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1. INTRODUCTION AND CONCLUSION

In this report, the results of a study concerning the effect of atrmosphere
on the operatior of the synthetic aperture radar (SAR) are surmarized. It is
well known that the success of SAR depends on the oroper choice of the weighting
function in the signal processing to account for the phase difference of the
radar signals returned from different parts of the ground surface. [Cutrona,
et al (1961), Brown (1967)]. So fav, in -ost analysis concerning SAR, the
weighting functions are constructed on the basis of free space propagation
of signals. In reality, of course, the atrosphere is inhorogeneous spatially
and tenporally. The effect of atmospheric refraction and scattering causes
the deviations and uncertainties on the a~plitude, phase, and direction of
the signal. In this report, based on the present state-of-the-art in the
solutions of wave propagation in inhorogeneous (and/or randor) media, several
models o atmosphere are chosen, and the effect of these atrospheric models
on the operation of SAR are discussed.

In Section 2 we describe a sirple SAR system. The returned signal, and
the prircioles of signal processing based on free space operation are outlined.
Various quantities involved in this "free space" model that may be effected by
the atmosphere are pointed out. In order to bring out primarily the effect of
atmosphere on its operation, this simple system is idealized, and the syster
noise is ignored.

In Section 3 we review briefly the probler of wave propacaton in inhomo-
geneous media. Several "popular models" of atmosphere are described, and our
present knowledge on waves in such atrmosphere rnodels is reviewed. esults use-
ful to the analysis of the operation of SAR system are outlined.

In Section 4, the results of Section 3 are introduced to the signal pro-
cessing scheme of the simple SAR system given in Section 2. The effect of the
atrosphere on the operation of this system are then deduced.

1
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Due to the uncertainties and variations of the parareters of atmosphere
involved, this report erphasizes the basic ajproach to the probler and the use
of mutual cohence function and two frequency coherence function in the analysis
of SAR resolution. For the case of weak turbulence, approximate sarple cal-
culations appears to indicate that the effect o turbulence on rarge resolu-
tion are negligible while the azimuth resolution is deteriorated slightly due

to turbulence. This conclusion, of course, is based on the particular set of
parameters used.

For the rainy and storny weather, the theory of weak turbulence does not
apply. In Section 4.4 we fornulate the approach that could be used to
analyze the SAR resolution. Due to excessive nurerical work that is involved
and ]ack of time, we did not proceed further.
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2. A SIMPLE SAR SYSTEM

2.1 Georetry of a Simple SAR System

A simple model of a synthetic aperture side-looking radar system is used
in this chapter to illustrate the basic operating principles of SAR system.
The idealized geometry involved in the operation of this system is given in
Figure 2-1. A moving transmitter A emits pulsed signals, illuminating a patch
of ground. The transmitter is moving with velocity v << ¢, in the x-direction
at a fixed height h. Thus, the vector position of the transmitter is given by
{Xi = v£, 0, h}. The antenna of the transmitting beam is pointed toward the
broadside with a depression angle Y, so that the direction of the center of
the beam is

Sy = ay cosY - a, sinY. (2-1)

The antenna radiation pattern rmay be expressed in terms elevation angle o and
azimuth angle 3. As illustrated in Figure 2-1, the direction of any ray from
the transmitter B is given by

~ A

- : +A _\_A i - -
S .3 a, sin 3 ay cos 3 cos (¥ - a) a_ cos 3 sin (Y - a) (2-2)

For simplicity, the ground is taken as the plane z = 0, and the ground
property is characterized by the ground reflectivity o(x, y). For free space

propagation, a ray in direction S, would be reflected by a point on the ground

3
with coordinates

h tan 3/sin (¥ - a) + X,

x = x{a, 3) ;

(2-3)
= y{a, 3) = h cot (¥ - a)

<
1



015239-1-F

Y
(b)
3=0
N
\7//'///1 77//1>.7>7?—‘—>\y

F—  y(e, 0) —

a = constant
(c)

x=0 X'i X\0, 3)

Figure 2-1.

(a) Geometry for a side looking radar system.
(b) Bears in y-z plane through A.
(c) Beams in a slant plane.
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In particular, for the center of the bean,

X, = x(2, 0) = X5
(2-4)
Yy = y(2, 3) = h cotY
The slant range of any reflecting point on the direction ;aa is
R = R, 3) = ——1 sec 3 (2-5)
? sin (a - Y) )
In particular, for the center of the beam,
R =R(0, 0) = — (2-6)
0 ? siny
and in any slant plane with fixed o (or y), the shortest slant range is
Ry = R(a, 0) = h/sin (¥ - o) (2-7)
In most analysis, we assure a,8 to be small and employ the following
approximate relation in signal processing
: : v i 9
a. The azinuth range is x - x; = R, = R, (2-8a)
R R
: v _ o v 0 -
b.  The broadside range y - Yo 5wy ® = sy © (2-8b)
N (x - %)%
c. For fixed a, R=R =~ —55—— (2-8¢)
y 2R
Yy
d. In the direction 3 = 0,
i (y - yo)2 -
R(oc,g)“RO"'ZROCOSY (y-y0)+——-ﬁa— . (2-8d)

These are commonly used in relating the transritter radiation pattern (function
of o, 3), the ground reflection point, and estirating the time delay in the
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analysis of the returned signal. However, in an inhorogeneous medium, the
rays may be curved, and the above relations must be modified according to the
variation of the rean index of re“raczior of the atmosphere.

2.2 Transmitted and Returned Signal

The moving transmitter A in Figure 2-1 emits a sequence of pulses, and
the returned signals for each pulse, after the carrier is removed, (or con-
verted to IF) is stored for processing. Let us consider the mth sulse, the
transmitted signal may be represented by

i t!
S(t')=R A(t)e ©° (2-9)

where 5y is the carrier frequency (Ra/sec), and A (t') is the complex pulse
modulation. The tire t' is a shift in * such that t' = J, the transritter is
at Xi = x". Thus, in terms of t',

X; = Xt vt' (2-10)

and the expression S (t') is same for each pulse. The returned pulse depends
on the reflectivity of the ground and the medium between the transmitter and
the ground. Let us assume that for a two way transmission from tne transmitter
A to a ground point (x', y') introduces phase of Q(Xi’ x'", y') to the RF signal
and modifies the comalex amplitude (due to delay and nossible dissersion) to

K g, X35 x', y'). Then the returned signal from the illurinated patch of
ground may be formally written as

o (x5 x's y')

S (t') = jdx' de' 6{a, 3) K(t', Xs x', y')e ’(x', y')

T
(2-11)

are
1.

where 5(o, 3) is the power pattern of the transmitting antenna, and a,

e w

functions of x' and y'. For simplicity, we shall assume that G (o, 3)
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The returned signal for all the pulses are stored in two dimensional format
and may be considered as a function of two variables, X and t'.

g 0 % o' oy K(e', % ') Bxoliols x's y)Dix's v (212)
In (2-12), t' takes continuous values from - %—to + %—, where t is the pulse

length while X takes discrete values mvT, where T is the interval between
pulses and n are integers.

In signal processing, we want to obtain the best estimation of o{x', y')
from the information S(xq,t). This is usually accomplished optically or elec-
tronically using the principle of matched filters.

2.3 The Ideal Resolution

The two direns<onal signal S(xm, t') may be considered as a two dimensional
mapping of o{x', y') with Kernel
Kixs t's x's ') = Kty xo, xt, y )Explis(t', x o x', y')] (2-13)

Basec on the principles of matched filters, the resolution of the estimation
of o(x, y) may be obtained from the generalized ambiguity function

T \
R
X (%, y, x', v') = | dt’ dx_ K{t', x_, X', y') X, x ., x,y)  (2-14)
. N - T n M
7|2

where N is the number of pulses summed to gether during processinc (for con-
venience of analysis, the summation is approximately replaced by integration).
The integrand in (2-14) may be factored into

Kkx = g - (2-15)

I
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where

ne>

Kit', x , x', y") Kt x, x, y), (2-16a)

and

Qh exp[io(xm, X', y') - ié(xm, x, y")] . (2-16b)

It is seen that gh depends on the RF phase of the signal and 9, depends on
the rodulation envelope distortion.

In free space, the

At, Xoo X's Y ) = At c ) (2-17)
where R' is the distance from the transmitter at {xm, J, h} to the ground
point (x', y', 0).
From (2-8c) we may approximate
. (x' - Xm)2 /
R —Ry,+"-'2R—r*-—. \2-]8)
Y
In the near forward direction, the second term can be neglected, so that 9
may be considered as a function of Ry. only.
The phase delay, for free soace 9ronagation, is given by
2w 2w 2w (X'-X)2
_tg =_Cp, 422 N (2-19)
c 'y ¢ y' ¢ 2Ry. ) i

From (2-18) and (2-19), it is seem that for simplicity, the analysis of
the resolution near the forward direction ray be decoupled into two one-dimen-
sional problems.

a. In the forward direction, x' = x = X the range resolution is ob-
tained from the range ambiguity function

8
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X (y, y') =| dt' gvit', y, y'dt' (2-20)

b. For fixed y (range Ry)’ the azimuth resolution may be determined

from

xp (% x") = dxo g (X x) (2-21)

It is expected that in real atmosphere, such decoupling is also valid,
hence the azimuth resolution depends on the structure function of RF phase
shift and the range resolution depends on the envelope distortion.

In free space, from {2-19) and (2-16b)

2wy e 22
9, = Exp[-1i c?u (x' - x)xw]exp[ieﬁ—-(x' -x7)] . (2-22)
y' y'
Thus
W
X, (x> x") = % (x = x') = exp[i CRD (x'® - )]
y 1
‘N
l EVT . ZwO ‘
. exp[-1 xR (x' - x;xm]dxm . (2-23)
-§VT Y

This equation indicates that the synthetic aperture in the azimuth direction
is equivalent to an aperture of effective lencth

Leff = 2NvT (2-24)
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To estimate the resolution, we see that the pattern function of this array

except and imaginary multiplicative constant, is given by

] —- - ' O 1
Fh(x ) = exp[-i R X X ]dxm )

If we define the resolution in terms of the equivalent rectangular pattern,

then the azinuth resolution is given by

The range resolution is usually achieved by chirping. If we let

2
A(t) - e]at ,
then
2R, 2R
g, = explia(t' - =97 - fa(t' - —4)?]
v c c
- 4o )t Ha o 2 _p 2
= exp[' C (Ryl = Ryft ]exP[ CZ \Ryl - Ry VAR
so that
T
4io 2 2\112 dia
X (R .,y ) = — (R ,7 - R -— (R, - R\t b,
y(Ryis R,) = exel 2 (R, y 17 expl- == (R, - Rt ]dt
=L
Thus, the range resolution is, 2
= "¢
Sv— 2at

The deterioration of these ideal resolutions due to atmospheric effect

siall be discussed in Section 4.

10
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3. WAVE PROPAGATICN IN INHOMOGENEOUS MEDIA

3.1 Introduction

The orobler of wave propagation in an inhorogeneous medium (such as at-
mosphere) has been investigated extensively in the past few decades. Substan-
tial useful results have been obtained from the early investication of the
propagation problers in stratified media, in weak turbulent media and ir tre
more recent works involving nedia with stronc turbulence and discrete scatter-
ing particles. The results of recent works are sumrarized in a paper by
A. Ishimaru {1977). In this section, sorme of the results that are directly
applicable to SAR operations are given. From the anélysis of Section 2, the
resolution of SAR system is effected rmost by the phase shift of the carrier and
distortion of the pulse modulation, the results we quote in this section
therefove concern these two types of problems.

It is to be noted that due to complicated spatial and temporal index of
refraction of the atmosphere, most results are asoroximate, and the validity
of each approximate approach depends on the frequency and distance of
propacation. In this work, we ave arbitrarily limiting our application to a
oropagating distance of 10 km and in the frequency range of 8 G4z to 2C.5 GHz.
In this range the parameters that may decide the particular choice of -odel
ave tabulated below.

Frequency 8 x 109 Hz 26.5 x 109 Hz
ravelength A 0.0375 n 0.011 m
k 167.55 1/m 550.0 (1/m)

A - 194 15.36 10.63 =

Aithin this range of parameters, it adpears that the ray and weak turbulence
approach rnay be appropriate.

11
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3.2 Stratified Media

It is known since early days of radar operation that the index of re-
fraction (r) of atrosohere, on the average is nearly unity but exhibits varia-
tions with neight due to pressure, temperature and roisture variations. The
variatior of r with height (h) is usually very small, and may be functionally
represented in the forr

r=1+6f(z) , (3-1)

where 8 is a srall quantity, and f(z) is the profile of the variation of r.
In the exponential atrosohere rnodel, we have

5 =313 x 107
and

f(z) = exp[-(2)] , (3-2)
with ¢ ¥ 0.1439/kn.

In general, due to excess moisture near sea and clouds, and large tenperature
gradient near deserts, f(z) takes different forrs, and may be approxinated by
sections of straight lines.

Exact solutions for wave propacation in a stratified medium is difficult
and ray theory (geometric optics) is commonly used. For a transmitter located
at (Xi’ Yi h), the solution of the ray equation indicates that a ray starts
from the transritter in the direction

s=sa +sa -sS.a_, {(3-3)
X X y

would be reflected from a point on the ground plane (z=0) witk coordinates:

12
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f s n{h)dz
X=X ¥ ? > 7 2.1/7 °
B A eI I (I T s, )]
(3-4)
h s r(h) dz
VR 2 5 7 2172
N O S OICRE )

The phase delay of the ray from the transmitter to the ground along this ray is

Ih 2
&3_ | r{z)dz

o (2 - ah)(s, D+ s P18

O=

(@]

For r decreesing with height, the ray bends toward the transmitte~ as illustrated
in Figure 3 1. This refraction phenorena has an important effect on astronomrical
observations, and computer programs have been developed [Garifinkel (1957)] for
the integration of the ray path and angle of arrival.

For approximate analysis of the ray path (3-3) through (3-5) may be
approximately evaluated to the first order or §, the results can be easily

shown
Sy s.h ][h
X = X; = g—-h + 6——7§ [fh) - " f(z)dz] , (3-6)
y s Jo
z
S S h h
oy = Y - l[ -
y -y, = h s [f(h) - o] f(z)dz] (3-7)
z S 0
z
and
9% h 2 2. 1(h
o = ?_ [ g‘z—*‘ 6:—3' [] - SZ ]f(h) - (] - 252 )HO f(Z)dZ]. (3-8)
Z

These ecuations shall be utilized in the next section in the investigation of
the distortion of the ground image.

13
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>
Y‘ 1:}':’1

Ray in stratified atmosphere

h \
\
\

AN

Ray in free space

Vi | AN
point of point of
reflection reflection for
(x, y, 0) ray in free space

Figure 3-1. 3ending of a ray due to refraction.

14



015239-1-F

3.3 Models of Turbulent Atmosphere

The index of refraction of a turbulent atmosphere is renresented by
(¥, t) =r+ (T t)

when r is the rean value {used in (3-2) and r](?, t) is a random function of
zero mean. In wave drodagation problers, for simplicity, r](7, t) is assured
to be isotropic, stationary and may statistically be described by correlation
function, structure function or spectral density function. To avoid confusion
we briefly state the notations used:

a) Given any isotropic randor function, f(r, t), we reoresent
f(?a t) = f{?) - f /Fy t)) (3"0)

=

where f(¥) = <f(F, t)> (3-10)

is the enserble average and f](?, t) is a random function of zero mean.

b)  The correlation function is denoted by the statistical average

2 t)> . (3-11)

= Bf(?] - ?2) = B(r) , (3-12)

The mean square variation of fi(r, t) is denoted by

<% = B4(0) . (3-13)

15
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c) If a random function is not homogeneous, it is sometires reaningful
[Tarkersi (1961)] to introduce a structure function defined by
> - > 2
{ = - / -
Delrys ry) = < filr, t) - Fi{r,, £)[%> . (3-14)

For stationary, locally horoceneous isotropic rardom field,

De(Fy, Tp) = De(¥) - ¥,0 = Dg(r) (3-15)

d)  For a horogeneous randor field we have

fuw)
-
—
-
~
1

28 (C) - 2B¢(r) , (3-16)

Be(r) = 3 Delr) - 3 De() . (3-17)

e) The three dimensional Fourier transforr of Bf(r) is the spectral
density

i 1 [ . /
o(K) = ??E'[ZBf(r) sin(Kr)dr . {3-18)

The inverse is

4Ty ork) sin Ke dK . (3-19)
jO

Bf(r) =

In terms of spectral density,

Ce(r) = 4 j(1 - Ei%Fﬁl) o(<) K dK . (3-20)
0

Various models of correlatior functions are postulated for atmospheve in
the study of tropospheric scattering [see for exarale Staras and Aheelon (1959)].
Solution of the proorovation problems however has carried out in detail only
for the Gaussian model [Chernov (196))]. For this model,

16
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2. 2
B (r) =B () "
, (2) e . (3-21)

Chernov assumed the value of

2 9
( = =
Bn\C) <n'l > 5 X ]O Y

and [

The model of locally horogeneous turbulence is a rore realistic description
of the atmospheve. Correlating with the theory of horogeneous turbulence and
reteorological measurenents, the wodel postulates the structure functior of the
index of refraction to be [Tartarski (1961)]

0 2,23

9 << r << L
n 0 0

(3-22)

fuw
—
-
~—
I

2 2/3 ,r,\2
n h Cn % (Efv

r << ‘2,0
0]

L0 is the outer scale of the turbulence, 20 is smallest size of eddies, and
Cn is known as the structure constant. These parameters are usua ly inferred
from reteorological reasurements and varies over a wide range. L0 is generally
on the order of 100 m and 20 is on the order of 10_3 to ]0°4 m [S*rohbehn (1968)].
The measured values of structure "constant" (n varies with altitude and depends

on the frequency {microwave or optical). Sore data of Cn2 was given by

Hafnagel (1966). In sample calculation for this work, we shall arbitrarily

take the value € 2% 2 x 1071 3/m?/3 |

3.4 have Propagation in Weak Turbulence

Meaningful approximate solutions of wave propacation in atrwosphere with
weak turbulence were obtained by the method of srooth perturbations.
[Tartaski (1951)]. Using this approximation, the structure functions of the
phase and amplitude fluctuations of a plane wave (or spherical waves) at points
transverse to the direction of propagation were expressed formally in terms

17
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of the spectral density of the index of refraction. A summary of available
results are given by Lawrence and Strohbehn (1970). Because these results
adpear to be directly applicable (approxitately) in irvestigations of azimuth
resolution, a brief description of the method of smooth perturbation is out-
Tined in this section. We also derived the two frequency choerence function
which is to be used in the analysis of range resolution.

"he essential steps in studying the fluctuation of EM wave in turbulent
media are given below.

a) Neglecting polarization effects, and consider the solut on of the
scalar Helmholtz equation

V2 u+ k2(1 + n])2

by  For plane wave propagation in the x-direction, assuming

u=2¢. (3-23)

u = exp[-int + ikx] exp v (3-24)
If we write
v =Xt is ’ (3'25)

then x is the log-amplitude fluctuation and s is the phase fluctuation.

c) Assuring n << 1, vyl << k , and neglecting the term QEE {parabolic

approximation), it is shown that , satisfies 3x2
Z2. 2
SV Yy 2k s ikl = 0 (3-26)
2 2 X 1
ay" oz

18
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Thus, using Born's approximation, v(¥) can be expressed by

2 [l r (x",y',z") 2 2
| vy l(__ 1 ’ : (y'.yl) + (Z'Zl) | [ ! [2_97)
v(x.y,2) ¥ > ”J =% exp[ik x| ] dx'dy'dz (3-27)

d)  From {3-27) we may express the spectral density of the random functions
x and s in terms of the spectral density of "1 If we define the two
*
dinensional partial Fourier transform of any randon function f(?) by

o

oc(x, R) = o [JO(KJ)BAX, 3) odo (3-28)

o)

then, it can be shown that for two points {L,g} and {L + AL, > = (},
L L
@X(AL, R) = kz{dx' [dx” @n(x'-x", <)

JO (0]

K*Z(L + AL - x') K_Z(L - x")
sin[ o Isin[————1] (3-29)

For phase fluctuations, the expression for OS(AL, K*) is obtained by
replacing the sine function in (3-29) with cosine functions. Equation
(3-29) is a slight generalization of tre result given by Tartarski,
who considered the special case of AL = ).

e) If /Al << Los {3-29) can be sirmplified to
AL, K
2k To 2 o8

K "L

L+ aL) KZL

. — = ! 7
o sin ——19 (0, K )

5 (AL, K_) = wkZL[cos

§\
(3-30)

* - - > . > .
we denote v = {x, o}, and K = 1K], K} to seperate the effects in transverse

and longitudinal direction.

19
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f)  From (3-30) we may obtain the correlation and structure functions
for phase and armplitude by the integrals given below

B (4L, 3} = 2r|d (k o) o (oL, K} X d<_ (3-31)
§ -4
o]
and
Dy(AL, ) = 4TJ[©X(O, K) - J, (< o)ex (8L, K ) K dk_ (3-32)
S S S

o)

For the case L =C, (i.e., for points Tie in a plane transverse to the
direction of propagation), various expressions have been derived “or the cov-
relation and structure functions for log-amplitude and phase fluctuations.
The results given by Tartarski, using the structure function given in (3-22),
corresponding to the structure function

0.333Cn2 K 11/3 K <K =548/
o (K) = (3-33)

r 0 K> K
r

appears to correlate fairly well with some experiments. de shall therefore use
then in the present study. The results that shall be used in this report are

«%s = B,(C, 0) = 0.31 an k16,1176 AL > n (3-34)
3.44 k22 ]/2 ,2 o <1
0
D,(0, 3) = 2.91 k22 2L 5/3 o > AT (3-35)
1.46 kZCnZL ;973 b <o < AL

For the range of frequency and distance of interest in this work,
= 0.0375 - 0.011 m, and for a distance of L ¥ 10% m,

/AL = 19.36 to 10.63 m ,
20



015239-1-F

so that the last expression seems to be valid. For this range of parameters,
it is also to be noted that the highest value of <x2> is about 2.2£ x 1C'3,
hence the theory of weak turbulence is valid, and the attenuation may be, to

the first order, neglected.

In investigating pulse propagation in random media, it is usually convenient
to use the two frequency mutual coherence function [see for example Ishimaru
and Hong (1975)]. Although recent investigations on the mutual coherence
function ave rostly for the case of strong turbulence and discrete scatters,
for weak turbulence, the two frequency coherence functions that we shall use
in Section 4 can be derived by a rmethod of snooth perturbations. For a des-
cription of coherence function we need, let us consider a plane wave propagating
into a random medium. At any distance L, the phase fluctuation at two different
frequencies, S(w], L) and S(wz, L) are different, and we need for pulse proda-
gation, the two frequency coherence structure function

-s(w], Wos L) = < S(m.l, L) - S(wz, L) “>.
From the spectral density function of s(w], L) obtained by the method of smooth
perturbations, it is easily seen that

o«

@S(w], Wos L, 5= 2) = 2« K—dK~Ps(w1’ Wo s L, K ), (3-36)
0]
: v
and Qs(w], wys L, K) =
S = (K_LZL )k (K_ZL\
m o J, + sin(——) + k,°L + sin )
L A
2k %k, CLikytky) 4k k) K (kg k,)
———=— sin[ T 1 - 5 sin[ T 1} (3-37)
(kytk,) K 172 (ky-ky)K_® 1%2

To simplify the integration we choose the Gaussian model for Bn(r) [(3-21)],
the spectral density for which is
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) <n]2>sLO3 K2202
6 (K) = ———— exp [- ] (3-38)
n' 8 mv/m 4

Using (3-38) and carry out the integration, we have

2.3
V1 o<n, ">
- > Ay - 1 0, ¢t 2 4 3 -1 4L
_S\m],wz,L,o 0) 8 {2 5 k] L + I kzl + k.l tan )
0 0 k
o 1
2 2, 2
= R i)
20 k2 172 0 172 172 172
(3-39)
For small frequency differences we introduce
ke = k_+ ak ,
1 0
(3-40)
k2 = kO - Ak],

and expand T as series of Ak. Approximately, then - is represented by the first
term of the series which is given by
2.3 2

<Ny >R k “p
" (e 50,5L,320) ¥ vm 0 AZiap + 16k tan”) P - 10 — 0
N ) 8 0 k 7 2
0 (p™k ")
4
k 'p 3
R VA D 3-41)
/
(p+k ) ke
where
p = ﬂ.z_ {3-42)
)
0

is the distance parameter, while the other factors in (3-41) depend on fre-
quency only. =quation (3-41) revealsthat within this approximate formulation
T varies as L3 for large L, and varies linearly with L for small L. Moreover,
for the case that

p = ﬂ‘_z_ << ko . (3'43)
A

0
22
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7 is alrmost independent of frequency. It is interesting to note that the con-
dition given in (3-43) is preciscly thc condition often quoted for the validity
of geomctric optics. For p >> ko, (3-11) may be simmlificd to

8L

2 4
3k0 20

Ny 2

- ' > 2 A
_S(w],wz,L,o 0) 5 <n.I > KOL[ 1+ Jak=. (3-44)

On thc ot1er 1and for p << ko, (3-41) may be approximated by

2

>

> loys wy Ly 32 0) 2 70 <n§> 1, Lk (3-45)

We sha]] use this equation in connection with the discussion of range rcsolution
in Section 7.

It is to be noted that (3-41) is obtained by using thc Gaussian rodel be-
causc the Tartarski rodel has a singularity at K = 0 to cause thc integral in
(3-36) to diverge. I we assure a valuc of the outer scale L0 and use a modi-
fied spectrum suggested by Strohbehm (1968), the integral of (3-36) converges,
but no sirple analytical for ~is possiblc. In our numerical calculation, we
shall choose n]2 and LO for the Gaussian —odel such that the Gaussian spcctrum
is approximately cquivalent to the modified spectrum for small ve ues of K. The
condition to be satisfied for such a choice can be shown to be

2 ‘2/3

- 2
C,~ = 26.13 <R (3-16)

For the sanmple computation carried out in Section 1 wc choosc

82~
c

and

ne

2, 13

<n, 1.4 x 197
For this choicc of parameters, for L = ]044, p << k, for the frcquency range
of our intercst, hence (3-15) is used in Scction 4.
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4. ATMOSPHERIC EFFECTS ON SAR OPERATICN

4.1 Introduction

In this section, the results of wave propagation given in Section 3 are
applied to the analysis of the operation of the simple SAR system postulated
in Section 2.

The effect of bending of rays due to straitification on the error in
imaging is discussed in section 4.2. The effect of turbulence on the return
signal in general is formulated, and the deterioration of resolution in azimuth
and range are analyzed in section 4.3.

Considerations were given for the effects of rain and storm on the SAR
operation. General formulation of the problem are outlined in section 4.4.
But due to complicated numerical procedures involved, no attempt has been made
to carry out a nurmerical solution. This would be an appropriate area for
further research.

4.2 Atmospheric Stratification

The effect of atmospheric straitification on the wave propagetion has been
studied extensively in problems of the angle of arrival in astronomical obser-
vations [see for exarple Weil (1973)]. If scattering effect is neglected, then
from the ray theory, the bending of the rays causes deviations of the position
of the ground point “o be rapped [Eq. (3-4)] and derivation of tire delay and
phase shift [Eq. (3-5). If n{z) is known exactly, then for a given o, 3

sX = S1ng
sy = cos3cosly - a) (4-1)
s, = cos3sin(y - a)
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one may integrate (3-4) to obtain the relation between the image 20°nts x, y and
the apparent image points [Eq. (2-3)]

X = htans _ . «
sinly - a, i
and (4-2)
y = hcot(y - o)

Similarly given any ground point x, y and direction of main beam y, we may
determine numerically the corresponding values of o and 3 fror (2-4). These
values of a, 3 are then used in (3-4) to determine the correct tine delay and
RF phase shift for proper signal orocessing. This probably could be done, in
principle, by digital processing.

If n(z) is not known exactly, but we know that the deviation of n(z) from
unity is small, then the approximate equations [Eq. (3-6), (3-7) and (3-8)]
can be used to estimate the errors. Let us consider a specific example for
which the transmitter is at a height h = 5 km and the direction of the main

bean is at y = 20°. For this case, assuring o, 3 small,

ne

3

¥ cosy (4-3)

(%]
|

v
= S1ny

wn
|

the reflection point is approximately given by

-
h
I 3hrf(ny - 1) 1
X=X % S h + 6sin3y [T(h) h[o (2)dz]
) (4-4)
g2 heosy reny - 1))
tany Sin3y h o J

25



015239-1-F

and h

R = i+ 6 [cos?ye(h) - (1 - 2siny) T F(z)dz . (4-5)

sin’y 0

siny

In the above equations, the second term {involving &) is due to atmospheric
effects. For standard exponential variation

f(z) - exp[-0.1439 x 1073 2]

and 6 =313 x 1070, we find that

Ax = -8.842 3 n,
Ay = -8.309 m, and
AR = 4,545 .

It should be noted that [4-4) and (4-5) can also be used to estimate the
azinuth and range errors due to cloud layers between the transmitter and the
ground. From the water content of the cloud, if the increase in the index of
vefraction due to each layer is represented by 61fi(z), the increese of the
errors in Ax, Ay and AR are

3
AX; = - Y s, f.lz)dz
inc sin3y ; 1[Ti i
- COSy f
Ay, = - z §.| f.{z)dz
inc sin3 3 1[Ti1
§ .
= - {
AR, 3 (1 - 2sin"y) 261 fi\z)dz ,

where Ti is the thickness of each Tlayer.
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£.3 Effect Due to deak Turbulence

Ir Section 3.2 we postulated that for a transritted sigral A(t)Exo(-iwot),
the part of the returned signal reflected by the ground at point {x',y'} takes
the form

K(t R Exa[-iw,t + T6(x_,R')]

where R' is the distance from the transmitter to the reflecting point when the
nth pulse is radiated. For azimuth processing, y' is constant, so that

approximately
AV xm)2

R' = ?y'+ T (4-6)
while for range orocessing, x' = X

R' 2 Ry + (y' - y)cosy . (4-7)
The functiora] forms of K ard 3 are now exanined based on tne results of
Section 3-4.

Let us represent the transmitted signal by its Fourier transforn.
- ‘iwot '
A(t) e = de alw) exp [-1 {0+ wo)t 14-8)

The returned signal can then be expressed in terms of a log-amplitude fluctu-
ation x and a phase fluctuation s. The result is

A(t) exp [-1ugt + o(x-» R")]

.
= de alw) exp [-ilw + wo)t + Z%—-(w + wo)]

X exp [X(x w* ugs R+ s(x 0t u, RUT. (4-9)
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For azinuth processing ?y' is constant, and we may write (4-9) in the

form

N ZR'wO

K(t)exp[—imot + io(xm, R'")] = exp[—iwot +

+ X(Xms woa R )

+ 1S(Xm, Wy R'")] Idw alw)exp[-iwt + igg— w]

(4-10)

Approximately, therefore, for azimuth processing, if the variation of X and s
with the frequency is ignored, the distortion of the pulse shade

is negligible. Since it has been noted that for fixed y, the term involved
in the integration is not sensitive to the variation of x', the aziruth reso-
Tution is determined by the function [see Equation (2-22)]

gh = EXp[-i 0 R T + X(Xna wo: R|) + X(Xma wO’ R)

+ i s(xn, Wy R') -1 s(xr, Wy R)] (4-11)

[dere we have neglected the quadratic terrs in x and x' since they can be
elirinated by focussing.] Therefore, the study of the azimuth resolution is
equivalent to the study of the pattern of a linear aperture with random error.
The pattern of the linear array is

'1%—- Zwo

Fh(x') - exp [-iCR ; x'xm + x(xn, W, R') + i s(xm, 0, R'}]dxm (4-12)
I owt Y
-5

For range resolution, x' = ﬁq’ we ~ay write (£-12) in *he forr

K(t) exp [-u t + io(x, ) = exp [iugt + Eu ]

f ¢
do ao) exp [iut + 1 R Y exo [ilxs whoys R') + 1 s(xs whay, R}

r 0
28 (4-13)
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Consider the term in the curled bracket of (4-12} as A(t, y'), the arbiguity
function Xy becomes

“ 2. 1
xR - R, R-R) = | do a(w)a*(w) exd [% (R' - R)]

exp [X\Xr, w t Wy > R') + X(Xn’ w+w, R)]

0
exp [i S(Xn’ wt s R') - is(xw, w*us R)]. (4-14)
For chirpped signal,
A(t) =eliat?] , (4-15)

so that, except for & constant (assurme large time-bandwidth product), a(w) may

be approxirated by Rect (§§¥)' Thus, the resolution in range may be estirated

fror the pattern functon

aT .
v o = : _Z_LL)_ L. 1
“aT
3 ] - \
+ S(Xm, w + Wy» R'")]dw . (4-16)

For no perturoation, (4-16) yields the same resolution as given by (2-27).

Sincé both ?v and ?h ere now randon functions, we may only estimate the
epxected values of the resolution by defining [see Equation {2-20)]

f o

F (x')lzdx'
n - /a‘:o[ h
@=L e > (4-17)

Si-ilarly

<§V>=<L’ ';V(O) , > (4-18)
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In general, in order to find the expected values of ¥, we need rore
statistical descriptions of the random variables x and s. If we assume that
they are Gaussian, then in principle we may find their correlatior coefficient,
fror the joint probability density function, and compute the expected values
of %V and Eh’ However, since <x2> is very srall within the range of parareter
we are interested (see Section 3.4), they ray be neglected. The resolution
probler is ther reduced to the problen of pattern deterioration due to randor
phase variation across a linear aperture. This problem is discussed thoroughly
by Brown and Riordan (1970), their approach can be readily adopted in the
present investigation.

By neglecting x, we have fron (£-12),

T
’ 2 iwo . '
?h(x') = exp[-Eﬁ—T-x‘xﬂ + 7 s(x“, wy> R')]dxﬂ '4-19)
wr Y
2
From Parseval's relation,
NvT
2 2
Fox) 7 dxt = | =T (4-20)
-1
2

which is independent of the random phase shift. Thus it is seen from [2-5)
that the expected resolution due to randor phase is

2
\
. 3h|Fh(0) Sh(\VT)

Y

<3 = . (4-21)
h < ?h(o) 2> < ?h(o) 2>
Now,
WT - (NvT
?{ 2 2 2 N \ . t I
h\o) = dxm dx_ ' exp[i s(xT, Ry ) - 1s(xrr , Ry )] (£-22)
T <t
2 2
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hence, the expected value of |?h(o) depends on the phase structure “unction
between two points X and X'm' If we approximate the antenna bear in the
forward direction as a tart of tne plane wave, then these two poirts are
transverse to the direction of propagation, with

0= x - xg'!. (4-24)
) \

The expected value of Fh(o), can then be expressed in terms of the phase

structure function DS(AL, o) [see Equation [3-35)]. The result is
AT T

'[3‘ { 2 | 2 2 1 1 1 |
<| h\o) > = | dxm dx,1 exp[- E—Ds(o, [x.' - X ). (4-25)
JWT - JWT
2 2

oT o
? [
= . ! \ _ 1
l? (0) J dw] dw2 exp[i SIX 0y + Wes Yoi = 1 s(x_, wo + Wy yo)]

v . oo m
(4-26)
Ferce, the expected value of <'?V(o) 2> may be expressed as
aT raT
<%V(o) >z | dug J dw, exp[- % ?s{w], Wy yo)] (4-27)
R

where ?S(w], Wy yo) is the two frequency coherence structure “unction devived
in (3-45).
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{nowing the functional fornms of D¢ and ~, (4-22) and (4-25) can be inte-
grated at least numerically. From (3-35), we may represent

l_ ;’ ",— |q
D0, x'-x )=b x'-x
where
n =5/3 (4-28)
and for two-way propagation
(4-29)
b ¥ 4 x 1.46 k% AL .

Fo the parameters of interest for this work, b ~ 10-3, hence approxinate inte-
gration may be carried out by series expansion. Approximately therefore, the
deterioration of azimuth resolution is given by

<3, > n -1
h™ _ _ b{(WT)

Similarly, for the azi-wth resolution (3-44) may be represented by

n 1

Ts(w], W 2) =b' wy = Wy , (4-31)
where
r' = 2.
and
, v 28/ 2 2
b' = 2 N> 4L dw . (4-32)
Again, b' is a vevy small quantity for the ranges of parameter of the present

investiggtion. Therefore the deterioration of the range resolution is given

b
’ <§v> b'QZaT;n, ol
{
3 [] - n|+] |,.‘|+2 ] * \4‘33)

v
32

ne




015239-1-F

Based on (4-30) and (4-33), one may also investigate the problen of optimal
choice of the syster parameters (NvT) and (at) %o achieve the best expected
resolution. Since

AR .
= _l_ (._ \
30 % TWT 5-34)
and
_ mC _
3V "~ 2a7 (4-35)

the mathematical problem of ootimization is the same. The result is
1

n'+ 2.m
(W) = () (4-36)
Similarly,
1
) __l_ n|+ 2 rl i
(0t) e = 2(55) (4-37)
The ootirur resolutions are given by
N R, 1
<3h>opt == b c(n) (4-38)
and
1
v - on' ft
<3V>Opt = b C{n") (4-39)
where
c(ry = AL (4-40)
n{n+2)"

For r = 2, C{n) = 0.75 while for r = 5/3, C{n) = 0.0733. For a sa~ple calcdalation

using the above results, let us consider an idealized syster with the following
verameters: f = 8 x 109 Hz and L = 104 m, and the ideal resolution ignoring the

turbulence effect are 33
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corresponding to values of

NvT = 62 m

and
t ¥ 0.524¢c (sec”!) .

Under the influence of weak turbulence specified by the following parameters

an 2 x 10713 (m~?/3)
< 12> 1.4 x 10713
and
2 =48 r
0 0

The following numerical results may be easily conmputed

al b=3.28x10" [Eq. (4-29)]

b = 238 1078
c

[Eq. (4-32)]

b) Deterioration of the expected aziruth resolution (Eq. (4-30)]

n
<3 > 4

1.03

c) Deterioration of the expected range resolution [Eq. (4-33)]

-

d)  Optimun choice of \vT for best expected resolution [Eq. (4-35)]

(NvT) = 268.5 n

opt
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e) Optirum range resolution [Eq. (4-38)]

f)  Optinum choice of at for best expected resolution [Eq. (4-37)]

(aT)Opt = 424 ¢

g) Ootimum range resolution [Eq. (4-39)]

<§V> 7.4 % ]3—3 n

opt

Although the nurerical values conce~ning the range resolution appears to be
unrealistic due to the set of turbulence parameters we assured, i% appears
that in general, weak turbulence has negligible effect in range resolution
and slight effect on the aziruth resolution.

4.4 Effects of Strong Turbulence and Discrete Scatters

Based on the analysis of Section 4.3, it is seen that the two functions
relevant to the analysis of SAR resolution are:

a) The spatial correlation between the fields u{r) at two points trans-
verse to the direction of propagation. Tais is a spatial rutual coherence
function comnonly denoted by

> >

<ull, 2) J*(L, 5*) = (0, L, 5 - 3'). \4-41)

b) The frequency correlation of the field u(r) at two different fre-
quencies, oy and Wy "his is comronly known as two frequency rutual coherence
function [Hong, Screenivasiah and Ishimaru {1977)], denoted by

- > > N > \ -> _

_(w], Wys Ts Tos t], t2) = <u(w], 1’ t]/u*(wz, Fos t2)>. (4-42)
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(In our application, we need only the function for 27 =2y = L, 51 = 9y and

ty = tz.)
In our analysis, due to the assumption of weak turbulence, we find approx-

imate solution for u(r, t) first by Born approxirmation, and then obtain the

7's by assuning Gaussian distribution of the fluctuation. For strong turbulence,

and for the analysis in a medium with discrete scatters (rain, snow), this

analysis is inadequate. Improving the approximate solution for u by using iter-

ation would be too complicated to get meaningful results: Recent research

work in the field, therefore is concerned in obtaining approximate differential

equations “or 7. The resulting equations are more complicated than the Helrholz:z

equation and numerical techniques are required to obtain the solutions. In

this section, the equations for = of our interest are briefly reviewed.

Let us start with t1e scalar kelmholtz equation
Fos kE(1 +e)v = 0. (4-43)
For plane wave propagation, Tet
veuek? (4-44)

and obtain approximately

2

2
p ut k eqd = c . (4-45)

.. ou

1k8_Z+ v
The average field <u> = u cannot be obtained directly without further approx-
imations. The usual assumption is that u is aMarkov process in z, or equivalently
£ is delta correlated in x, i.e.,

3 (z-12',5)%s(z-2)AR3) , (4-46)

€

A(5) is related to the spectral density of ¢ by

>
o]

ALY = 20 || ) ol Kogg
(3) = 2n ||o. (K) e' Kodk_. (4-47)
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Lsing this assunption we can deduce that

3

2ik 22 4 polaws+ T p(o)eur = 0, (4-48)
37(z, 3,) .3
. (k) 2 ) -
2ik —— d’y g 2z, 5y) + % [A0) - AT 2(z, 3,) = 3 (2-49)
where
> -> ->
Pd P17

Eouation (4-49) introduces an attenuation to the average field which is
consistent to the physical picture o® that coferert field is attenuated due to
scattering.

Equation (2-49) ~ay be used for the problem involving discrete scatterers
by proper interpretation of A(o) and A(3) for guch redium. Fron (4-48), we see
that <u> is atteruated according to exp[—A(o)%rz], and fror transport theory, we

know that <u> is attenuated according to

_ Noy
7 ¢t
e s

where o4 is extinction cross section of a particle, and no, is the average ex-

t
tinction cross section per unit volume. Given a distribution of scatterers,

we can therefore corpute noy s and identify

4not

A(O) = 2 s (4'50)

k

the furction A(Z) is not directly identified for discrete scatterers without
further assurptions. From cross section theory of scattering, we know

at=-‘£;(11m £, 1) (4-51)
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where f(g, %)7f§ the complex arplitude of single scattering of waves into direction
; due to a wave of unit amplituce incident from direction i. Also, from trans-
port theory, we know the field satisfies approximately

V2<V> + ‘<2<1V> =0, (4-52)
where

K=k+2nf(i, i)/k (4-53)

by +ik

which is related to the scattered anplitude in the forward direction. By con-
sidering f(g, %) as the angular spectrum of scattered field, and A(?} as the

spatial transfor~ of the angular distribution, one can then argue that approximately
| '<§ >
r ~ A~ A 1 Dd

AGZy) = J f(s, 1) f*(s, i) e aQ . (4-54)

Thus, knowing the size and density distribution of scatterers, one nay compute
A(3) and solve = fron (4-49). It is to be noted, however, due to the assumdtion
that u is a Markov process in z, we are physically Tiniting our problen to

forward scattering, so that (4-49) is to be used for large (compared to wave
Tength) particles.

Differential equations for the two frequency mutual cohevence functions
are deduced from (4-£g). The resulting equation is
7 "7 T T(—‘)Vodz - 'iK.I - (1'K2)* - A(gd)]?(w” Wos Z gd) = 0. (4-55)
In literature, available solutions of (4-49) and {4-55) are all by numerical
nethods, and not enough data is available for irmediate application to our
problen. Some consideration has been given to choosing a model for the size
and particle distributions of rain, and then carrying out a numerical solution

of Equations (4-49) and (4-55) for the analysis of SAR resolution, but the task
is too elaborate to accomplish in this period of research.
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