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EVALUATION

1. For noncooperative tactical aircraft identification, it is

essential to get as much supportive evidence as possible to make

valid decisions. Studies at RADC/EE raised the question of whether
sub-structural motions of a target could generate identification
information. The present study by the University of Michigan was
initiated as gart of a program in target modulated signatures. Its
specific goal was to determine whether aeroelastic airframe motions
induced by atmospheric forces could be used to obtain a radar signature.
The approach involved studying the mechanical phenomena involved in such
interactions to obtain data about the frequencies, mode shapes, and
displacements for three classes of tactical aircraft. The variations

that occur for ranges of velocity, fuel loading, external stores, and

wing position were examined. The scope of the study was restricted; the
implications of the calculated substructural motions in relation to
corresponding changes of electromagnetic scattering centers were addressed
only peripherally. The complexity of the vibrational patterns and the
limited deflections that result would tend to make it difficult to observe
characteristic modulations of a radar signal.
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I. INTRODUCTION

This report covers theoretical studies of structural motion, aeroelastic
vibration and radar scattering characteristics of aircraft subject to gusts and
turbulence. Three aircraft have been chosen as test cases, a variable con-
figuration fighter /bomber (hereafter called Type A and typified by the F-111),
a swept-wing fighter (Type B, typified by the F-4) and a small fighter with
relatively straight wings (Type C, typified by the F-5). The weights of these
aircraft are given in Table I. The weight range studied varies from 77, 302
lb. (Type A, with wet wing and fuselage) to 15,265 (Type C). The modes of
vibration for these aircraft have been studied as functions of fuel load, arma-
ment load and airspeed. Both frequencies and mode shapes in flight have been
determined.

A major tool for this study has been the computer program "FACES, "
developed by the Flight Dynamics Laboratory at Wright-Patterson Air Force
Base [1,2,3] . This program considers the elastic forces in the fuselage and
wings, the inertial characteristics of the entire plane, and the aerodynamic
forces on the wings (strip theory). With substantial effort and computational
cost, the aerodynamic forces can be extended to the fuselage through the use
of the doublet-lattice mefhod. Strip theory has been used hefe, however.

This report (1) studies 12 combinations of aircraft type and weight,

(2) considers mode shape as well as frequency, (3) discusses the invariance
of modes and frequencies, (4) establishes eAxpected amplitudes of motion,

and (5) constructs and studies a radar scattering model of the aircraft.



In several regards, the work done here differs from conventional
structural studies of aircraft in flight. Most structural studies concentrate
on stresses at the wing root, accelerations, or possibly interaction of
structure and the fluid flow (as in flutter). The emphasis here, however,
is on the motion of the aircraft as perceived by a distant radar site. In
this regard, the internal stress, strain and accelerations of the aircraft

are of no importance, whereas the displacement field is very important.



ITI. TURBULENCE

A literature survey has been carried out for references on (1) atmos-
pheric turbulence, (2) methodology for calculating elastic aircraft response
to turbulence, (3) structural data and vibration characteristics of specific
aircraft, (4) effects of aging on structural response. Approximately 250 ref-
arences have been cited in this survey, which have been entered into a compu-
ter file for convenient modification. Twenty~five of the more relevant papers
have been read, and a brief critical summary given following the references.
The most often cited journals are the AIAA Journal, Journal of Aircraft and
Journal of Atmospheric Sciences as well as Air Force and NASA reports. The
bibliography is included as an Appendix to this report.

The literature in the field of atmospheric turbulence appears to be
well developed. There are also many papers available in the area of elastic
aircraft response to turbulence. Papers on specific aircraft (such as the F4)
are less prevalent in the open literature and the few papers on aging seem to
concentrate on composites and glue strength. The literature appears to be ade-
quate for the purpose of obtaining general information on aerodynamic motion
required by the project.

There are several causes of atmospheric turbulence with the primary
ones being the sun's energy and the whirling motion of the earth [4]. The
mechanics of turbulence involve wind shear and convection along with some man-
made effects, such as wake turbulence behind aircraft.

For the radar return problem, turbulence caused by convection will be
of the most interest since it is the only source of excitation over most flight
paths. This convective turbulence occurs in patches hovering over the earth's
surface. An aircraft spends perhaps five percent of a typical flight in one or

more of these patches. The patches consist of repeated patterns of convection



cells of which two varieties have been observed. Hardy and Ottersten [5]
state: "One pattern consists of small thermal-like cells which are 1-3 km in
diameter and several hundred meters in height. ... The other pattern is made
up of clear air Bernard-like convection cells ... which are 5-10 km in diame-
ter and 1-2 km in height ...".

An airplane passing through such a turbulence patch experiences a random
force field due to velocity fluctuations u, v and w in the relative velocity
between aircraft and air mass. The most significant perturbation is the up-
ward perturbation component (indeed, it is the only one considered in the rela-
ted problem of sharp-edged gusts). The velocity flucrrations are approximate-
ly isotropic and a stationary random theory is usually employed. There is
general agreement that von Karman has presented the best expression for power
spectral density of velocity fluctuations in isotropic turbulence. The tur-
bulence is often considered "cylindrical," i.e., constant in magnitude along
the wing span. Along with the assumption of stationarity, this two-dimension-
al assumption makes the problem of finding aircraft response tractable.

One could imagine the nonstationary random problem to be important,

i.e., the short-time behavior of an airplane suddenly exposed to'turbu-

lence might be more severe than the stationary case. This has been studied

by several researchers using an envelope-modulated stationary random input.
Fujimora [6,7] found that sudden onset of a stationary random forcing functicn
can cause 28% more acceleration at the aircraft center of gravity than station-
ary random forcing. This fact is much more of a concern in stress analysis
than in the radar return problem, however, and should be ignored here.

Finally, the cylindrical nature of the turbulence is examined hy Coupry
{8]. He claims that spanwise variations in the turbulence cause enough can-

cellation of 1ift to smooth out the predicted ride. For the purposes of



radar modulation by elastic modes, this is important because it means that sim-
pler theories ("cylindrical" waves) will over-predict the aircraft response.
There is a scale factor involved, i.e., the ratio of length of coherence over
wingspan. For aircraft as large as the Concorde, the spanwise effect reduces
the peak response by a factor of two. For fighter aircraft, the cylindrical
assumption will probably overpredict response by about ten percent.

Several solutions using classical methods have been carried out for
aircraft response to continuous random turbulence and to sharp-edged gusts.
(See Section V.) These provide some feeling for the amplitudes of motion.

In one calculation, a type B aircraft flying at 600 mph at sea level has an

rms vertical velocity in rigid-body plunging of 3 in/sec while passing through
continuous, moderate turbulence with rms vertical velocity component of 6 in/
sec. In other calculations, the elastic response to a 2 ft/sec sharp-edged
vertical gust is found to be less than 3/4-inch over the entire aircraft and

as little as 1/8-inch in many cases., Observation of motion this small may re-

quire X-band or shorter wavelength radar.



III. INFLIGHT STRUCTURAL MODES AND FREQUENCIES

3.1 Inflight Frequencies

The program FACES provides the natural frequencies and modes of the air-
craft structure on the ground and in flight. These results stem from a solu-
tion of the coupled eigenvalue problem including effects of elastic fuselage,
elastic wing, elastic stores and aerodynamic flow. The inflight frequencies
are given directly in numerical tables whereas the inflight modes are given
indirectly in tables of modal participation factors. A coordinate transforma-
tion must therefore be done to recover the inflight modes. No information is
given in FACES about the response problem (specific motion Jue to externzi
forces); however, the eigenvalue work from it serves as the background for
all such response work done here.

Volume I of the FACES manual [1] illustrates many of the natural fre-
quencies and natural mode shapes for the type B aircraft. Volume II of the
FACES manual [2] gives extensive inflight modal frequency data for the type B
aircraft. Inflight mode shapes are not given in these manuals, however.

In the current study, the type A, B and C aircraft have been modelled
using data provided by the FACES manual (type B) and by Wright-Patterson Air
Force Base (types A and C). In each case the properties of the elastic wing,
elastic fuselage and elastic stores are separately found and entered into the
program. These data can be calculated with some accuracy and have been tabula-
ted in company reports on basic data for each aircraft. Perhaps the weakest au-
nect of the structural model of the airplane is the choice of elastic root re-
straint. The stiffness of the wing carry-through structure in the fuselage is
not well documented; indeed, the "attachment point" called for in the FACES pro-

*
gram is an artifice. The root restraint, which accounts for the fuselage-wing

*
The exception is in the swing-swing aircraft where the pivot point is literail
an attachment point. Even here, however, the properties are not tabulated in
the form needed by FACES.



interaction, 1S given  values that are "strictly the user's own choice"
(Ferman [1], p. 93). 1In practice, stiffnesses about ten times the wing stiff-

ness at the root give reasonable answers.

3.2 Frequencies for Type A Aircraft (Swing-wing Fighter Bomber)

Inflight modal frequencies are given in Figures 1-5 (full forward sweep),
and Figures 6-10 (full rearward sweep). A sequence of cases is studied for dry,
partially fueled and fully-fueled cases. Several of the modal frequencies re-
main constant with airspeed; these same frequencies have mode shapes with lit-

tle phase lag in time, and tend to remain relatively "pure,"

i.e., do not cou-
ple with adjacent modes. Figures 4 and 9 are crossplots of Figures 1-3 and
6-8 respectively, taking data at 500 knots and considering the effect of fuel
load on flight frequencies. The fuel is carried internally in the fuselage
and wings and has a moderate effect on the modal frequencies. The numbering
system given on the curves has to do with mode shapes and will be discussed
in Section 3.6.

Ground vibration frequencies for forward and swept wings are shown in

Figures 5 and 10 respectively. These are helpful for mode identification

studies done later.

3.3 Frequencies for Type B Aircraft (Swept-wing Fighter)

Inflight modal frequencies are given in Figures 11-13. Each figure has
a different number of pylons and armament. Figure 11 is a partially fueled
aircraft with no armament and Figures 12 and 13 consider 4 and 8 pylons re-
spectively. The corresponding armament is listed in Table 1. Some of the
modal frequencies remain constant with airspeed, but as seen in the crossplot
in Figure 14, there is a substantial drop in modal frequencies with increas-

ing armament load on pylons. The figures include all effects of the coupled



elastic fuselage and elastic wing. In this particular study, the pylons were as=
summed rigid so as to eliminate the additional elastic degrees of freedom,
which are interspersed with the dominant wing and fuselage motion and which
make problems in identifying modes. The neglect of elastic pylon effects means
that candidate modes for identification will have to be studied further for this
complication. The fully elastic pylon cases have been run for the Type B air-
plane and are very difficult to interpret.

Ground vibration frequencies are given in Figure 15.

3.4 Frequencies for Type C Aircraft (Straight-wing, lightweight fighter)

The inflight modal frequencies are given in Figures 16-19. These fre-
quencies are higher than for the larger aircraft. The crossplot of frequency
variation with weight in Figure 19 shows a dramatic decrease of frequencies
as armament load increases. This aircraft was the most sensitive of the three
in this regard.

The ground frequencies are shown in Figure 20.

This aircraft, more than the others, poses a real threat to mode identi-
fication as armament weight changes. Both the inflight and ground frequencies
become very scrambled as weight changes, which is why no connecting lines are
given between data points in Figures 19 and 20. A numerical mode tracking
method to be discussed in Section 3.6 attempts to provide the continuity as

shown in Figures 21 and 22, but is not very helpful.

3.5 Composite Frequency Study (Types A, B and C)

Because there seems to be a relation between the weight cf the aircraft
and the modal frequencies, a composite plot of modal frequencies at 500 knots
is given in Figure 23. There is no general trend in the data; however, one
might speculate whether the modes of the empty aircraft of ecach fighter type

might be somewhat more predictable than heavily-loaded aircraft.



3.6 Inrlight Mode Shapes

The previous work has dealt primarily with modal frequencies. Let us
now turn our attention to the modal shapes.

The inflight mode shapes are the eigenfunctions for the airplane in the
presence of an airstream. These modes are aerodynamically damped at speeds .
below the flutter speed. Above the flutter speed, one or more of the modes
are unstable and grow in amplitude with time.

The previous sections considered inflight and ground frequencies (eigen-
values), and the variation of inflight frequencies with airspeed and loading
(Figures 1-23). It is necessary,however,to consider the mode shapes for two
reasons. The first is that the radar return depends on the relative amplitudes
of different reflection points, lines and surfaces. The second is that mode
tracking (following each mode as airspeed and weight change) is difficult with-
out knowledge of mode shapes to distinguish them when frequencies are closely
packed.

The modes and frequencies are calculated through the idealized models
shown in Sketches 1-3. The structural stiffness is developed using finite
sections of beams which can be serially kinked. The inertia of fuselage and
wing sections is located appropriately within each section at the center of
gravity of the section. Each section has rotary as well as translational
moment of inertia. The degrees of freedom are identified at section boundaries
and consist of wing z deflection and torsional angle about the elastic axis,
as well as fuselage vertical deflection, forward displacement and rotation
about the pitch axis. The aerodynamic forces used in the model are based on
strip theory, and act on the wing only (Sketch 3).

O0f the five available degrees of freedom at each section boundary, three

are considered relevant to the radar problem for symmetric motion. These are
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Sketch 1. Elastic model used in FACES. Beam theory. Fuselage and wing
can be kinked.

lumped mass

section

Sketch 2. Finite sections used in FACES. Can be serially kinked. Three
degrees of freedom at fuselage stations and two degrees of free -
dom at wing stations for symmetric motion.

Sketch 3. Aerodynamic model used in FACES. No aerodynamic forces on
fuselage or tail.



the wing bending deflection, wing torsional rotation and fuselage bending
deflection, as plotted in Figures 24a to 27c. These twelve figures show the
fundamental mode for each of the four major geometries studied, with all at
medium weight. The z deflections are in feet and the torsion is in radianms.
The motion in each case consists of an in-phase and leading component. The
motion is not synchronous, i.e., different points along wing and fuselage are
not in phase with each other. The deflection for the wing w(y,t) could be
written

iw.t i(w,t +7/2)
wy,t) = £,(e 1 +£,(y)e

for instance, where fl(y) and fz(y) are plotted as solid and dotted lines.
Discussing mode shapes for a complex structure is more difficult than
discussing frequencies, which are scalars. An attempt is made here to quantify
the mode shapes so that modes can be "tracked" and their invariance (or lack
of it) determined. The method used is to consider the maximum amplitudes in
wing bending, wing torsion and fuselage bending. To compare on the basis of length
scales, the wing torsional angle is multiplied by the mean half chord of the
wing. This corresponds approximately to the distance the leading edge and
trailing edge move vertically and is a reasonable way to judge the effect of
torsion on the radar return. (Leading edges may be good reflectors.) A code
for each mode shape has been worked out for a normalized vector of length 100,

where the mode illustrated in Figures 24-26 would be represented by

@17 02 98)
- L ™
. }, o
component of wing / \\\f 1
bending wing busziage
torsion ending

Sketch 4. Mode-shape code.
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This mode is easily seen from the code to be dominantly fuselage bending,
whereas deducing this from the figures takes some effort. Furthermore, com-
parisons between mode shapes can be made, and differences quantified. Using
the code discussed above, the frequencies displayed in Figures 1-23 have been

"tagged" with their corresponding mode shapes.

3.7 "Optimal" Mode Tracking

Both modal shapes and modal frequencies change with the three parameters
" considered: airplane load, airspeed and wing sweep. Mode-tracking thus in-
volves following a particular mode as any parameter is varied. The modal fre-
quency is not a good indicator of the modal rumier, because a modal crossover
upsets a notation that is frequency-ordered. This leaves the mode shape as
the possible "tag" on a mode; the shape has been described with a numerical
étring quantifying the contributions from wing bending, wing torsion and fuse-
lage bending. This six-digit code is used as the "tracer" in the mode-tracking
process.

The mode~tracking is optimized on the basis of shape. The eight 'varia-
ble" modes in Sketch 5 can be permuted in 8! or 40,320 ways; each permutation

represents a unique mapping of the "reference' modes onto the 'variable" modes.

frequency "reference"
o modes
A ./ )

(-
(]
[ ]
. o "variable"
modes
[ ]
s o

Parameter of
> interest

Sketch 5. Permutation of modal frequencies.



For each of these mappings, the sum, over all eight modes, of the squares of
the differences between the two-digit code numbers, for a reference mode and
the variable mode, is computed. The minimum of the 40,320 sums thus obtained
corresponds to the "optimal" mode-tracking; a root-mean-square error can be
obtained from this minimum sum. This procedure:
(1) searches for a global minimum and so often discards intuitively
"comfortable'" mappings between lower modes.
(2) disregards the possibility of picking up variable modes from
or losing reference modes to higher frequencies.
Typical results of this ﬁode—tracking procedure are illustrated for aircraft
Types B and C in Figures 21 and 22. One can appreciate from these figures
the difficult in tracking modes for aircraft Types B and C.
If one can track the modes with enough confidence in a given case,
the next question is whether the frequencies and mode shapes along the prop-
erly tracked mode are invariant or not. This is a more detailed question

than tracking and is discussed in the next section.

IV. 1INVARIANCE OF INFLIGHT MODES

The information contained in Figures 1-23 is the factual basis for
determining invariance for the three aircraft. The question of how to define
invariance of modes is somewhat subjective, but is basically whether modal
frequencies and shapes vary excessively with change in aircraft loading,
speed and configuration. What is excessive from the radar return pattern is
critical and cannot be completely determined at this point.

Although the first 8 modes have been studied, identification doesn't
require invariance of all 8 modes. The aircraft motion can be shown to be dom-
inated by the fundamental mode with some contribution from the second and

-hird modes.
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Some generalizations to be drawn from the results include:
(1) Variation of mode shape and frequency with airspeed is generally
modest and could be accounted for if it were the sole effect.

(2) Variation of node shape and frequency with fuel and armament

load is great. Modes are scrambled so much that it is difficult to
track them, even analytically for a given aircraft where no noise
is present (at discrete, calculated points).

(3) Variation of mode shape and frequency with wing sweep for the
type A aircraft is not severe and could be accounted for if it were
the only effect.

Only the Type A aircraft appears to be a candidate for identification by
invariance of an elastic mode. Its fundamental mode (fuselage bending) varies
only from 5.8 to 6.8 hz with wide changes in airspeed, loading and wing
sweep. Unfortunately, other fighter aircraft in the air with their profusion
of frequencies can, for certain stores combinations as seen in Figure 23,
mimic the Type A aircraft elastic frequency. Therefore, one would have to

search for a unique radar return due to the mode shape of the Type A aircrait,

Another necessary condition for identification is that the modes in ques-
tion must be excited enough by gusts and turbulence to be observed. The

amplitude of this response is studied in the next section.

}._J«
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V. AMPLITUDE RESPONSE TO GUSTS AND TURBULENCE

Three separate gust and turbulence problems will now be considered. The
purpose will be to develop insight into the amplitude of response of the aircraft.
The cases studied differ in whether the airplane is considered rigid or elastic,
and whether the turbulence is modelled by a sharp-edged gust or as a stationary-
random process. Of the four possible combinations of these effects, the most
complicated one (elastic response to stationary random turbulence) is not con-
sidered because of its difficulty and limited scope of this study. One can deter-

mine the major effects from the first three cases, however.

5.1 Rigid Body Response to Sharp-Edged Gusts

A simple calculation of the rigid body response to a sharp-edged gust
will be made. Only the plunging motion, and not pitching, will be considered.

The type B aircraft will be assumed to have the following flight charac-

teristics:
X
mass = m = 1696 slugs “Qgﬂ
weight = W = 54,600 1b. ‘z(t)
wing area = S = 530 ft2
Sketch 6. Coordinate System.
speed = U = 880 ft/sec (600 mph)
W(t)
air density at 10,000 ft = ]
= .000582 slugs/ft> Wo
air density at sea level = t
= 0.002378 slugs/ft3 Sketch 7. Sharp-edged Gust.
The lift-curve slope, CL » could be calculated by procedures outlined by
o
Roskam [9]. The procedure is somewhat involved, however; therefore, CL will
o
be estimated at an intermediate value of CL = 3.0.

o
The sharp-edged gust will be assumed to have intensity w, o= 2.0 ft/sec,

15



which corresponds to the extreme value measured at least once per ten seconds
in "turbulent patches." These turbulent patches cover only five percent of the
flight path, hence, this magnitude of sharp-edged gust is an upper limit to
gusts that could be observed routinely.
The response in plunging of a rigid aircraft to a sharp-edged gust is
given by Fung [10]. For a gust velocity
w(t) = WOH(t) (positive upward)

one obtains a response

_1 -t
z(t) = 3 wo(l e ) wot
where the characteristic time required to appros:h a steady motion is-%, where
, . 2us %L
2m  da

For our problems, at sea level, A = 0.981 sec_1 and at 40,000 ft,
A = 0.240 sec—l. Hence

-.981t

zSL(t) = 2.039 (1-e ) - 2¢t (ft, where t is in seconds)

-.240t

= 8.333 (1-e ) - 2t (ft, where t is in seconds)

240,000t
The solution for this plunging response is shown in Figure 28. The figure con~
firms the characteristic time of 1 second at sea level and 4 seconds at alti-
tude during which the aircraft accelerates upward to a terminal velocity equal
to the gust speed.

The maximum acceleration of the aircraft is at t = 0 and is - ybk. To
compare this acceleration with that due to gravity, one divides to get the

ioad factor An:

]Z max]

8

An

WA
- 2
&



At sea level

An

0.061 g.
At 40,000 feet

In

0.015 g.

Both values are relatively small and indicate that the gust is mild.

5.2 Elastic Response to Sharp-Edged Gusts

Background

The vibration signatures of structures are characterized by mode shapes,
frequencies and amplitudes of response to various inputs. The response is
divided between the various modes, with modal content typically decreasing for
the higher modes. For aircraft structures, the ambient turbulent field pro-
vides aerodynamic inputs which excite these modes. The sharp-edged gust, a
simplification of the actual (random) field, provides useful information on
the aircraft vibration-signature.

Beyond this simplification of the input, the aircraft structure itself
will be idealized as a rigid fuselage with an unswept, straight, slender wing.
Arbitrary spanwise distributions of mass, stiffness and chord are allowed.

The entire airplane is free in vertical translation, or 'plunging,' and the
wing is elastic in bending; all torsional modes are assumed to be restrained.
The modal analysis detailed here follows Bisplinghoff, et al. [11]

It is to be expected that these theoretical results will overestimate
the elastic response. The actual wings on the aircraft studied are swept,
causing less lift per unit span and initiating lift at different times along
the span. In contrast, the theory applies to a larger lift instantaneously
along the entire wing, which is a more severe loading condition.

The theory is intended to provide approximate values for elastic wing

motion. This will serve as an indication of the wavelength of radar required
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to observe the motion. Each of the modes will respond with its own amplitude;

hence the results should distinguish between observable and nonobservable

modes.
Symbols
bR reference semi-chord
a(y) spanwise chord distribution
b semi-chord at station y
S wing area
m running wing-mass
2 wing semi-span
M total airplane mass
U airplane forward velocity
wG(o) gust velocity profile
p density of ambient air
n total number of modes considered
w, bending frequencies of wing, w = 0
8 nondimensional time
wiy,t) vertical displacement at station y
¢1(y) rigid-body mode shape, ¢l(y) = 1.0

¢Z(y)...¢n(y) shapes of vibratory modes of wing

Cl(t) response of 'plunging' mode

izit)...gn(t) normal coordinates representing responses of vibratory modes
¢ Wagner function

4 Kussner function

B generalized forces due to gust

generalized forces due to motion

() rime denotes derivative with respect to the argument
P P
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Equations of Motion

The response of the aircraft is separated into a time-dependent compo-

nent (t) and a spatial component ¢(y), with the total response then given by

Ej (t)<i>j (y).

w(y,t) = L
J:

1

The mode shapes are normalized so that

% 2
M = 2 fo m ¢i dy i=1,...,n.

Positive coordinate directions are indicated in Sketch 8.

2 $ (€M

/77 7 7/ 777777777777

Sketch 8. Coordinate System.

The response is given by the solution of the differential equations

" 2 n " n s _n
Xii(s) + AQigi(s) + jzlAijEj(s) + 2 jElBij fo Ej(0)® (s=-0)do

= S — ' -
2 bR Bli fo g ¥' (s-0)do

=1l,...,03 w, =0
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where:

b = a(y)bR
s = Ut/bR

A = M/(mpS bR)

Qi = W bR/U
+2 9
Aij = (by/9) f_2 a(y)” ¢, ¢j dy
+£
Byy = (b /8) f_2 a(y) ¢, ¢j dy

With a step-function gust velocity input, the gust velocity profile

wG(O) is

wG(O) = wG(0+) = Wi

which allows modification of the nonhomogeneous terms in the system of equa-

tions. From Eq. 5-382 [11], the unsteady lift due to the gust is

d wG(O)

21 p U b {w (0)¥(s) +J do
0

(s-0)do}

=
]

which, for wG(O) Wi reduces to

L = 2rpUb wG(O)W(s),
since

fs d WG(O)

. e ¥(s-0)do = 0.

Hence, the spanwise 1lift due to the gust is

LG(y,s) = 2npU a(y)bR s Y(s).

(5.1}

[Cy. 10-149, Ref. {ii].]

The definition of generalized force due to the gust is (Eq. 10-143, Ref. [11l}:
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Di +2
= = f-z ¢i LG dy
or
D, +£
=1 _
2 2m 0 U by w, ¥(s) f_g ¢i a(y)dy

From Eq. 10-142 [11], the equations of motion are

é
2

M,
Lt

Transforming to nondimensional time,

2

U "
—_— + M
Mi 2 Ei

Py

and so

" 2
A &i + A Qi Ei

2
& P M vy

U

b

M, D,
= g1 +3 %
Mi D
5 Q) Ei = BT 4 =
Mi Di
bR &) bR )
7t 2
TPpSU TPSU

The last term becomes, on substitution from (5.2),

by

5

D

i

2b

™

S

U

2

U

R
e Y(s) Bli

(5.2)

Hence, for a step-function gust velocity input and for symmetrical mo-

tion, equations (5.1) become

" 2 n
A Ei(s) + A Qi Ei(s) + jzl

n
AijEj(s) +2 T

with b, s, A, {{ defined as before and
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£

2
Ay = @S S 2T a0y d
L
By = Qby/S) S a0 oty ey

Rewriting (5.3) in matrix notation

{£"(s)} + & 2 MHH+MJw%H+[NI{Fmemw

0
2b.w
R G
where
2 sz 2
;o = 5 o
U
- T
(B} = By
(Al = [a)
] = (3]
(14
13 +8h @) + ot g )
2 b, w s
- —E-C (B} v - %ﬂ / {£"(0)} d(s-0)do (5.4)

0

Numerical Solutions

Numerical solution of equations (5.4) requires some modification to tie
system, which is implicit in &. Define I such that
s

{1} = J {&(o) o(s-0)do (5.5}
0



Hamming {12] has shown that this convolution integral has poor convergence
properties unless handled carefully. The following procedure is related to
Hamming's suggestion for separating out a portion of the integrand.

With a sufficiently small time interval As, the displacements can be
assumed constant within each interval, and a trapezoidal integration rule can

be used; thus

(k+1) Bs . (it %) As
{1} = {g"(s)}J d(s-0)do + I {g"(iAs)}J ®(kAs-0)do

(k+ %) As 1=1 (i- %) As
(5.6)

Equation (5.6) assumes that
s = (k+l)As (current time)
and
{g"} = o
The latter is an approximation to an initial steady-flight condition. Adopting

a polynomial approximation to the Wagner function

. sk
°(s) = s+4
it can be shown that
i+ 1) As 1
2 (k-1i- E)As + 4
J ¢k As-0)do = 21n 1 + As (.7)
(i- %)As (k-i+ E)As + 4
(k+1)As
_ 4 As
®(s-0)do = 2 1n 7 + = (5.8)
1 554y 2
(k+ -Z')AS 2

Combining equations (5.6), (5.7) and (5.8),
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- | ( . W) E (k-i- %)As+4\
{1 = {E"((kHD)Bs)} 12 1n +5 |+ I {E"E88)} 2 Inf ——F— + bs)
- 244 i=1 (k=i+ =) As+h
2 2
(5.9)

Finally, combining equations (5.4), (5.5), (5.6) and (5.9),

11+ 4 2B o gn |5} 4 58 (e o)) + [ 07 J{E(Get)18))
| =Sy 2
2
o —_— (k-i- 2)bsth |
= {B} Y(k+1)4s) - '"Xl' g {g"@EAs)I 2 In| ———— | + As)
i=1 (k-i+ 5) s+ /
(5.10)
which is of the form
M1{e"} + [x1{&} = {®} (5.11)

Equations (5.11) are in a form suitable for direct integration by the
Newmark method. The following algorithm may be used (Ref. {13]):
A. Initial Calculations

1. Initialize

€} = {o} at s = 0
{&'t = {o} at s = 0
{e"} = {o} at s =0

2. Select 'time' step size As and parameters o and §;
calculate integration constants.

5 > 0.050; a > 0.25 (0.5 + 6)°

S T I

= ; = : =
0 aAsz 1 ols 2 ods

o1 |8 o
a3 = - L3 = -k Ay s 2 G2
a, = As(1-6); a, = 0ls.



3. Form mass [M] and stiffness [K] as defined by equations (5.10)

A

and (5.11). Form effective stiffness [K]:
(K] = [K] +agH]

4. Triangularize [K]:
K] = [LI[DI[L].

B. TIterative Loop

1. Calculate effective loads at s + As:

{R}S+As - {R}s+As + [M](ao{g} + az{g’} = a3{g"})

2. Solve for displacements at s + As:

IR, - {®)

s+is stAs

3. Calculate accelerations and velocities at s + As:

{e"}

ao({ﬁ}

st+As

sths - {8} - aydet} ~a g}

{g'}

sths ~ 180+ agletig +a (et

Results

Each of three aircraft types was studied at the medium weight to provide
typical response values. In each case, the aircraft penetrated a two fps
sharp-edged gust applied instantaneously along the entire wing. The results
yield elastic displacements which are rather small, ranging from 3/4-inch
wing tip displacement on the type B aircraft, to response as low as 1/8-inch
wing tip displacement for the type A aircraft (swing-wing fighter-bomber).
Figures 29-31 show the elastic response at the wing tip. The rigid body plung-
ing mode is not included. The bulk of the motion in all cases was due to the
first aircraft mode. The second mode participates in a minor way and the third
and higher modes are scarcely excited. In addition to the graphical results

in these figures, a wealth of tabular output is available for each aircraft.
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5.3 Dynamic Response to Continuous Atmospheric Turbulence: Rigid Body Plunging

An airplane penetrating an atmospheric turbulence field experiences con-
tinuous rather than discrete gusts; hence a statistical approach is needed to
model the continuous properties of atmospheric turbulence. The general method
consists of applying a random input (the power spectrum of atmospheric turbu-
lence) to a linear system (the mechanics of the rigid body plunging mode) and
studying the response of this system. Only statistical properties of the re-
sponse, e.g., root-mean-square displacements, may be determined by this method;
explicit time-histories will not be known.

The aircraft is modeled by a rigid wing of constant chord 2b flying at a
forward velocity U. The wing thickness and the magnitude of the vertical
translations are assumed small compared to the chord. The fluctuating turbu-
lence velocities u,v,w are assumed small compared to U. The components u,v
may be neglected as the wing is free in vertical translation only. Thus, the

wing is subjected to a fluctuating angle of attack

It is further assumed that the gust field is two-dimensional (no spanwise
variations) and the turbulence pattern does not change during the time required

for one particle of air to traverse the wing, i.e., during time 2b/U.

Input

The turbulence w is assumed to be a stationary random function given by

the von Karman power spectrum, ¢(Q):

1+ %(1.339 L 02
27,1176

2

o(Q) = -% g
[1+ (1.339L Q)
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where:

le)
1]

space frequency (rad/ft)

i}

scale of turbulence (ft)

¢

. RMS gust velocity (ft/sec)

The function ¢(w) satisfies the relation:

Oé = [ ¢(w)dw.

(o}

Rigid-Body Admittance

To calculate the mechanical admittance of the system, the wing is subjec-

ted to a sinusoidal gust described by the real part of:

_ = ik(s-x*)
W, = W e

where k is the nondimensional frequency:

wb

k-f—ﬁ-=ﬂb.

The response of the wing is given by the solution of the equation of motion:

2
EE-M () = fspan LG dy + fspan LM dy
where:

M = airplane mass

¢ = normal coordinate

s = nondimensional time,s = %f
LG = 1lift due to gust
LM = 1ift due to the motion

Substituting as a solution:

£ _ z eiks

and writing the expressions for L. and LM’ we have:

G

27



£ _ D 2K (k) ]
ﬁG U k[2i C(k) - (2A+D1)k]
where:
A = M/mp Sb
p = density of the air (slugs/ftB)
S = wing area (ftz)
C(k) = Theodorsen Function
Kk = eI &) -1 I ®]+1J(k)
The expression for é% is the admittance function with respect to vertical
displacement.
Output

Let Y(w) be the power spectrum of the airplane response. Then

g2 - IO

J—E .
where Y£~ is the root-mean-square displacementc.

The following relation then holds:

Uging polynomial approximations to the complex terms in the admittance expres=-

sion, the power spectrum of the response becomes:

2 2
by - 2 AR > )
U k7|2i C(k) - (2A+1)k]
2
b 4 1 1
= - Y b (w)
g2 TH2MR (202 02

or
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2

L 2
o - ﬁ 4 1 T % 1+ (1 39 )
= 5 -
p2 B2 2 uZomn? [+ (1,339 k)?']”/6
The mean-square displacement becomes:
L 2 8 Lk 2
—— o0 — +._ . —_—
o v? M2 2 a2omn? 11+ L339 Lk)2]11/6
2 Lk, 2
_ 4Lb0w fw 4 1 1 1+ (1 339 b =)
nur o o M 2 nlann? o+ sz B2yt

Frequency Limits

The integrand in the above expression is singular at k=0; hence, a
lower frequency limit (€) on the power spectrum of the response is needed.
This corresponds to an artificial high-pass filter. Since radar returns are
garbled at very low frequencies (less than 5 Hz), this filtering is acceptable.

The mean-square displacement then becomes

— 0, - 1+ 2339 B2

7 _ b Sw2 0 41 1
mooUT Ty W2k 2 Zoa ) 1+ (1,339 11‘)1‘)2]11/6

dk

In practice, integration to a finite upper frequency limit suffices as

the response becomes vanishingly small at the higher frequencies.

Results

The rigid body plunging responses of the three aircraft types (A,B,C:
medium weight) were computed with the low frequency cutoff point as the param-
eter. The upper frequency cutoff was set at 100 Hz. Results are shown in Fig-
ure 32 for a root-mean-square gust velocity of 2 ft/sec. The mean-square dis-

placement of the airplane as a whole is not large, unless one is willing to

29



attempt to detect frequencies below 1 hertz, say.

5.4 Interpretation of the Aircraft Motion for RCS Work to Follow

The elastic motion of an aircraft in flight has been studied in a deter-
ministic as well as a random approach. There is a question as to which way pro-
vides more information for identification.. The random approach of section 5.3
is not encouraging because of the small rigid body displacements which were

found - approximately 0.0l inch r.m.s. when signals above 2 hz only are pro-

sl
b3

cessed. The deterministic approach for the sharp-edged gust does not give
much more hope. Peak elastic response at the wingtip v.s only 0.12" for a

type A aircraft, 0.75" for a type B, and 0.33" for a type C, all at medium
weight. The dominant elastic motion in response to the sharp-edged gust is in
the fundamental mode (corresponding to the lowest frequency).

A deterministic approach will be used in the following RCS work. The

response of aircraft type A with wings fully forward will be the test case.

The vertical motion of the aircraft will be assumed harmonic and consisting
solely of the first elastic mode. The half-amplitude of motion of the wing tip
will be taken as 0.3 cm (0.12"). This number is as large as can be reasonably
inferred from Figure 29 and achieving it would require successive upward and
downward gusts. The RCS calculations therefore study a motion which is an
upper bound to what one could observe in typical turbulence cells occupying

% of the earth's surface. Finally, it is noted that the type A aircraft has

a relatively large fuselage displacement in the first mode as can be seen by

comparing Figures 24a-c.

" Even if this value of 0.01 inch rms were doubled or tripled at the wingtip
due to inclusion of elastic effects, it would still be small.
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VI. RADAR CROSS-SECTION (RCS) STUDIES

Structural motion and aeroelastic vibration of aircraft subject to gusts
and turbulence have been discussed in earlier chapters. The present chapter
theoretically studies the effects, if any, of these aerodynamically induced

motion of the aircraft on its RCS.

6.1 General Considerations

Theoretical determination of the RCS of a complex body (with regard to
its electromagnetic scattering) such as an aircraft is an extremely difficult
boundary-value problem in electromagnetics. A plot of the RCS versus time
for an aircraft in flight often appears as a noise-like fluctuation even when
the nominal aspect of the aircraft is constant. Because of the uncertainties
about the aspect (due to roll, pitch, etc.), the RCS is often best described
statistically in terms of various distribution functions [15,16]. In general,
however, these distributions point out that there is no simple solution to the
RCS problem for all aircraft [17]. To avoid unnecessary complications we will
avoid the statistical approach. Instead, we confine our attention to a deter-
ministic study of the effects on the ambient RCS of an aircraft produced by
some of its identifiable motion induced by air-turbulence, etc. The next sec-
tion describes the simplified electromagnetic model of an aircraft, and how the

static and dynamic cross sections are obtained.

6.2 Scattering Model

The fundamental assumption of the theoretical method for obtaining the RCS
of an aircraft is that electromagnetic scattering by the aircraft may be as-
sumed to be that due to a collection of independent scatterers which may be
identified with the various components of the aircraft (e.g., fuselage, wing,

etc.) [18]. Usually, this is possible at sufficiently high radar frequencies
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where the appropriate dimensions of the aircraft are large compared to the
radar wavelength. To this end, the aircraft is considered to be an ensemble

of components, each of which can be geometrically approximated by a simple
shape in such a way that the RCS of the simple shape approximates the RCS of
the component it models. Once the component scatterers are identified, their
cross sections are obtained from known results. Each of the components is then
replaced by a point scatterer located at its scattering (or phase) center, and
having a scattering area equivalent to that of the component. Finally, the com-
ponent cross sections are combined appropriately to estimate the RCS of the
entire aircraft. This method has been found use¢ful in the theoretical estima-
tion of RCS of aircraft, missiles and the results have been found to be in fair
agreement with measured values [19,20,21].

Let us assume that for a given combination of aircraft aspect angle, wave-
length and polarization of the radar, N scattering components have been identified
for which the radar cross sections are 01,02,...,0N. One of the methods of
combination of these cross sections involves the relative phase angles between
the scattered fields from the N scatterers. This leads to the following exz-
pression, denoted by Op (cross section by relative phase), for the RCS of the
entire aircraft:

N

6 = | I (o,
P o1

)l/zexP(iBj)lz, (6.1)

where Oj is the crosssection of the j-th component and Bj is the relative phase
angle associated with the radar return from the j-th component. The magnitudes
of Bj‘s are determined by selecting a reference point (or origin) on the air-
craft and obtaining the phase angle of the return from each component from its
distance from the origin. For this purpose consider a rectangular coordinate

system (x,y,z) with origin at 0 which also serves as the origin of a spherical



polar coordinate system (r,0,9) with its polar axis oriented along the z-
direction. Let the aircraft be oriented horizontally (in the y-z plane) with
its nose aligned along the z-axis and its center of the fuselage located at
the origin O, as shown in Figure 33. Let the coordinates of the j-th scat-
tering center be (xj,yj,zj). Under these assumptions it can be shown that in
the radar direction (60,¢0) the phase angle Bj appropriate for the j-th scat-

terer is given by:

Bj = 2k[xj sin 90 cos ¢O + yj sin 80 sin ¢o + zj cos 80] (6.2)
where k = -%F , A being the wavelength of the radar waves. Observe that for

¢O = 0, i.e., in the x-z plane of Figure 35, Equation (6.2) reduces to

B, = 2k[x, sin & + z, cos 6 ] (6.3)
J ] (o] j o
which indicates that Bj is independent of the y-coordinate of the scattering
center. Also, note that in the ideal case when all the returns combine in
phase one obtains the maximum RCS of the aircraft as:

N 2
0 = |z (oj)l/zl (6.4)

Prax j=1

It is evident that in the above approach one must know the distances of
the scattering centers from the chosen origin. These can be estimated either
from the aircraft drawings or from their scale models. However, Equation (6.2)
or (6.3) indicates that the phase angle Bj depends directly upon the ratios
xj/K, etc. Therefore, for a large aircraft at small wavelengths it may be
impossible to obtain these distances from the drawings or models with suffi-
rient accuracy [18, 19],

As an alternative to the relative phase method, there exists another

rlethod often referred to as the random phase method [19]. This method is
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based upon the assumption that many different Bj's are randomly distributed,

then upon averaging over Bj we obtain the average RCS, denoted by ¢', as

N
o' = I o0, (6.5)

The deviations of the observed RCS from the average crosssection ¢' are
characterized by employing the concept of RMS spread, denoted by S. This
measure of the probable variations in cross section due to the relative phase

effects leads to the bounds (¢' + S) for the observed total RCS where
3. (6.6)

It is evident from the above discussion that the random phase method
gives estimates of the amount by which the cross section might deviate from the
average value because of the phase effects. On the other hand, the relative
phase method of combination not only estimates the amount by which the cross-
section deviates from the average value but also the locations (in aspect or
wavelength) of the relative peaks and nulls in the RCS.

So far, it has been assumed that the aircraft is static and hence, the
RCS values obtained from the above expressions will be independent of time an,
thus, will be referred to as the static RCS. 1In the next section we describe
the method of obtaining the RCS of an aircraft undergoing vibratory motion

induced by air turbulence.

6.3 Dynamic RCS

In earlier chapters we have obtained the frequencies and modes of vibra-
tion of the aircraft caused by air turbulence. It was found that the vertical

displacement of the aircraft was significant; the mode shape and frequen=

cies of these displacements were obtained numericaily. We shall assume th:t
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the scattering centers of the aircraft experience similar kinds of vertical
motion in time. Thus, for any mode of vibration, the x-coordinate of the
scattering center will vary in time according to that mode shape and at a
frequency corresponding to that modal frequency. It should be noted that the
modal shapes obtained from free vibration considerations (see Chapter III)
must be scaled properly to obtain the scattering center displacements.

In accordance with our earlier notation, let the x-coordinate of the

j-th scattering center (associated with the wing) undergoing the i-th mode

of vibration will be denoted by

xj = nj cos(wit + Oﬁ)’ (6.7)
where,
_ 2 2.1/2
ny = [fl(yj) +f2(yj) ] (6.8)
£ (y.)
tan o, = 23 . (6.9)
h| fl(yj)

The quantities fl(yj), fz(yj) and aj identify the shape of the induced motion

of the scattering center caused by the i-th mode of radian frequency W, - Ver-

tical motions of the scattering centers associated with the fuselage and other

components are included in a similar manner.

2
o (6.,6,8 = | 2 @M exptis)|?, (6.10)
p o o . J J
j=1
with
Bj = 2k[nj sin 8  cos ¢ cos(wit + uj) + y; sin 6, sin ¢

+ 2z, cos 0 ], (6.11)

J (o]

where the dependence of time and radar direction are shown explicitly in op.

If the radar is located in the vertical x-z plane, ¢0 = 0, the RCS expression
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reduces to: N

O'(G,t) - E 1/2 . . + 2
p o t (Oj) exp i 2k[nj sin 60 cos(wit + aj) zj cos 60]|

j=1
(6.12)

Note that with this model, the nose-on (60=0) RCS of the aircraft is unaffec-

ted by the vibration.

6.4 Scattering Model of the Aircraft

Aerodynamic studies, discussed in earlier chapters, indicated that the
vibration mode of type A aircraft is reasonably invariant to airspeed, fuel
load and wing sweep. For this reason we have chosen to studv the RCS of the
aircraft model F-111 which belongs to type A. ‘ine component scatters and the
location of the corresponding scattering centers are obtained by studying a
1/72-scale model of the aircraft. The orientation of the aircraft is as shown
in Figure 33 and it will be assumed that the radar is located in the x-z
plane. Dominant scattering components are identified from a study of the
scale model. The approximate geometrical shapes and the corresponding theore-
tical expressions for their cross sections are as follows [18-21]:

(i) The nose of the aircraft is approximated by a section of a conduc-

ting paraboloid. This component will contribute (01) in the range

0 < 6 <74°., 1It's contribution is obtained from:

R 4 212
01(80) = 7 sec 60. {5.13)

(ii) The main body of the fuselage is approximated by a conductive cir-
cular cylinder of length L = 19.72 m and radius a = 1.08 m. This
will contribute in the range 74° <8 < 140°. TIt's contribution

(02) is determined by using the following expressions:



(iii)

(iv)

(v)

(vi)

A a sin 6

0,(8) = —2 ° < 8, < 85° (6.14a)
8m cos 0
(o]
2
o,(m/2) = H2 . for 95° <& < 140° (6.14b)

Each of the two wings is approximated by a conducting rectangular
plate oriented in the y-z plane. Each plate has dimensions W and
L in the y and z directions, respectively. The combined contri-

bution (03) from the two wings 1S obtained from:

4 WZLZ ) sinz(kL cos 60)
Q- sin” ©
A

03(80) = 2 (6.15)

© (KL cos 6 )2
)

with L = 3.6 m and W= 7.92 m.

Each of the two tail fins is approximated by a rectangular metal

plate oriented in the y-z plane. This combined contribution (04)

is obtained from (6.15) with L = 4.32m and W = 1.44m.

The two engine ducts in the front are approximated by circular

cavities each having a diameter a = 1.5 m. The scale model indi-

cated that the opening of each duct is one-fourth of the complete

circular area, Waz. The contributions (05) of the two engine

ducts is obtained from:

, 2 .
3 o sin (2ka 31n60)

05(60) = 0.05(ka) (6.16)

. 2
(2ka sin 60)

for 0 < GO < 84°,
The two exhaust ducts, located in the rear of the aircraft, are
modelled by circular cavities each having a radius a = 0.5 m.

Their combined contribution (06) is obtained from:
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3 9 sinz(Zka sin 60)
06(60) = 2 x 0.4(ka)"A

5 (6.17)
(2ka sin 60)

for 135° < 90 < 180°

Note that all linear dimensions are expressed in meters and the calculated

cross sections are obtained in square meters. Also note that shapes and dimen-

sions of the scattering components are assumed such that their scattering

cross-sections are polarization independent.

The z-coordinates of the scattering centers of the above components

are: z, = 9.36 m, z

= - 9.36 m.

=0.0, z,=-1.08m, z, = -7.2w, :_ =+ 1.08 m and

2 3 4 5
%6
Even after identification of the various scattering components, proper
care must be taken to combine them for a given aspect angle. This is because
the geometry may be such that at some aspect angle parts or all of the scat-
tering from a component may be shadowed by other(s). To avoid the com-
plications due to shadowing effects, we have restricted ourselves to the deter-

mination of RCS in the x-z plane and proper considerations have been given in

obtaining the <cross section expressions given above.

6.5 Numerical Results

Figures 34(a) and 34(b) show the static average, RMS and relative phase
crosssections, 0', 0' + s and Op, respectively, versus aspect angle 80 for the
aircraft obtained at A = 3 and 30 cm. Of course the average cross section
o' stays within the RMS bounds 0' + s at all aspect angles. Over most of the
range Op also stays within the RMS bounds; at some aspect angles, Op moves
cut of the RMS bounds. These results are in general agreement with results
discussed elsewhere [18,19] .

The dynamic ¢ross sections are obtained for the fundamental vibration

mode at wi/2ﬂ = 6 hz and a wing tip half-deflection m = 0.3 cm.
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Two sets of dynamic RCS have been obtained: one referred to as
the tip-scattering center assumes that the scattering center of the wing is
located at its tip which would experience the maximum displacement due to the
induced vibration; the second set of results, referred to as the mid-wing
scattering center, assumes that the scattering center of the wing is located
at its center. Figures 35(a-e) and 36(a-e) show the dynamic RCS as a function
of time and for selected values of the aspect angle 90. Observe that the re-
sults are shown over a complete cycle of vibrations at the dominant mode.
Notice that at some aspect angles, the RCS values at A = 3 cm are lower than
those at A = 30 cm; this is due to the fact that those aspect angles are lo-
cated at or near the nulls in the RCS pattern at A = 3 cm. Generally, the
dynamic results in Figures 35 and 36 indicate that the aircraft vibration in-
duces some kind of fluctuation (or modulation) in its RCS. At most of the
aspect angles, the total deviations in the dynamic RCS values from the cor-
responding static values appear to be more at A = 3 cm than those at A\ =
30 cm. The fluctuations appear to be large at selected aspect angles. As a
function of time, the modulation in the RCS for X = 30 cm appears to occur
at the frequency of vibration of the aircraft. For A = 3 cm, the modulation
also contains a component of the vibrating frequency at all aspect angles; in
addition, at longer aspect angles (60 = 35°, and 45°) there exist quite strong
third harmonic components. The location of the scattering center of the wing
at its center or tip does not appear to change the general nature of the
results.

Observe from Figure 35(e) that at 90 = 45°, as a function of time, the
total deviation in the dynamic RCS, at A = 3 cm is about 8 dB. However,
the static results shown in Figure 34(;) indicate that near 60 = 45°, the RCS

varies quite strongly with 60. If it is assumed that aspect angle varies about

39



+ 2° due to reasons other than the induced aircraft vibration, then careful
study of Figure 34(a) near 90 * 45° indicates that this may cause about 1 to
O dB variations. This implies that under such conditions vibration-induced
modulation would produce about 3 to 7 dB deviations in the dynamic RCS. Per-
haps it should be mentioned that low frequency variations in the observed
dynamic RCS of aircraft have been reported in [20,22]. Our results here tend
to indicate that these may occur as low frequency variations in the RCS of the

aircraft due to its vibration induced by air turbulence.

In our scattering model we have neglected the effects of shadowing
by the individual scattering components and of the incident polarization.
The accuracy of the assumed model is satisfactory for the static case [18]
and should be acceptable for rough estimation of the general effects in the
dynamic case. Further study is required to obtain the detailed nature of

the effects of aircraft vibration on its RCS.
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VII. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

7.1 Conclusions

Three fighter aircraft have been analyzed for aeroelastic response to
gusts and turbulence. The study included the effect of operating conditions
on the modal frequencies and shapes, as well as determination of relative am-
plitude response of elastic modes.

It was found that airspeed had a moderate effect on frequencies and
modes for all three aircraft. Fuel and armament loads had a large effect,
particularly when carried on the wings (as opposed to fuselage). The one air-
craft with a swing-wing had dominant fuselage bending at the lower frequencies;
these modes were changed only moderately by the wing position.

Perhaps a more critical issue than the invariance of the modes is
whether the modes are excited sufficiently by gusts and turbulence to allow
observation. Only five percent of the atmosphere contains turbulent patches
with a gust greater than 2 ft/sec. recorded at least every ten seconds. A
five-mode simulation of the symmetric wing bending problem was carried out for
each aircraft, using a 2 ft/sec. sharp-edged gust. Each of the aircraft re-
sponded with a total elastic wing tip deflection of 3/4-inch or less. The
bulk of this response was in the first mode, and response in higher modes was

small.

The only situation which has any promise for identification is the
fundamental (fuselage bending) mode for the Type A fighter/bomber. The
frequency of this case can be mimicked by smaller fighters carrying suffi-
cient stores. Therefore, for success, some unique characteristic of the

mode shape, such as the large tail motion, needs to be exploited,
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After identifying its dominant scattering components, a theoretical
scattering center model has been obtained to calculate the RCS of a type A
aircraft. Average RCS and relative phase RCS of the static aircraft have
been determined as functions of the radar aspect angle, and for A = 3 and
30 cm. It has been assumed that the radar is ground-based, and the RCS cal-
culations have been performed in a vertical plane such that the shadowing
effects on RCS are minimum. Dynamic RCS of the aircraft has been obtained
by assuming that the appropriate scattering centers experience vertical dis-
placements kin time) produced by the motion of the aircraft undergoing its
fundamental mode of vibration induced by air turbulence. At some selected
valuesjpf aspect angles, we have determined the dynamic RCS over a complete
time period éf the fundamental mode.

With fﬁe assumed scattering model, the dynamic RCS of the aircraft in the
nose-on: direction appears to be independent of the aircraft vibration in the
vertical plaﬁe. In other directions (aspect angles), the RCS values appear
to éontain amplitude modulations at the fundamental and the third harmonic
of the frequency of the fundamental mode of vibration of the aircraft. Al-

though these modulations are generally found for both A = 30 and 3 cm, those

of the latter wavelength appear significant enough to be observable.

The significant finding of the study is that the motion of the air-
craft induced by air turbulence seems to produce low frequency amplitude modu-
iation of its ambient RCS. From the considerations of the maximum vertical dis-

" placements due to turbulence suffered by the wings (or wing-tips) of a Type A
‘aircraft, it appears that such modulations may be observable with a 3 cm grounu-

“based radar system. At the completion of the present study, it is not clear
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whether such observations could be used to identify the aircraft. Further in-

vestigation is needed for this purpose.

7.2 Recommendations

The present investigation should be considered as a preliminary study
of the general problem of identifying an aircraft by its RCS modulations induced
by airframe vibration. Although some of the results of the present study are
found to be significant from this point of view, they are not complete and well
understood. Therefore, to ascertain the potentialities and practical realiza-
bility of this method of aircraft identification, the following studies are
recommended .

(i) Obtain the RCS vs. time for a given aircraft in flight,
(ii) Obtain experimentally the RCS modulations for a model aircraft
undergoing a motion simulating that of the fundamental mode
of vibration.
(iii) Investigate the implications of the results obtained in (i)

and (ii) with regard to the identification of the aircraft.

7.3 Unresolved Points

Some unresolved technical points include:

(i) Should the identification be based primarily on random or
deterministic concepts? In the present study, deterministic
ideas have dominated.

(ii) If a random approach is taken, are the newer, non-Gaussian tur-
bulence models [23] more appropriate than the von Karman iso-
tropic turbulence model? Although more accurate, the newer
theory will probably not be worth the computational effort.

(iii) How much effort does the longitudinal rigid body pitching mode
have? The so-called short longitudinal mode has frequencies of

the order of ome hertz and is felt not to couple into the problem.

/0]



(iv) Will the active control systems of the future couple with gust
and turbulence response? Both the Rockwell B-1 and the latest
versions of the Lockheed 1011 have active systems which suppress
elastic modes but may introduce frequencies peculiar to the con-

trol system.

7.4 Acknowledgements

The authors have been supported in this study by many suggestions from
Mr. John Lennon (RADC/EEC) and Professor Thomas Senior. Aircraft data were
supplied by Mr. Walter Dunn (ASD/ENFSR) and FACES program assistance by Mr.
Sam Pollock (AFFDL/FBRC) and by Mr. M. A. Ferman (McDonnell Aircraft Com-

pany). This help is gratefully acknowledged.

44



(8]

[10]

(11]

[14]

[15]

VIII. REFERENCES

Ferman, Martin A. (1975), "An Extension of the Rapid Method for Flutter
Clearance of Aircraft with External Stores," vol. I, Theory and Applica-
tion, McDonnell Aircraft Company, Air Force Flight Dynamics Laboratory
Technical Report AFFDL-TR-75-101, vol. I, November.

Unger, Walter H. (1975), "...vol. II, User's Manual for FACES Computer
Program, AFFDL-TR-75-101, November.

Wells, J. R. (1975), "... vol. III, Programmers' Manual for FACES Compu-
ter Program, AFFDL-TR-75-101, November.

Houbolt, J. C. (1973), "Atmospheric Turbulence,'" Dryden Research Lecture,
ATAA Journal, v. 11:4, pp. 421-437, April.

Hardy, K. R. and Ottersten, H. (1969), "Radar Investigations of Convec-
tive Patterns in the Clear Atmosphere," Journal of Atmospheric Sciences,
26, pp. 666-672, July.

Fujimori, Y. and Lin, Y. K. (1973), "Analysis of Airplane Response to
Nonstationary Atmospheric Turbulence Including Wing Bending Flexibility,"
ATAA Journal, 11:3, pp. 334-339, March.

Fujimori, Yoshinori and Lin, Y. K. (1973), "Analysis of Airplane Response
to Nonstationary Turbulence Including Wing Bending Flexibility. Part II,"
ATAA Journal, 11:9, pp. 1343-1345, September.

Coupry, G. (1971), '"Critical Analysis of the Methods Used for Predicting
the Response of Large Flexible Aircraft to Continuous Atmospheric Turbu-
lence," AIAA Paper No. 71-342, April.

Roskam, Jan. (1971), Methods for Estimating Stability and Control Deriv-
atives of Conventional Subsonic Airplanes. Published by the author,
The University of Kansas, Lawrence, Kansas, 3.2-3.3.

Fung, Y. C. (1955), The Theory of Aeroelasticity, John Wiley & Soms, Inc.,
New York, pp. 280-282.

Bisplinghoff, R. L., Ashley, H. and Hoffman, R. L. (1955), Aeroelasticity,
Addison-Wesley, Reading, Massachusetts.

Hamming, R. W. (1973), Numerical Methods for Scientists and Engineers,
McGraw-Hill Book Company, Hightstown, New Jersey, pp. 375-377.

Bathe, K. J. and Wilson, E. L. (1975), Numerical Methods in Finite Ele-
ment Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp.
322-324,

Swerling, P. (1954), Probability of Detection for Fluctuating Targets,
RAND Corporation Report, RM-1217, March 17.

Swerling, P. (1968), Radar Target Signatures, Intensive Lecture Series,
Technology Service Corporation, Santa Monica, CA, August 26-30.

45



[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

Marcum, J. I. and P. Swerling (1960), "Studies of Target Detection by
Pulsed Radar," IRE Trans., vol. IT-6:2, pp. 59-267, April.

Nathanson, F. E. (1969), Radar Design Principles, McGraw-Hill Book Co.,
Hightstown, New Jersey, Chapter 5.

Crispin, J. W. and Siegel, K. M. (1968), Methods of Radar Cross-Section
Analysis, Academic Press, New York, New York, Chapters 9 and 10.

Crispin, J. W., Jr. and Maffett, A. L. (1965), "Radar Cross-Section
Estimation for Complex Shapes," Proc. IEEE, 53:8, pp. 972-982, August.

Skolnik, M. I. (1970), Radar Handbook, McGraw-Hill Book Company,
Hightstown, New Jersey, pp. 28-3 to 28-5.

Crispin, J. W., Jr. and Maffett, A. L., (1965), "Radar Cross-Section
Estimation for Simple Shapes," Proc. IEEE, 53:8, pp. 833-848.

0lin, I. D. and Queen, F. D. (1965), "Dyuawic Measurement of Radar
Cross-Sections," Proc. IEEE, 53:8, pp. 954-961.

Pi, W. S. and Hwang, Chintsun. (1978), "A Non-Gaussian Gust Model for
Aircraft Response Analysis," AIAA Journal, 16:7, pp. 641-643, July.

46



IX. TABLES
Table 1

Aircraft Weights

The airplane cases studied follow. In all cases, additional loading is simula-

ted by inertial effects alone.

Type A: 2 different wing-sweep configurations, 3 internally-loaded cases
A) 16 deg. l.e. sweep

1--1: dry airplane ('light')
gross weight = 44,507 1b.
1--2: dry wing, 23,327 1b. fuselage fuel ('medium')
gross weight = 71,834 1b.
1--3: 5,468 1b. wing fuel, 23,327 1b. fuselage fuel ('heavy')
gross weight = 77,302 1b.
B) 72.5 deg. l.e. sweep

1--4: dry airplane ('light')
gross weight = 44,507 1b.

1--5: dry wing, 23,327 1b. fuselage fuel ('medium')
gross weight = 71,834 1b.

1--6: 5,468 1b. wing fuel, 27,327 1b. fuselage fuel ('heavy')
gross weight: 77,302 1b.

Type B: 3 externally-loaded cases

4--1: clean airplane, unloaded pylons ('light')
gross weight = 37,704 1b.
4--2: 2 loaded pylons per semi-span ('medium')
total of 4 loaded I/B pylons per airplane (14 M117GP bombs)
gross weight = 49,068 1b.
4--3: loaded pylons per semi-span ('heavy')
total CF 4 loaded I/B and 4 loaded O/B pylons per airplane
(I/B: 14 M117GP bombs) plus
(0/B: 2 MK81 bombs and 2 LAU 32 A/A FFAR rocket
gross weight = 51,752 1b.

Type C: 3 externally-loaded cases

5--1: clean airplane, all stations unloaded ('light')
gross weight = 15,265 1b.

5--2: I/B and tip stations loaded ('medium’)
I/B pylon: 50% 150 G. fuel tank
Tip station: AIM-98 'sidewinder' missile & launch
gross weight = 17,258 1b.

5--3: O/B ANC tip stations loaded ('heavy')
I/B pylon: full 275 G. fuel tank
0/B pylon: BLU-27/B(F)
tip station: AIM-98 'sidewinder' missile & launch
gross weight = 21,908 1b.
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Figure 27(a). Fundamental mode of aircraft type C. 483 knots at
sea level. Medium weight = 17,258 1b. Vertical
displacement of wing. fl = 7.46 hz.
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Figure 27(b). (cont.) Torsional rotation of wing.
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Figure 27(c). (cont.) Vertical displacement of fuselage.
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Fig. 28. Sharp-edged gust response for rigid type B air-
craft. Gust vertical velocity = 2 ft/sec. Air-
craft weight = 54, 611 1b.
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Figure 29. Elastic response to sharp-edged gust, aircraft type A.
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Figure 30. Elastic response to sharp-edged gust, aircraft type B.
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