desired exterior potential. Let us therefore consider the basic
potential problem in which (} (31) is an exterior potential satisfying the boundary

condition

1 on B
= (74)
0,
0 on B

By application of Green's theorem to the domain )/, we have

1 (1) 1 L 0 @ t
<I>3() ff% (r)-a—-'R_R ot D (z'has

Al () o 2 5@ 4
41r]fan' R |95 41rfR8n'q)3 (z')dS
B
B,

24
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and the first integral is identically zero since B1 is itself a closed surface.
If, now, r is allowed to approach B, application of the boundary condition

(74) gives

-1 r on B
1 l d (1) t - to= 1
47 ff R on' (IB (z')ds (75)
B

0 , ronB

2
5 @3( 1)
which is an integral equation from which to determine / on' It can
be simplified somewhat by observing that QB and, hence, 3 / are
an

are independent of the azimuthal coordinate . Whenthe @ integration is

performed, eq. (75) reduces to

o 2r, r on B
f o'k, T,V (s")ds" = ! (76)
073 ,

0, r on B

0 = 2

c.f. eq. (38), where
(1), vy _ 9 (1),
T, (s') = - o gy () (77)

and KO is the kernel defined in eq. (34). It will be noted that the integration

in (76) is over the entire profile of the body B= B_ + B_ .

1 2
Similarly, if (I) 3( 2) is an exterior potential function satisfying the

boundary condition

(2) ’
¢, " = (78)
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then
8
0, ronB
IP'KOT3(2)(s')ds' = ! (79)
0 2T, r on B2
where
2 9 .
Ts( e = - ™y 43(2)(5) : (80)

Comparison of eqs. (76) and (79) with (38) shows that

(2)

(1)
T3 (8) + T3

(s) = T3(s) (81)

where T3( s) is that surface field quantity which is appropriate when B ) and

(s) has already been computed, it is

(2)(3).

B2 are electrically connected. If T3

clearly necessary to compute only one of T3( 1 )( s) and T3

Let us now return to the potential problem set forth in egs. (70) through
(73). As regards the boundary conditions (70) and (71), an exterior
potential satisfying them is

(1)

2
¢, = z-v,+1d, +"'24)3()

(82)

where V_ is the total potential considered in Section 2.3. Hence

2
a<1>3 (2)

3 (s) (83)

3z (1)
* o Tz(s) 7, Ty (s)-VZT
and since T2 (s) is given as the solution of the integral equation (35), it only
remains to specify the constants Y. and Ty

1
From the zero charge condition (72) and using the fact that

26
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Blor B2
we have
7, prs(l)(S)ds +'Yzpr3(2)(s)ds=- prz(s)ds
(1) (1) (1)

(84)

where the symbol (1) below the integral signs shows that the integrations are

carried out over the profile of the portion B, alone. Similarly, fromeq. (73),

1
v pr3(1)(s)ds+72 pr3(2)(s)ds-— prz(s)ds
(2) (2) (2)
(85)

where the integrations are over the profile of B2 alone, and if we now define

C11 = 271€ pr3(1)(s)ds , C12 = 27e€ IpTB(Z)(S)ds ,

(1) (1)
(86)
021 = 2r¢ IpTS(l)(s)ds , 022 2 27€ IPTB(Z)(s)ds s
(2) (2)
eqs. (84) and (85) take on the more compact form
71011 * 7,0, = -27€ pTz(s)ds , (87a)

(1)
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+ = -
7, Cyp + 75Co 2Te€ pTz(s)ds . (87 D)
(2)

It will be observed that the quantities C,., etc. all have the dimensions of

11
capacity, and by virtue of eqs. (50) and (81),

+ +
Cip ¥ Cppg* Oy F 0= C (88)
where C is the capacity when electrical contact is maintained.

Rather than solve the eqs. (87) directly, it is more convenient to first
eliminate the surface field quantity T2 (s) from the expressions. That this is
possible can be shown by application of reciprocity to the exterior potential

functions z-V,, (1)3(1) and @3(2). From the pair z-Vz and 63(1),

we have
(1) 8 - 9 (1)
fqu oo (2=V,)ds ff(z-—Vz) o 9, ds .
B B
Hence
ff T (s)dSs = ]sz(l)(s)dS
2 3 !
B1 B
implying s
f pTz(s)ds =I sz3(1)(s)ds . (89)
(1) 0
Similarly, 8
f pTz(s)ds = f szS(Z)(s)ds (90)
(2) 0

and we note that by addition of the last two equations we recover eq. (52).
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1 2
Finally, from the function pair Q 3( ) and Q 3( ) ,

ff T3(2)(s)ds - IITB(l)(s)dS ,

Bl B2
—i-mplying
1
IpTS(z)(s)ds » f pT3( )(s)ds
(1) (2)
i.e.
€2 ® Ca
as expected.

(91)

(92)

Using eqs. (89) and (90), Tz(s) can be eliminated from the eqs. (87)

and if we also eliminate TS( 2)

8

_ , (1)
(71 'Yz)Cll+7227r€ pr3(s)ds 21(6] sz3 (s)ds
0

(1)

]

. (1)
(71 72)Czl+7221re prB(s)ds 27ref sz3 (s)ds
0

(2)

S

-27€ f szB(s)ds
0

29
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These can be solved to give

S S S
Y Yy B i fsz3(s)ds prS(s)ds~f szB(l)(s)ds‘[pTB(s)da%
0 0 0

(1)
(93)
8 8 8
Yy -i f zpTy(s)ds f pT3(l)(8)ds-] ZpT3(l)(s)dspr3(1)(s)ds
0 (1) 0 0
where o)

s 8
Aaf pT3(s)ds pTB(l)(s)ds -prB(l)(s)ds ]pTB(s)ds
0 (1) 0 (1)

(95)

. If we write this quantity

We can now proceed to the calculation of P33
and 32 in electrical

as 333 to distinguish it from the \P33 of eq. (55) for B,

contact, we have, from eqs. (8) and (83),
N . (1) (2)
Pog ffz Tz(s)+ % Ty (s) + Y, Ty (s) ) ds
B

8
= 27rf zp T2(5)+ 72T3(s)+(71—72_)T3(1)(s) ds
0

(96)
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But

8
P33 = 27 f zp {Tz(s) + 7T3(s)} ds
0

(see eq. 46) where 7 is given by eq. (53), and thus

S S

(1)
P = - + - T s)ds
P33 P33+ 27r(‘}'2 v)fszB(s)ds 21r(’y1 vz)f zp T, (s)
0 0

(97)

Moreover, from eqs. (53), (94) and (95), after some manipulation,

8

f pT3(1)(s)ds
0

Yo=Y = -(71-72) . , (98)

f pT3(s)ds
0

which enables us to write eq. (97) as

8
~

p33= P33+21r('}'1-72) I (z +'y)pT3(1)(s)ds . (99)
0

The factor (71 - 72) is defined in eq. (93) and invoking yet again the expression
(53) for v together with the identity (91), we have

S
vy - -72 x - if pTB(s)ds oY pT3(s)ds+f szB(l)(S)ds
0 ) 0

(1
31
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8
C . (1)
57 A f(z+“upT3 (s)ds ,
0

giving

02
M
d

[}

8
33 33 eCA f(z+'¥)pT3(l)(s)ds (100)
0

where C and A are defined in eqs. (50) and (95) respectively.

~
This is our final expression for P Compared to the situation when

33°
B, and B_ are electrically connected, the only additional field quantity that

1 2
must now be found is TB( 1 )( s), which is given as the solution of the integral

equation (76); and since C/e and A are both positive, electrical separation

decreases the longitudinal component of the induced electric dipole moment.
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3. ACOUSTICALLY SOFT OR HARD BODIES

3.1 GENERAL PROCEDURE

Let B now be a finite, closed acoustically soft or hard body of revolution
about the z axis of a Cartesian coordinate system (x, y, z). It is of no
concern whether B is disjoint or not. A plane acoustic wave is incident and
its velocity potential ¥ is written as

i ikk.r

U = e (101)

A
where k is again a unit vector in the direction of propagation. If U S is the
scattered field that is produced, then U 8 satisfies

(Ve ) ud = 0 mV, (102)
ou° 8
r " -ikU |= 0 as rw , (103)
and the boundary condition
Us x .--Ui on B (104)

U oU on B (105)

if B is hard. Eqs. (104) and (105) are equivalent to

* To avoid any possible confusion, we shall henceforth refer to U as a field.
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U =0 on B (106)

2U
o0 = 0 on B (107)

respectively, where U = ul+ U‘s is the total field.
A general expression for U(r) at an arbitrary point in )/ is provided

by the Helmholtz representation:

1 . ff 5 [olKB| kR .y
U(r) = U(x)+ e U(r') an'\ R |° TR 3g Ufr) ds
B

(108)
where R = | r-r 'I as before. For sufficiently small k, Ui, u® and,
hence, U can be expanded as power series in ik of the form

U'(r) = Z(ik)mU;(g) ) (109)

m=0

and when these are inserted into eq. (108), the coefficients of like powers of
ik on both sides of the equation can be set equal to give

u (x)=U (r)+ Z(m-l)' ff (m-t-1)R™"!"2 aR » Uy(z")

m-{-1 9
- t
rR™ 3o Uplz )}dS (110)
for m=0, 1, 2,... By allowing r to lie on B, an integral equation

is obtained from which Um( r) can be found; and as is seen by substituting
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the power series for U(r) intoeq. (102),

V2U0= V2U1 = 0

(111)

showing that UO(_r_ ) and Ul( r) are potential functions, but Uz( r) is not
unless UO(;'_) = 0.
In the far zone (r — o) the low frequency expansion of the scattered

field deduced from eq. (108) is

ikr X2 - m ff
S v © Z z m-{+1 (ik) A m-1
U (2) 4Tr ("1) (m-—-l)[ (r-£ )
B

mx=0 I=0

X {a'. £)u, (2 + % Ul(g')} ds’
(112)

(Kleinman, 1965, with the correction of a sign error), provided U 1( r')
is taken to be zero. Our objective is to calculate the first few terms in this

series.

3.2 SOFT BODIES

We now specialise the above results to the case of a soft rotationally
symmetric body illuminated by the plane wave ( 101), and seek the first two

terms in the low frequency expansion of the far zone scattered field. By
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invoking the boundary condition

Um(_r_) = 0 on B, (113)
m=0,1,2,...., wehave
ikr 3
U (r) Z (-1) f U (r')dS'-ik IIE?.E')EE,UO(L')
B
---§-U (r') | ds'+ o(kz) (114)
on' 1'= !

showing that only the potential functions UO( r) and Ul( r) are required.
From egs. (101) and (107) it follows that

i A

UO(g)x 1, U.(r) = k.r (115)

and by inserting the boundary condition (113) into ( 110) , the latter becomes

i m-l 1 . .
Um(_x;) *U (x) - pe z @m0 ff 5-{1-; U (z')ds

£=0

which, for r on B, reduces to

_]:_ " -L- 1__ .
U () = yp (m_!), ff U( ydst . (116)
0

I=
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When m=0, eq. (116) gives

1 _9 ')y 4st
—-— ffR P UO(_I_')dS . (117)
B

This is identical to the integral equation satisfied by the potential V3 (r) of
Section 2.3, and hence

v.(r) , 2 Uo(g) = T3(s) . (118)

Uplr) = Vylz 9n

We note that

8
If-aé; U (r)ds = 21rpr3(s)ds - 2 (119)
B 0

(see eq. 50), where C is the electrostatic capacity.
From eq. (116) with m=1,

ﬁ.g - f——ffa—a-,-n (r' )ds'z—- fR 31U (z')ds! (120)

B

and using eq. (119), the left hand side can be written as

C
47e€

k. ?{)pcosjﬁ + (k. 9)p.sin¢ + (ﬁ. 'z\)z -

Since the surface of the body is independent of @, it follows that U, (r) must

have the form
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U (x)= {(ﬁ.?c)cos¢+(ﬁ.§>sm¢} v M@ v B Lo Pp

(121)
where the individual Ul(J)(g), j=1, 2, 3, satisfy

.l_ .1. _8_ (1) ! t
Ly ffR an'Ul (r')ds' , (122)

I 1 9 (2, v .o
z = 2= ]R ) (r')ds' , (123)

L ffl 0 +(3), 1y iat
1 = e R 3o U1 (r')ds' . (124)
B
Comparison of eqs. (124) and (117) shows

(x) = Uy(x) = V,(2) Zu = 1,0 . (125)

(3)
U1 on

Similarly, Ul(l) (r) cos § is identical to the potential V1 (r ) of Section 2.2,
implying

v M@ = v, 2) (126)
so that
L oM = 100, (127)
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and U1(2) (r) is identical to the potential V2 (r) of Section 2.3, so that

%UI(Z)(_I'_) = Tz(s) . (128)

It is now a trivial matter to evaluate the right hand side of eq. (114).
The first integral is clearly C/e, and the second can be written as

ff&f.g_') T3(s')-— {Q.Q)cos¢'+(ﬁ.§r)sin¢'}Tl(s')

B

A A C
+ i 1) o e ! '
(k.z) Tz(s ) Tee T3(s } ds

8
.-.z,rf E?.’z‘)z'+ f;]Ts(s')-(ﬁ.Q)Tz(s') plds’
0

8 s
f p'T2(s')ds' = fz'p'T3(s')ds' (52)
0 0

and hence the second integral on the right hand side of (114) is

Zw‘f {:426 - y(f-ﬁ).;} p'T3(s')ds'
0

c C ACACA
= € {4"6 - ‘Y(r"k).Z}

where v is as defined in eqs. (53) and (54).

But
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The low frequency expansion of the far field is therefore

g ikr C ,
U(E)NZ“ (.-6-) 1-11{-—0—- y(?-ﬁ).?]+ o(k%) ), (129)

showing that a knowledge of C and < alone is sufficient to specify the
first two terms. As demonstrated by Van Bladel ( 1968), a similar result
obtains even for a body which is not rotationally symmetric.

3.3 HARD BODIES

The final case to be considered is that in which B is a hard rotationally
symmetric body. The boundary condition on Um( r), m=0,1,2,....,

is then

2y (r) = 0 | on B (130)
on m

and when this is inserted into eq. (112), the low frequency expansion of the

far zone scattered field becomes

8 eikr fﬁ,\"/\) v) "4 2ff(l\ ')U( ')
U(r)~ yp (-1)( ik n'.r UO(_I: ds' +k r.r') U (r
B

B

_Ul(_x;')] (n'.%)ds' - ik3ff‘;‘(?.£')2 U,(x")
B

-(?._x;')Ul(_r_')_ + U, (x") (a'.Has' + o?

(131)
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As we shall see later, the first term O(k) is identically zero, and we
therefore need UO( r), Ul( r) and U, (r) to compute two non-zero terms
in the expansion.

From eq. (110) and the boundary condition (130), an expression for

U (r) at an arbitrary point r in V) is

1 m -4 iy 0 (1 '
ul (r)*U (r) + z (m-l)'ff(l m+{) R U,(r )5;-; )dS
1=0
(132)

and in particular, when m =0,
U(z) = U (r) + f Uy(z') ———l ds’ (133)
0= 0 R .

Clearly U: (r) = UO( r) - US (r) is an exterior potential function

el 8 el i
d = = < = s
an 55 Y0 (r)= 0 on B since 50 %0 (r) 0 . In addition,

s -1
UO (r) vanishes more rapidly than r ~ as r— o since there is no term

0
O(k ') present in the expansion (131), and hence

Ug(g) = 0 (134)

implying

U (z) = Uy(x) = 1 . (135)

From eq. (132) with m =1, we have

i 1
Up(z) = U (x) + 55 fﬁl(y)
B

41
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which can be converted into an integral equation for U l( r) by allowing

r toapproach B. Because of the non-integrable singularity of the kernel
for r on B, it is necessary to apply a limiting process, and if a bar
across an integral sign is again used to denote the Cauchy principal value,

we obtain
= i -1—- 1 __a__ _1; 1
Ul(g) 20, (r) + o e ‘ :’ U, (z') ™ (R) ds (137)
B

i
for r on B, where U1 (r) is givenby eq. (115). Interms of the
cylindrical polar coordinates (p, #, z),

Uli(g) = {(ﬁ.ﬁ)cos¢ + (ﬁ. 9) sin¢} p + (l?."z\)z

and since the surface of the body is independent of f§, it follows that U1 (r)
can be split up into three parts each of which has the ¢ dependence of that
part of Ul1 (r) giving rise to it. In particular, on the surface,

U (x) = {(ﬁ.?)cos;a + (ﬁ.?)singb} v(s) + (ﬁ.é‘)vs(s) ,
(138)

where V 4( s) and V5 (s) are the potentials introduced in Sections 2. 4 and
2.5 respectively and satisfying the integral equations (63) and (67).
For the remaining function Uz( r) an expression at an arbitrary point

r in U is givenbyeq. (132) with m=2 and is
I T fy 2 (1) :
Uy(z) = U, (z) + 37 foz(z) =7 () 48" (139)
B
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where (see eqs. 101 and 109)
i 2
Uy () = 5 (Rn® (140)

An integral equation for U (r) can be obtained by allowing r to approach
B, but it proves unnecessary to determme U (r) explieitly if the only pur-
pose is to calculate the term O(k ) in eq. (131)

To see this we first note that since U0 (r)= 0, theegs.(111) imply

showing that U2s
S A

U2 = U2 - U21 is an exterier potential, being of double-layer type, and

since

is a potential function. Moreover, from eq. (139),

0
oo U (r) = (k r)(k n) s (141)

the boundary condition on U2's (r) is

BQE U, (z) = - (k. ) (k. ) (142)

for r on B. U2s clearly depends on the direction of incidence as well as

that of the normal to the surface, and in principle nine separate but elementary

potential problems must be solved to find Uzs

U (r)= zz kiijij r) (143)

i=1 j=1

In terms of these potentials,

where, for convenience, we have put
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and the potential functions G j( r) are such that

i
= G (r) =-(ﬁ.x)(g.:’<‘j) ,  i,i=1,2,3  (144)

for r on B. Inlike manner we can write

3
Uf(;) ='z kiFi(g) (145)

i=1

where the functions F i( r) are such that

A(r) = SB.% (146)

9
on Fl

on B, and comparison of (145) with (115) and (138) shows that on the

Fl(g) = {V4(s)~p} cos §f
FZ(E) = {V4(s)—p} sinf , (147)

F3(£) = V5(sl_-z

surface

Following Van Bladel ( 1968) we now apply reciprocity to the exterior
potentials F, (r) and G“(_r_), £, 1, j=1, 2, 3, inthe region )} to get

( _i. t t = t 3 ! t
ffGij(g) ag! FglL )ds ffFl(_r )'a-;fGij(z_ ) ds
B

B
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which reduces to

YIS ! = nar 2 r R 1
ffGij(_I;)(n.xl)-dS fth(g)(n .xi)(g.xj)ds (148)

B B

when the boundary conditions (144) and (146) are employed. Hence

IIU;(E')(S'.QI)dS“z Z kK, ffGij(g')(ﬁ'.Ql)dS'
i B

B

_ i j B
. ffq(;’)(ﬁ.'ﬁ‘)(ﬁ.;;) as' ,
— B
implying
ffuj(;')(%!?)ds' = 2 ffFl(_;")(?.ﬁl)(ﬁ.ﬁ')(f;._x;')dS'
B ! B
and

IIUE‘E'”I‘\‘"?“’S' - z ff F (' Nf.%,)(k.2") (k. ") as'
B L B
+-;- ff (k. ) 2(A1. Das' .
B

(149)
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This integral is the only form in which U (r ) enters the far field expansion
through terms O ( k ), and since the F, (r ) are known by virtue of the
eqs. (147), the integral can be computed without the explicit determination
of Uz(i) itself.
We are now in a position to evaluate the individual terms shown in eq. (131).

Since UO(_r_) = 1, we have

ff(’ﬁ'.?)uo(;') as' = 0 , (150)

B

verifying that the leading term in the far field expansion is O (k2 ), and

ff(?.g')uo(;_'uﬁ'.%)ds'a ?.ff’ﬁ'(?.g')ds'
B

where VO is the volume of the body. Also, from eq. (138),

2r 8
I\ A
IIUI(E')(S'. r)ds' = ?I f cos o' cos¢'x+cosa'sin¢'y—sinar"z\
0 ¥0
B

X Ea.;{\)cos¢'+(ﬁ.§)sm ¢] v4(s'>+(’12.2)v5(sr) ptdglds'

8

A
KX +7(k. D) ﬂfp'V4(S')COSQ"dS'
0

s>
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s
A A
-(9.’z\)(k.z)27rf p'Vs(s')sina'ds‘
0

where o' is the angle defined in eq. (59). Hence, from eqs. (64) and (68),

fful(y)(ﬁr.é)ds' - k. {?MH-Q(Q.Q)(MH-M%)}

B (152)

where M11 and M'33

discussed in Sections 2.4 and 2.5 respectively. As we have previously noted,

are the elements of the magnetic polarisability tensor

for a body of revolution M,, is related to P1 ] (see eq. 13).

33
When the results of eqs. (150) through (152) are substituted into eq.

(131), the low frequency expansien of the far zone scattered field is found to be

8 Neikr k2 ﬁ A AN A 3
U () yya . erl-z(k. z)(Mll—M33) - Vol o (k")

(153)

where the actual term involving k3 is

ik3ff[l (?.g')zu (g‘)-(?.;')U (r")+U (;_')] (n!f)as!
> 0 1 2
B

(154)

Unfortunately, the evaluation of this is rather a messy task.
Since Uo(g) = 1 (seeeq.135),

ff%(?-.r.'>200(_1:')(%'.?)ds' = %

B B

>
S
'-‘.
B>
—_
B>
H—.
o
o
e
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e Jffe e
V0
= T. fff_g' dr' . (155)

Vo

To simplify the treatment of the next two integrals in (154), write

F (x) = Fy(z)+r.% (156)

so that ( see eq. 145)

Ul(g_) = z lel(g) . (157)
/

Using eq. (149) we then have

ff {-(9.;')Ul(gv)+ u2<y)} (n'.7) ds'
B .
. z‘[f%l(g'){(?.Ql)(ﬁ.y)(ﬁ‘v.ﬁ)-(ﬁ.;?l)(?._y)(’ﬁ'.?)} as'
£ B

+‘U-{-;-(£.rt)(’ﬁ'.%-(?._r_')(ﬁ'.ﬁ)} (%. r as
B
But
ff%(l?._r_')z(g'.?)dS' = (ﬁ.?‘)ﬁ.fffg'd'r'

B VO

(158)
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and

B

A A A A
ff (r.x")(A'.K)(k.c"ds' = {?+(k.r)k}0fffyd7'
\'
0
as may be shown by analyses similar to that performed above. Hence

ff {é (k. ') (" 7) -(?-z'”ﬁ“?‘)} (k.z)ast - '?‘fffﬁ'd"'
B

A
0

(159)

which cancels the contribution (155) of the first term in the integrand of (154).
The complete integral (154 ) is therefore

i ZII%}(;'){(?.Qp(ﬁ.y)(ﬁuﬁ)-(ﬁ.ﬁlu?.g)(ﬁ',?)}dsr (160)
L B

and to simplify this we now invoke the rotational symmetry of the body.
From eqs. (147) and (156) we have

'f‘ll(g') = V4(s')cos gr, ?2(5_') = V4(s')sin¢' , }‘13(;') = Vs(s')
(161)

When these are inserted into (160) and the azimuthal integration performed,
the contribution of the first term in the integrand is

8
r (£, 3) ﬁ.?-(ﬁ.%)(?.%)}f plzcosa=-psina)V,(s)ds
0
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8
+7(r.2) {:1-(?:.?)2}] pzvs(s)cosads
0

A A NA
-27 (r. z)(k.z)2 f sz5(s)sinads‘
0

The contribution of the second term in the integrand of (160) differs only in
having ? and ﬁ interchanged, and when the two are subtracted, the final
expression for the term in k3 in the far field expression (153) is

s
ik37r(ﬁ-?)./z\ {ﬁ.?-(fc.g)(g.g)}fp(zcosa—p sina)V4(s)ds
0

8
- {1+(ﬁ.;)(9.'z\)}f pzvs(s)cosads
0
8
-2(1'2.2)(?.'2)] pzV (s)snads | . (162)
0

Although this is only the 'second non-zero term in the low frequency expansion,
it is much more complicated than the second term in the expansion for a soft
body. The surface field quantities involved are the same as those associated
with M_. and M__, but there is now no simple relationship analogous to (13)

11 33
which enables us to dispense with V5( 8). If the direction of incidence or
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A A
observation is parallel to the axis of symmetry, i.e. k= + Q or r=+ ,z\ ,
the integral containing V 4( s) disappears, but there is no comparable situation
where the integrals containing V5 (s) are absent except for the special case

of forward scatter, Tak , when the entire expression (162) vanishes.
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4. THE COMPUTATIONAL TASK

When this study was first undertaken the main objective was to develop

an effective program for computing the quantities P and M

11’ P33 11
specifying the low frequency scattering behavior of perfectly conducting rotation-

ally symmetric bodies. The realisation that the calculation of P 3 produces as

a by product the electrostatic capacity led us to add this to the lisi of quantities
considered, but it was only later that the question of acoustic scattering came
up. Since the first two terms in the low frequency expansion for a soft body
are expressible in terms of C / € and v, and vy is implicit in the P33
computation, it was only natural to add this to our list, and for a hard body

the first term involves no additional work. But the second term, (162), is
another matter. In particular, it requires the explicit calculation of the
surface field V5( 8) that had hitherto been avoided by virtue of the relation
(13), and even if this were done, the nature of the k3 term is almost such

as to preclude any physical understanding of the data. For these reasons it was
decided not to implement the computation of V5( s) and, hence, to ignore the

second term (162) in the hard body expansion. The quantities which we are now

left with are all ones which are needed for the electromagnetic problem.

4.1 INTEGRAL EQUATIONS

It is convenient to begin by listing the integral equations which have to
be solved and the quantities to be computed from their solutions.
Assuming that the profile p = p(z) of the finite, closed, rotationally

symmetric body has been specified in some manner and its volume V. computed

0
as a preliminary step, then:
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(i) solve

8

f p'KlTl(s')ds‘ = 27%p (163)
0

where the kernel K 1 ig defined in eq. (29); compute

8

P
2
- L p°T, (8)ds (164)
0 0
0
(ii) solve

8

f p'KOTz(s')ds' = 27z , (165)
0
8

f p'KOT3(s')ds' = 2r , (166)
0

where the kernel K 0 is defined in eq. (34); retain the option to print

out T3( 8); compute

= f pT3(s)ds , (167)

v = -—21rIsz3(s)ds , (168)
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S

p 2
2
‘}33 = V' zpTy(s)ds - . (169)
0 0 0 0

L (o}

\'

(iii) if and only if B consists of two separate closed parts B_ and B,

1 2
solve
8 27 r on B
| 'K T (1)(8')ds' = ) : . (170)
p O 3 f ]
0 0 r on B2
compute
8 2
(1)
27 (z+ v) pT (s)ds "
5P 3 (171)
33, _ 0 0 ,
A" 2
0 (1) €
];pT3 (s)ds - o 27 prB(s)ds
(1) (1)

where the symbol (1) below the integral sign means that the integration

is carried out over the profile of B 1 alone
(iv) solve

8

f V4(s') {p cos o' Qz + [(z'-z)sina'-p'cosa']ﬂl}p’ds'
0
= g {V4(s)-2p} (172)
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where Ql, Qz and ' are defined ineqs. (61), (62) and (59)

respectively and the bar across the integral sign denotes the Cauchy

principal value; compute

S
M,

T ‘
e v j pV4(s)cos,ads . (173)
0 0 0

We therefore have four (five) integral equations to be solved, three
(four) being of the first kind and one of the second, and five (six) derived
quantities to be computed from their solutions: the numbers in parentheses
refer to the unusual situation where B is disjoint. Before attempting this

task, there are certain features of the equations to be examined.

4.2 THE KERNELS AND THEIR SINGULARITIES

The kernels K0 and K1 of the integral equations (163), (165), (166),
(170) can be expressed in terms of complete elliptic integrals of the first and
second kinds.

From the definition of R given in eq. (28), we have

2 2\ V2 g 12
R={((p+p")" + (z~-2") } (1~msin” 6) (174)

where
m = dpp’ (175)
(P+p')2 + (z-z')2
and
1
6 = 5 (r-y) . (176)
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Hence
1/2 -1/2

1 1 m 2

R 2 | oo (1-msin” 6) (177)
and when this is substituted into the definition (34) for K o’ We immediately
obtain

1/2
K = [ = K(m) (178)
0 pp'

where 7 /2

K(m) = (l-msin2 0)-1/2 do (179)

is the complete elliptic integral of the first kind (see, for example, Abramowitz
and Stegun, 1964, p. 590).

By a trivial manipulation, we also have

cos Y 9 1
R m R 2pp'

(180)

implying

cos Y

R

= (mpp')“l/2 (1- le) (l-msin2 9)_1/2 --(1--masin29)1/2

(181)
and hence, from the definition (29) of K X

2 m _
K, = (mpp')1/2 {( - 2) K(m) E(m)} (182)

where T /2

E(m)=f (1-msin®6) 2 ag (183)
0
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is the complete elliptic integral of the second kind (loc. cit. ).

The above repi'esentations of K 0 and Kl are exact. Since p, z, p', z'
are all real with p, p' > 0, it can be verified that 0 < m < 1. Over this
range E(m) is a finite slowly-varying function, having the values 7/2 for
m =0 and unity for m=1. A finite polynomial approximation sufficient for
computing E(m) with an error of less than 2 x 10 -8 is given in Section 17. 3. 36
of the above reference. Through the first three terms the precise expansion is

( Jahnke and Emde, 1945):

1 1 2 2
= - - + -
E(m) = 1 i 2mlr‘+0(m1,ml P) (184)
with
m1= l1-m , (185}
2 2
- n! - !
ie. m = PP );(Z Z )Z (186)
(p+p') +(z-2")
and
r- 2 ¥ (187)
2 ml

We observe that m, = 0 ifand only if p'=p, z'=z, that is, when the integration
and observation points coincide. For an integration point in the immediate

vicinity of the observation point,

5 2
m, ;v_(—z-;-) (188)

where s is to a first order the arc length between the points.
The elliptic integral K(m) also has the value 7/2 for m =0 but becomes
logarithmically infinite a8 m-—+1. A finite polynomial approximation sufficient
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to compute K(m) with an error of less than 2 x 10"’8 is given in Section
17.3.34 of Abramowitz and Stegun (1964), and a precise expansion through
the first three terms is ( Jahnke and Emde, 1945):

K(m)=P+%mlr‘ —im1+0(m12,m12 r ) . (189)

Because of the infinity of K(m) asm — 1 (m1—+ 0), KO and K1

are also infinite in this limit, but their behavior in the vicinity of the singularity
is easy to determine. Using (184) and (189) we have

K, = (p ')17 {]"'+0(ml,m1 \"‘ } (190)

and

172{r| “°‘m1'm1F} ' (191)

(pp)

showing that the singularity at p'=p, z'=z is an integrable one in each
case. The contributions of the singular (or self ) cells to the integrals in
eqs. (163),(165), (166), and (170) are therefore finite and can be
analytically approximated as follows.

Consider for example the integral equation (165). If the self cell in
the sampling procedure is centered on s =s n (where p =pn) and is of arc
~ length As, then

1
+—
sn 2 A8
! t ! t [ { t
f p K0T2(s ) ds =f 1 p KOTZ(S )ds
self 8 =T As
n 2
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1R
)
=
3
0o
)
bv
o
’—l
=~
o
a.
w

"I"As
2 8p
~ tn|——
Tz(sn) f n 5] ds
-i As
2
and hence
16pn
t 1 1 o~ 1 4+
p KOTZ(B )ds TZ(Bn) LN 1] As
self

(192)

It is desirable to retain the first correction, unity, to the logarithmic term to
ensure the necessary accuracy when the sampling is relatively coarse and /or
o is small. For the integral equations ( 166) and ( 170) the results differ

(1)

from the above only in having T3 (s n) and T,3 (sn) respectively in place

of T2 (sn) ; and for the integral equation (163):

1
+—
Sn 5 As
1 1 1 t
f p KlTl(s)ds pnTl(sn)f 1 K, ds
self 8 -— As
n 2
1
5 As

21
—
—
~~
w
=]
~
=
- | ©°
"l ©
i
[\]
(=}
4]
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giving

16p
! 1 ! A~ < n -
f p KlTl(s)ds ™~ Tl(n) Ln s 1] As
self

(193)

For the integral equation (172) the computation of the kernel is a more

complicated task due partly to the presence of the functions Q 1 and QZ'

However, these also can be expressed in terms of complete elliptic integrals,
and the resulting method of computation is much less time consuming than a

direct numerical evaluation of the integral expressions for 2 1 and 2 5°

The definition of Ql is given in eq. (61), and using eqs. (177) and

(181), the integrand can be written as

3/2
cosy 1 m / m g 32 g ~1/2
R3 * T oo (1- 2)(l-msin 6) ~(1-m sin" §)
from which we have
3/2 T/2
Q = / (1-2) (1 '29)-3/2 9-K(m)
17 2m | pp’ 2 m sin df=-K(m

(194)

To evaluate the remaining integral, differentiate the expression (179) for K(m)
with respect to m to get

7/2 5
sin 0 N
3/2 49 —

o =

K'(m) =

0 (1-m sinze)
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7/2
1 1 1
* o — 3/2 -~ T do
2m 0 (l—msinze) (1—msin29)1/2
7/2 |
1 2. =3/2 1
= o f (1-msin”6) de - om K(m)
0
Hence
7/2
f (1-mein?6) 32 4o = K(m) +2mK'(m) (195)
0
and when this is substituted into eq. (194), the result is
3/2
m LY 1 ,_.l.
Q = o {(1 3 ) K'(m) 4 K(m) } (196)

The procedure for 2 5 is similar. From eqs. (177) and (181),

3 2\ pp'

) 3/2 2 -3/2
cosy _ _1 m {(1-22) (1-msin26)
R 2m

5 -1/2 1/2
-(2-m)(l-msin” 6) +(1-msin”9)

implying
7/2 -3/2

3/2 2
L 1 [ m .2
Qz = 5 vy (1 2) f (1-msin " 9) db
m 0

-(2-m)K(m)+ E(m) ),
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and when the expression (195) for the integral is substituted into this, we have

3/2 5 5
1 m

m ' m
5 m2 ;)-p_' 2m(1—‘2") K'(m)- |1~ 4 K(m) + E(m)

(197)

The finite polynomial approximations to E (m) and K(m) were mentioned

earlier, and in particular, for the latter,

+....+b m 4)!n L

4
= +
K(m) (a0+a m, +.,...+a m, )+(b0+b1m1 A™ m

11 4

5 5 1
+ O(m1 , my In ml) (198)

where values for the coefficients ai and bi’ i=0,....,4 are given in Section

17.3.34 of Abramowitz and Stegun (1964). Since d/dm = -d/dml, it
follows that

b
0 2 3
K'(m) = ml+(b1-al)+(b2--2:@12)m14\-(b3 32;13)m1 +(b4--4a4)m1

3
m, ) In L + O(m 4, m4 L
1 m1 1 1 m1

-(b1+2b m, +3b m12+4b

271 3 4

which can be used to compute K'(m). We note the pole-like behavior of

K'(m) when m, =1 -m = 0, and this is reflected in the non-integrable

1
singularity of the kernel of eq. (172) at p'=p, z' =2z,

4.3 THE BODY AND ITS VOLUME

One of the many factors motivating the present study was the need to
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compute the low frequency scattering behavior of missile-like targets. These
are generally rotationally symmetric bodies (or can be approximated as such
to an accuracy which is adequate at low frequencies ), and are often made up
of several distinct parts, e.g. a cone mated to a cylinder which is terminated
in a spherical cap. Although the complete profile of such a body is certainly
not an analytic curve, each individual segment has a relatively simple equation
whose form can be used to advantage in the numerical process.
It is therefore assumed that the profile is a finite piecewise smooth
curve composed of straight line and circular arc segments. For definiteness,
the number of segments is limited to 15 or less. At the end points of the
profile where it intersects the z axis of rotation of the body, p = 0 (of course ),
and the nature of the program is such that segments which are perpendicular
to the z axis can be handled, as can a 'disjoint' body having two separate
parts provided each portion of the complete profile terminates on the axis.
Every segment contributes to the total volume V_ which can be found

0

by adding the individual contributions ¢ V.. In certain cases, a volume

contribution can be negative and subtract f(i'om the volume attributable to the
other segments. Where this occurs, it must be noted as part of the input
specification for the segment in question.

In the following we list the input specifications of circular arc (Types 1
and 2) and linear (Type 3) segments, and give expressions for the cor-
responding volume contributions (assumed positive ). The segments must
be described sequentially starting at the intersection of the left hand segment
with the axis, and the ordered sequence of segments defines the profile of
the body. In some cases it may be desirable to regard a single linear or

curved portion of the profile as two or more segments to permit a non-uniform
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spacing of the sampling points over the whole.

Type 1 Segment ( Circular Arc, Concave Down)

Specification:
210 % (z5,0,)
Z7
- \
py=plz), oy =plzy) (2, o€ \
1’ P\ \
AN
6(degrees), 0 < 6 < 180 \\\ \\
\\ \
volume sense \<5\
N
(ZO’ po)

If 6 is the angle subtended by the arc at the center of curvature, then

the radius a is

1/2
a = -——}—6—— {(pz-pl)z + (22-21)2 } . (200)

2 sin 5

Since we permit the specification of re-entrant circular arc segments we do

not require Z, >z 1 In order to obtain correct results for both standard

( Z, >z 1) and re-entrant segments define the quantity
d = ey B (201)
Py -2
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Then, the coordinates (zO, p 0) of the center curvature are
1 6
2y * {z1+z2-d (pl-pz) cotz}

6
{pl‘i-pz-d (zz-zl) Cotz} .

The volume of rotation is given by

(202)

oo =

Po ™

Z

2
f p2(z)dz

%

6V0= T

?

and since the equation of the circular arc segment is

2 2 2
(p-po) +(z-z0) =a

the incremental volume 6V0 is

6V =
0 T

2 2 1 2 2
- + - -
(z2 zl){p0 a 3 (u2+u1u2+ul)}

2
+ po{uz(pz-po)—ul(pl-poh da 9} , (203)

where u. = z_ -2
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Type 2 Segment ( Circular Arc, Concave Up)

Specification:
(2, p 0) N

\{;)\\

same as for Type 1

(zl,pl)'w

Eq. (200) gives the radius a of the type 2 segment, but the coordinates

(zO, pO) of the center of curvature are now

1 0
2y = 3 {z1+z2+d(pl-p2)cot2}

1

2

0 (204)
Py ™ {p1+p2+d(z2-—z1)cot-2-}
The incremental volume of the type 2 segment is
2 2 1, 2 2
= - -= + +
6VO T (z2 zl){p0+a 3(u2 wu, )}
(205)

2
" P {“2(”2"’0) -u;(py=py)+da 9}

Note that only simple sign changes distinguish (202) from (204) and
(203) from (205). Relationships that hold for both type 1 and type 2 segments
may be derived by using a constant § defined as follows:
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-1 type 1 segment
E = . (206)

1 type 2 segment

The center of curvature (z0 s P 0) and the incremental volume 5§ VO for circular

arc segments of types 1 and 2 are then
z, = 1l +2 +&d(p, - )cot-e'
0~ 2z )% % P17 Py %y

(207)
= = {p +p, +Edl ) cot &
Po ™ 2 \P17 P Zg~ 2yl 00y

6V, = 71

5 9 1, 2 2
0 (zz'z1)§’o+al -3 () +“1“2+“2)}"’5"0 {“2("2"’0)

—ul(pl-p0)+da29>\ , (208)

where, as before,

u, = z,-2

u, =z .-z
1

Type 3 Segment ( Linear )

Specification:

(z )

Z1’ Z2 /

py= p(zl), p2=p(z2)

92 Py
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The equation of the segment is clearly

Py —p
1
£ (12 (209)
2 1

=p +
P =P

and the volume contribution is

0
4
i.e.
= XL, _ 2 2
5V, = 3(z2 zl)(p2+pzpl+pl) (210)

which is positive or negative according as z2 > z1 , 22 < Z) respectively.
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5. NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS

M
The numerical procedures involved in finding P33 / Vo, 1l / A
(a V]

P
and where appropriate, 33/ VO are quite similar to those required for

P
11/ V,. anditis therefore sufficient to give full details only for Pl JAY 0"

5.1 T11 JA' o COMPUTATION

The primary task is the solution of the integral equation (163) for the
fum?tion T 1 (s) and this entails the determination of a sequence of values
Tl(l), i=1, 2,...., N, approximating Tl(s) at the sampling points
s = si on the profile p =p(z). For this purpose the profile is divided into

N cells Ci of arc length As, and midpoints si corresponding to the

i
coordinates (pi , zi ). Within each cell we also define the points :si _ and

si+ where

(211)

with the restriction

1
02 % 23

By assuming that Tl( 8) has the constant value T 1(1) over the ith cell,
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the integral on the left hand side of (163) can be evaluated as a linear com-

bination of the T

field point, leading to a linear system of N equations in N unknowns, viz.

w I, (2)
T1 jp Klds'+T1 p'Klds'+....

©

1

(i)

013630-9~-T

whose coefficients depend on the position (p, z) of the

Cy

Hence, the system to be solved is

where t_ is a column vector with elements

1

At = b

1

A is a square matrix with elements

1 1
aij = f P Klds

C.
J

and b is a row vector with elements

Increasing the complexity of the quadrature technique used to evaluate

the integrals

By

= 27rpj 2

will generally improve the accuracy but will almost

70

)

(N)
+ ! ! x
Tl p Klds 27:,0i

N

i=1,2,...., N,

i=1,2,...., N,

irj=1: 2, eeee N:

j=1,2, ...., N.

(212)

(213)

(214)

(215)

(216)
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certainly increase the computational cost. What is therefore desired is the
least expensive procedure capable of giving the required accuracy. The two
simplest approaches are to integrate first and second order approximations

togive (i ¥ j):

a,. = p K (i, j) As, (217)
ij pJ 1 J j

(218)

respectively, where the subscripts j- and j+ correspond to the points

sj _and Sj+ of eqs. (211), and Kl(i, j) is the kernel defined in eq.1(29)
and evaluated at the points (p i zi), ( pj, zj). By requiring @, < 3 we
ensure that the sampling points sj _ and Sj + do not coincide with the end
points of the cell Cj , and thereby avoid any difficulty in the computations

of Ql and 92 (see eqs. 196 and 197). When

“0%2V5 - (219)

eq. (218) reduces to the three-point Gaussian formula for which
w=§,w=—. (220)

With this choice of w 0 and w X the advantages of eq. (218) vis-a-vis

eq. (217) were now determined by computing P

11/ V, for a sphere using
various values of N. Fig. 1 shows percent accuracy and C.P.U. time versus
N for each integration scheme, It is apparent that for a given expenditure of

C.P.U. time the Gaussian three-point technique is much more accurate than
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Fig. 1: Peroent error aad C.P.U. time of P11/V0 cal-
culation for a sphere: T denotes trapezoidal rule computa-
tion and G denotes three-peint Gaussian.
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the trapezoidal method, though the accuracies of both are severely degraded
if N is too small (N 5). Since the Gaussian scheme with N = 10 produces
an accuracy of better than 99.8 percent for a sphere, there is no point in
going to a more complicated procedure, and the computer program was
therefore written using three-point Gaussian quadrature to determine the
matrix elements aij .

In summary, the integral equation_ (163) is solved by conversion to

the matrix system (213) in which

5 4
o s s + . .+ +__ + s

i,j=1,2 ..., N; ifj (221)

].6pi
1 — -1 , i=1,2,....,N.
aii= n As Asi 2 N

i

(i)

Having determined the sampled values T1

P
= Tl(si), 11/vO is
computed from eq. (164) by integration over each segment of the profile

using a second order integration procedure ( subroutine INTEG, described
in the Appendix).

5.2 Pa3 /v 0 COMPUTATION

The point sampling method of solution of the integral equations ( 165)

(1) (i)
2 3
, choose

and (166) requires us to find the sequences T =T (8,) and T

2 i
i=1, 2,...., N, from these equations. To determine the Tz(i)

a 0’ w0 and w1 in accordance with (219) and (220) and thence solve the

= T3(Si)’

3
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matrix system At'2 = b where

(i)
te; ¥ Ty

i=1,2,....,N (222)

b, = 2%z

and
a == o K.(,j=)*tp K (i,i" )+ %0 K (i,5) | as
ij° | 18)P5-"0't oot g Py o'ty j

i,j=1,2,....,N; ifj ,(223)

a, = [ln 6o, 1 1] As, i=1,2,....,N.
As

i
The T 3( i) are similarly determined by solving the matrix system At 3 =D

where the elements a . are again given by (223), but

j

(i)
tg; * T3
i=1,2,....,N . (224)
b = 2g
i
C P e
The quantities /e, v and ~ 33 /VO‘ defined in eqs. (167), (168) and (169)
H

respectively are computed using the same second order integration procedure

employed in calculating Pl /V0 .

If the body profile consists of two discrete parts, it is also necessary to

solve the integral equation (170). The corresponding matrix system is

4
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almost identical to that in (224 ), and from the sampled values T3( ) (s i)

~s

and T3(si), 6 P33/V0 (see eq. 171) is computed and, hence, P33/V0 .

5.3 My) /v0 COMPUTATION

The basic approach is similar to the above in spite of the more complicated

integral equation ( 172) that must now be solved. The matrix equation for the

(1) <
sampled values V4(Si) = V4 is Av4 b where
(i)
4y T Vg
i=12,....,N (225)
b, = 2
i TP
and
a,, = - 2 p. f(i,j=) + p. f(i,j+) +if(ij) As
ij 18 1"j- ‘ i+ 9 ’ j
i,j=1,2....,N; ifij, (226)
+-—
5i%3 A8y
a,, =7 - f p'f(s')ds! i=1,2,....,N
ii
8, - -1'As
i 2 i
in which
f(i,j) = [picosaj 92(1,1) + &zj—zi)sinaj-pjcosaj} Ql (i,j)]
(227)

i,j=1,2,....,N; i¥j.
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We observe that the computation of each diagonal element of A requires
the numerical evaluation of a Cauchy principal value (denoted by the bar across
the integral sign in the above expression for a i ). As an approximation to
this principal value, we remove from the cell Ci a slice defined by the interval
(si- % B Asi, 8 + -;' B Asi) where 8, 0 < < 1, is the fractional
exclusion; B=1 implies no exclusions, i.e. that the principal value is not
taken.

We now have

1
i i 2
2 > q -f p'f(s')ds! - f p'f(s')ds'
1
5 .

(228)

and these integrals are also computed using three~point Gaussian quadrature.

Defining

1
= - +
8 8, = 3 (1+B) Asi

1
Bip % 8y "3 %(1-B) Asy

8 = g +-;-a0(1-B)As

i3 i2 i

(229)

1
= + = (1+
515 si 4(1 B)Asi

1
54 % 85~ 3 %ll- B) Asy

1
8 = g +'2'a0(1-B)As

i6 i5 i
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we obtain

1 5 .
R YO 5 C sy C )t
a M7 2(1 B) 18 {pilf(l,ll) pi3f(1,13) pi4f(1,14)
. B
+p16f(i,16)} +§ {pizf(i’12)+ piSf(l’15)}JAsi

(230)

Equations (225) through (230) completely describe a system of N linear

equations in N unknowns V i=1, 2,...., N. Their solution and sub-

4i’

4i according to eq. (173) yield M

sequent integration of the V 1 / Vo .

Experiments were performed to find an appropriate value for the

M _
fractional exclusion B. As an example, for a sphere( 11/ V0 = 1.5

with N =20, the data in Table 1 were computed. If we exclude the fortuitous (?)

Table 1
B M11/V0 percent
error
1.0 1.480 -1.33
0.1 1.516 1.07
0.01 1. 503 0.18
0.001 1.501 0. 08

error zero occurring for 8 somewhere in the range 0.1 < B < 1, these
data indicate that the choice B =0.001 is sufficient to keep the error less
than 0.1 percent.

7
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5.4 SAMPLING RATE

Increasing the number N of points at which the surface is sampled
will generally increase the accuracy of computation, but since the number
of matrix elements increases as Nz and the cost of a linear system
solution increases roughly as N3, this improvement is obtained at the
expense of an increase in computation cost. Unfortunately, there is no
rule for specifying the minimum value of N sufficient for a given accuracy,
and the information which follows is based only on our experience in using
the program.

The results in Fig. 1 and Table 1 show that for a sphere P11 /v o and
M 11/ V0 are accurately determined with N as small as 20, and this is also
true of P33/ V(- On the other hand, if the body has a discontinuity in

dp/dz lying off the axis, it appears necessary to increase N to 50 or
more to maintain the same accuracy (error < 0.5 percent) in the Pll / V0
and 133 / V,, computations. This is illustrated by the results in Table 2 for

Table 2
P
N N, N, 11/ v
11 7 4 2.752
20 15 5 2.801
40 30 10 2.872
70 50 20 2.888

Note : Nl is the number of sampling points on the
generator of the cone (linear segment) and N, is

the number on the (half) base (circular arc segment).
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a rounded cone with half angle 15°. The small but not negligible (0. 58
percent) change in Pll / VO as N increases from 40 to 70 suggests that
such large values of N may be essential for bodies such as this for which
Tl(S)’ T2( 8) and T3( s) have infinities at one or more points on the
profile.

For the same rounded cone, the results for Mll [V o 2re given in

Table 3. Since an increase in N from 17 to 35 produces only an insignifi-

Table 3
M
N N, N, 11 /VO
17 10 7 1.680
35 25 10 1.678

cant change in Mll / V0 , the choice N =20 is now adequate. Observe
that the surface field V 4( s) associated with M / V,, does not become
infinite at a discontinuity in dp /dz, and this is undoubtedly the reason
why in many cases a small value of N now produces the same accuracy as
does a much larger value in the P [V o nd 1333/ V, computations.
No attempt has been made to exploit this finding in the general program.
When treating bodies composed of several segments, a strategy which
has proved successful is to divide all segments into cells of approximately
equal length. This serves to fix the allocation of any given number N of
sampling points among the various segments. Tests so far performed have
not conclusively shown the advantages of dividing a single segment into two
or more smaller segments so as to effect a non-uniform sampling. It is,

however, believed that such a sub-division may, for a given N, improve
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accuracy in the P / v, and P33/ V, computations for bodies like the

rounded cone having infinities in the surface field quantities.
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6. CONCLUDING REMARKS

We have here considered the low frequency scattering of electromagnetic
and acoustic waves by axially symmetric bodies. By concentrating on certain
quantities such as the normalised components of the induced electric and
magnetic dipole moments, we have shown how it is possible to arrive at
rather elegant expressions for the far zone scattered field in terms of
quantities which are functions only of the geometry of the body. Each such
quantity is expressible as a weighted integral of an elementary potential
function which can be found by solving an integral equation.

A computer program has been written to solve these equations by the
moment method and to calculate the dipole moments, the electrostatic
capacity, and a further parameter < related to the capacity. Any body
can be treated whose profile is made up of straight line and circular arc
segments and it is even possible to have two distinct bodies with or without
an electrical connection between them. Although no serious attempt has
been made to optimise the program, only a few seconds are required to
compute all of the above quantities to an accuracy of better than one half
percent.

We have already used the program to compute the scattering from a
variety of shapes, and it may be helpful to list some of the results obtained
so far, Data for a rounded cone consisting of the intersection of a cone
of half angle 6 with a sphere centered on the apex are given in Table 4.
L/w is the length -to-width ratio of the body. For 6 < 90°, the values
of T11 TAY o and Pas /v o 8re quite similar to those previously com-
puted by Senior (1971 ) using a mode matching method, but since M / v,
showed significant discrepancies, this quantity was determined for a variety

of 6. Detailed checking has confirmed that the present data are accurate
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6 (deg. )

7.5

15

30

45

60

80

90

93

99.2

108

120

140

151.7

180

L/ w

9.554

3.837

1.932

1. 000

0.7071
0.5774
0.5321
0. 5000
0. 5262
0.5799
0.6545
0.7500
0. 8830
0. 9402

1.0

Table 4: Rounded Cones
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Vo

0.002870

0.01792

0.07137

0.2806

0.6134

1. 047

1.731

2.094

2.204

2.429°

2.742

3.142

3.699

3.938

4,189

P P
11/v0 33/,

2.865

3.664

4,520

4. 428

4.368

4,261

4,071

3.789

3.370

3.187

3.0

82

8.147

3.494

1.931

2.184

2.242

2.372

2.553

2.769

3. 006

3.042

3.0

M
11/vO

1.884
1.813
1.678
1.484
1. 366
1.312
1.334
1.373
1. 386
1.416
1.458
1.507
1. 547
1.540

1.5

heftw)

5.406

6. 386

7,428
7.303
7,123
6. 889
6.586
6. 441

6.283
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to three significant figures., When 6 = 90° the body is a hemisphere

for which precise values of P11 / VO and P33/ VO are available:

P11 /vO = 4,430...., P33/vO = 2.189.... (Schiffer and Szego,
1949, p. 152). The corresponding values in Table 4 are within 0, 2 per-
cent of these. For 6 > 90° the cone is a re-entrant one, i.e. a sphere
with a conical region removed, and when 6 = 180° the body is a sphere
for which exact data are also known.

Results for ogives and symmetrical lenses whose arcs subtend an
angle 6 at their centers of curvature are shown in Table 5, The trans~
itional shape is a sphere for which 0 = 1800.

To illustrate the computations when two bodies are present, Table
6 gives data for two identical spheres separated by a distance € d where
d is the sphere diameter. When the two spheres are touching (e = 0)
it is known that P33/P11 = 8/5 (Schiffer and Szegd, 1949, p. 154);
the ratio deduced from Table 6 is 2. 678, which is within 0. 4 percent of
the exact value. As ¢ increases, P /VO, My /V0 and P33/V0
rapidly approach the values appropriate to a single sphere in isolation.

P
33/V_ , on the other hand, is proportional to the axial component of

the indgced electric dipole moment for two spheres which are electrically
connected by an infinitesimal wire, and with increasing € this increases
indefinitely, as expected (Kleinman and Senior, 1972). The same is true
of C /(€ V)" The parameter < has also been included in Table 6, and
since its exact value can be shown tobe -(1 + €/ 2), the accuracy of

computation can be judged.
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Table 5: Ogives and Lenses

P P M
Shape  6(deg.) 4w  V, /vy 788/Vy T1L/V) c/(eylw)

22,8 10,02  0.004146 2.089  49.88 1.943  6.128

36 6.314  0.01058  2.100  24.15 1.910  5.696

ogive 56 4,011  0.02650 2,189 12.57 1.843  5.451
88 2.475  0.07148  2.363 6.778  1.739  5.424

132 1.540  0.1966 2,647 4,136  1.611  5.696

v 150 1.303  0.2847 2,775 3.595  1.564  5.880
sphere 180 1 0.5236 3 3 1.5 6. 283
N 64.4  0.6297 1.212 3.779 2.161  1.368  6.570
43,6  0.4000 2.586 5.182 1,674 1,252 7.375

lens 28 0.2493  6.448 7,649 1.390 8.758
1.2 0,1512 17.30 11.88 1.225  1.098 10,759

v 11.4  0.09981 39.55 17.49 1.144  1.061  12.982
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0. 005

5.0

10.0

P
11/vO

2.702
2.706
2.709
2.715

2.732

2.759 -

2.891

2.950

2.994

3. 002

P
33/v0

7,237
7.280
7,319
7,402
7,655
8.026
12, 02
18.19
120.6

383.1

013630-9-T
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Table 6: Two Spheres

$33 [V, M / v,
7.237 1.605
5.021 1.586
4,800

4,557 1.607
4,210 1.592
3.922 1.579
3.299 1.528
3.142 1.511
3. 045 1.500
3.046 1.501

CE/EVE;;)

6.153
6. 151
6.150
6.148
6. 141
6.130
6. 015
5.822
4.384

3.470

. 0004

. 0029

. 0054

.0100

. 0250

. 0503

. 2502

.5001

.5001

. 0000
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APPENDIX: THE COMPUTER PROGRAM

P P
The program computes 11/VO » Cls 1, 33/Vv_,
A € 0

P
M / V, and, where appropriate, 33 /V_ , and consists of a main

0 ?
program and six subroutines,

A.1 DATA SET

A data set is made up of one control card and a number of segment
specification cards, one for each segment ( or sub-segment) of the profile.

The segment specifications conform to the convention stated in Section 4.3.

Control Card

Columns Description
1 The number (1 or 2) of bodies.
3-4 Two digit integer ( right justified): the

number of segments on the first body
(the body to the left). When there is

only one body, use these columns.

6-7 Same as columns 3-=4, but for body to
the right.
9 A printing key :
1: print T, from P33/VO com-
putation,
0 or blank: do not print T_.

3
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11 A computation key (0, blank or 1)
1: suppresses computation of 1:’ll / A
P
Cles 7 33/V0 .

13 ' A computation key (0, blank or 1)

1: suppresses computation of M11 / v .

21-30 A real number: the fractional exclusion .

If these columns are blank, [ defaults to

0.001.
Segment Specification Card
Columns Description
1-2 Two digit integer (right justified): the
number of sampling points or cells on the
segment.
4 Segment type key :

1: circular arc, concave down
2: circular arc, concave up

3: linear.

6 Volume sense :
+ or blank: additive volume

- : subtractive volume.
11-20, 21-30 Two real numbers: respectively, the end
coordinates z ] and Z, of the segment.
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31-40, 41-50 Two real numbers: respectively, the end
coordinates Py and Py of the segment.

51-60 A real number: for circular arcs, the

included angle in degrees.
There are the following restrictions:

(i) the total number of segments must not exceed 15,
and (ii) the total number of cells over all segments must not exceed 80.
The profile is specified in the direction of increasing profile~length, beginning
at its left-hand intersection with the z-axis and ending at its right-hand intersec-

tion with the z-axis. Re-entrant segments are permitted, allowing z 1 > Zg +
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A.2 MAIN PROGRAM

The main program reads and prints data and supervises all computations.

A rough flow chart showing the interaction of the subroutines is given below

. END OF
> Read control card DATA
For each segment N
1) read specifica~- DATA
tion card €
2) compute sample
Construct linear
SETUP
systems <
l{ A Y
<€
DECOMP >
Solve linear
ELLI
systems
<€
SOLVE - \{
Integrate weighted >
Print -
< INTEG
results sequences <
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REAL AP11(B0480)4AP33(RN,80)yAMLLI(804s80)4X(80),B(80),

6 7FP(2)yRHOEP(2)4ST3(A)4T3(RO)yM1L,T1(8O)

INTEGER NUMPTS(15),PLUS/Y+1"/,4BL/"Y V/4INDX(2?)

COMMON RHO(BN49)4Z(8049)4ARC(80O)4C(8B0,9),S(RO,9)/SUL/TPS(80)
DATA MIN,TWOPT yPT WO WL/ '='4he283185,3.141593, 4444444, 27771771/

37 READ (5434, END=999 )NBODyNS1yNS24 IPRINTyKFYP11,KEYMY11,FR
34 FORMAT(ILg1X92(I291X)3(T141X)y6XsF12.7)
WRITE( Ay4)NRONDGyNS]
4 FORMAT( ¥ 13%% BREGINNING OF DATA SET:Y/'0',5X,'RODIES Y y6X,t=4,12/

5 1 1 ,5X, 'SEGMENTS 1/t 1,5X, 'RODY #1'45X,'="',12)
TF(NROD oLF. 0 oOR. NROD .GT. 2) GO TO 990
NSFGS=NST+NS?

TF(NROD JFQ. 2) WRITF(641)NS?
1 FORMAT(! 145X, 1RNONY #21,5Xy1=1,12)
TF(NRDD FQe 1) GO TH 10
TF(NST oLEe 0 JORe NS2 JLF. 0) 6O TO 990
10 TFINSFGS JLF. 0 JNR. NSEGS .GT. 15) 6N TO 990
WRTTE(Ay352) [PRINTJKFYPLL,KFYM]1
352 FORMAT(Y 145X, "PRINT KFY1,3X,'=1,12/1 ',&X, 'COMP KEY P1oS=t, 0/
60 15X, 1COMP KEY MI1S=1,17)
TF( FK JLFe Do oNRe FR .GTe 1.) FR=.001
TF(KFYM1] oFU. 0) WRITE(6,5)FR

5 FORMAT(Y ' ,5X,'EXCILLUSTON =VybT.4)
TE(KEYP11 (NFe O JANDe KEYM1] «NE. 0) GO TO 990
M=0
NC1=0
VO=0.0

NN 11 I=1,NSEGS
READ(5412) NUMPTS(I),ITYP,ISIGNyZEP RHOEP, THFTA
12 FORMAT(T241XsT191XsA144X45F10,7)
TF(NUMPTS(T) o1 Fe 0 OR. ITYP oLF. 0 oOR. TTYP .GT. 3) GO TO 990
IF(ISIGN «FO. BL) ISIGN=PLUS
WRITE(6413)T4NUMPTS(T) 9 ITYP,ISIGN,7FP RHOFEP
13 FORMAT(YOSEGMENT #9312,730/ v Vo BXy POELLS yTXy =1, 172/1 10X,
6 VTYPE KEY V34X, t=1,12/1 V45X, VWNLUME SENSE= ', A4/1 1, 5%,
B 17-CONRDINATE END POINTS  =(0  JF12474 'y ' yF1247,1) /0 1,5X,
5 TRHO=CONRNDINATE END POINTS= (' yF 12479y ' yF12.7,)1)
IF(ITYP JNE. 3) WRITE(6,14) THFTA

14 FORMAT(Y ",5Xy'THETA (DEG) ='yF10.5)
ITF(KFYM11 «FQe 1) FR=1.0
N=M

THETA=PI*THFTA/180.
M=M+NIIMPTS (1)
TF(I JLFe NS1) NC1I=NCI+NUMPTS(])
IF(M .GT. 80) GO T 990
CALL DATACITYPyNgMy7FP4RHOEPy THETASFRyVNLINCG)
TFCTITYP JNE. 3 AND. ISIGN oFQ. MIN) VOLINC=-=-VOLINC
11 VO=VO+VOL ING
WRITE(6452)V0
57 FORMAT('OCOMPUTED RESULTS: '/t 145Xy "WOLUMEY 46Xy '=1,F10,5)
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DN 2 N=1,M

INDX(1)=N

AN=ARC (N)

TN=RHO(N,8)

NO 3 L=N,y4M

IF(L <FQe N) GO TO &2
AL=ARC(L)

TL=RHO(L48)
IF{KEYM1I1-1)110,109,109
AM11(N,L)=040

AMI1(L4N)=0.0D
IF(KEYPI1-1)111,112,112
APll(NvL)=0.0
AP11(LsN)=0.0
AP33(NyL})=0.0
AP33(L4N)=0.0

INDX(2)=L
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NN 103 J=14347
JPh=J+6
DO 104 Li=1,2
[=3-IL
T1=INDX(LL)
12=INDX (1)
TI2=RHN(I12,4JP6)
CALL SFTUP(KEYP114KFYMI1yI114124JP6yAPT11,APT33,AM[11,1)
[F(KEYP11-1)105,106,106

105 APII(T1,I2)=AP1YL(I) 4 I2)+APTY1I*TI?
AP33(11412)=AP33(11,12)+API33%T[?

106 IF(KEYM11-1)107,104,104

107 AMIL(T1,I2)=AMIL(I141I2)=AMIL1L*TI?

104 CONTINUF

103 CONTINUF
CALL SETUP(KFYPL1yKFYMI1 4Nyl y84APT1L,APT33,AMI11,1)
TF(KEYP11-1)108,209,209

108 U=W0*APT11
APTT (N, L)Y=AL(WIRAPLY (NyL)+i1:TL)
APTTCL oN)=ANs(WLRAPTL (L gN)+UTN)
U=WOXAPT33
AP33(N,L)=AL*(WLRAP33(NyL)+URTL)
AP33 (| 4N)=AN:(WLI*AP3I3(LyN)+UxTN)

209 TF(KEYM11-1)210,3,3

210 AMIT(NgL)=AL*(WL*AMLL (NyL)=AMIT1*WOxRTL)
CALL SETUP(1404L 4yNy8yAPI114API33,AMI11,0)
AMYY (LyN)=AN#(WI%AMLL (LyN)=AMILILI*WOXTN)

GH TO 3
R7 TF(KEYP11-1)R3,84,84
R3 H=ALOG(16%TN/AN)

APTT(NygN)=(U=-1+0)%*AN
AP33{NGN)=(U+1.0)%AN

R4 IF(KEYM11-1185,3,3
R5 TF{FR LFQ. 1.0) GO TO 3
NN 86 I=146
RA CALL SFTUP(140¢yNyNyTgUeJgST3(I)y1)

= 5% (1.0=-FR)*AN
AMILT(NyN)=PTI-Ux(WOXx(RHO(Ny2)%ST3(2)+RHO(N,5)%ST3(5))
3 +W1IH(RHO(Ny1)%RST3(1)+RHOING3)*STI(3)+RHO(Ny &) %ST3(4)+
4 RHO(N,6)YXST3(6)))
3 CONTINUF
? CONTINUF
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DU 20 1=14M
B(I)=TWOPI*RHO(I,8)
IF(KEYP11-1)21,24,24

CALL DFCOMP(AP114M)

CALL SOLVE(AP114X4R4M)

NO 22 I=14¢M

X(I)Y=RHO(I 48)%x2%X (1)

CALL INTEG(X¢NSEGSyNUMPTS,P11)
P11=P11*PI/V0
JF(KEYM11-1)725,28R,28

CALL DECOMP(AM11,M)

CALL SOLVE(AM11 4X4RyM)

N 26 T=1,M
XECTY=RHO(T ¢B)XC (T 4R)EX(T)

CALL INTEG(X4NSEGSyNIUUMPTS,M11)
M11=PI*M11/V0O
[F(KEYP11-1)32,45,45

NO 29 I=1,4M

B(T)=TWOPI*7(1,8)

CALL DECOMP(AP33,M)

CALL SDLVE(AP33,X,R4M)

DO 134 I=1,M
X(I)=Z2(148)%RHO(TI48)%X (1)
RIIY=TWOPI

CALL INTEG(XyNSEGSyNUMPTS,P33)
CALL SOLVE(AP33,T3,R,M)

NO 35 [=14M
X(I)=RHO(T1,8)%T3(1)
BITI)=Z2(T48)%X(1)

CALL INTEG(X¢NSEGSyNUMPTS,CAP)
CAP=TWOPI*CAP

CALL INTEG(B¢NSEGS ¢yNUMPTS yGAM)
GAM==TWOPI*GAM/CAP

P33=( TWOPI*P33=-CAPXGAM®GAM) /VO
TF(NROD = 1) 39,39,54

N 36 T=14,M
IF(I-NC1)305430%5,306
R{I)=TWOPI

GO T 36

R(I)=0.0

CONTINUE
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CALL SOLVF(AP33,T1,B,4M)

N 307 I=1,M
X(1)=RHO(T,8)*T1(I)

CALL INTEG(XyNSFEGSyNUMPTS,TL)
CALL INTEG(XaNSLyNUMPTS,TN)
N 308 T=1,M

X(I)=2(1,8)%X(1)

CALL INTEG(XyNSFGSyNUMPTSsU)

NELTAP==(TWNPI/VO) % (U+GAMRTL )32 / (TN=TWOPTTL*TL/CAP)

‘U=P33+DELTAP

WRITE( 6440)CAP,GAMyP11,P33

FORMAT(' 'y5X,'CAPACITANCE ='4yF10.5/" 'y 5X e TGAMMAY y TXy ' =ty F1045/

L5 X,tPLL/V s TXy =y F10.5/"
[F(NRON +F0e. 2)WRITE(A64309)DELTAP,U

'ySXy'pBB/V'97X9'='1F1().5)

FORMAT(Y t,5X,"NDELT P33/V',y2Xy'=",F10.5/"' ',56X, 'DISINT P33/V=",

6 F1045)

[F(KFYM11=-1)42,337,337
WRITE( 6y43)M11

FORMAT(!Y V45X, "ML1/V!4TXy'=",F10.5)

IF(IPRINT «EQe 1 <ANDe KEYPI11

6 (72(148),RHO(T,8),T3(1)y1=1,M)

0) WRITE(H,44)

FORMAT(10Y 45Xy 1727y 10Xy "RHOY 312X, ' T3/ (" 'y3(F12.642X)))

GO TN 37
WRTTE( 6,991)
FORMA T( 103
CALL SYSTEM
END

ERROR IN DATA?Y)
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A.3 SUBROUTINE DATA (IN, MX, MY, ZEP, RHOEP, THETA, B, VOL)

This subroutine is called once for each segment of the profile. From
the input specification for the segment, DATA computes the (z, p) coordi-
nates of the necessary sampling points on the profile, the quantities cos «

and sin o at these points and the incremental volume of the segment.

Arguments :
IN Type key for segment.
MX Total number of cells in segments to the left.
MY MX + (number of cells in this segment).
ZEP z - coordinate end points of segment: ZEP (1)=z 1’
ZEP(2) = z 9

RHOEP p - coordinate end points of segment :
RHOEP (1) = I RHOEP (2) = p2

THETA Angle (in radians) subtended by a circular

arc at its center.

B Fractional exclusion, S .
VOL Incremental volume of segment.
Comments :

Stored in COMMON are the arrays RHO (80, 9), Z(80,9), ARC(80),
C(80,9) and S(80,9) which contain the numbers computed by DATA .

For the Ith cell, the subscripts (I, J) correspond to the points sij
of (229) when 1 < J < 6. For J =7, 8,9, the subscripts (I, J)

refer to the points 8, s, and L respectively of (211).

i
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SURROUTINE DATA(INyMX,MY,ZEP,RHOEP,»THETA,B,VOL)
DIMENSION ZEP(2),RHOEP(2)

COMMON RHO(80,9),2(80,9)4ARC(80),C(80,9),5(80,9)
DATA STEP/.3872988/

MXP1=MX+1

FN=FLOAT(MY=MX)

[F(R «NF. 1) SURSTP=.5%(1.0-B)*STEP
IF(IN=-2)142+3

CC=-1.0
GO TO 10

ST2=SIN(THFETA/2.0)

A=7EP(2)-7FEP(1)
RAD=0.5%SORT ((RHOEP (1) =RHOEP (2))*%2+A%A)/ST2
DDh=A/ARS (A)

T=CC*DD*COS(THETA/2.)/ST2
Z7CNT=0.5%(ZEP(1)+ZEP(2)+T*(RHOEP(1)~RHOEP(2)))
RHOCNT=0.5%(RHOEP (1) +RHOEP(2)+T*A)
U2=2EP(2)-2ZCNT

Ul=ZEP(1)-ZCNT

VOL=3.141593%ARS (A% (RHOCNT*%2+RAD¥RAD=(U2**2+U1*U2+UL*x2)/3,0)

3 —CC*RHOCNT*(UZ*(RHOEP(2)—RHOCNT)—U1*(RHOEP(1)—RHUCNT)
3 xNDD*THETA))

BETA=CC*NDD*THETA/EN
THET1=ATAN2 (RHOEP (1) =RHOCNT,ZEP(1)=ZCNT)
U=ABS (BFTA*RAD)

B3=STEP*RETA

DO 902 I=MXP1,MY
PHI=THETL+(I-MX=a5)*BETA

IF(B .FQ. 1.0) GO TO 1905

DO 1902 J=1,2
ANG=PHI+,5%(J=1,5)*BETA%(1.0+B)
PO 1903 L=1,3
PSI=ANG+(L-2)%SUBSTP*BETA

M= +3%(J-1)
C(T4M)==CC*SIN(PST)
S(I4M)=CC*COS(PST)
Z(14M)=7CNT+RAD*CC*S(I4M)
RHO(I4M)=RHOCNT=CC*RAD*C(14M)
CONTINUE

NO 903 J=7,9

ANG=PHI+(J-8)%K3
C(I4J)==CC*SIN(ANG)
S(14J)=CC*COS(ANG)
7(14J)=7CNT+RAD*CC*S(1,J)

RHO (T 4J)=RHOCNT=CC*RAD*C(T14J)
ARC(T)=U

RETURN
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3 DX=(ZEP(2)=ZEP(1))/EN
DY=(RHOEP(2)~-RHOEP(1))/EN
U =SQRT (DX*DX+DY*DY)
SI1=DY/U
CI=DX/U
DO 917 I=MXP1l,MY
PHI=FLOAT(I-MX)=45
IF( B .EQ. 1.0) GO TO 1800
DO 1802 J=1,2
ANG=PHI+¢5%(J-1e5)%(1,0+B)
NO 1803 L=1,3
M=L+3*(J-1)
PSI=ANG+(L=-2)*SUBSTP
Z(I4M)=ZEP(1)+PSTI*DX
RHO(I4M)=RHOEP(1)+PSI*DY
S(I4M)=SI
1803 C(I4M)=CI
1802 CONTINUE
1800 DO 913 J=7,9
ANG=PHI+(J-8)*STEP
Z(I4J)=ZEP(1)+ANG*DX
RHO(T yJ)=RHOEP(1)+ANG*DY
C(I,J)=CI
913 S(I4J)=SI
917 ARC(TI)=U
VOL=1.,047198%(ZEP(2)-ZEP(1))*(RHOEP (1) **2+RHOEP(1)}*RHOEP(2)+
8 RHOEP(2)*%2)
RETURN
END
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A.4 SUBROUTINE INTEG (V, NSEG, NUMPTS, SUM)

INTEG numerically integrates quadratic interpolating polynomials

approximating the data on each segment of the profile. When the profile

is composed of several segments, no interpolation is performed across seg-

ment boundaries. Hence, the integration is accurate even for disconnected

segments, e.g. the circular arcs of two spheres.

Arguments :
A"/
NSEG
NUMPTS
SUM
Comments :

Real vector of function values, ordered as

the cells.
Total number of segments in the profile.

Integer array containing in NUMPTS (I) the
number of cells on the Ith segment: I=1,

NSEG.

Integral of V across the profile.

Stored in COMMON are the arc lengths ARC (I), I=1,...., N required

to compute the integral.
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SURROUTINE INTEG(VyNSEGyNUMPTS,SUM)

COMMON RHO(B8049),72(804+9),ARC(80),C(80,9},5(80,9)
NIMENSTION V(80)NUMPTS(15)

SUM=0.0

JACC=1

DN 3000 I=14NSEG

T=ARC (JACC)

| =NUMPTS(T)

N=L +JACC-1

SUM=SUM+T* (046 625%(V(JACCI+VIN))=e125%(V(JACC+1)+V(N-1)))
IF(L/2 oNE. (L+1)/2) GO TO 3001

SUM=SUM+T#{0.66 666675V (N=1)=0608333333%VI(N=2)+0,41666675V(N))
|M1=N-1

JLN=JACC+] ‘

no 30072 J=JdLDy LML ,?
SUM=SUM+0¢3333333%Tx(V(J=1)+4.0%V{J)+V(J+1))

JACC=JACC+L
RF THRN
END
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A.5 SUBROUTINES DECOMP (A, N) AND SOLVE (A, X, B, N)

Used together, DECOMP and SOLVE solve the linear system AX = B.
DECOMP performs a L-U decomposition of the N x N matrix A and
SOLVE performs back - substitution. These routines are adapted from
Forsythe and Moler (1967, pp. 68 -69).

SUHRROUTINE NDECOMP (UL 4N)
DIMENSION UL(B0,80)
COMMON /SOL/IPS(80)
NN 5 I=1,N
5 IPS(I)=1
NM1=N-1
DN 16 K=1,NM1
BIF=0.0
DO 11 I=K,N
IP=1PS(I)
IF(ABS(UL(IP4K)) oLE. BIF) GO TO 11
RIF=ABRS(UL(IP,K))
10XPIV=1
11 CONTINUF
IF(IDXPIV EQ. K) GO TO 15
J=1PS(K)
IPS(K)Y=IPS(IDXPIV)
IPS(IDXPIV)=J
15 KP=1PS(K)
PIVOT=UL(KP4K)
KP1=K+1
DD 16 I=KP1,N
IP=IPSI(I)
EM==UL(IP,K)/PIVOT
UL(IP,K)=EM
NO 16 J=KP1,N
ULITIPoJ)=UL(TIPyJ)+EMXUL (KP4 J)
16 CONTINUE
RE TURN
END
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SURROUTINESOLVE(UL ¢ XyByN)

DIMENSION UL(80,80)4+B(80)4yX(80)
COAMMON /SOL/IPS(80)
NP1=N+1

IP=IPS(1)

X(1)=R(IP)

DO 2 I=2,N

IP=IPS(I)

IM1=1-1

SUM=0,

PO 1 J=1,1IM1
SUM=SUM+UL (TP, J)*X(J)
X(I)=B(IP)=-SUM
IP=IPS(N)
X{N)=X(N)/UL(IP,4N)

NO 4 IBACK=2,N
I=NP1-1BACK

IP=IPS(I)

[P1=1+1

SUM=0.0

DO 3 J=1P1,N
SUM=SUM+UL (IP,J)*X(J)
X(I)=(X(I)=SUM)/UL(IP,I)
RE TURN

END
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A.6 SUBROUTINE ELLI (M1, K, E, KPR, KEY)

This computes the elliptic integrals K(m) and E(m) and the
derivative K'(m) from their power series approximations (see Section

4.2).

Arguments :
M1 _ Real, the quantity (1 «m).
K Real, K(m).
E Real, E (m).
KPR Real, K'(m).
KEY Integer: 0 Compute K, E and KPR;

1 Compute K, E but omit KPR.

SURROUTINE ELLI(M1,K,E KPRyKEY)

REAL M1,K,KPR

T==ALDOG(M1)

K=1.,386294+,5%T+M1%(9 ,666344E-2+,1249859%T+M1%*(3,590092E-2
5 +6.880249E=2%T+M1%(3,742564E-2+3.328355E-2*%T+M1*(1,451196E-2
5 +4,41787E-3%T))))
F=140+4M1%(,6432516+,2499837%T+M1*(6,260601E-2+9,20018E-2%T+M]x*(
B 4.757384FE-2+4,069A9 BE~2%T+M1%*(1,.736506E-2+5.264496E-3%T))))
TF(KEY <EQ. 1) RETURN

KPR=,5/M1 + 2,83225F-2 - ,1249859%T + M1%(-2,999362F-3-.137605%T
6 +M1%(~7.R99336FE-2 -~ 9.,985066F-2%T + M1*(-5.362998E-2 -
5 1.767148F-2 %= T )))

RE TURN

FND
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A.7 SUBROUTINE SETUP (KEYP1l, KEYM11, I, J, L, APIll,
API33, AMI11, 1J)

This is essential in computing the linear systems. Specifically
SETUP, after calling ELLI, computes the quantities API11 (K1 of
eq. 182), API33 (K0 of eq. 178), Ql (eq. 196) and 92 (eq. 197).
The quantities . and Q_ are used to compute f (i, j) (AMI11) of

1 2
eq. (227).
Arguments :
KEYP11 0 when computing API1l and API33,
else 1.
KEYM11 0 when computing AMI11, else 1.
I Subscript of observer (unprimed) cell.
J Subscript of remote (primed) cell.
L Index of the point within remote cell for

which the kernels are to be computed

(see DATA, Comments).

API11, API33 Described above
AMI11

1J 0: use last value of M1 in kernel
computations ;

1: compute new Ml.
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SUBROUTINE SETUP(KEYP11,KEYM11,1,4J4L,API11,API33,AMIL1,T4)

COMMON RHD(8049)4,Z(8049)4ARC(80),C(B0,9),S(80,+9)
REAL MyM1,4KyKPR
ID=2(J4L)-=-2(1,8)
R=RHO(1,8)
RP=RHO(J,4L)
IF(IJ .EQe 0) GO TO 115
RRP=R*RP
A1=RRP+RRP
A2=R*R+RP*RP+7D%*7D
M1=(A2-A1)/(A2+A1)
M=1,-M1
CALL FLLT(M1,4K4E4KPRyKEYM11)
AO=M/RRP
A1=SQRT(AQ)
A2=M+M
A3=2,-M
ITF(KEYP11-1)113,114,114
113 APT11=A1%(A3%K~-E-E)/M
API33=A1%K
114 Al=A1%*A0
A3=,5%A3
[F(KEYM11-1)115,116,4116
1156 AO=C(J,L)
M1 ==A1%(,25%K~-A3%KPR)
OM2=A1%(E-A3%((A3+M) %K = A2%A3%KPR))/(M%M)
AMI11=R*AD%0OM2+(ZD*S(J,L)—-RP*AQ)*0OM1
116 RE TURN
END

105






UNCLASSIFIED

Secunty Classahication .
DOCUMENT CONTROL DATA-R&D

(Security classilicotion of (e, hody of absteact and Indexing nnnotation muast be ontered when the ovarnll repoet i closallind)
TlaiMA VNG ACTIVETLY (Corporale author) T e L ORT SECUNITY CLASSIFICATION
T'he University of Michigan Radiation Laboratory UNCLASSIFIED
2216 Space Research Bldg., North Campus Th onoon
Ann Avbor. Michigan 4805y =T
QUPORT TITLE

THE NUMERICAL SOLUTION OF LOW FREQUENCY SCATTERING PROBLEMS

DESCRIPTIVE NOTES (Type of report and Inclusive datoa)
Scientific Interim

AU THOR(S) (Firat name, middio initial, last name)
Thomas B. A. Senior
David J. Ahlgren

Jn, TOTAL NO. OF MAGES 7b. NO. OF RCFS

12

RLPORTY DATC

February 1972 105

90, ORIGINATOR'S REPONT NUMATL RI3)

. CONTRACT OR GRANT NO.

F19628-68-C-0071 013630-9-T
. PROJECT NO. . s ps
Project, Task, Work Unit Nos. Scientific Report No. 12
5635-02'01 ah, ‘(;'lv'nﬁ‘:ozgpotaf NOI(S) (Any other numbera that may he ussigned

DoD Element 61102F AFCRL-72-0162
DoD Subelement 681305

OISTRIBUTION STATEMENT

A - Approved for public release; distribution unlimited.

12. SPONSORING MILITARY ACTIVITY

Air Force Cambridge Research Laboratories (LZ])
TECH, OTHER L.G. Hanscom Field
Bedford, Massachusetts 01730

- SUPPLEMENTARY NOTES

. ABSTRACT

The low frequency scattering of electromagnetic and acoustic waves by rotationally
symmetric bodies is considered. By concentrating on certain quantities such as the
iormalised component of the induced electric and magnetic dipole moments, it is shown
iow the first one or two terms in the far zone scattered fields can be expressed in terms
f quantities which are functions only of the geometry of the body. Each of these is the
veighted integral of an elementary potential function which can be found by solving an
ntegral equation. A computer program has been written to solve the appropriate equations
)y the moment method, and for calculating the dipole moments, the electrostatic capacity,
ind a further quantity related to the capacity., The program is described and related data
ire presented. ' :

)D "&v.1473
UNCLASSIFIED

Secunty Classihication



UNCTASSIFIED

Security Classification

a4 LINK A j Lk b Link C
KLY WORDS r
HOL LU wT rRouLr | wT ROt f 7

I

i

Low Frequency Scattering |

Electromagnetic }

Acoustic | |

Rotational Symmetry i

Computer Program }

Numerical Data !

:3 |
y
4

— UNCLASSIFIED ..

Secunity Classifivation



