15814-1-F = RL-2286 Valdis V. Liepa Univ. of Michigan 22 December, 1978 Interaction Applications Memos Memo 29 Current and Charge Density Measurements on Scale Model E-3A Aircraft ABSTRACT Measured data are presented for the surface current and charge densities induced on scale model E-3A (AWACS) aircraft when illuminated by a plane electromagnetic wave in a simulated free space environment. The measurements were made on 1/150 and 1/100 scale models over the frequency range 225 to 440 MHz, simulating 1.5 to 44.0 MHz full scale. The data are for 15 test points and 3 excitations chosen to complement the full-scale ATHAMAS I/ACHILLES I ground tests made at Kirtland Air Force Base. CONTENTS Section Page No. I INTRODUCTION.......................................... 3 II MODELS, MEASUREMENTS AND DATA........................ 4 2.1 Models............................................ 4 2.2 Measurements...................................... 5 2.3 Data.............................................. 7 FIGURES.............................................. 10 TABLES............................................... 16 DATA................................................. 19

PREFACE It is a pleasure to acknowledge the assistance of Messrs. M. Tomorski, D. Brown and F. Lenning of The Radiation Laboratory in performing the measurements, data processing and data preparation. The assistance of Mr. Gary Bedrosian of Dikewood Industries, Inc., and Mr. W. Prather of AFWL is also appreciated. 2

SECTION I INTRODUCTION The data presented here were obtained for the Air Force Weapons Laboratory to be used in determining the surface response extrapolation function [1] for the E-3A aircraft. The test points and excitation conditions in the scale model measurements were therefore chosen to conform to those of the full scale measurements made in the ATHATlAS I (Horizontally Polarized Dipole) and ACHILLES I (Vertically Polarized Dipole) simulators at Kirtland AFB. Surface current and charge data are presented for 15 locations or test points on the aircraft under 3 different excitation conditions. The measured quantities are the axial current component Ja, the circumferential current component Jc' and the normal electric field component En. Of the 135 measurement situations possible, 56 were initially picked out, and 43 were finally selected. The resulting data are presented in the form of amplitude and phase plots as a function of the full scale frequency, and have also been furnished to Dikewood Industries, Inc. in digital form on computer cards. 1. Carl E. Baum, "Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in Terms of EMP Criteria," AFWL Sensor and Simulation Notes, Note 222, 1977. 3

SECTION II MODELS, MEASUREMENTS AND DATA 2.1 MODELS For the measurements two scale models of the E-3A aircraft were acquired, one coming in the form of a plastic kit (Entex No. 8522) 1/100 in scale which was then assembled, and the other as a solid plastic model (MicroWest Inc., Santa Clara, CA) 1/150 in scale. The models were reasonably good replicas of the E-3A in most particulars, but some modifications were necessary to provide adequate (electrical) simulation of the full scale aircraft. These included cutting back the fuselage to station STA:F178 to simulate the removal of the non-metallic radome (the nose of the radome is at STA:130); adding an HF 'probe' to the right wing of the 1/100 scale model (the other model already had it on); and cutting off sections of the rotodome to "remove" the radome. A center section of width 78 inches (full scale) and length equal to the diameter of the rotodome was left to simulate the antenna structure. After modification in this manner, the models were given at least three coats of silver paint to make them conducting. The lengths and wingspans were then measured to determine the actual scale factors. Because neither model was a precise replica of the E-3A, the factors deduced from the fuselage and wingspan differed slightly, as indicated in Table 1. In converting measured field data to their full scale values, the fuselage 4

scale factors were used for the case of nose-on and top incidence when the electric vector was parallel to the fuselage, and the wingspan scale factors for top incidence with electric vector perpendicular to the fuselage. To permit the mounting of the sensors, holes were drilled in the model through which to pass the sensor leads. Figure 1 is a photograph of the two models after modification and painting with holes drilled in the fuselage. When a particular hole was not in use, it was covered with copper tape which shows up as a dark patch in the photograph. As the study progressed, additional holes were drilled in the wings, stabilizers, rotodome and rotodome struts, and the unused ones covered with coper tape. 2.2 MEASUREMENTS The measurements were made in the Radiation Laboratory's anechoic chamber, a facility specially designed, constructed and instrumented for surface field measurements. A block diagram of the facility is shown in Figure 2. The measurement procedures were similar to those used in previous programs [2, 3, 4], apart from changes resulting from the continued upgrading of the facility and the measurement techniques. In particular, 2. Valdis V. Liepa, "Sweep Frequency Surface Field Measurements," University of Michigan Radiation Laboratory Report No. 013378-1-F; Sensor and Sirnu — lation Notes, Note 210; 1975. 3. Valdis -V. Liepa, "Surface Field Measurements on Scale Model EC-135 Aircraft," University of Michigan Radiation Laboratory Report No. 014182-1-F; Interaction Application Memos, Memo 15; 1978. 1978. 4. Valdis V. Liepa, "Surface Field Measurements on Scale Model E-4 Aircraft," University of Michigan Radiation Laboratory Report No. 014182 -2-F; Interaction Application Memos, Memo 17; 1978. 5

for this program a new broadband transmitting antenna was installed which reduced the lower end of the frequency range from 450 to 225 MHz, thereby providing coverage in the three overlapping frequency ranges 225-1100, 950-2200 and 2000-4400 MHz. The currents and charges on the models were measured using miniature sensors 2-3 mm in dimension constructed from 0.5 mm diameter semi-rigid coax. Most of the current data were obtained using a surface mounted half-loop probe (SP) whose signal lead was taken from the model at a place remote from the test point and chosen to produce least interaction with the model. A few current measurements were made using an external or free space probe (FSP), but these were confined to situations where the interaction of the model and the probe lead is negligible, as in the case of the measurement of J at STA:F510T for top illumination with c E parallel to the wings. Only the antisymmetric modes are then excited and these do not couple to the probe lead. For the charge measurements only surface mounted probes were available, and with these the mounting procedures were the same as for the surface mounted current probes. Figures 3 and 4 show the taping required for installing a surface mounted probe on a rotodome strut. Figure 5 illustrates how the use of more than one scale model can increase the range of full scale frequencies for which data can be obtained. With the measured frequency range 225-4400 MHz (approximately a 20:1 bandwidth), a 1/150 scale model will provide coverage from 1.5 to 29.3 MHz, 6

and a 1/100 model covers 2.25 to 44.0 MHz, yielding the overall coverage 1.5 to 44.0 MHz, corresponding to a 29:1 bandwidth. Measurements were made for three different excitations: Excitation 1 - Top incidence, E parallel to the fuselage Excitation 2 - Top incidence, E perpendicular to the fuselage Excitation 3 - Nose-on incidence, E vertical Figure 6 shows the excitations and the convention used for measurement of the currents. To excite the maximum currents on the rotodome antenna, the array was rotated parallel to the fuselage for excitations 1 and 3, and perpendicular to the fuselage for excitation 2. 2.3 DATA For each measurement situation the data obtained from the two models over the three frequency bands results in a data set comprising six data files for the transfer function. Due to the different number of sampling points used in each frequency band and the fact that the measurement frequencies were divided by the model scale factors to obtain the full-scale data, the sampling was different in each of the six data files. When the data was recorded, 182 points were used in Band 1 (225 - 1100 MHz), 133 in Band 2 (950 - 2200 MHz), and 144 in Band 3 (2000 - 4400 MHz). However, due to an occasional failure of the network analyzer to properly lock onto the signal at the start of a measurement, a few (perhaps a half dozen) points were sometimes omitted from a data set, resulting in fewer points 7

than listed above. The exact number of points and the frequency covered in the processed data is given (amongst other information) in line 5 of a data file (See Table 3). For a user of the data, Figure 6 gives the directions of excitation, the polarization relative to the aircraft, and the convention adopted in specifying the circumferential and axial components, Jc and Ja respectively, of the surface current. In all cases the component Jc is perpendicular to Ja. The data presented are normalized relative to the incident field: J/H0 or En/E0 for the current and charge amplitudes respectively. The phase reference is that of the incident field at the station where the measurement was made, based on the e time convention. Table 2 summarizes the situations for which data have been obtained, and gives the Figure numbers where the plots for each case can be found. Each Figure number is followed by a letter S (small model, scale 1/150) or L (large model, scale 1/100) specifying the model used in the measurements. The individual (digital) data files are identified with the numbers (filename) in the upper right-hand corner of the plots. Plots of the measured current and charge data are given in the later section. In addition, the data has been furnished to Dikewood Industries, Inc. in digital form on punched cards. The format used is: Line 1 FILENAME (4A4) 2 Comments (18A4) 3 Comments (18A4) 4 TITLE used in plotting (18A4) 5 FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN (4F8.3, 2F8.2, I5) 8

6 F(1) AMP(1) PHASE(l) F(2) AMP(2) PHASE(2) F(3) AMP(3) PHASE(3) 3(2F8.3, F8.2) -.......... F(NN) AMP(NN) PHASE(NN) where NN is the number of data points in the set. Table 3 is an example of a typical data file. 9

I Figure 1. The two models ready for measurement. The antenna structures in this case have been rotated appropriate to excitations 1 and 3.

< z2 0 I < H 0 CNJ (N ' H -zt I I I I I I I I OH 10 K 0 2r 00 0 I H 0 1 I w E:2 1 I - I 4-, I '' 1 0 < C) -C) I 0(9 02 (2(2 HO (9 (9:2 (2 0 I (9 11 H 7 < I I. -4 I 0 I (2C-; I < -< OH CC - < H cC-4 Hu 0 0 CD 0< -- OH 0< < 0 C 1 1 I cOniT-POT, BUS

Figure 3. model with the strut. the lead. excitation Close-up of the rotodome structure on the 1/150 scale a loop probe mounted to measure the current outside The taping on the inside was necessary to accomodate The antenna in this case has been rotated for an 2 measurement. 12

Figure 4. Close-up of the rotodome structure on the 1/150 model with a loop probe mounted to measure the current inside the strut. The taping on the outside was necessary to accomodate the probe lead. The antenna in this case is in a position for excitation 1 and 3 measurements. 13

- Band 1 225 - 1100 II I I I Band 2 950 - 2200 - m m.. Band 3 2000 - 4400 3000 I. -- I I I a I I. _ _ 1000 2000 4000 4400 - 1/100 SCALE 1/150 SCALE 9.5 - 2.2 20.0 - 44.0 2.25 - 11.0 - I 1.5 6. 63 -14.7 13.3 - 29.3 L o I I 10 20 30 40 FULL SCALE FREQUENCY (MHz) I4 47 Figure 5. E-3A measurement frequency coverage.

H E H ~ E o k T E I k H *Positions of Rotodome: Excitations 1 and 3 (i) Excitation 2 (ii) Figure 6. Convention for illumination and the measured current components on AWACS. 15

TABLE 1. MODEL SCALE FACTORS - i n —m Model Length Wingspan Fuselage scale Wingspan scale (radome removed) (cm) (radome removed) (cm) 1/100 44.89 43.97 1/101.12 1/101.03 (1/98.72)* 1/150 30.64 29.73 1/148.15 1/199.95 (1/145.03)* - - I- -. - -m Full With Full Full scale length including stabilizers radome removed scale wingspan (707-320B) scale wingspan (707-320) 46.61 m 45.39 m 44.42 m (43.41 m)* *In determining the scaling factors, the full scale wingspan used was that for the 707-320 version instead of 707-320B, leading to the slightly incorrect scaling factors shown in parentheses in converting measured frequencies to the full scale ones. The data affected are only for excitation 2, and can be corrected by multiplying the frequencies by a factor of 0.977. 16

TABLE 2. SUMMARY OF DATA MEASURED EXCITATION 1 EXCITATION 2 EXCITATION 3 E | Fus. E _ Fus. Nose-On STATION LOCATION J J E J J E J J E a c n a c n a c n F510T Fwd Fus. Top O1S,L 03S,L 05S,L 04S,L 02S,L 06S,L F504B Fwd Fus. Bottom 09S,L 10S,L 08S,L 11S,L 07S,L W600T Wg Cent. Top, Left 27S,L 28S,L 25S,L 26S,L F1000T RR Fus. Top, Fwd Sts 13S,L F1200T RR Fus. Top, RR Sts 14S,L F1070B RR Fus. Bottom F750T Fus-Wg Jct. Top 15S,L 12S,L 16S,L 43S,L F670B Fus-Wg Jct. Bottom 29S,L 39S,L 30S,L F178 Fwd Bulkhead 17S,L 18S,L W970T Wg Tip Top, Left 19S,L 20S,L 21S,L VS Vert. Stab. Side, Left 22S,L 23SL 24S,L ROTO Top of Rotodome 31S,L 40S,L 32S,L WL372(0) Strut Center Outside, Left 33S,L 34S,L 35S,L WL372(I) Strut Center Inside, Left 36S,L 37S,L 38S,L F1310B,RBL33 RR Fus. Bottom 44S,L 41S,L 45S,L 42S,L

TABLE 3. LISTING OF A TYPICAL DATA FILE > 1 AOOS > 2 E-3A,150,1,Q1QlO,B,8/28/78,DB > 3 > 4 > 5 > 6 > 7 > 8 > 9 > 10 > 11 > 12 > 13 > 14 > 15 > 16 > 17 > 18 > 19 > 20 > 21 > 22 > 23 > 24 25 26 27 28 > 29 30 > 31 > 32 33 > 34 > 35 > 36 > 37 > 38 > 39 > 40 > 41 > 42 > 43 > 44 > 45 > 46 > 47 > 48 > 49 > 50 51 > 52 > 53 > 54 > 55 > 56 > 57 58:> 58 > 59 > 60 > 61 > 62 > 63 > 64 > 65 > 66 *END OF FILl $ SCALE FACTOR=148.15 SAMPLE DATA 1.503 7.343 4 1.503 4.842 9 1.600 4.457 5 1.697 5.140 9 1.794 5.395 9 1.890 6.683 E 1*987 7.516 7 2.084 7.362 2.181 6.501 2.278 6.950 4 2.374 7.228 4 2.471 6.982 2.568 6.592 2.665 6.577 2 2.762 7.194 2.858 7.745 2 2.955 8*166 1 3.052 7.998 3.149 8.054 3.246 8.414 3.342 7.889 3.439 8.356 3.536 8.630 -1 3.633 8.453 -] 3.730 9.441 -] 3.826 9.908 -2 3.923 9.183 -3 4.020 9.141 -: 4.117 9.462 - 4.213 9.550 -4 4.310 9.908 -c 4.407 9.795 -' 4.504 9.247 -< 4.601 9.204 - 4.697 8.913 -; 4.794 8.531 -E 4.891 8.298 -E 4.988 8.147 -E 5.085 7.943 -5 5.181 7.925 -5 5.278 7.379 -5 5.375 7.499 -1( 5.472 7.656 -1( 5.569 7.925 -1( 5.665 7.870 -1( 5.762 8.511 -11 5.859 8.810 -1: 5.956 8.831 -1; 6.053 8.531 -1: 6.149 8.551 -1: 6.246 7.998 -1, 6.343 13.932 B1 6.440 12.882 1e 6.537 11.912 1' 6.633 11.508 1' 6.730 11.350 1 6.827 10.965 1' 6,924 11.117 14 7.021 10.520 1' 7.117 10.617 1: 7.214 10.617 1; 7.311 10.814 1: 4.436 8.*50?7.80 90.00 90.50 B9.70 '2.80 57.00 52.40 49.40 40.70 33.90 25.80 28.40 27.00 20.00 14.50 8.20 1.70 -1.40 -5.10 -8- 70 L2*40 15.20 18.70 26.20 34.40 37.90 39.80 46.00 53.20 58.00 65.40 71.40 74.20 31.30 35.70 37.20 93,30 97.10 98.70 )1.80 )3.20 )4.70 )9.50 11.50 17.10 25.90 30.10 36.20 43.90 67.90 62.20 56.40 57.30 52,40 49.30 47.70 42.80 39.70 39.40 35.70 13.932 -144.50 167.90 1.535 1.632 1.729 1.826 1.923 2.019 2.116 2.213 2.310 2.407 2.503 2.600 2.697 2.794 2.891 2.987 3.084 3.181 3.278 3.375 3.471 3.568 3.665 3.762 3.859 3.955 4.052 4.149 4.246 4.343 4,439 4.536 4.633 4.730 4.827 4.923 5.020 5.117 5.214 5.311 5.407 5.504 5.601 5.698 5.794 5.891 5.988 6.085 6.182 6.278 6.375 6.472 6.569 6.666 6.762 6,859 6.956 7.053 7.150 7.246 7.343 4.508 -4.436. 4.645 5.272 7.194 7.691 6.839 6.966 7.194 7.396 7.178 6.442 6.730 7.516 7.691 8.110 8.054 7.852 8.054 8.166 8.260 8.810 8.790 9.661 10,000 9.204 8.851 9.506 9.141 9.290 9.290 8.892 8.670 9.078 8.472 8.433 8.511 7.816 7.907 94.20 94.60 89.30 92.30 86.10 67.60 53.30 52.20 45.10 36,00 29,10 24.50 27.30 23.90 18.00 11.70 7.70 2.50 -2.60 -3.40 -8.10 -12.60 -13.80 -20.10 -29.50 -37.80 -39.90 -45.20 -49.70 -56.20 -62.80 -66.80 -72.10 -76.90 -80.40 -85.20 -89.20 -92.80 -98.10 182 1.568 1.665 1.761 1.858 1.955 2.052 2,149 2.245 2.342 2.439 2.536 2.632 2.729 2.826 2.923 3.020 3.116 3.213 3.310 3.407 3.504 3.600 3.697 3.794 3.891 3.988 4.084 4.181 4.278 4.375 4.472 4.568 4.665 4.762 4.859 4.956 5.052 5.149 5.246 5.343 5.440 5.536 5.633 5.730 5.827 5.924 6.020 6.117 6.214 6.311 6.408 6.504 6.601 6.698 6.795 6.892 6.988 7.085 7.182 7.279 4.477 89.50 4.688 90.60 5.117 87.40 5.741 90.50 7.379 78.20 7.464 62.40 6.546 55.00 7.031 52.60 7.379 46.20 7.379 36.10 7.211 27.90 6.546 28.90 7.178 27.90 7.656 20.80 7.980 17.70 7.907 7.50 8.072 4.30 7.816 0.70 7.780 -5.10 7.943 -7.10 8.241 -9.60 8.241 -16.00 9.078 -14.50 9.727 -22.00 9.683 -33.60 9.247 -36.70 9.594 -39.70 9.572 -48.40 10.023 -51.20 9.528 -59.90 9.311 -67.90 9.036 -69.30 8.770 -74.00 8.414 -80.10 8.551 -81.30 8.035 -84.60 8.395 -89.70 8.337 -91.00 8.017 -96.20 7.691 -99.60 7.925 -100.70 7.727 -104.50 8.017 -109.50 8.091 -110.30 8.531 -116.50 8.590 -124.20 8.472 -129.40 8.279 -135.20 8.279 -143.10 11*117 44.30 13.183 162.40 12.359 158.50 11.641 157.00 11.508 153.80 11.455 150.50 10.965 149.50 10.990 143.40 10.765 142.50 10.641 140.80 10.965 138.10 8.072 -100.00 7.586 -101.70 7.816 -104.70 7.907 -107.70 7.889 -109.60 8.337 -113.10 8.810 -120.10 8.298 -126.60 8.511 -131.20 8.318 -138.30 7.762 -144.50 13.521 165.70 12.735 159.80 11.508 156.90 11.749 154.50 11.246 151.70 10.965 148.10 11.169 145,40 10.839 142.30 10.641 140.20 11.041 137.50 11.324 136.50 E ------

- - - DATA - - - 19

12.0 I I. I ~ ^j =3 -j aJ ca I i q0 0. 0 E-3A F51OT JR 1( 1/150 R3533.35.37:AOIS 25 PR 78 UM 15.0 30.0 45. 0 200.0 I E-3R F51OT JR 1; 1/150 R3533.35.37; AO1S 100.0. 5 E~ 0. 0 a O. (n cc -100.0 o -200.0 L 0. 25 RPM 78 UM 0 15.0 30. 0 45.0 FREQUENCT IMHZ) Figure 01S. Axial Current at STA:F51OT, Excitation 1, 1/150 Model. 20

1 2.-0 E-3R F510CT JR I; 1/100 R3601 03. 05:AOIL S. 0 ~ -j 0 ul = C3 =3 - -j fLMc m Li.0 k 25 APR 78 UM 0.0o 0. I 0 1 5. 0 3 0. 0 4 5. 0 2 00. 0 I I100o.0o+ E-3R F5107O JR It 1/100 R3601. 03. 05; A01L G ui e 0. 0 LLJ in cr CL -1 00. 0 L -200.0 1 0. 25 APR 78 UM I I 0 15. 0 3 0. 0 4 5. 0 FREQUENCY (MM1Y1 Figure O]L. Axial Current at STA:F5]OT, Excitation 1, 1/100 Mode]. 2 1

4, 0 -iL o p ---. 1. 0. 0. 200. I I E-3R F5 I0T JR 3,s" /150 R3545.39:AO2S J~E 25 APR 78 UM I 15. 0 3 0. 0 4 5. 0 100. 0 ~ E-3R F51IOT JR 3, 1/1I50 R3545. 39; A02S H G ui 9 0. 0 uj in cc ck. I -100. 0 ~ I II -200.0 1-_ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ 25 APR 78 UM 0. 0 15. 0 3 0. 0 45 FREQUENCY CMYI) Figure 02S. Axial Current at STA:F'5lOT, Excitation 3, 1/150 Model. 22 5. 0

— r- - I I i I 1 3. 0 1 t I E-73R F51IOT JR A3; 1 /I00 R360-7. 09, II:AO2L AE 2 = o UJ = en -- =1 -D -i aM. 2. 0 L 1.0 L 25 AR~f 78 UM 0.0. — 0. 0 20 0. 0 1 5. 0 3 0. 0 145. 0 I K 3 A F510T JR Ii I. I I I 1 - E-RF1O R3: 1/100 R 60 09. 11; AA02L I /I1. 100. 0 L G R uj in cr X. CL 0. 0 ~ -1 00.0 ~ 25 RAfl1 76 UM -2 00.0L 0. 0 15. 0 3 0. 0 415. 0 FHE9UENCY CMM71~ Figure 02L. Axial Current at STA:F5]OT, Excitation 3, 1/100 Model. 23

1. 0 I 7 I 0. 8 ui =0I E-38 FS IOT JCI is 1 /1I50 R35147.L49, 5 IAO3S E k _zz/7 25 AR~ 78 UM 0.2 1. 0.0o 0. 0 -10 0.0 [ I 15. 0 3 0. 0 4 5. 0 0.015. 0 30. 0 45. 0 FREOUENCY (MHZ) Figure 03S. Circumferential Current at STA:F5]OT, Excitation 1, 1/150 Mode]. 24

1. 0 I E-3RA FS IOT JC 1; 1/100 R3613. 15. 17:AO3L E 0.8 ~. C3 0 I- ~ 0. 6 0. I o.oL 0. 0 25 APr 78 UM 15. 0 9 0.0 45S. 0 2 00. 0 1 00. 0 s 0. 0 -10 0. 0 -20 0.0 L 0. 0 15. 0 3 0.0 145. 0 FREQUENCY (?I!) Figure 03L. Circumferential Current at STA:F51OT, Excitation 1, 1/100 M~ode]. 25

Lk. 0 F cm0 ~-* ~ — 2. 0 E-3R FS5I T JC 2 1/ 150 R3557. 55. 53:AO4S 25 RPM 78 UM I. o AL 0.0 L 0. 0 1 5. 0 3 0. 0 4 5. 0 2 00. 0 E-38 F510T JC 2; 1/150 R3557,55.59; A04S 1 0 0.0 G uj Ca U.j U') a:.T., C %11-.-r 0.0O LI - 10 0.0 I - 2 00.0 25 RPMi 76 U I — j 0. 0 15. 0 3 0. 0 t45. 0 FREQUENCY (MIIY) Figure 04S. Circumferential Current at STA:F51OT, Excitation 2, 1/150 Mode]. 26

14.-0 E-3R F5IOT JC 2g 1 /1I00 R3 1 9. 21. 23:AO4L E~ji 3.0 LI I — I I Lai 9= 0 m = - 2. 0 1 n -D I CL 21. cc I 1.0 L, 0.0 0. 25 APR 78 UM I 0 15. 0 3 0. 0 145. 0 2 00. 0 100.0Ot G e uj tn cr.T., CL 0.0 [ E-3R F510T.JC 2s 1/100 R3619.21,23; A04L 25 RPM 78 UMI -100.0 L -200.0o 0.1 I 0 15. 0 30. 0 LAS. 0 FREQUENCY (MHZ) Figure 04L. Circumferential Current at STA:F51OT, Excitation 2, ]/lOO Mode]. 27

1 5. 0 E3Fi F510OT Q Is 1/150 A055aRS757.59.63 i i Ii I D. o i I E 2 r4 ul CZ =3 -i CL m 0 5.0 ~ 15.0 30.0 2 00. 0 10. E3R F510T Q It 1/150 R05SzR3757,59,63 I I I I I i i I uj m U.1 cn cr CL. I i I I 0. 0 I iI i I Ii I.10 0. 0 - 2 0 0.0 K 0. 0 15. 0 FRiEQUENCYIMHYI Figure 05S. Charge at STA: F51 OT, Exci tati on 1, ]/] 50 Model. 28

15.0 10.0 Uj 200.0. 0.0 -200.0 R B_______________ _______ UM 200.0 -____________________________________ ______________________ 0.0 15 30.0 45. FRE\UENC~ fMH) Figure 05L. Charge at STA:F51OT, Excitation ], 1/1O0 lodel. Figure 05L. Charge at STA:F510T, Excitation 1, 1/100 Model. 29

Li. 0 E3R FS1OT Q 3s 1/150 A065mR3BO1.03.05 30.0 cm 0 0. I-100.0 [ -20.0 I _________I___1 MRY T 2 UM] 0. 0 15.0 30.0 15. 0 Fiue. ChreatSAF5O, ExciaF1Tion 3, I/ 150 Mode]380.03 30

4.0 I I i j 1 3. 0 - I I I E-3R F510T Q 3s 1/100 R06LPR63i49 51 53 EL 2 0 I- - 2. 0 1. LD 0.0 O 0. 0 I1I MAT 78 UM 15. 0 30.0 45. 0 200. 0 E-3A F510T Q 3, 1/100 R06LaR83149 51 53 100 o.0 IL G uj E! 0. 0 uj in cc a I -100.0 ~. -200.0 L 0. I I MAlY is 111 I.. 1. -. I - -.-I I I 0 15. 0 3 0. 0 4 5. 0 FREQUENCY (MHIY) Figure 06L. Charge at STA:F5]OT, Excitation 3, 1/100 Model. 3]

4. 0f i I i i 1 3. 0!; I I I I -j w i cm 0 I W? — -- 2. 01 - c — I w a-7_ I Ex I E3R F5C4B 123; 1/150 R07S:R3751.53 55 AE I 1.0 ~ I1I MRT 78 UM 0.0 0.,0 1 5. 0 3 0.0 4 5.0 G 'i M Uj L', a: zr. CL 4 0 0. 0 I I II i I I 1 3 0 0. 0 ii i I I 2 0 0. 0 F i I I I I i i i i i i I 1 0 0. 0 i i i I 0. 0 1 0. 0 E3R F50L4B 12 3g 1/150 R07StR3751.53 55 12 MRY 78 Um t45. 0 I 15. 0 3 0. 0 FREQUENCY (MHY1 Figure O7S. Charge at STA:F504B, Excitation 3, 1/150 Mlodel. 32

'4. 0 - I__ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ E-3R F50'4B 9 3s 1/100 A07LzR3655 57 59 2 uj C3 -A Clcc7: I 3. 0 i I i I i 0 w - 2. 0 c: r, ui I I I i I AE ~IIILU 1.0 L I11 MAT 78 UM 0.0 0. I 0 15. 0 3 0.0 4 5. 0 LLJ C3 ul tn cr 3'. a 40 0.0 -- 0. E-3R F504B Q _______________________________________12 AT 8 I 15.0 300 '45. FRE9U2NCT(M~I 3; 1/100 RO7LtR3655 57 59 Figure OiL. Charge at STA:F504B, Excitation 3, 1/100 Model. 33

1 2. 0 iE3R F5048 Q 11 1/150 0S375t,4 8. 0 L ii; -— I uj C3 — I a 0 E k * I1 1 M R '78 'UX I I 4. 0 i iI i 0. 0 0. 0 IS. D 30. 0 4 5. 0 20 0. 0 I G LL, ul cn cr. a_ I i I i I i i I 0 0. 0, i I 1 i i I 1 1 0. 0 I I I I i I I - II 00. 0 i I I 2 0 0. 0 1 0. 0 E3R I F504B 0 1 i I/ I I I I I i i I i i I f I I i i I i i i I I I i I I I I i I '150 R083:Ra7 '45.47.4 7 4 5 4 7 4 -4 -4 1:i ~in 78 U 45. I I IS. 0 3 0.0 FflE9UENCTY MHl) Figure 08S. Charge at STA;,F504B, Excitation 1, 1/150 Mlodel, 34

1 2. 0 - E-3P F50L4B 9 1;1/'100 RO6LtR3661 63 R3701 1 2 uj C3 0 =7 W - c -1 LLJ am S. 0 6. 0 3. 0 i I I.I I I i I I I I I i I I i I I I I I i i I i i I i I I! I i I i i I i I IL I i I I J!I i 11 I i i E '1 - i I 0.0OI 0. 0 15. 0 3 0. 0 45S. 0 Z; LU p U., (A cr 7.1 CL 20 0. 0 10.0i 0. -10. -20. 0. E-3R F50UB Q 1;1/100 ROBLtA3661 63 R3701 v I;; I I i i I i i; i i I I I i I i I 1 4! I i I i I I I I I I I I; i I i I I I I i I I. I I I I I I I 1 1 MAY 78 UN 15. 0 3 0.0 45. 0 FKiEQUENCY (M-1fl Figure 08L. Charge at STA:F504B, Excitation 1,1/100 Nodel. 35

=I Cl - 7. -. ac 3m 7. 5. i 1 5. 5 O | t o. 0 __ 0.0 E3R S F504B JR 1' 1/150 R0OSiR4219,21.23 E cI=z I i iI I I i i I -_ _- 3S1 JUL 78 UM i 15.0 30.0 - - - 15. D 9 0.0 45.0 0 *. Un LUj (n C:: a. 200.0 100.0 r 0.0 -100.0 0 0. 0 E3R S F50L45 -?n JR l, \ 1 1/150 R095s R219,21.23 *1 I I i! 4 i 15.0 31 JUL 78 UH j 30.0 L5.0 FREQUENCY (MHZ) Figure 09S. Axial Current at STA:F504B, Excitation 1, 1/150 Model. 36

- Z; i ---- E3R L F504B JR ls 1/100 RO9LsR4225,27.29 W E I I i i k I i i I I I 4 — 1 5. 0 i i I I I I i y, 2. 5 L i i I I I i i i il i il I i O i i I o. c L O. 0 ___ ___ ___ 31 JUL ~UM 3 0.0 4 5. 0 15. 0 c 200.0 __ E3R L F50145 JR lo 17100 R09L: R4225.27j2 C., uj UF2 Ln cr 2. a 1 0 0. 0 t i i 6 i i 0. 0 I I i f i i i I i - 1 0 0. 0Li I I I t i -200. 0 L ---. 0. 0 I i i I I i i I I I k i I I I I I I I I I I i I I I 31 JUL 76 UM 4 5. 0 1 5.0 3 0. 0 FREQUENCYCMHZ) Figure 09L. Axia] Current at STA:F504B, Excitation 1. l/]OO Model. 37

1c., - E-3R."7537 JC 2; '1"I0 RI "S:R6 135.37.39 i - P 0:D = 5. 0 ' rJ - I i I i i I I i i i f I I I I 0. 0 ____ ___ _ _ ___ ___22 5SE P 7 8 UM I 1 5. 0 3 0.0 4 5.0 20 0.0 r E-3R F750T JC 2; 1/150 R12S;R6135,37.39 1 00.0 2 - i I I i I I I 0.0 -1I0 0. 0I -20 L — ___ 0.0 15. 30.0 - 22 5EF' 78 UM --— I0 FMEQUENCT 1MHiF1 Figure.]2S. Circumferentia] Current at STA:F75OT, Excitation 2, 1/150 flodel1. 38

I 0. 0 - _ _ E-3R F7SOT JC 2; 1/100 Rt2L;R6iL47.L[9.5 0.0 15.0 30.0 Lk5.0 2 0 0. 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ E-3R F750T JC 2s 1/100 A,12LcR61147.L49.51 10001 F -200. 0 K_________________ _22' SEP '78 UM 0.0 15.0 30.0 4. FREQUENCY (MHZJ Figure ]2L. Circumferentia] Current at STA:F75OT, Excitation 2, 1/100 flode]. 39

25. 0 i E3R FIQOOT JR lg 1/150 R13xAR3819,21.23 i i i i i 2 0. 01 i i I I 5. 0 -0 I D I I 2:7! LAJ C3 =2 =,-I -j a_ cr E I1I MRT 78 UM I10. 0 5. I~ 0. 0 1 __ 0. 0 210 0.0 i 15. 0 530. 0 L15. 0 I LOOOT JR It 1/150 R13S-.R381g.21,23 G F! U.j Ln cc,L 0. 0 ~ -1 00.0o - 20 0. 0 I1I MAY 78 LIM 415. 0 1 5. 0 350.0 FREQUENCY (MHIZ) Figure ]3S. Axia] Current at STA:F1000T, Excitation 1,) 1/150 Mode]. 40

25. 0 __ _ _ _ __ _ _ _ I i; LO C:3 =3:I -4 CLM. LI I 1 2 0. 0 I i I I I i i Is. C) I =0 i i I I I 0. 0 itI I I 5. 0 i it I.I n - n E3-A FI000T JR lil/1QO FI13LtR3727 29 31 E 11 MAT 78 UN U. U I i 0. 0 1 5.0 3 0. 0 4 5. 0 E3-A F1000T JR 1:1/100 R13LR3727 29 31 10. 1 Z; e cn cr a-.r. i I I I 0. 0 1 Ii I i I I I I - 1 0 0. 0 I 45. 0 I11 MAT '76 U. 0 1 5.0 3 0. 0 FRIEQUENCY MMZ-t) Figure 13L. Axial Current at STA:FlOOOT, Excitation 1, 1/100 Mlode]. 4]

25. 0 E3R F1200T JR 1; 1/150 R14S:R3825,27.29 - i k I I I 20. 2 i uj C3 -r=3 — l -1 a_ m: tr_ 10.0 5. O 0.0 L 0. 0 I1 MRTY 78 UM 15.0 30.0 45. 0 200.0 r I00.0 L E3R F1200T JR 1; 1/150 R1US:R3825.27.29 5 L-1 tn cr C. 0.0 \ i j -100.0 0. 0 11 MAYT 78 UM I 45. 0 15.0 30.0 FREQUENCYT fMM') Figure 14S. Axial Current at STA:F1200T, Excitation 1, 1/150 Model. 42

25. 0 20.0 E3-9 F1200T ~JR Is 1/100 A14t~A3733 35 37 E k 15.0 C3 0 t — -- 10. 5. 0 O.0 OL 0. 0 2 00. 0 15. 0 3 0.0 '15. 0 E3-R F1200T JR 1; 1/100 R14LzLR3733 35 37 I ti i 1 0 0. 0"; i I I I I I 0. 0 iI I i I - 1 0 0. 0 -f i iI I - 2 0 0.. 0L o. 0 /1 4-1 - 1MAT 78 UMI 3 0.0 415. 0 1 5. D FfiEQUENCY(MM71) Figure 14L. Axial Current at STA:F]200T, Excitation 1, 1/100 Mode]. 43

I 5. 0 i I - -- -t i E-'3R F750-1 JR Is 1/1150 SISSiFI3831,33.35 q E i i k -7! LO en I — -j CLcr 12. 0 " I i i I i I i 9.0 1 -i = 0 i I II I i 6. 0 i rI I i II i 3. 0 I i o.o L 0. 0 1 1 MAT 78 -UM J, LIS. 0 15.0D 30.0 2 0 0. 0 -- I I I i I I I I I 0 0. 0 I i i i I I i O. O I i I I I i I -1 0 0. 0 E3R F750T JR 1; 1/150 R15StR3831,33#35 I I i i i iI I I I I j I G LLJ Ca L-Li cX cr CL. 0. 0 1 5. 0 3 0.0 11 MAT 78 UM L15. 0 FflEQUENCY (MM7I) Figure iSS. Axial Current at STA:F75OT, Excitation 1, 1/150 Mode]. 44

E3-R F750T JR Is 11100 R15L&R3709 11 13 — I uj al c =3 -rI- --,-I -j CAx cc 1 2. 0k 9.0. 6oL 3. I I4 0. 0 15.0D I1I MRY 78 UM _ '4 S. 0 3 0. 0 2 00. 0 E3-R F750T JR Is 1./100 R15LaR3709 11 13 I100.0 ~ G ILJ ta LLJ on CZ d i I I i I 0. 0 L i Ii I I I -100.0o A.1 _____ 11 MT 78U 30.0 45. 0. 0 15. 0 Ff~EQUENCY(MHtZI Figure 15L. Axial Current at STA:F750T, Excitation 1, 1/100 Mode]. 45

B. o_ Ul 0 en = I- I-j Licr. I i 4. 0 L I ii i I i II i i 2. 0. i i I I I 0. 0 1 0. 0 E3 —R F750T JA3; 1/150 R16StR3837.39.L41 E _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 M A Y 7 8 U M 15. 0 30.0 4 5. 0 40 0. 0 E3R F750T JA,3u 1/150 R16SsA3837.39.til G w2 (n cl::r CL. i 3 0 0. 0 II i i I I I ii i 2 0 0. 0 i i i i i I i o o. o:i i I i o. o L.0. 0 I i I I I I I I i I I I I I i I I I i i i I 78 um i 4 5. 0 1 5. 0 I11 MAT 3 0.0 FREQUENCY(MMHZ) Figure ]6S. Axia] Current at STA:F75OT, Excitation 3, 1/150 Nodel. 46

E3R F750T.A3: 1/100 R'16LtR37/15.17.19 E i i 4. 0 1 i I I - i I LU I cl 0 I -r k — - " -—.) i M. I X 1 cc I i i 2. 0 1, i I I I 0. 0 L 0. 0 i5. 0 30. it 1 MT 78 UMI 45.0 4 0 0. 0 G C3 LLI En CL M: a_ 3 0 0. 0 i iI i i i i 1 2 0 O. O I I I i i i I i o o. o Iri I E3R F750T JA3;- 1/100 R16L:R3715.17.19 N/ 0.0 L... 1 5. 0 12-1 MAY 76 u — I 3 0. 0 4 5. 0 FBEQUENCY (MMY) Figure 16L. Axia] Current at STA:F75OT, Excitation 3, 1/100 tlode]. 47

3 0. 0 - E3A F178 Q Is 1/150 R'7S-.R52ti3.4~5.47 -- I I I i E k 5ruj cm =3!7: — 4 a_:lr. cr I i i I 1 2 0. 0 II 1 1 1 0 w I wc i i I i 10. 0! ti i I iI 0. 0 -.0. 0 26 JUL 78 U.MI 3 0.0 Lj5Q. 1 5. 0 2 00. 0 E3A F178 Q1 Is1/150 R17S;.R5243.415.!47 G w C3 U-j (n ct CL 0. 0 15.0 3 0. 0 26 JUL 76 UM Lj5. 0 F9EQUE:NCY (MHZ) Figure 17S. Charge at STA:F118, Excitation ], 1/150 Mode]. 48

3 0. 0 E3A F178 Q la 1/100 R17LtR5301.03.05 i;I j.A t.!i! A i I I j 11 E ______________ 2 -— A LU C3.=3.-A a..:F. t I 2 0. 0 i I i i i 0 w wC: I I I i i I I I0. 0 0.; I II li li I,I i i I I Ii 1I 26 JUL 78 UM It -— j 45. 0 1 5. 0 3 0.0 2 00. 0 E3R F178 Q to 1/100 R 17Lt P5301.*03,05 EW a-. I -I.4 26 JUL 76 UM L 5. 0 15. 0 3 0. 0 FMEQUENC (IMHZ) Figure il7L. Charge at STA: F]78,. Exci tati on 1, 1 / 100 Model. 49

. 1 4. O C3:3 ~. a.. i 2.0 t 0 L-1 aJ E3A F178 Q 3S 1/150 R1;8S-.R52L49.51.$53 S0, 30.0 '5.0 i 0.0 L 1. 0 oIo 15 - C3 (n C; 200.0 _ 100.0 ' I -100.0 1 i -200.0 L. 0.0 1/150 R18S f...- -...- - - -..... I ~5249.51.53 i I l 26 JUL 78 UMN..5 0 I5. 15.0 30.0 1 5.0 3 0. 0 FREQUENCY CMHZ) Figure 18S. Charge at STA:F178, Excitation 3, 1/150 Model 50

5. 0 - E3A F:78 Q 3i 1/100 A18LiA5307.09.11 7 ui cl 0 =3 uj.. c — I w a31.1 cc 3. 0 0. 0 E -~I 26 JUL78U I -.1 LIS. 0 15. 0 3 0.0 1 00. 0 -.1\I — I I I I i I I I I I I i I i i I I 0.0O; II00. -2000 AL~ ______26 JUL 76 U 0.0 15.0 30.0 4. FREQUENCYCMHZ) Figure ]8L. Charge at STA:F]18, Excitation 3, l/]OO Model. 51

E3A i~970T Q 1. 1/150 F113StR5343.45.47 *1I u.j a_ LAJ 12.Or. 6. 0. 0t.0 __ _- _ _ _ E 0. 0 15.0-t- - 3 0. Ii E3R WS7OT 0 It 1/1 G uj El LLI (n cc: M M. 1 G0. 0 0. 0 - 1 00. 0 I 2a JUL 78 UM -- I 0 4 5. 0 - - - --- - - --- - ---- -- I - I. 50 RISS i R5343. 45. 47 1 I i I i I I I i i i I i i 4 i I I 1 28 JUL 78 UM 9 3. 8 45. 0 -200. 0 L --- 0. 0 11I. 3 2 2.5 FREQUENCY IMNY-1 Figure ]9S. Charge at STA:W97OT, Excitation 1, 1/150 Mode]. 52

1 5. 0 E3R h%970T Q It iiioo R19L:R5325.27.2S — j LLJ M =3 I.-j CLM. cr L-14 I uj 1 2. 0 9. 0 0 6. i. I3.0 0. 15. 3 0. 0 i. 0 Z; uj M uj (A cr a -20 0.0 L0. I E3A W970T Q Is 1/100 R19LiR5325,27,29 I'I --- -— 4- -26 JUL 768 U N - 15. 0 3 0.0 45. 0 FHEQUE2NCY W1HZI Figure 19L. Charge at STA:W97OT, Excitation 1, ]/]OO Mode]. 53

25. 0 ____- -. —. - — r I E3R W9707 g 2i 1/150 R205uA5355.57.59 2 -i uj C3 =3 I — -j a 20. 0 r I-J 0.0 II0. 0 ____ ____ 31 JUL 78 UM~ 15.0 3 0.0 5 ESR W970T g 2s 1/150 R205aR5355.57.59 __ __31 JUL 76 U Z.') E! 'nui CL 400. 0 --- I I I i I i I 3 00. 0 i I i 2 0 0. 0 I i i ii t I 00. 0 i I ci i I I I 0. 0L 0.0o Figure 20S. Charge at STA:W970T,. Exci tation 2,9 1/1 50 Miodel. 54

25. 0 -- E3A WS70T Q 2i 1(100 R20L;R5337.3g.LU E 20. 0 1 Fr:nj uj en Z) I.-; -1 AN; cr I LO LLI I i I I 5. 0 i 0 i I I I ir_ i i I I I 0. 0 I I i 1 5. 0 i 7 i. I I 0.0OI 0. 0 1 5.0 3 0.0 '15. 0 IIO. 1 00. 0 E3A W970T Q 2, 1/1J00 R20LiR5337,99.t41.1 I I II i i i i I I i i I i G LU E! LLA in cc 71. a I 31 JU 76 U 30.0 tL5I O. O L -- 0. 0 15. 0 FfiEQUENCY CMHY) Figure 20L. Charge at STA:W97OT, Excitation 2, 1/100 Mode]. 55

5. 0 - E3R 1N970-7 0 31 1/150 R2ASsR5349.51.53 I I LL. Q r, i i j 1 -2- S. 0 i -4 i ul I M =:) 0 1 I- LLJ a I a_ LLJ x. cc 1 2. 0 1 I I 1. ID ' i i. I I AE k o. oL 0. 0 28 JUL78U. 415. 0 15. 0 3 0. 0 200. 0 E3R WS70T Q 3t 1/150 A21Ss 10 0. 0 1; ul Cl LLI tn C= 27. a 0. 0 ImI I Ii i i r I I I I I i R5349. 51.*53 I I 26 JU 76 U I5 -I100.0 ~. -200. 0 L — 0.0o 15. 0 30 ---.0 4 FREQUEJCY (MH7) Figure 2]S. Charge at STA:W970T, Excitation 3, ]/1 50 Model. 56

2 74 LL: ra 0 =3 LLJ -- C __3 LLJ am: cr. 5.0.4.0 L.0 1 1. I o. 0 L,k I __ __- ~~ ~ ---r --- —--- - ~ 1 E3R 1W970T Q 3s 1/1OO R21LtR5331,333.351, '-7 ~.... 15.0 30.0 45. 0 200.0 _ 100.0 F.3R N970T Q 3s 1/100 R21LR5331.33.35 C-l U1 tn C: &. 0.0 L -100.0 L -200 o o. o I ___ _ o. 0 45. 0 15.0 30.0 3 0. 0 FREQUENCY [MHZ1 Figure 21L. Charge at STA:W970T, Excitation 3, 1/100 Model. 57

2 5. 0 I I E3R VS Q l; 1\150 R22S;RS1425.27.29 E k - cz zz 20. 0 -2. — I uj C3:z -1 CL 15. 0 0 5. 0 31 JUL 78 UM I 15. 0 3 0.0 2 00. 0 I ESR VS Q It 1\150 R22S;R5425.27.29 LiAS. 0 -- 100 o.0oI 1; uj p uj Er) cc CL. O.o OL -100. 0 L -20 0.0 ____ 0. 0 31 JUL 78 UM 15. 0 3 0. 0 LAS. 0 FRIEQUENCY (MHZ) Figure 22S. Charge at STA:VS, Excitation ], 1/150 Model. 58

25. 0 __ __ _ __ _ I - - I E-3R VS Q I 1 \1 00 R22L iR5I437. 39, t I k /7 2 0. 0 I 1 5. 0 LI 0 2 uj 1= =3:z -4 aa: II II I 0. 0 i tiI i i i i 5. 0 r I iI ii i I 0.0 OL 0. 0 1 5. 0 3 0. 0.0 2 00. 0 Q 1;g i i I I I I 1 0 0. 0 I I G uj M LAJ (n cr CL 0. 0 U -100. 0 1 - -200.0o L0. 0 31 JUL 76 UM 1 5.0 3 0.0 L45. 0 FREQUENCY (MHZ) Figure 22L. Charge at STA: VS, Exci tati on ], I]/]OO0 Model. 59

5.C0 -- - - -- I E3R VS i:;2l 1.1",50 R23SIR5413.15.17 i - i II i 1. 0 - * k;-r. -j LW C3 =3 -1 cl31 -cr 3. 0; II" i i L"0 c w I i i 2. 0 I i i 1. 0 i I I.I I 0. 0LO. 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ 3 1 JU L 8 u 15. 0 3 0. 0 15. 0 2 00. 0 E3R VS Q22; I/I50 R23S5,R5!413. 15 1 7 1 00. 0 l G I ul s o. o L uj cm C= a.. I I i I I I - I 0 0. 0 i i i i i I - -- o o. o i0. 0 I 31 JUL '78 UM~ 30.0 --- - - --- 1 5. 0 FREFQUENCY (MHZ) Figure 23S. Charge at STA: VS,. Exci tati on 2, ]/] 50 [Mode]. 60

S. 0 - E3; 'VS a 2. 1/1"0 R23LtR5419.21.23 VE *k -1 Cuj I., -1 a2F. cr 3. 0 -. 0 0. 0 L0.0 L15. 0 ____ 31 JUL 78 15. 0 3 0. 0 2 00. 0 - E3F4 VS 2 2; 1('100 R23LtR5'419,21.23 1 00. 0 - G Cl LLJ'n cr CL i I i i O. 0, 1 -1I0 0. 0 -20. 0. *1 31 JU 76 U 30.0 L~5. 15.04 FREQUE:NCYCMHZ) Figure 23L. Charge at STA:VS, Excitation 2, ]/]OO Mode]. 6]

1 0. 0 r- - en 0 I — -_ r -J LUL 7. I i 2. 0.1i 0. E3R VS Q 3: 1\150 A2'&5:R5431,33,35 k 1 5. 0 __ __ __ __ - 31 JUL 76 3 0.0 L 5. 0 1 00. 0 E3A VS 0 3i 1\150 A2I&S:R5L31.33.35 G LLI en U.j (n cr CL 0.0 o -100.0 ~ - 2 00.0 _ _ _ _ _ _ _ _ _ _ _ _ _ 31 JUL 76 U._ 0. 0 15. 0 3 0.0 4 5. 0 FREQUENCY (MM1Z) Figure 24S. Charge at STA:VS, Excitation 3, 1/150 Model. 62

10.0 fr 7. 5 2 j.0 - a: 2.5 0. 0 0. 200.0 - E3R VS Q 3: 1\100 R2iLIR5443,45,47 I _ _"_/ 31 JUL 78 UM.0 15.0 30.0 45.0 E3R VS Q 3: 1\100 R24LsR5443,45,47 oo00. L c9 LU UJ in cr a: 0.0 L -100.0. I -200.0. o 0.0 M... 45. 0 15.0 30.0 15. 0 3 0. 0 FREQUENCY (MHZ) Figure 24L. Charge at STA:VS, Excitation 3, 1/100 Model. 63

I10. 0 -,- - - - -- - - - -I F I I i E-3A XBOOT 9 2; 1/'50 A25S;R5513.15.17 E B.0o L 2 Ul C3 =3 -i CL. 6. 0 0 2. 0 L 0.0 I 0. 0 2-1 SEF 76_UMJ. 3 0.0 415. 0 1 5. 0 2 00. 0- - - -T - I W600T 9 2; 1/150 R25S;R5513,15.17 1! i I I 1 00. 0 G p uj Ln cr a 0.0 o -100. 0 ~ - 2 00.0 __ ___-_ 0. 0 -~__ ___ ___21 SEP 78 UM.0 4 5.0 1 5.0 3 0 FREQUENCY 1MHZ) Figure 25S. Charge at STA:W600T, Excitation 2, 1/150 Model. 64

10. 0 ____ I E-3A W600T Q 2; 1/100 G25L;R5519.21.23 Ek 8. 0 ~ 2 uj m P.-1 M. X: cr 6.0 oI 0 4. 0 ~. 2.0 L 0. 0 _ _ _ 0. 0 15. 0 3 0. 0 45. 0 2 0 0. 0 - i i i I I I I I I i 1 0 0. 0 i r II.1 I I I E-3R WBOOT 9 2; 1/100 R25L;85519.21.23 I I iI I G uj C3 uj (A cr a_ 0.0 OL -100.0o~! -200.0 o __ ___ 0. 0 1 5. 0 3 0. 0 2 1 SEP 78BUM..J 145.0 FREQUENCYCMH-Z) Figure 25L. Charge at STA:W4600T, Excitation 2, 1/100 Model. 65

3. 0 E-3R ABOOT 03; 1/150 P.265;R550i.03.05 I AE 2. 0 2 -1 LLI C3 =3 -j a.. cr 0 1.0 L. O.o OL 0. 0 - - — L 21 SEF 78 UMJ. L 5. 0 15. 0 3 0.0 2 0 0. 0 _ _ _- - _ _ _ _ - - ~ ~ -- _ _ __ _ ~ _ _ _ _ i E-3R N600T 0 3; 1/150 R2BS;R5501.03.05 10. I 1; LO p LLJ cm cr a 0. 0 -10. -20 0.0 0. 0 1 5. 0 3 0. 0 21 SEF' 76 m 5. 0 FHEQUENCY 'MHZ) Figure 26S. Charge at STA:W600T, Excitation 3, 1/150 Model. 66

3. 0. _ __ ----- E-3R WSOOT 0 3; 1/'100 R2BL;R5507.09.11 E k 2. 0 L 2 LLJ C3 t: -4 aX: 0 LLJ c LLJ 1.0o Ii 0.0 L 0., 21 SEP 78 UM 0 15.0 3 0. 0 Li 5. 0 20 0. 0 I - - - - - Fi i I I i o o. o L I__ _ - _ _ _ _ _-T- _- - - -- - I E-3R W600T Q03; 1/100 R2BL;R5507,09.11 I I I I G uj p uj (n cc: (L. 0. 0 ~ -100.0 L -200.0 L0. 0 ____ ___ ___ ___ ____ ___ ___ ___ ____ ___ ___ ___ ___21 S E P 7 8 U m - 15. 0 3 0.0 I 5. 0 FREQUENCY (MHZ) Figure 26L. Charge at STA:W600T, Excitation 3, ]/]OO Model.67

I10. 0 I I i i 8. 0 E-SR N600T JR 1; 1/150 A27S;R5631.33.35 I E kz~ i f4 uj im 0 =3 = I-j ) CL. XI. cr S. 0 ~. Li.0 o 2. 0 ~ 0.0C 0. 0 4 00. 0 - 21 SEP 78 UM - -— I 1 5.-0 3 0. 0 145. 0 I i i 300. 0 ir --- T --- E-3R WBOOT JR ls 1/150 R27S;R5631.33,35 I I I i I I 200. 0 ~ 100. 0 ~ 0. 0 ____ ____ ___21 SEP 78 UM 15. 0 3 0.0 4 5. 0 FREQUENCY 1MHZ) Figure 27S. Axial Current at STA:W600T, Excitation 1, 1/150 Model. 68

1 0. 0 I -r --- S. 0 L ui C3 =3 0 -1 '-) CL r. a: 6. 0 E-3R WBOOT JR ls 1/100 R27L:R5619.21.23 k / - 21 SEP 76 UM 4.0 o 2. 0 [ 0.0oL. 0. 0 15. 0 3 0. 0 4 5. 0 4 00. 0 30 0.0 E-3R W600T JR 1; 1/100 R27L;R5619,21.23 G al U-1 V) cc X. a 2 00. 0 100.0 L 0.0 OL 0. 0 21 SEP 76 UM 1 5. 0 3 0. 0 FfiEQUENCY 1MHZ) LAS. 0 Figure 27L. Axial Current at.STA:W-,600T, Excitation 1, 1/100 Model. 69

10.0 600T JR 2, 1/150 R28S:;R5613. 15, 17 vk I "k I 8.0 -. 6. 0 s! c~ a 2.0 L 0.0 L 0. 21 SEP 78 UM -!.-.4 0 15.0 30. 0 45. 0 200. 0 I I I I I 1 00. 0 i — 3- - - I E-3R W600T JR 2: 1/150 R28S;R5613,15.17 I G Ln <x o.. 0.0 [L -100.0 -200.0 1 L0.0 21 SEP 78 UM 15.0 30.0 4 5. 0 FREQUENCY (MHZ) Figure 28S. Axial Current at STA:W600T, Excitation 2, 1/150 Model. 70

-I I ---- I I 111, E-3R W600T JR 2; 1/100 R28LsR5555,57,59 E B. 0 =, 0 Lj* 2.0 b 0. 0 15. 0 3 0.0 I E-3R W600T JR 2; I/ 10. 0. -10. i 21 SEP 78 12M L4 5. 0 '100 R28L; R5555. 57.59 G uj cn LLJ V) cc: C'.. -200.0 ___I_______ 21 SEP 78 6UM.I 0. 0 1 5.0 3o0.o0 L5.Q FRiEQUENCY (MHZ) Figure 28L. Axial Current at STA:W600T, Excitation 2, 1/100 Model. 71

I 0. 0 _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ E'R F570B JR 1/150 R2SS; R5723.25.27 6.0 M =0 4.0. 2. 0. 0.0 _ _ _ _ _ _ _ _ _ _ _3 OCT 78 U 0.0 1 5. 0 3 0.0 415.0 200. 0 rr --- —- ---- ~ - E3R F670B JR 1; 1/150 R295: A5723.25.27 1 00. 0~ Uj2 200.0 15.0C30.0 45.0 FMEQUENCY (HH7) Figure 29S. Axia] Current at STA:F67OB, Excitation 1, 1/]50 Mode]. 72

I C. 0 ~- - r- _ _ __ E3R F6705 JA 1; 1/100 R29Ls R56I43.4~5.LV7 i-: cnu_: -1 a_ W-. cx E.') uj Cl 'nuj cr a.. 8. 0 6.0o 4. 0 2. 0 0. 0 0. 0 2 00.0 1 00.0 0. 0 L -100. 0 -20 0.0. 0. 0 E k /1 cZ0Z-< I I i I I i I i; I I I i i 4 1 i I II I I 3 CCT 78 UM.....11 15. 0 3 0. 0 45. 0 JR 1: 1/100 R29Li R564~3,~5.417. — I i i i i I I I I I i I I I I i I i --- -1 14 5. 0 3 OCT 78 UM 1 5.D 30. 0 FIE:QUENCY (MHZ) Figure 29L. Axial Current at STA:F670B, Excitation 1, 1/100 Model. 73

E3A F670B jR 3; 1/150 R3OS; R5729.31.33 3. 0 2. 0 1.0 o3 0:- = II 0. 0 15.0 3 L4 OCT 78 UM] L 5. 0 0. 0 210 0. 0 E3R F670B JR 3: 1/150 R3OSs R5729,31,33 G LW p LLI Lln cc CL. 0.0 i i I I I i i JI I I I I j i I i i Li OCT 78 UM aO — — 45.O 15. 0 FRiEQUENCY (MHZ) Figure 30S. Axia] Current at STA:F670B, Excitation 3, ]/150 M~ode]. 74

I — r ESP F670B JR 3t 1/100 A30L; R5849.51.53 i i i I i A E I i /7 II II Lv — 4 — i 2 U-1 C3 =3 -j ct: 2p. ct: 3. Or. =0 2. oL 1.0 1. 0 L. 0. AV I4 450 1 5. 0 3 0. 0 G uj p uj (n cc CL 1 00.0 -i -1 00.0 L 0. 0 A i I i I I iI I j f I I I i i i i E3A F670B JR 3: 1/100 R3OLv R56149.51.53 4 OCT -786 UM i 4 5.0 -- - ---- -15.0 ~ 3 0. 0 FREQUENCY (MHZI Figure 30L. Axia] Current at STA:F670B, Excitation 3, 1/100 Model. 75

io.0 ---— I -I_ E-3a ROTC Q 1; 1/150 P315, R5907.09.11 7.5 L! 7._L a- l a I i I: I 4 2.5 L 0.0 1 0. 0 UM L45.0 15.0 30.0 200.0 E-3R ROTO Q 1; 1/150 A31Ss R5907.09.11 i 100. o.o.I 0. O i G L3 L.. -100.0 L 21 SEP 78 UM j 45. 0 -200.0 I__ 0. 0 15.0 30.0 FREQUENCY (MHZ1 Figure 31S. Charge at STA:ROTO, Excitation 1, 1/150 Model. 76

10. 0 -~ -. E-3R MOTO 9 Is 1/100 RS1Li R5913. 15.17, i i I 1 7. 5 I E k -2 i LLJ C3 0 =:) LLI F — — l - I LO C: a7 -cr 5. 0 L. 2-.5 ~ I Li5. 0 0.0cL0. 0 1 5. 0 3 0. 0 2 00. 0 1 00. 0 T -— 7 1 li li'100 R31L; R5913,15,17 I I Ik i i i i I 1 1 i i I i I I G uiC3 U-1 In cr CL 0.0 - 10 0.0 - 2 0 0 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 2 S E P 7 8 _U M j 0. 0 1 5. 0 3 0.0 4 5. 0 FREQUENCY (MHZ) Figure 31L. Charge at STA:RGTO, Excitation 1, l/]OO Model. 77

I 6. 0 _ _ _ _ _ — -. E-3R ROTO 0 3; i i I I 1 2. 0 I I I 1 -2 -4 uj I cl 0 -1W I — -- (3. 01 AE k-%fe 1/150 R32Ss R5919.21.23 A I 22 5E~76 UM 30.0 L~5I -1 LL a_ 2F-. M. AJ C 0 0.0 0. 20.I _10.I 0.0I -100.0u 15. 0 E-3A ROTO 0 3; 1/150 R32St R5919.21.23 El LLJ p uj (n cr 12 - I i i I I I i I I i I I I I.u mjI Li 5. 0 0. 0 22 SEP 76 1 5. 0 3 0.0 FREQUEN4CY (MH2) Figure-32S. Charge at-STA~fROTO, Excitation 3, ]/]50 rModel. 78

I 6. 0 __ __ __ __ _ __ __ _-,- - - - E-3R ROTO G 3i 1/100 R32Ls R5925.27.29 -2 -j uj C3 -I a LLJ 9 LAJ i k.0. 0. 1503. 22 SEP 78 UM LI5. 0 2 00. 0 ---—, --- —- ___II E-3R ROTO 0 3, 1/100 R32L; R5925,27.29 10. I G LLJ Cl ui 'n cr CL. 0. 0 ~ I I -100. 0 ~ I -2 00. 0 1 _ _ _ _ _ 0. 0 15. 0 — 22 SEP 76 UM 3 0. 045. 0 FHEQUEJCY (MHZ) Figure 32L. Charge at STA;ROTO, Excitation 3, ]/]OO Node]. 79

I10.-0 i ~E3A k'L372C0) JR 1; 1/150 A335: R6013.t5.17' 7.5 lo. 2. 0.0 0.00 E 28 SEP 78 UM 1 5. 0 3 0. 0 L15. 0 1; uj Cl ui tn C= XI a_ 1 00. 0 7 --200. 0 K 0.0 ESA WL372(0) JR 1; 1/150 P335:. R6013.15.17! 4 0C;T 78 UMv 15. 0 3 0.0 4 5. 0 FFIEQUENCY (MHZ-) Figure 33S. Axia] Current at STA:WL372(0), Excitation ], 1/150 M~odel. 80

* E3R; #L372 (0) JR ll 1/100 R33Lt A5949.51.5S~ 2 LU M =3 — I CL. 3a cx G LAJ cn U.J cl: CL I I =0 1 -- 5. 0 17) i f I i i I i I 1 2. 5 I I i i i i 0. 0 L — 0. 0 II 28 SEP 78 UM 1 5. 0 3 0.0Li5 2 00. 0. ____ ____ _ _ _ --- - - - - - - - - - — _ _ E3R WL372(01 JR ii 1/10-0 A33Li R59'49.51.53~ 1 00.0 0.0 -100. 0 L I I I I i I I I I i I i 70 um.4 4 5. 0 0. 0 —. --- *L _-__I_ 2 6 SEP 15. 0 3 0.0 FREOUENCY MHY) Figure 33L. Axial Current at STA:WL372(0), Excitation 1, 1/100 Model. 81

16. 0 - E3R; NL37i21o1 JR 2i 1/150?'134S:. R6031.33,35~ EI i k t4. 5 2 -j uj m -j a_ M. cr 0 3. 0 i. I~ 0. I~0. 10. iJ00 i I i I I I i I i i i 1 1 1 i I I I -— I 145. 0 1 5. 0 -~ —2 OCT 78 U 3 0. 0 E3R NL372(01 JR 2; 1/150 R3L4S; P6031.33.35i q I I I -4 1 i i I I i -1 I i I I I I - 1 00. 0 rI I -20. L0.0 2 OCT 78 UM _ _ I. L45. 0 15. 0 3 0.0 FREQUENCY (MMZ) Figure 34S. Axial Current at STA:WL372(0),, Excitation 2, 1/150 Mode]. 82

6. - c - - - - - - _ _ __ T E3R;L372 0O) JR 2; 1/100 R34L; R6007,09.11 I i n! L.0 -28____ ___________________S2EP 76 UM 0.0 15.0 30.0 4 5. 200 - - -- -1 1 E3R WL972 (0) JR 2; 1/100 R34L; R6007,.09.11 i O O| -100.0 r -200.0... 26 SEF 78 UM 0.0 15.0 30.0 45 ( FREQUENCY [MHZ) Figure 34L. Axial Current at STA:WL372(0), Excitation 2, Excitation 2, 1/100 lodel. 83 0 0

0. 0 0. E3A HL372C0ij JR 3; 1/150 R35S; R6019.21,23~ __ i I I I i I i i i I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ 3 O C T 7 8 U M 1 5. 0 3 0.0 45-.1 2-00. 0 --- 'I - --- - - — I-, E3A W"-372(0) JR 3; 1/150 A353; R6019,21,23; i i I I I 1 0 0. 0! i i iI, 1 i i 0. 0 i I i i i I -100. 0 i I I - 2 0 0. 0 0. 0 -4.4 2OCT 76 V 4 5. 0 1 5. 0 FREQUENCY (MHZ) Figure 35S. Axial Current at STA:IWL372(O), Excitation 3, 1/150 Mode]. 84

i6. 0 E31R WL372(0' JR 3; 1/100 R35LR5955.57.59 2 LLJ cn =1 I E. X: CL::I 1 2. 0 (z ~ ~ 7 0. 0 - CT7BU 0. 0 _________- 15. 0 3 0. 0 Lj5.0 ESA WL372(01, JR 3, 1/100 R35L;R5955.57.5S 100.0o L G LLJ e 0. 0 ul Ln cr a_ iI -100. 0 L I -2 00. 0 - 0. 0 2 OCT 78 UM 15. 0 3 0.0 Li 5. FHiEQUENC~ (MHZ) Figure 35L. AxialCurrent at STA:WL372(O), Excitation 3, 1/100 M~odel. 85

6. 0 -. E3A WIL572(11 JR 1;. 1/150 A36S; R6107,09.111 EI k /7 i 7 LLJ en CL 3r. cr 3. 5 t 1. F 0. _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ ___2 OCT 78 UM 15.0 30.0 145.0 G LLJ Cl w (n CL a 2 00. 1 00. 0 0. 0 -10 0.0 -2 00. 0 0. 0. -- - -..T RP NL372(I) JR 1: 1/150 R365: P6107.09.11, ____- -- 2 OCT 78 UMj 30.0 4 5. 0 1 5. 0 FAEQUENCY tMHZI Figure 36S. Axial Current at STA:WL372(I), Excitation 1, 1/150 Model. 86

6. 0 ---- -r ---- -_ _ _ E'3A k'72Cil JR 1; 1/100 R136Lt R6037,39.~141 E Fi k # rj W cm =3 -A CL. 2c ct: i I Lk. 5 Ii I i I 0 - 3. 0 Ii I i I I i I. 5 1 r I I I II i o. o L — 0. 0 ~z-. ___________ 2 CCT 78 U M~ 3 0.0 L15. 0 15. 0 2 0 0. 0 -.- - i I I i I i i 0c). o I I Z; I uj 9 o. o L w M a: i X: I M. I i iI i i I I - 1 0 0. 0 i I i i i - 2 0 0. 0 L --- 0. 0 ---- -- - -- - --- - -— T - - -I 1/100 R36L; R6037,39.41,; i i I i I-1 I II i i I i I I I i I i I I I f L I..,.1 45. 0 - __ ___- - _ ___- 2 OCT 76 UV 1 5. 0 3 0.0 FREQUENCY(MHZ) Figure 36L. Axia] Current at STA:W4L372(I), Excitation 1, ]/]OO Mode]. 87

0.58 - E3P 1%Z3T2k'l JiR 2:- 1/150 R37S; R6057.59.81 ~Z7~-~ -- 0.6 m0 -- 0. 4 0.0 200. 100.0 1 5. 0 I ~ 6 SEPT 78 UM 2(l JR 2: 1/150 R37S; R6057.59,61~ E3A ICL372 G (n ui Ln cr.7. CL. 0. 0 I. -10. -20. 0. I I I I I I I i i I U OCT 78 UM i - -— j 4 5. 0 15.0- - 30.0 - FRiEQUENCY 1MHZ) Figure 37S. Axial Current at STA:WL372(I), Excitation 2, 1/150 Mode]. 88

E3R L 3 72 LI1 I JR 2; /O R37Z; R 6025 2 7 2 9 0.6 0 0. 0 2 00. 0 -1000 0 -i ___ ~ If\I 6 SEP 76 U 15.0 3.0 45. Tii ii iI i E3j NL'372(I) JR.- - ~ - '- - - - - -- - - I 2; 1/100 R37L; R602~; 7.28' G Ca LU (n cr X-. CL. 0. 0 ~ I j II i I i 1 1 I I j I I i i i i I I i i I I i i I- -- 1 4 5. 0 -210 0. 0 0.0 4 OCT 78 UM 1 5.0 3 0. 0 FREQUENCY (MHZ) Figure 37L. Axial Current at STA:WL372(I), Excitation 2, 1/100 Model. 89

E3R KL372UII JR 3; 1/150 R38S; R61.01,03.05I 2 i ui En 0 M. M.' cr i 8. 0 LI I I i 6. 0 I I I ii 1 4. 0 i I i I i i i 2. 0 I i I k I 4 I I 0. 0 L0. 0 20 0. 0 - ~~ ~ ~ ~ ~ ~ ~ ~ - _3 OCT 76 UM3 0.0 Li5. 0 1 5. 0 E3R WL372C1) JR 3i 1/150 A38S: R6101.03.05 j G L&J p ui Ln cr a i O O. O! i i Ii I i I 0. 0, I i I i I - I 0 0. 0 1 II I I -200.0 0. 0 I i i I I — ______2 OCT 769 tM 15. 0 3 0. 0 Li 5. 0 FJ9EQUENCY (MHZ) Figure 38S. Axial Current at STA:W4L372(I), Excitation 3, 1/150 Model. 90

0. 0, - I --, E3R W'L372 (; JR 3; 1/100 R38L: R6407.09.11 I i e.oL,. I ) E 8.0 - F17 Iz:._1 x: I, —,s._ x: 6. 0 F S. 0 o -,1 -I 1 O. 0 0. 0 I __ 2 CCT 78 UM ' 15.0 3 0.0 415.0 200.0 - E3R NL372 (I1 JR 3; 1/100 R38Ls R6407. 09, 1 1 G cr 3n ~. 100.0 j I FV I -200.0 ______ o.0 15.0 I I I i i 45. 0 2 OCT 78 UM 30. 0 FREQUENCT (MHZ) Figure 38L. Axial Current at STA:WL372(I), Excitation 3, 1/100 Model. 91

S. 0 - - - -_E-3R F670B JC 2; 1/150 R39S;A61l41.43.q5i 4b. 2 74 ul M n -1 CL 3r. Cc T i i 0 1 i - 2. 5 ' 171) I f I Ii I I I I i i I 0. 0 L — 0. 0 15. 0 C 3 0. 0 22 SE-P 78 UMI 4j5. 0 2 0 0. 0 i i I i I i I i i I I 0 0. 0;_ L i i I I E-3R F670B JC 2; 1/150 R39S:R611.L43.t45 I G 9 LLJ V, CL 0. 0 1 1 00. 0 ~ -200.0 L__ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 22 SEP 76 UM 0. 0 1 5.0 3 0. 0 L15. 0 FREQ~UE-arv 1MHZ) Figure 39S. Circumferentia] Current at STA:F67OB, Excitation 2, 1/150 Model. 92

S. 0 -- -- - -- -- - E-3R F670B JZ 2; 1/100 P39L;A6153.55.57 2 uj C3 =3 -1 a7. cc -'r0 1 -- 2. 5 I-D I i i i I I i I I I II I i I I vi 0. 0 ________ 0. 0 -J --- 22 SEP 78 UMI L 5. 0 1 5. 0 3 0. 0 20 0. 0 I -— r -- - -- - — I E-3A F670B JC 2i 1/100 R39LsR6153,55,57 I I I I I I I It i I 0 0. 0 I i I I I i I 0. 0 Li Muj M LLI cm ct CL - 1 00.0 -1 I 1 22 SEP 78 UM 4 5. 0 - 2 00.0 L 0.0 I15.0 3 0. 0 FREQUENCY (MHZ) Figure 39L. Circumferentia] Current at STA:F670B, Excitation 2, ]/lOO Model. 93

I10. 0 E-3i; RC170 JR 2; 1/150 RL40S;R6159,61.63 2 -j ui C3 -i 9L. 3a a: 8. I 6. i 6. 0 200.0 E I' 22_SEP 76 UM 3 o.o0 45. 0 E-3R RCTO JR 2i 1/150 R40SiR6159.61.63 I 15. 0 G uj C3 uj LO cr V I 0 0. 0 - I i i i I i I i 0. 0 i I - 1 0 0. 0 L I I i I II I I 22 SE 76 U 45. 0. o 1 5. 0 30.0 — FREQUENCY 1MHX) Figure 40S. Axia] Current at STA:ROTO, Excitation 2, 1/150 Mlodel. 94

IIc.0 ---- ~- - ~T E-3R ROTO JR 2: '1/10O R4~0L;R6207.09,1 8.0oi~:- I L1 0 t. 2. 0 0.0-r 0.0 - E I - k -;7 ----' I 22 SEF 78 U I~* i5. 0 3 0. 0 20 0. 0 I I 3R ROTO JR 2: 1/100 R4OLtR6207.09.11 G uj ta LLI cn cr fL 10 0.0 L 0. 0 -'o -20 0.0 -A ___ _2 2 FE' 7 8 U M 0.0 15. 0 3 0. 0 50 FREQUENCT 1MHZ) Figure 40L. Axia] Current at STA:ROTO, Excitation 2, l/]OO Model. 95

E-3R F 13 1 O.3C I ni U.j cl =3 I E. cr ii I I t 1. 5 t i I 0 -- 1.0 I-) I I I i 0. 5 1 r I i I I j o.o L O. 0 2; 1/150 R41lS;A62311.33.35 E 4-. i I I I i Ii i I I i I I I I i I I I I I I I I I - 4 OCT 78__UMjI 15. 0 3 0.0 15. 0 2 00. 0 10 I 0. -10. E-3R F13105 JC 2; 1/150 AL41S;RS231,33,35 G LLI e uj (n a: m: 12 - j I I I I. I I - 2 0 0 f- 0. 0 4 5. 0 -- ---- - is. 0 4I OCT 76 UM 3 0. 0 FREQUENCY fMHZ) Figure 41S. Circumferential Current at STA:F13]OB, Excitation 2, ]/]50 Model. 96

2. 0 E-3F1 F1310B jC 1. 5 i t I -L. 0. 5 o. o Lo. 0 2; 1/100 R4 -L;R6219.21.23 l I 4-., fl I II I I 11 li i 1,1 i I lh!l.11 iii, if i fU WA A rn aA/Y I I I ______ __ __ 4 OCT 76 UM 15.0 30.0 45.0 200.0 - IE-3R F131B JC 2( 1/100 R4.. R621921 23 -E-3R F1310B JC 2, 1/100 R41L:R6219,21,23 100.0 L ULJ Cl en:r a_ 0. 0 I i -100. C -200.0 -- 0. 0 I I 4 OCT 78 UM 30.0 45. 0.. --- -- - —... -- I 5. 0 FREQUENCY (MHZ) Figure 41L. Circumferential Current at STA:F131OB, Excitation 2, 1/100 lodel. 97

10. 0 E3R F,3'1OB Q 3; 1/150 RL42S; R63.19.21.23 AE k __ __ '-1/ 7 z~ — ~ ---r - 7. 5 -! I I i 1. w II en 0 = W I — --- S. 0 i a r -1 Uj I a.. M. i I t I 2. 5 I I I iI I I I J I I i I I I L4 OCT 78 UM 3 0.0 145. 0 0. 0 L0. 0 15. 0 4L0O. 0 E3R F1310B Q 3; 1/150 RL42S; R6319.21.23 300. 0 G i uj E! 2 o 0. 0 L LAJ i tn I cr OL. I i I i i I i i 1 0 0. 0; -4 0. 0 2~1~~L~I Ij~ 001 5. 0 3 0. 0 FREQUENCY 1MHE) Figure 42S. Charge at STA: F]31]OB,. Exci tati on 3,5 1/1 50 Node]. 98

, n f') E3R F1310B Q 3; 1/100 R42L; R6325,27.29 7. 5 I cn 0 I- ~5. 0 25k ____ ____ __ L OCT 78 UM 0. 0 L._ _.__ _._ _-..........._ _ _ _ _ _ _ _ _ 0. 0 1 5. 0 3 0.0 LI5. 0 E3R F1310B 9; 3; 1/100 R4~2L; R6325. 27.29 3l0 0. 0 ~ 200. 1 00. 0 _ _ _ _ _ _ _ 4 OCT 76 UM FREQUENCY(MHZ) Figure 42L. Charg-e at STA: F]31]OB,. Exci tati on 3, ] /1 00 Mode]. 99

i 0. 0 - E3A F750T Q 3; 1/50 R43S; R6249.5'1.53 E -. 5 1 i I i i i 4 1 i II I 2 ZJ LLI m I i. 2: a: 0 L&J IC ui 5. 0 2. 5 L 0. 0. 0 L I I i I I i I 15. 0 4 OCT 76? 3 0.0 4 5. 0 200. 0, E3A F75OT Q 3; 1/150 R43Si R6249.51..53 100o. 0L -i i I I I I II I -4 G CW LLJ 01 cr CL. 0. 0, -100r -20. I 0. I i I i 4 5. 0 4 OCT 76 UM 15. 0 30-.0 - FREQUENCY MHZ) Figure 43S. Charge at STA:F750T, Excitation 3,, ]/]50 Miodel. 100

*7. 2 LLJ en =3 a_ X: I I LLJ 0 1 -- f wc 5. 0 '11, I I i i I I i 2. 5 I i I I I I I 0.0 i E3A F750T 03; 1/100 RL43Lt R83'3.15,1' 4 OCT 78 UM I 0. 0 15. 0 3 0. 0 415. 0 2lo00. 0 --- ESA F750T 0 3; 1/100 R'43L: R5313,15,17 - I I I 1 O0. 0 - 1 G LLJ M uj cn a::r_ CL. 0. 0 i I I I I I I -1 0 0. 0 1 t I I I I I I I i i I I j 4 OCT 78 UM 145. 0 -200.0 L 0. 0 15. 0 30. FMEQUENCY IMN!) Figure 43L. Charge at STA:F75OT, Excitation 3, 1/100 Model. I101

2 0. 0 -. E3R FISIO1 B JR 1; 1 /I50 RLN'4S; R6355 5, 5 -.S E k -7 Fr ul C3 =3 -i a_ 31. m I 5. 0! i I I i I I -0 i::-'- I o. o 3 I I I i I 41 — 5.0 o - 0. 0 2 00. 0 - I i I i I I I 1 2 OCT 78 UM 1 5. 0 3 0. 0 LI 5. 0 E3R F1310B JR 1i 1/150 R44LS; A6355.57.59 i I i i I 1 00. 0i i I i I I 0. 0 I i k G Cui UJI (n cr CL. -210 0. 0L 0. 0 i i i i i i i I i i I i i i I I i I I i I i I i i I i 4 OCT 7a um - ___j 4 5. 0 15.0 30.0 - FR9EQUENJCY (MHZ) Figure 44S. Axial Current at STA:F]310B, Excitation 1, 1/150 Mode]. 1 02

2 0. 0__ E3A F5A-03 JR: /100 FiP4L;R6337,39,41 L f7 ~cii~izzI 15E. 0 F 0 5. 0 F I0. 0L 0.0 ' I I I II I I I 30.0 14 5. 0 I 1 5. 0 2 00.0 -. 10 0. 0 ~l ESR F1310B JR 1; 1/100 RgqLiRGS37,39.41 1; uj p LLJ Ln cr 2-. 4. I I i i I i I i i i I I 0. a 6 I i I I I I I I I I I - I 0 0. 0 1 i i i t i I - 2 0 0. 0L —.0. 0 _____ _________29 SEP~ 78 UM 1 5. 0 3 0. 0 L15. Q FMEQUENC( (MHZ) Figure 44L. Axi al Current at STA: Fl 31OB,. Exci tati on 1,3 1/100 Model. 1 03

E3R F13103 JR 3; J./15O i-~i5Sg R6LO14.03,05 2 LLI Li i aM; cr 4.0 - 3.0 i 2.0 00 0. 0 200. 0 i 100.0 i; I i I~ I I i t1 l. --. ___2 OCT 76 UM ] 30.0 45.0 15.0 E3R FIBO1310B JR 3; 1/150 R455 R6,01.03,05 LIJ cr oL i i I I I I i -100.0 o -200. 0 L0. 0 15. D0 FREQUENCY (MHZ) 2 OCT 78 UM I ) 0 45.5 3 0 Figure 45S. Axial Current at STA:F1310B, Excitation 3, 1/150 Model. 104

5. 0 -,.- - 1-r -. - - -- - I — _ ___ __ ___ _ E3P Fi3108 JR 3; 1/1400 R9SL;R63I43.L5.4"i i! 74 LLJ M t — — I a_ cx 1; P Ul cn cr a. 14. 0 3. 0 2. 0 1. 0 0. 0 0. 0 2 00. 0 -20 0. 0 0. 0 4~ I 29 SEr 78 UM 15.0D 3 0.0 LI5. 0 - r -.1 'II it 11 f E3R F131OB JR 3; 1/100 R45L;RB3143.L45.47..... -- -. ~ 4OCT 78 UM___ 3 0. 0 4 5. 0 15. 0 FREQUENCY (MHZ)f Figure 45L. Axial Current at STA:F]3]0B, Excitation 3, 1/100 Model. 105