016104-1-F CURRENT AND CHARGE MEASUREMENTS ON SCALE MODEL EC-130 AIRCRAFT Valdis V. Liepa 16104-1-F = RL-2288 Department The Radiation Laboratory of Electrical and Computer Engineering University of Michigan Ann Arbor, Michigan 48109 September 1978

016104-1-F ABSTRACT Measured data are presented for the surface currents and charges induced on scale model EC-130 aircraft when illuminated by a plane electromagnetic wave in a simulated free space environment. The measurements were made on 1/144 and 1/72 scale models over the frequency range 225 to 4400 MHz, simulating 1.5 to 51.1 MHz full scale. The data are for 6 test points and 6 excitations chosen to compliment the full-scale HPD/VPD ground and the VPD fly-by tests made at Kirtland Air Force Base. i

I

016104-1-F TABLE OF CONTENTS Section Page No. ABSTRACT.................. i PREFACE............................. ii 1. INTRODUCTION....................... 1 2. MODELS, MEASUREMENTS AND DATA............. 2 2.1 Models...................... 2 2.2 Measurements................... 4 2.3 Data...................... 6 FIGURES........................ 8 TABLES..........................16 DATA.......................... 21 iii/iv

V. V. Liepa Univ. of Michigan November 1978 Interaction Application Memos Memo 25 Current and Charge Measurements on Scale Model EC-130 Aircraft ABSTRACT Measured data are presented for the surface currents and charges induced on scale model EC-130 aircraft when illuminated by a plane electromagnetic wave in a simulated free space environment. The measurements were made on 1/144 and 1/72 scale models over the frequency range 225 to 4400 MHz, simulating 1.5 to 51.1 MHz full scale. The data are for 6 test points and 6 excitations chosen to compliment the full-scale ATHAMAS I/ACHILLES I ground and the ACHILLES I fly-by tests made at Kirtland Air Force Base. CONTENTS Section Page I INTRODUCTION 3 II MODELS, MEASUREMENTS AND DATA 4 2.1 Models 4 2.2 Measurements 6 2.3 Data 8 FIGURES 10 TABLES 18 DATA 23

PREFACE It is a pleasure to acknowledge the assistance of Messrs. J. Tedesco, D. Brown and F. Lenning of the Radiation Laboratory in performing the measurements, data processing and data preparation. The assistance of Dr. E. O'Donnell of SAI and Mr. W. Prather of AFWL is also appreciated. 2

SECTION I INTRODUCTION The data presented here were obtained for Science Applications, Inc. (SAI) to be used in determining the surface response extrapolation function [1] for the EC-130 aircraft. The test points and excitation conditions in the scale model measurements were therefore chosen in conformity with those of the full scale measurements made in the ATHAMAS I and ACHILLES I simulators at Kirtland AFB, but measurements were also made for excitation conditions similar to those of the ACHILLES I flight exposure tests performed at Kirtland [2]. Surface current and charge data are presented at 6 locations or test points on the aircraft for 6 different excitation conditions. The measured quantities are the axial current component Ja, the circumferential current component J, and the normal electric field component En. One hundred and eight measurement situations were therefore possible, but since some of these correspond to null field situations or to low excitation levels in the case of the ACHILLES I flight exposure simulation, the number of actual measurements was only 54. The resulting data are shown in the form of amplitude and phase plots as a function of the full scale frequency, and have also been furnished to SAI in digital form on computer cards. 1. Carl E. Baum, "Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in Terms of EMP Criteria," AFWL Sensor and Simulation Notes, Note 222, 1977. 2. R.W. Sutton and D.R. Stribling, "TEMPAT I/AFWL Add-On Test Requirements," Science Applications, Inc., Report No. SAI-78-638-WA, 1977. 3

SECTION II MODELS, MEASUREMENTS AND DATA 2.1 MODELS Two scale models of the C-130 were acquired, the first coming in the form of a plastic kit (MPC, No. 20552) 1/72 in scale, and the other being a solid plastic model (Precise Model Co., Elyrio, OH) 1/144 in scale. Figure 1 is a photograph of the models as C-130's. Note that the smaller model in the background has stretched strings that were eventually replaced by metallic wires to simulate the HF antenna. To convert the models into their EC-130 counterparts, VLF antenna drogues were added at the bottom of the fuselage and tail and wires were added to represent the HF antenna. The wires were 0.02 mm diameter beryllium copper, and pieces of plastic and nylon string were used for the insulators. For mounting the HF wire we followed the specifications given in [2]. However, after conferring with SAI personnel, it was determined that the HF 3 wire attachement at the fuselage should be at STA:F480T instead of F320. The models were prepared accordingly and Figure 2 shows the location of the HF wires. The HF 1, 2 and 3 wires were shorted at the fuselage but open-circuited at the vertical stabilizer. The so-called "dogleg" HF 4 and 5 wires were left open-circuit at both the vertical and horizontal stabilizers, and Figure 3 is a photograph of the installed wires on the models. Inspection of a C-130 commercial aircraft showed that the weather radar in the nose extends almost to the tip of the radome, suggesting that 4

for the purposes of this study the nose can be treated as metallic. The radome portions of our models were therefore left in place and metallized like the rest of the surface. However, after about 50 percent of our measurements had been completed, we were informed that on the EC-130, the instrumentation under the radome extends only inches beyond the bulkhead. It would therefore have been more realistic to have left the radome off, but because of the advanced state of our program, we continued with the metallized radome through the rest of the measurements. After construction and modification as indicated above, the models were given at least three coats of silver paint to make them conducting. The lengths and wingspans were then measured to determine the actual scale factors. Because neither model was an exact replica of the EC-130, the scale factors deduced from the fuselage and wingspan differed slightly, as indicated in Table 1. The actual factor used in convertinga measured result to the full scale frequency was that appropriate to the location of the test point and the excitation. 5

2.2 MEASUREMENTS The measurements were made in the Radiation Laboratory's anechoic chamber, a facility specially designed, constructed and instrumented for surface field measurements. A block diagram of the facility is shown in Figure 4. The measurement procedures were similar to those used in previous programs [3, 4, 5], apart from changes resulting from the continued upgrading of the facility and the measurement techniques. In particular, for this program a new broadband transmitting antenna was installed which reduced the lower end of the frequency range from 450 to 225 MHz, thereby providing coverage in the three overlapping frequency ranges 225-1100, 950-2200 and 2000-4400 MHz. The currents and charges on the models were measured using miniature sensors 2-3 mm in dimension constructed from 0.05 cm diameter semirigid coax. Most of the current data were obtained using a surface mounted half-loop probe (SP) whose signal lead was taken from the model at a place remote from the test point and chosen to produce least interaction with the model. A few current measurements were made using an external or 3. Valdis V. Liepa, "Sweep Frequency Surface Field Measurements," University of Michigan Radiation Laboratory Report No. 013378-1-F; Sensor and Simulation Notes, Note 210; 1975. 4. Valdis V. Liepa, "Surface Field Measurements on Scale Model EC-135 Aircraft," University of Michigan Radiation Laboratory Report No. 014182-1-F; Interaction Application Memos, Memo 15; 1978. 5. Valdis V. Liepa, "Surface Field Measurements on Scale Model E-4 Aircraft," University of Michigan Radiation Laboratory Report No. 014182 -2-F; Interaction Application Memos, Memo 17. 6

free space probe (FSP), but these were confined to situations where the interaction of the model and the probe lead is negligible, e.g. the measurement of Jc at STA:F345T for top illumination with E parallel to the wings, the case when only the antisymmetric modes are excited which do not couple to the probe lead. For the charge measurements only surface mounted probes were available, and with these the mounting procedures were the same as for the surface mounted current probes. Figure 5 shows the typical taping required for installing a surface mounted probe. Figure 6 illustrates how the use of more than one scale model can increase the range of full scale frequencies for which data can be obtained. With the measured frequency range 225-4400 MHz (approximately a 20:1 bandwidth), a 1/144 scale model will provide coverage from 1.56 to 30.6 MHZ, and a 1/72 model covers 3.1 to 61.1 MHz, yielding the overall coverage 1.56 to 61.1 MHz, corresponding to a 40.1 bandwidth. 7

2.3 DATA For each measurement situation the data obtained from the two models over the three frequency ranges results in six data files for the transfer function. At the request of SAI, the three bands of data for each model were combined into a single data set in which the sampling was uniform in frequency. These sampled data were obtained by linear interpolation between adjacent measured values, and in regions where two bands overlap, a single curve was produced by application of a linearly increasing weighting to one data set relative to the other. In the final format, the data measured using the 1/144 scale model are presented at increments of 0.065 MHz in frequency, and the data for the 1/72 model at 0.13 MHz increments. Figure 7 shows the directions of excitation used and the convention adopted in specifying the circumferential and axial components, Jc and Ja respectively, of the surface current. Because the wings and stabilizers of the EC-130 are all essentially perpendicular to fuselage axis, the components Ja on the wings and stabilizers was in all cases measured perpendicular to the axis. The component Jc is perpendicular to Ja. The data presented are all normalized relative to the incident field: J/H0 and En/E for the current and charge amplitudes respectively. The phase reference is that of the incident field at the station where the measurement was made, based on the ei~t time convention. Tables 2 and 3 summarize the situations for which data have been obtained, and give the Figure numbers where the data for each case can be 8

found. Each Figure number is followed by a letter L (large model, scale 1/72) or S (small model, scale 1/144) specifying the model used in the measurements. The presence of other numbers indicate that the measurement was repeated, usually for a different HF wire configuration (open or short-circuited condition) or made with a different probe. Table 4 details the conditions under which the measurements were made. In measurements with the actual aircraft, it had been observed that a high energy pulse produced arcing across the insulators of the HF wire antennas, thereby shorting them. Our initial instructions were to short the HF 1, 2 and 3 antennas at the vertical stabilizer, as well as the "dogleg" antennas, HF 4 and 5, at the horizontal and vertical stabilizers, and data sets 1 through 18 were all obtained under these short-circuited conditions. For sets 19 through 66, however, the conditions were changed: the insulators shown in Figure 2 were now left open-circuited except in the case of top illumination with E parallel to the fuselage for which the HF 1, 2 and 3 antennas were shorted at the vertical stabilizer. In addition to the above intentional change in the condition of the HF wire antennas during the course of the program, there may have been an unintentional change. When most of the 54 measurements had been completed, it was discovered that the short-circuit condition of the HF 1, 2 and 3 wires at the top of the (forward) fuselage was questionable on the 1/144 scale model. Cracks were observed in the silver paint bonding the wires to the model, and when the contact resistance 9

was measured with an ohm meter, the reading varied from zero (short circuit) to infinity (open circuit). The wires were then checked on the 1/72 scale model, but these were still shorted to the fuselage, as required. To see what effect the questionable short could have on the data, some of the measurements were repeated with the wires reattached and checked for a proper short circuit. These repeat measurements, plus others made under different conditions, are contained in sets 55 through 66: see Table 4 for details of the measurement configuration. Plots pages. In on punched Line 1 2 3 4 5 6 of the measured current and charge data are given on the following addition, the data has been furnished to SAI in digital form cards. The format is FILENAME (4A4) Comments (18A4) Comments (18A4) TITLE used in plotting (18A4) FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN (4F8.3, 2F8.2, I5) F(1) AMP(1) PHASE(1) F(2) AMP(2) PHASE(2) F(3) AMP(3) PHASE(3) (3(2F8.3, F8.2) 4-) -0 cs.......... F(NN) AMP(NN) PHASE(NN) where NN is the number of data points in the set. Table 5 is an example of a typical data file. 10

=J _J Figure 1. C-130 models similar to these were modified into EC-130 versions used in measurements.

dielectric links HF 5 — VLF antenna drogue dielectric links HF 4 dielectric links no radome on models no radome oil models /0 - HF STA:F280 HF 1 STA:F30.4 Figure 2. Implementation of HF antennas on scale models.

Fiqure 3. Attachment of the HF wires at the stabilizers. The upper photo shows the insulated attachment at the vertical stabilizer. The HF 1, 2 and 3 wires are embedded in plastic and isolated from each other, while the "dogleg" wires are isolated with strings at the vertical and horizontal (see lower photo) stabilizers. The photographs have been re-touched to emphasize the wires. 13

K NETWORK 1<ANALY Z ER SI1 GN Al, FLOW CRT DIGITAL 'FLOW;I I I Id 1). P 1 A I -- -NTIDCOVETE Ii'~i- - -- - 1' DIGIITAULTIPL LX E BUiS "ISOLI STATE.22-1.1 GIPT I TILTTT.94-4.4 GTJCZ.I i 12A/D CIONVE1R'l.'ER PO:'ST PKC)C:1"SITruNG: > P 1, 0 TT F, R. lip 983UA j UNIV. OF MICH. HP7203A CALCULATOR COMPUITER PU) JN C D I S 7 1 1 1 1 1 1 1 1 I AMDAHL, 4/0 V/b TERMINAL I —M T DEC LAI Figure 4. Block diagram of the measurement facility.

Figure 5. 1/72 scale model with a probe mounted to measure the charge at STA:F870B, top illumination, with E parallel to the wings. The probe lead is taped along the fuselage and leaves the model at the nose. For top illumination with E parallel to the fuselage, the lead would be taped along a wing and leave the model at the wing tip.

IR n d 3 mum Rand 2 Band 1 225 - 1100 2000 - 4400! 950 - 2200 I I I I 1000 2000 3000 4000 4400 MEASUREMENT FREQUENCY (MHz) 1/144 SCALE /13.2 - 3.06 1/72 SCALE 27.8 - 61.1 -- 3.1 - 15.3...j I l II I.- - I I I -1.56 -7 6.6 - 15.3 1.56 -7.6 13.9 - 30.6 I I I I I I I I I I I 0 10 20 30 40 50 60 FULL SCALE FREQUENCY (MHz) Figure 6. EC-130 measurement frequency coverage.

E 1 k H E k E H k H 22.6~ H Figure 7. Convention for illumination and the measured current components. 17

TABLE 1: MODEL SCALE FACTORS Model Fuselage |WinnFuse lage Wingspan Model Felge Wingspan scl scl Length* scale scale (cm) (cm) 1/72 42.70 55.68 1/71.15 1/72.58 1/144 20.81 28.54 1/146.00 1/141.62 (20.41)** (1/148.79)** -- _1Ill IIInII I IIII[ I Full scale length with drogue: 30.38 m Full scale wingspanwithout wing tip radomes: 40.41 m *Including the drogue **The length of the 1/144 scale model originally measured was slightly in error, leading to the use of the incorrect scale factors shown in parentheses in the conversion of the model frequencies to the full scale ones. The data affected are those for the 1/144 model in orientations 1, 3, 4 and 5, and can be corrected by multiplying the frequency by a factor 1.019. 18

TABLE 2: ATHANIAS I/ACHILLES I EXCITATION 1 EXCITATION 2 EXCITATION 3 TEST STATION E// Fus. E// Wings Nose - On LOCATIONS.... ~ J J E J J E 3 J E POINT NO. La c n a c n a c n 01L,S 01, F 03L,S 04L,S 101 F345T Fwd Fus. Top 55L,S 02L,S 03LS 04L 07L,S 61LS 56L,S 57L,S 10L,S 103 F345B Fwd Fus. Bottom 60L 11S L,S 12L S 'LS 16L,S 63LS 64LS 121 HS158T Mid Horiz. Stab. (R) 33L,S 392S 34L,S 40L,S 35LS 41L,S 62S 123 VS140 Mid Vert. Stab. (R) 44L,S 49L,S 45L,S 50L,S 140 W90T Mid Wing Top (R) 29L,S 31L,S 141 F870B Rear Fus. Bottom 19L,S 24L,S 23L,S 20L,S 25L,S - - - - - - - II1 More than one entry per box indicates repeated measurements.

TABLE 3: FLY-BY MODE DATA EXCITATION 4 EXCITATION 5 EXCITATION 6 TEST STATION E// Fus. E// Wings Nose - On LOCATIONS.................. ____ POINT NO. J J E J J E J J E a c n a c n a c n 101 F345T Fwd Fus. Top 05LS 08LS 09L6L 58L,S ' 59L,S L 103 F345B Fwd Fus. Bottom 14LS 17LS 5LS 18LS 65L,S 66L,S 121 HS158T Mid Horiz. Stab. (R) 36L,S 42L,S 37L,S 43L,S 38L,S 123 VS140 Mid Vert. Stab. (R) 46L,S 51L,S 47L,S 52L,S 48L,S 53L,S 140 W90T Mid Wing Top (R) | 30L,S 32L,S 141 F870B Rear Fus. Bottom 21L,S 26L,S 22L,S 27L,S 54L,S 28L,S - l -i - - - - - -I - ro More than one entry per box indicates repeated measurements.

TABLE 4: CONDITION OF HF ANTENNAS WHEN MEASUREMENTS WERE MADE DATA SET PROBE USED HF 1, 2, 3 at HF 1, 2, 3 at HF 4, 5 at Vert __ __Fwd Fus. Vert. Stab. & Horz. Stab. iii ~ ~ ~ ~ ~ ~iiiiii-i -i~i — 1-18 SP(J, Q) --- Shorted Shorted 19 FSP(J) Shorted Open 20-23 FSP(J) Open 24 SP(Q) Shorted 25-28 SP(Q) Open 29-30 FSP(J) Open 31-32 SP(J) Open 33 SP(J) ' Shorted 34 FSP(J) Open 35-37 SP(J) -| Open 38 FSP(J) = Open 39 SP(Q) | Shorted 40-43 SP(Q) Open 44 SP(J) O Shorted 45-47 SP(J) Open 48 FSP(J) c Open 49 SP(Q) Shorted 50-54 SP(J, Q) Open 55-59 FSP(J) Open 60L FSP(J) --- Open 61 FSP(J) Shorted Shorted 62S SP(Q) Shorted Shorted 63 FSP(J) Shorted Shorted 64-66 FSP(J) Shorted Open Open SP(J, Q) = Surface Probe (Current, Charge) FSP(J) = Free Space Probe (Current)

TABLE 5: LISTING OF A TYPICAL DATA FILE TOOS S)CA LE. F Ar'lTOR1 408. LU5 14 16 184 195 '16 4 23 3" 24 TAOC A M0 "3A M P LED 1 5O '9.604 0.0 42. 1.00;s 2.161 112.05 2.105 2.6.5i 144.533 240 *-. 4. 206 97.25 2./05 4.940 46.08 3.3001". 3.864 9.02 3.30'5 "2'593 -1.80.3.60j 1.~160 — 31,60 3.905.2 3,54 4.20'0.. 1.764 -12.60 4.505 2'273 ".45 5.4.0., 4,907 — 40.22 54.4054 6.761 — 89.02 505 6,605 -140.21 6.005 4 117 170.71 635 3 574 l&3.21L 6*.955 1.36.37 6.905 2.130 110.43 7.205~ 1.4383 81.60 7,0197 1. 605 I.905 2" "05 2 O.5 2 80',:,).3. 10..3. 40,:-.705 4.0 0 J 4,301 4,.6 03' 4,905 5. "0'.5. W0 5.a0 1:) 6.10 '5 6.405 6. /03O /.001, /..3051 23.3804 24. 104 24.404 2 4. 7 04 2C'5 0 04 25.304 25. 604 25.90-4 26.204 2 6.- 3 Zo 26.804, 127.1L0 4 27.-404 27,704 28.004 28.*304 28. 604 28.904 29. 204 29.504 28 3 179. 80 'I.678 I14"9. 3') 3 104 1.10./I, '1.604 04.1.2 4.33/ 36 ' 2 3.461 3.15:206 35+10 1.624 11.34 1.87' 13.90 2473 ".') 0 3 "31 2"0 01 6.180 — 6'1..0'.013 106./A.13 1.34 44 9/'" /4. 7 *38 3..55)0 1. 4, 5+7 6 97"" I.41 I1.".39 /8.01. )166 1.6.16 170/i' 17.10 0.19i '3 210' O 3..lI6'+3 0."24' 66,.59 0. 269' i" 2'6 ' 13'...86 0. '90..94.09 0. 30") '04.~ ID9' 0.3011198 0.320 -'Ll16 +34 0.356 L"12.2 1 0.351. -155 0.383 14 2 ".414 -1535 0.394 — 160.84 23 04':1 4.305 205 305 6. I4,' 4.05 ".3 904" 6045.404 24104 ~114. '0',4 50 4 "11 1.04 8"' 40 69 00 98 304 "9 604 01 491J 4.36" 4*3.143,.."9.;5"'J 2. 3 "7' 3.9'1 1 4" 6.335 '7 01 9 4*30.6 01.169 II 1"2'.1'7 4 27 ' 131 -. 1 16 -i13.8 33 34.I'9 123 0 4 1963 1"' 1 66 91. 11 95 9.L '9" 80 813 8 4 8.4 87 89 90 91, 9-3 94 9, 96 97 98 99 NEOFFILE 23.704 24.004 24.304 24. 604 24. 904 25.204 2 5,30'O4 25.*804 26. 104 26.404 26.704 27.004 27. 304 27.604 27.904 28. 204 28.504 28.804 29.104 29. 404 0.184 21'I.39 0.165' 17.58 0.180 11.25 0.194 -3.13 0.2.03 ' —19.09 0. 205' '-16.03 0.2.39 " —32.63 0. 233 "'-46.91 0.250.' ' —58.73 0.248 ' —'67.67 0.268 -,83.!53 0.279 "'-89.92) 0.308 "'-101.04 0.304 "109.08 0.313 "117.06 0.336 '-120.14 0.366 "'-134.4-2 0.383 "'138.93 0.414 -149.32 0.398 -161.20 0.1'"2 1. 9 -'1. '09 0 "OI9 I 0 209 3/ 1 ` 0.3197 '41 0.3712 1) "9 '126 0.365"3 1 311 0.409 0, 431:1 1 22

- - DATA - - 23

32. 0 EC-1S0 F3IS5T JR 1, 1/72 TOIL E k 24. 0 uJ = 0 -j 16. a6. 0 0. 0 C 200. 0 I I i I I I I ). 0 1 5. 0 30. 0 4 5. 0 60. 0 EC-1SO F345T JR Is 1/72 TOIL 100.0 L - 0. 0 A-3 -100. 0 L -20 0.0 __ _ _ __ _ _ _ L_ _ _ __ _ _ I__ __ _ _ _ 05- Rf~m 0.0 15.0 30.0 U5.0 FREQUENCY (MM71 Figure OIL. Axial Current at STA:F345T, Excitation 1, 1/72 Model. 24 R78 11MJ 80. 0

32. 0 I -J P-I — z 18.0 EC-13Q FSL&ST JR Is 111L44 TOIS E I I 08 Arm 78 Lii 8.0 L 0.0 L 0. U I15.0 30. 0 'L5. 0 80. 0 200. 0 IEC-130 F3L45T JR Is 1/1'44 T01S 1 00.0o ~ G LLJ e ui in a 0.0 ~ -100.0 1. i' -200. 0 0. 05 RPM 78 L I — I 0 15. 0 3 0. 0 FHEQUENCTYCMH!1 115. 0 80 * 0 Figure Ol S. Axial Current at STA:F345T, Excitation 1, 1/144 Model. 25

80. 0 EC-130 F345T g 1; 1/72 TO2L k 60.0 L t&J 0 M LUJ ~- c 'to. a- LU 20.0. -~ ---.- 2 1,2&WJ&. o.o L o. I - - I 0 15.0 30.0 4 5.0 60. 0 200. 0 100 0 Le) a: M. a_ 0. 0 -100.0 -200.0 L0. 0 15.0 30.0 4 5.0 FREQUENCY (MHZ) 60. 0 Figure 02L. Charge at STA:F345T, Excitation 1, 1/72 Model. 26

80.0 - t -- I. — 1- — 1- - - ----- ----- EC-130 F345T Q lt 1/144 T02S k J < - - 60.0 0,, o 40o. 0 -r CC 20.0 L s,._ _ 21 RPR 78 UM 0.0 L 0..... 0 15.0 30.0 45.0 60.0 200.0 EC-130 F35T Q 1/1 T EC-130 F345T Q 1 1/144 T02S 100.0 L G a UJ ~n CT a 0.0 L -100.o L 21 RPR 78 UM -200.0o L 0. I I I 0 15.0 30.0 FREQUENCY [MHZ) 60.0 Figure 02S. Charge at STA:F345T, Excitation 1, 1/144 Model. 27

6. 0 -.J 0.0 0 200.0 60. 0 EC- F5T J 2 1/72 T3L E EC-130 F345T JC 2i 1/72 T03L 100.0 L 1n L9 C3 cn 5: AL uj cc CL 0.0, -100.o0 21 RPR 78 UM -200.0 L 0. I I.I. 0 15.0 30.0 FREQUENCY (MHZ) 4 5.0 60. 0 Figure 03L. Circumferential Current at STA:F345T, Excitation 2, 1/72 Model. 28

6. 0 i - -- I I EC-130 F3'45T JC 2; 1/144 TO3SS 4a G 1 4L O - Do C- L I — I I i I I I I iI I 2. 0 0.0 L 0. 21 APR 78 UM 2I PRI6 I I0 15. 0 3 0. 0 4 5. 60. 0 2 00. 0 I I I I EC-130 FS345T JC 2; 1/14~4 TO3SS 100. 0 [ -I I i 1 i iI 1 I I I i I i I i i 0. 0 L -100. 0 ~ -200.0 I 21 APR 76 UM} 0.0 15.0 30.0 Lk5.0 60.0 FREQUENCYNtHY) Figure 03S. Circumferential Current at STA:F345T5 Excitation 2, 1/144 Model. 29

2 0. 0 EC-130 F345T JR 3; 1/72 T04~L E A 46 --- 15.0 L i -j - I i LLI cm 0 =3 I —= I 0. 0. 41-1 -1 3 CL 2r. P cr I 5.0 ~ 2 JUNE 76 UiM 0. 0 400O. 0 15. 0 30. 0 C S. 0 60. 0 EC-130 F3LIST JR 3; 1/72 T04&L 300.0 ~ G uj R U3 in cc 7.1 CL 200. 0 1 - 1 00.0 [) 1 JUNE 76 UiM 0.0 L 0.1 I 0 15. 0 30. 0 ti5. 0 6' 0. 0 FIREQUENCY (MHZ) Figure 04L. Axial Current at STA:F345T, Excitation 3, 1/72 Mode]. 30

20.0 EC-130 F345T JR 3; 1/144 T04S E -i-i-^ 15.0 t LU CaC) i 0?' 10.0 V1. 2 JUNE 78 UM I I 5.0 o I I 0.0 L 0. I - - I, --. I4 0 15. 0 30. 0 5.0 60. 0 400. 0 I EC-130 F345T JR 3; 1/144 T04S 300.0 1 G w R Ln (n a:4 - 200.0 L 100.0 L 2 JUNE 78 UM 0.0 L 0. 2 JUE76U 0 15.0 30.0 FREQUENCY (MHZ) 4 5. 0 60. 0 Figure 04S. Axial Current at STA:F345T, Excitation 3, 1/144 Model. 31

2 4. 0 20. 0 ~ EC-130 F34L5T JR 4; 1/72 T05L 1 6.0 -=30 I- =12. 0 6.0 L Li.. oI 15. 0 3 0.0 4 5. 0 2 00. 0 EC-130 F3q5T JR 4; 1, /702 TO5L 1 00 I0 F 0. 0r G U.1 uj in cx CA -10. - 2 00. 0 -- 0. 0 4 5.0 1 5. 0 3 0. 0 FRiEQUENCY (MHY.) Figure 05L. Axial Current at STA:F345T, Excitation 4, 1/72 Model. 32

2 4. 0 2 0. 0 1 6. 0 =, 0 =: 12. 0 S. 0 0.0o L — 0. 0 1 5. 0 3 0. 0 145. 60. 0 20 0. 0 EC-130 F34I5T JR 14; 1/11414 TO5S 100. 0 L G ul p uj in cr. CL 0. 0 L -100. 0 ~ -2 00. 0L 0. 21 AP'R 78 UM I - -I 0 1 5. 0 3 0. 0 FRiEQUENCT'(MM7)~ 145. 0 60. 0 Figure 05S. Axial Current at STA:F345T, Excitation 4, 1/144 Model. 33

2 0. 0 EC-130 F3145T JR 5: 1/72 T06L E 15.0 L 2 T-4 uj cm 0 = -TI — -- I 0. 0 -j a2: cc 5.0 ~ 0.o0 0. 29 JUN 76 UM 0 15.0 3 0.0 L1S. 0 60. 0 G uj C3 ui cn cr 71. CL. 300Q. 0 -- ooI 0. EC-130 F34S5T JR 5; 1/72 T06L 1 5. 0 3 0. 0 FRiEQUENCY MH-t) 6 JUL 76 UM 4 5.0 6 0. 0 Figure 06L. Axial Current at STA:F345T, Excitation 5, 1/72 Model. 34

20. 0 15.0 en 0 I — —, 10.0 5.0D 0.0 0. 0 4 00O.0O_ EC-130 F345T JR Si 1/144 TOSS E _______29 JUN 76 UM so - o i s o 60.0 15. 0 EC-130 F3'45T JR 5; 1/144 T06S G U.1 m LA-i in cc: CL. I I 1 3 0 0. 0 i I I 1 2 0 0. o L i i I I i i 1 0 0. 0 I I I n 11 i U..-~ —. -- --- - - - 0. 0 1 5. 0 3 0. 0 FRE-QUENCY (MH7) Figure 06S. Axial Current at STA:F345T, Excitation 6 JUL 78 UMI 4 5.0 60. 0 5, 1/144 Model. 35

U8. 0 EC-130 F345T Q 3S 1/72 TO7L 32.0 L es LU - -C 2c 16. 0. 0. 0 0. 200.0 - 0 15.0 30.0 45.0 60.0 -s UJ Ln cr a: 100.0 0.0 -100.0 - -200.0 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 07L. Charge at STA:F345T, Excitation 3, 1/72 Model. 60.0 36

4 8. 0 I I EC-130 F3'45T 0 3; 1/1t44 T07S AE 32. 0 ~ =3-_ 16ra.0 L I 0.0 o 0. I I 21 APR 78 UMJ 60. 0 0 15. 0 3 0. 0 4 5. 0 2 00.0 EC-130 F345T 9 o1/1t44' 07 100. 0 1 - G LLI C3 uj M CL CL 0. 0 1 - -100. 0 [ -200.0 1 I 21 RPR 76 UM 6 0. 0 (J.0 15.0 30.0 L15.0 FREQUENCY tMH71 Figure 07S. Charge at STA:F345T, Excitation 3, 1/144 Mode]. 37

4 8.-0 I 32. 0 ~. 2 74 LLJ 0 r3 LLI =1 -- I — c -i LLJ cl.. 3r. cr EC-130 F34~5T Q 4; 1/72 T08L E 16. 0 L 0.0 L 0.1 I I 0 1 5. 0 3 0. 0 t 5. 0 60. 0 2 00. 0 1 00. 0 G uj S LLI In Cc a_ 0. 0 - 1 0 0.0 - 2 00.0 L1 0. 0 Figure 08L. 1 5.0 3 0.0 4 5.0 6 0. 0 FREQUENCY (MHZI) Charge at STA:F345T, Excitation 4, 1/72 Mode]. 38

4 8. 0 I I I ----------- EC-130 F345T Q Ls 1/4I4 TO6S L~J 100.0 I _Iw t- 0. ____ ____ ___21 APR 76 UM 0.0 5.0 3 0.0 15. 0 6 0. 0 Figue 0S. hare a ST:F35TExCitatio F4,T 1;/144 MOdeS 1 0 -20.0 2 P 8U 0.0 15.0 30.0 45.0 60.0 FHEUECY(M7 Figure 0S. Chare at STAF345T, xcitatio 4 1/14 Model 39

3 2. 0 EC-1 0 F3'45T Q 5s 1/72 TOSL 1 6 0 6.0 - 0.0 a 0.0 1 5.0 3 0.0 4 5 0 60. 0 EC-130 F34S5T 0 5v 1/72 T09L 100.0 ~ S 0. 0 -2000 ________________________________ ___214 ARF~ 78 UM 0.0 15.0 30.0 145.0 60.0 FREQUENCY (MHZ1 Figure 09L. Charge at STA:F345T, Excitation 5, 1/72 Model. 40

3 2. 0 I I I 214. 0 UJOC a 16.0 -4 wL EC-130 F3145T Q 5: 1/11414 T09S E _ _ _ _ _ _ _ _ _ _ 2 4 F ~ i kU 0.0 1 0. 0 15. 0 3 0. 0 LI 5. 0 60. 0 2 00. 0 I EC-130 F345T Q 5: 1/11414 TO9S 100.0 'k G uj p w in cr CL 0.0 ~ -100.0 ~ -200.0o _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _214 A P R 7 6 U M 0.0 15.0 30.0 145.0 FREQUENCY 1MHEI Figure 09S. Charge at STA:F345T, Excitation 5, ]/144 Model. 41 60. 0

7. 5 - - EC-130 F345B JR 1; 1/72 T10L E <Wz= 5.0 L.a: - 2.5 t 0.0 L0. 0. 15.0 30.0 u, 5.0 60.0 200.0 ___ ----___r — _____ EC-130 F345B JR 1; 1/72 T10L I I N I 4 100.0 O G (n UJ al: 5: o0. L -100.0 - - - - t _9 JUNE 78 UM.0 15.0 30.0 45.0 60.0 FREQUENCY (MHZ] -200.0 0. Figure lOL. Axial Current at STA:F345B, Excitation 1, 1/72 Model. 42

7. 5 EC-130 F3L45B JR 1; 1/14,A TIOSI E F.- 4 f-! uj m 0 =3-7 -F — --.-. -D -3 acc 2.5 L 19 JUNE 78 U 0.0oL 0. 0 1 5. 0 30. 0 US.o 60. 0 200. 0,I i Ii I i i i I p i N i 00. 0- i I I I I I I II I 0. 0 i I. I I I I I. I EC-13O F34~58 JR 1; 1/1AA T10S - I G ui C3 LU (n cr CL. -1 00. 0 -200.0O.0. 0 I JUNE76 U 1&5.0 60. 15. 0 3 0. 0 FREQUENCY (MHI) Figure los. Axial Current at STA:F345B, Excitation 1, 1/72 Model. 43

1 5. 0 EC-130 F34~58 Q 1: 1/72 TilLI E IO.I 00L.-100 1 0. 0 1 5.0 3 0.0 s1o 6 0. 0 Figue 1L. hare a ST:F35B, ExCitation59 1, 1/72 Mode] I 0 044

15.0 I I- ------ ----— 1 --- -- ---- EC-130 F1455 Q 1; 1/144 T11S E Io 5.0 ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _9 J U N E 7 8 U M 0.0 15.0 30.0 'U5.0 60.0 200. 0 c --- —-- EC-130 F3'45B Q 1; 1/144 T11S 100.0 E! 0.0 h I a-100.0 9 JUNE 76 UM -200.0 1 ________ _ ______ _____ — 4 --- —--- 0.0 15.0 30.0 45.0 60.0 FRIEQUENCY (MHZ) Figure 1]S. Charge at STA:F345B, Excitation 1, 1/144 Model. 45

2. 0 Ca 0 I.- -- 1.0 0.5 0.0 I-. 0. LJ -10 0.0 L _______________________________________ 05 APR 76 UM 15. 0 3 0. 0 L1. 0 60. 0 Uto Hrm -its L - 0.0 15.0 30.0 1U5.0 60.0 FREQUENCY (MlI! Figure 12L. Circumferential Current at STA:F345B, Excitation 2, 1/72 Model. 46

2. 0 I EC-130 F34&5B JC 2s 1/144 T12S 1.5 ~. en 0 I — -- 1.0 0.5 L 0.0o 0. I I 05 ARP 78 Umj. 60. 0 I0 I15.0 3 0. 0 4 5. 0 20 0. 0 EC-130 FSL45B JC 2; 1/144 T12S i i i i I 0 0. 0 i 1; w e Lai in cc:r. a 0.0 ~ -100.0 t -200.......- 05 ARP 78 u 0. 0 1 5.0 3 0.0 LI5.0 60."0 FREQUENCY (MHUZ Figure 12S. Circumferential Current at STA:F345B, Excitation 2, 1/144 Mode]. 47

4. 0 EC-1S0 F345B JR St 1/72 T13L. j E k 1. 0 0. 0 [26 ARP 76- UM0.0 15.0 30.0 45.0 60.0 200.0 __ _ _ _ _ _ _ _ __ _ _ _ _ EC-130 F3458 JR 3s 1/72 TI3L 100.0 - 0.0 - 2 0 0.0 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 A R 7 i 0.0 15.0 30.0 145.0 60.0 FREQUENCT (MHZ) Figure 13L. Axia] Current at STA:F345B, Excitation 3, 1/72 Model. 48

4. 0 I I 3.0 L ui M 0 I — 4 -D -i CL 2: cr 2.0 L EC-130 F3145B JR 3: 1/1144 T13S 26 RPMl 78 UM 1. 0 a.01 0. I0 15.0 30.0 145.0 60. 0 200. 0 a 100.0 ~ EC-1S0 F345B JR 3o 1/11414 TISS Lo LU 0.0 L -100.0 f 11I MAY 78 UM -200.0 L- -— _________ I 0. 0 1 5. 0 30.0 FMFlQUENCY tMHIZ 145. 0 60 * 0 Figure ] 3S. Axial Current at STA:F345B, Excitation 3, 1/144 Mode] 49

6.0 ~. ~ 15. 0 30. 0 45.0 60. 0 400. 0, - -- - 0___ EC-130 F345B JR 4; 1/72 T14L II 0 20 0. 0 A 0.0 15.0 30.0 45.0 60.0 FREUENCY 0 MH ) Figure 14L. Axial Current at STA:F345B, Excitation 4, 1/72 Model. 50 I

6. 0 EC~-130 F345B JR 4; 1/144 T14S k C3 o I~- -, ~1 - 2.0 O 0.0 0. I 1 MRY 78 UM 11 AY 6 U 0 1 5. 0 3 0.0 45. 0 60. 0 4 00. 0 300.0 EC-1SO F345B JR 4, 11144 T145 G LLI E? 2 0 0. 0 ul Ul cr. CL 1 00.0 o 0. 0 23 MAT 76 0. 0 1 5. 0 3 0. 0 FIIEQUENCY (MH!) U5. 0 60. 0 Figure 14S. Axial Current at STA:F345B, Excitation 4, 1/144 Model. 51

4. 0 EC-130 F345B JR 5; 1/72 T15L E 3. 0 - I —.- 2. 0 0.0 0. 0 200. 0 1 5. 0 3 0. 0 45. 0 60. 0 EC-130 F3450 JR 5: 1/72 T15L 100.0 ~ 1; uj e ui W) cr L. 0.0 ~ I I -100.0 L -2 00. 0 0. 0 26 RPMi 78 UM I 15. 0 3 0. 0 FREOIJENCY (MHZ) 145. 0 60. 0 Figure 15L. Axial Current at STA:F345B, Excitation 5, 1/72 Model. 152

4.* 0 i EC-130 FS145B JR St 1/14L4 T1SS < I - A 3. 0 L 41-4 -i uj C3 0 I — 1-1 -j AN: 2.0 ~ 1.0 ~ 0.0 L 0.1 26 APR 76 UM 0 1 5. 0 30. 0 14 S. 0 60. 0 200. 0 v i L5 'u WI 1 00. 0 0.0 -1 00. 0 -20 0. 0L 0.I EC-130 F3'455 JR 5, 1/1'4L T15S 0 25 APR 78 UM 15. 0 3 0. 0 FMEGUENCT fMtil1 US5. a 80. 0 Fi'gure ]5S. Axial Current at STA:F345B, Excitation 5, 11/144 Model. 53

3.0 I -1 EC-1SO F31A58 Q 3; 1/72 TILB czi 2. 0 ~. =3 -. — Iz 1.01 - 0.0 0. 26 MRY 78 UN. 0 0 15.0 30. 0;Ls.0 So0 4 00. 0 EC-130 F3450 Q S; 1/72 T16L 3 00. 0 1 - G ui E! 200. 0 U-1 fn cc X-. CL 100. 0 1 - 0.0 OL - 0. 0 I ~26 MAT 78 UN 1 5. 0 3 0.0 LL5. 0 60. 0 FMEGUENCY (MM!) Figure 1 6L. Charge at STA: F345B, Excitation 3, 1/72 Model. 54

3. 0 2. 0 2: O.. uj fm 0 = — r I.- ' — O.. -D -i a3c EC-130 F3'158 9 St 11111L T16S kI 26 MAT 78 UN 1.0 O. OI. 0.0 L400. 0 1I~ 15. 0 30.0 60. 0 EC-130 F345B 9 3; 1/B14l T1eS 300. 0 L G mi E! 200. o ILJ in cr a 100.0 L 26 NAT 78 UM 0.0 L 0. 0 15. 0 30. 0 115. 0 FREOUENCTY(MH1Z Figure 16S. Charge at STA:F345B, Excitation 3, 1/144 Model. 55 6 0. 0

8. 0 I I 8.0 L 9=0 &=3 Li.0 LU EC-130 F34L5O Q Li 1/72 TI17L kE 2.0 ~ 29 JUN 78 UM 0.0 L 0. I 0 15. 0 30. 0 5. 0 80. 0 4&00. 0 EC-130 F34i58 Q 4: 1/72 T17L 300.0 L G LLJ E! 20 0. 0 LLJ tn cc M 100).0 k 0.o 0L 0. 0 ___ __I__ __ __________ ---______ - - 29 JU N 7 8 U M 1 5. 0 3 0.0 15. 0 60. 0 F~REQUENCY CMH!) Figure 17L. Charge at STA:F345B, Excitation 4, 1/72 Model. 56

8.0 I EC-130 F345B Q 4; 1/144 T17S I^.. 6.0 L -4W 4. 0 O 2.0 0.0 L 0. 0 I 1.-....! 29 JUN 78 U M 60. 0 15.0 30.0 tS.0 I I - EC-130 F345B Q 4; 1/144 T17S 300.0 [ G LLI C] U1 cc 3:r L-. 200.0 100.0 1 29 JUN 78 UM 60. 0.0 I__ 0. 0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 17S. Charge at STA:F345B, Excitation 4,1/144 Model. 57

5. 0 I EC-130 F3L455 Q 5: 1/72 T18L 2 74 LU Cl!7; CL. cc 0 2.0 - 0.0 0. 0 Iz~z: E 29 JUN 76 UM 1 5.0 30. 0 60. 0 4 00.0 - - EC-130 F345B Q 5; 1/72 T18L 30 0.0 I I I i i I i Z.') U-1 R U.j cr, cc: Z' CL. 200.0 H 1 00.0 ~, 6 JUL 76 UM 6 0. 0 0. 0 L. 0. 0 FRThQUENCY (MHZ) — 5.0 Figure 18L. Charge at STA:F345B, Excitation 5, 1/72 Model. 58

5. 0 EC-130 F34~5B Q 5; 1/144L TIBSI <I- - - I 3. 0 UJO r4~ 2. 0 ~ II jI I.0 ~ 29 JUN 76 UM U5. 0 60. 0 0.0 O I_ 0. 0 4 00. 0 I 15. 0 30. 0 EC-130 F3145B Q 5; 1/144L T185 30 0.0 Z; LL. I p LLJ (n a::r CL. 200. 0 100. 0 o.o L — 0. 0 6 JUL 76 UM I 6 0. 0 15. 0 30.0 1 45.0 - FfiEQUENCY (MH7) Figure 18S. Charge at STA:F345B, Excitation 5, 1/144 Model. 59

12.0 - -r - --:- -r - T- - - EC-130 F870B JR 1; 1/72 T19L - i 9.0 6.0 3S. 0. 0.0 15.0 30.0 45.0 60.0 200.0 ____ — -_ EC-1SO F870B JR 1 1/72 TI8L 100.0 0.0 a-100.0 I ~ 0 0 0 -200.0 25 MAH 78 UH -200o 0 * s. 0.0 15.0 30.0 45.0 60.0 FREQUENCY (MHZ) Figure 19L. Axial Current at STA:F870B, Excitation 1, 1/72 Model. 60

12. 0 9.0 L us 0 cm =1 60 EC-1S0 F870B JR 1; 11144 T19S k 25 MRY 78 UM 0.0 L 0.1 0 15.0 30.0 80. 0 200. 0 _ _ _ _ _ _ _ EC-130 F870B JR It 1/144 T19S 100. 0 G ui C3 LLI in cc CL O. O I -10 0. 0 25 MAY 78 UM 80. 0 -200.0I 0I. 0 1 5.-0 3 0. 0 FMiEGUENCY (MHZ) Z15. 0 Figure 19S. Axial Current at STA: F87OB, Excitation 1, l/] 44 Model. 61

5. 0 EC-130 F870B JR 3: 1/72 T20L E L --- ~ ACE=. Li.0 L 3.0 'U = 0 I 2.0 1. 1.01. 0. 0 200. 0 __________________________ * 25 MAY78 UM 15.0 30. 0 50 60. 0 EC-130 F8705 JR 3s 1/72 T20L 100.0 i 0 3: 0.0 1. -100.0 L!;'CZ MaY '7A IIM -200. 0 L e) "I la Wml 0. 0 15. 0 30. 0 &5.0 s ~fREQUENCY (KI~) Figure 20L. Axial Current at STA:F87OB, Excitation 3, 1/172 Model. 62 ).0

t; - n 2 T- ui C3 = 0 k- = -3 -:) CL. Z: cc 3.0 2. 0 1.0 0. 0 - 0. 0 EC-1S0 F870B JA 3; 1/1,44 720S 25 MAY 78 UM A I- -I1 15.0 30.0 4 S. 0 60. 0 200. 0 I I - t - --- - - 100.0 ~ G w E! ui cn cc CL. 0.0 L EC-130 F8708 JR 3; 1/144 T205 25 MAY 78 UK -100. 0 0 -200.0 L 0.0 15.0 30. 0 IIS. 0 FflEQUENCY CMHU! 80. 0 Figure 20S. Axi al Current at STA: F87013, Exci tati on 3,5 1/144 Model. 63

10.0 EC-130 F8708 JR 4s 1(72 T21L /17 7. 5 - z~z~j,.E k Uj 0 9L 2.5 0.0 25 MR~ 75 UN 0.0 15.0 30.0 45.0 60.0 400.0 EC-130 F8708 JR 4; 1(72 T21L 300.0 200.0 100.0 25 MRY 78 UK 0.0.....,.,,...... _ 0.0 15.0 30.0 45.0 60.0 FREQUENCY tfHHX) Figure 21L. Axial Current at STA:F870B, Excitation 4, 1/72 Model. 64 I

10.0 I " I 7.5 [ ZZ n=, -- 5. 0 I 2E OL. ct. Q: EC-130 F870B JR 4i 1/144 T21S.77 k 25 MRY 78 UM 2.5 L o0.0 L 0.. 0 15.0 30.0 [5.0 60.0 400.0 aEC-130 F870B JR 4 1/144 T21S EC-130 F8705 JR Ut 1/144 T21S 300.0 200.0 G ta en cc 4s o_. 100.0. 0.0 0.0 25 MRT 78 UM.....J..... J..... 15.0 30.0 FIiEQUENCT M[HH] 15.0 60.0 Figure 21S. Axial Current at STA:F870B, Excitation 4, 1/144 Model. 65

10.0 7.5 i - i EC-130 F870B JR 5: 1/72 T22L \r^ x He. wi 0 -J eL Z: 5.0 1 2.5 5 25 MAY 78 UM 0.0 L 0...... 0 15.0 30.0 Q5.0 60. 0 200.0 100.0 0.0 -100.0 I I 5 on z: EC-130 F870B JR 5; 1/72 T22L 25 MRT 78 UM -200.0. 0.0 II 15.0 30.0 15.0 FREQUENCY(MHZl 60. 0 Figure 22L. Axial Current at STA:F870B, Excitation 5, 1/72 Model. 66

1 0. 0 EC-130 F8708 JR 5t 1/144 T22S 71.5 -4 -1 UJ 0 CM:]= t.- -D -1 acr. 5. 0 J. I (f --- =;; wwr k I I I 4 i 25 MAY 78 UM 2-.5 [ U 0.0 0. 0 I15.0 30. 0 ti5. 0 80, 200. 0 EC-1SO F8708 JR 5i 1/1-44 722S 100.0 ~ G mi p mi W) CL. 0.0 1 - -100.0 L -200.0 LI _ _ _ _ _ _ _ _ I0. 0 1 5.0 25 MAY 78 UM 30.0 115. 0 80. 0 FflE2UENCY (MMY) Figure 22S. Axial Current at STA:F870B, Excitation 5, 1/144 Model. 67

2. 0 w o I,' Z. 1.0 0..5 -0. 0 0. 0 20 0.0 ___ -. 0. 0 E! 0.0 Figue2L 15. 0 300 'L5.o 60. 0 EC-130 F8700 JC 2, 1/72 T23L 25 MRT 78 UK 15.0 30.0 &5.0 60.0 FRE0UENCY (MHZ) Circumferential Current at STA:F870B, Excitation 2, ]/72 Mode]. 68

2. 0 -r I 1.5 L C2 0 I — --- 1. 0 EC-130 F8708 JC 2; 1(14-4 T235 11 E k 25 MAY 78 UNM 0.5 ~ 0.01L 0. 0 15.0 30.0 q5.O 80. 0 200. 0 100.0 L G w en us WI cc CL 0.0 ~ EC-130 F870B JC 2;- 11144 1235 25 MAY 78 UiM -100.0 L -200.0 L 0. 0 Figure 23S. 1 5. 0 30.0 FFIEQUENCY CMHZ) 60. 0 Ci rcumferenti al Current at STA: F87OB, Exci tati on 2, 1/144 Model. 69

5.0: -r --- - - I — EC-1S0 F870B Q li 1/72 T2'AL EI kI 2. 0 1.0 0.0 2MY76U 0. 0 15. 0 30. 0 &5. 0 80. 0 200. 0 I- EC-130 F8708 g 13 1/72 T24L 100. 0 e 0.0 0.0 15.0 30.0 145.0 830.0 FflEQUENCY (KHZ) Figure 24L. Charge at STA:F87OB, Excitation 1, 1/72 Model. 70

5.0 r4 uj 0 Ca LLJ = — l * --- r_.4 LU -A CA. cr. 3. 0 2. 0 1. 0 0.L 0. 0 15. 0 30. 0 15. 0 80. 0 200. 0 100. 0 EC-130 F870B Q Is 1/144- T24S U: ui 0.0 1. -100.0 j 25 MIRY 78 UKM -200.0 o L i 0. 0 15.0 30.0 ~15. 0 FREQUENCY (tMZ) Figure 24S. Charge at STA: F870B,. Exci tati on 1, 1/1 44 Model. 60. 0 71

3. 0 -4 EC-130 F8705 a a; 1/72 T25L K 2. 0 L iu mi w =1 -, 1.0 - 0.01. 0.1 25 MRT 76 UKI 4 - -..... - - -.. - I 0 15.0 30.0 L5. 0 60. 0 4L0OO. 0 I 13 w C3 UA M ts; CL 2 00. 0 1 00. 0 1.%K EC-130 F870B 0 3; 1/72 T25L ____________I_____________25 MAT 76 UMK Figure 25L. 15.0 3 0. 0. FflEGUENCT IPKH! Charge at STA:F870B5 Excitation 3, 1/72 Model. 72 6 0. 0

3.0 EC-130 F870B 0 3S 1/144 T25S tL k <_ --- -T 2.0 1 uil 0 o- c 1 -a 1.0 L 25 MRT 78 UM 0.0 L 0.,I....... ~ 0 15.0 30.0 45.0 60.0 400 0. EC-130 F870B Q 3| 1/144 T25S 300.0 L LU ~ 200 0 on a: i I I i I I - 0. 0 1 25 MAT 78 UH..... iII _o 0.0 15.0 30.0 45.0 FRE0UENCT (MHY1 Figure 25S. Charge at STA:F870B, Excitation 3, 1/144 Model. 73 60.0

3.0 I - I - - g EC-130 F8708 0 4I 1/72 T26L 2.,0 1.0 25 HRT 78 UH 0.06. 0. 0 15.0 30,0 45.0 60.0 400.0 1 i- -,. EC-130 F8708 0Q 4 1/72 T26L 300.0 ~ 200.0 100.,0 0.0. 25 MAR 78 UH 0.0 15.0 30.0 45.0 60.0 FREQUENCY I(MH) Figure 26L. Charge at STA:F870B, Excitation 4, 1/72 Model. 74

3.0 - I I I 2.0 1 - r! uj 0 C3 LLJ =1 - I — c -j LLJ CL. Cc EC-130 F8705 Q '1; 1/144 T26S k 25 MAT 78 UM 1.0 ~ 0.0 L 0. I0 15. 0 30. 0 '15.0 60. 0 4100. 0 3 00. 0 2 00. 0 EC-1S0 F8705 Q 4# 1/144 T2BS Z; ui p LLJ en cc CL 1 00. 0 25 MAY 76 UM 0.0 L 0.0 15.0 30.0 '15.0 FREtQUENCTIMMU! Figure 26S. Charge at STA: F870B,. Exci tati on 4,5 1/144 Model. 75 60. 0

5. 0 El. 0 EC-130 F870B Q 5; 1172 T27LI I C30.J LUI II 3.0 1 - 2.0 [ 1.0 [ 0.0 O__I 0. 0 25 MRY 78 UK 1 5. 0 3 0.0 15. 0 60.0a 400. 0 EC-1SO F8700 0 5; 1/72 T27L 300.0 ~ U' a. 2-00. 0 [ 100.0 1. 25 KRY 78 UK o.0 L 0. 0 1 5.0 30.0 ~15.0 FRiEQUENCY (MHZI) 60. 0 Figure 27L. Charge at STA: F870B, Excitation 5, 1/72 Model. 76

5. 0 Li.0 L -i W 0 C3 LLJ -3 I — -- " LU C: -j aW. cc 3.01. EC-130 F8708 Q 5; 11144 T27S 25 MIRT 78 UJM 2.0 L 1.0. 0.0 L 0.1 0 1 5.0 3 0.0 15. 0 6 0. 0 400. 0 EC-150 F8705 0 St 1/1-44- 27S a300. 0 'U e I I100. 0 0. 0 0.0 15.0 30.0 '15.0 FRE0UENCT 1KHZ Figure 27S. Charge at STA: F345B,. Exci tati on 5,5 1/144 Model. 77 25 MAT 70 UK 60. 0

3.0 ---- ------- -- _ _ EC-130 F870B 0 6s 1/72 T28L -E 25 \RY 78 UM 0.0., 0.0 15.0 30.0 45.0 60.0 400.0 EC-130 F870B Q 6 1/72 T28L 300.0 100.0 0.0 25 MRY 78 UH 0.0 15.0 30.0 45.0 60.0 FREQUENCY(MHH} Figure 28L. Charge at STA:F870B, Excitation 6, 1/72 Model. 78

3.0 e= 2.0 I u 0,-4 L 31 - — 4 -- -- -. — -- EC-130 F870B Q 6 1/144 T28S 25 MRY 78 UH 1.o0 L 0.0 L 0..I - -- -- - 0 15.0 30.0 15.0 60.0 400.0 EC-130 F870B Q 6s 1/14A T28S EC-130 F870B a 6s 1/1+4 T28S 300.0 L L3 G ~ 200. 0 on cc a: 100.0 L 25 MRY 78 UM o.o L o. __ 0 15.0 30.0 FREQUENCY (MHZ 60.0 Figure 28S. Charge at STA:F870B, Excitation 6, 1/144 Model 79

10.0 I I r i I EC-130 W9OT JR LUj cm 0,.- -. I I 8.0 L i 4. 0 2.0 0.0 0.0 2; 1/144 T29S. - E k 7 JUNE 78 UM — I 15.0 30.0 60. 0 200.0 ______..___,_________-_..EC-130 90OT JR 2; 1/144 T29S -i 100.0. G UJ p 4. cn cc M., M 0. 0 f -100.0 r -200.0 0 i I 7 JUNE 78 UM L --- I.0 15.0 30.0 FREQUENCY (MHIl 60. 0 Figure 29S. Axial Current at STA:W90T, Excitation 2, 1/72 Model. 80

1 0. 0 I EC-130 W9OT JR 2;. 1/792 T29L ab k 6.0O -2 r! Ul C) C:) = =3 -- I — I-1 CLX: cr 6. 0 i Li. 2. 0 1I 7 JUNE 76 UM V.w I I L I I 0. 0 1 5.0 3 0. 0 LIS5.0 60. 0 2 00. 0 I i I I I 100.0 EC-130 W9OT JR 2; 1/72 T29L G U.j p ui cn VL O.o OL, -100.0 ~ -200.0 I 0 I L --- 7 JUNE 76 UMI I I. 0 1 5. 0 3 0. 0 FREQUENCY (MHZ) J S. 0 6 0. 0 Figure 29L. Axial Current at STA:W9OT, Excitation 2, 1/72 Mode]. 81

5.0 2.0F 0. 0 100. 0 0. 0 -100. 0 0. 0 Fiur 3L I0 3 0. 0 FMiEQUENCY 1MHZ) 60. 0 Axial Current at STA:W9OT, Excitation 6, 1/72 Model. 82

5.0 I 4.0 i — -. 3.0 EC-1SO H9OT JR 6; 1/1LIL TSOS E - 29 JUN 76 UM I. 0 0. 0 200. 0 1 00.0 L 15. 0 30. 0US 60. 0 EC-1SO W90T JR 6; 1/1LLI TSOS G Lli p uj cn cc CL. 0.0 -100. 0 1 - -200.0 L. ______ ---I — 0. 0 1 5. 0 3 0. 0 FREQUENCY (MHZ) 29 JUN 76 UM. I5. 0 60. 0 Figure 30S. Axial Current at STA:W9OT, Excitation 6, 1/144 Model. 83

6. 0. I i I Ii I I i I Ii EC-130 W90T Q 21 1/72 T31L k 4L0 ~ -j I LLI 0 cl LLJ =3 - I —c -i LU CL 3c cr. 2. 0 0. 0o I- - IL _ _ _ _ _ _ _ _ _ _ _ _ 0.0 15.0 30.0 L45.0 60. 0 2 0 0. 0 -i i i i I i I I I 0 0. 0 I I G ui e LAI (n cr CL 0.0 -1 00. 0 L -200.0I 0. 0 1 5. 0 3 0.0 FREQUENCY (MH!) 60. 0 Figure 31L. Charge at STA:W9OT, Excitation 2, 1/72 Mode]. 84

6. 0 LL. 0 -j LW r.3 -j am: cr. 0 2. 0 o. oL. 0. 0 2 00. 0 15. 0 30.0 u 5. 0 60. 0 - - EC-130 WS0T Q 2; 1/144 T31S 1 00. 0 1; uj LU cn cr VA 0.0 L - 10 0. 0 -2 00. 0 ______ 0. 0 -8 JUNE 76 UM 1 5. 0 30. 0 FREQUENCY (MH!1 t45. 0 60. 0 Figure 31S. Charge at STA:W9OT, Excitation 2, 1/144 Model. 85

3. 0 i l - X EC-130 W9OT Q 6S 1/72 T32L \r 0.0_,),, B JUNE 78 UM j ~~0 15.0 30.0 45.0 6O.G 200. O. EC-130 N90T Q 6 1/72 T32L -J 100.0 200.0... -2000, 6 JUNE 78 UM 0.0 15.0 30.0!5.0 80.0 FREQUENCY (MHZ) Figure 32L. Charge at STA:W90T, Excitation 6, 1/72 Model. D 86

3. 0 EC-130 W90T Q Bs 1/144 T32S I E — j uj cm -1 a7., cr. 2.0 1.0 L 0. 0 0. 0 8 JUNE 76 UM 1 5. 0 3 0. 0 L15. 0 60. 0 2 00. 0 i EC-1S0 H90T Q St 1/144 T32S Ii I I I 0 0. 0 r I I i I I I I 0. 0 i i I mu a i i I - 10 0.0 8 JUNE 78 UM 60. 0 -2 00. 0 - 0.0 15.0 1 5. 0 30. 0 FREQUENCY (MHZ) I 5. 0 Figure 32S. Charge at STA:W9OT, Excitation 6, 1/144 Model. 87

6. 0 Li 0,2. 0.0 -- 0. 0 200. 0 1 B. 0 3 0.0 5. 0 60. 0 I i -------- -r-.-. I 1; 1/72 T33L 100.0 L Z; us e 0. 0 1 uj cm cr. M. -100.0 L 29 JUN 78 UM -200.0o L t 0.0 15.0 30.0 LL5.0 FREQUENCY (MHZ) Figure 33L. Axial Current at STA:HSl58T, Excitation 1, 1/72 Model. 88 I0

6.0 I X - EC-130 HS158T JR 1; 1/I14 T3SS,-Fa 0.0 3 uj o 0.0 a100. 2.0 100.0 -100.0 -200.0 29 JUN 7, 0.0 130.0 45.0 FREQUENCY TMHZ) Figure 33S. Axial Current at STA:HS158T, Excitation 1, 1/144 Model. 89 60. 0

10. 0 Z., Z U.1 In - 7: — I Q.3c 8. 0r 6.0 - 0 0. 0 - 0. 0 200. 0 15. 0 30. 0 IL. 0 60. 0 EC-130 HS158T JR 2: 1/7Z T34LLI 1 00. 0 I 1; uj F-i uj cn cc 71. 0 - 0. 0 -100. 0 ~ i i I i -2 0 0. 0 -- 0. 0 I 8 JUNE 76 Upl_ 60. 0 I 15. 0 30. 0 FREQUENCT (MHZ) Lis. 0 Figure 34L. Axial Current at STA:HSl58T, Excitation 2, 1/72 Model 90

I 0. 0 1 1 —,. i i I i I EC-130 H1158T JR 2: 1/14'4 T34S e.0 ~ -j U-i 0 M = =3 -.I — 'D -1 CL. cr 8o.0. 8 JUNE 78 UM 2%. 0 0.0 0. 0 200. 0 I15. 0 3 0. 0 15. 0 80. 0 EC-1S0 HIS8T JR 2: 1/144 1T34S 100.0 ~ G w 5 ui W) cc T., M. 0.0 O -100. 0 ~ -200 o.0 I________ -I0. 0 1 5. 0 I 68 JUNE 78 UN 30. 0 FRiEQUE-NCY (MHZ) 80. 0 Figure 34S. Axial Current at STA:HSl58T, Excitation 2, 1/144 Model. 91

. 0 EC-130 HS158T JR 3t 1/72 T35L c2 C3 2.0 I. 0. 0 2 0 0.0 -; 10. i 15.0 30.0 115.0 60.0 --- - -- - - - -r-, T 3 5L I G LL.j r-I LLI cn CL: zr a.. I I 0. 0 i I I Ii i I i - I 0 0. 0 tI i -20 0.0 L —. 0. 0 1 5.0 3 0. 0 FRiEQUENCY MHZ) 8 JUL 78 UM u 5.0 Figure 35L. Axial Current at STA:HSl58T, Excitation 3, 1/72 Model. 92

6. 0 I EC-130 HSI58T JR 3; 1/1'L' T35S *E Li.0 ~ 2.... 4 -1 uj M 0 =3 =: I — I-.-. -D -1 CL-:r_ cc 29 JUN 76 UM ------- L — -.. - 15. 0 30. 0 60. 0 20 0.0 1 00. 0 C-130 HS158T JR 3; 1/144~ T35S G U.j E2 LU in ct CL. i 1 0. 01 ti I -1 00.0 ~' -200.0 L 0.01 5. 0 3 0. 0 FfiEQUENCY tMH!3 6 JUL 76 UM__ Li5.0 60. 0 Figure 35S. Axial Current at STA:HS158T, Excitation 3, 1/144 Model. 93

8.0 5.0 wE cm 0. —a = 2.'0 0.0.,S29 JUN 78 UM 0. 0 15. 0 0. 05. 0 60.0 200. 0 - _ EC-130 HS156T JR 4; 1/72 T36L 100.0 0.0 -10o.0 4 -200.0 L........ ____.6 JUL 78 UM 0.0 15.0 30.0 15.0 60.0 FREQUENCY (MHZ) Figure 36L. Axial Current at STA:HS158T, Excitation 4, 1/72 Model. 94

8.0 EC-130 HS158T JR Lj; 1f11&L 1365 6.0 L C3 0 A 2.0 k 29 JUN 78 UM 0.0O 1 6i 0. 0 I 15.0 30. 0 US. 0 60. 0 G LLJ r-I uj (n a: r a.. 1 00. 0 0. 0 I Figur 36S ---------- I., --- — EC-13O HS158T JR I4i 1/144L T36S I ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — _ _ _ _ _ _ _ _ _ _ _6 J U L 7 6 U M 1 5.0 3 0.0 LI. 0 6 0. 0 FREQUENCY (MHZ) Axial Current at STA:HS158T, Excitation 4, 1/144 Model. 95

8. 0 6. 0 0 -it ' 10 EC-130 HS158T JR 5; 1/72 T37L czzzz E I1-A 2.0 ~. 0. L. o 0. 0 15. 0 30. 0 '15.0 60. 0 2 00. 0 - EC-130 H1S158T JR 5; — r G U.j C3 uj M cr VA. 1 00. 0 0. 0 1I i i I iI I i-4 I 1, 15.04 FFiEQUENCY CMHZI 6 JUL 76 UM -1. 0 Figure 31L. Axial Current at STA:HSl58T, Excitation 5, 1/72 Model. 96

8.0 6.0i -i -j a: 2.0 - 0.0 - 0.0 200.0 - 100.0 L 15.0 30.0 45.0 80. 0 EC-130 HS158T JR 5; 1/144 T37S G Uj ~ UJ cc xL 0.0 L -100.0 L 29 JUN-78 UM -200.0 L 0. I I 0 15.0 30.0 FREQUENCY (MHZ) 45.0 60. 0 Figure 37S. Axial Current at STA:HS158T, Excitation 5, 1/144 Model. 97

10. 0 I I~ II I --- EC-130 HS158T JR Bs 1/72 TS8L k LL.0 ~. 2. 0 L 0. 0 200. 0 80. 0 15. 0 30. 0 [LS. 0 EC-130 HSI58T JR 6; 1/72 T38L G uj C3 LU fn r1l.. 100.0 F 0.0 -100. 0 -200.0O 15 JUNE 78 U 0. 0 15. 0 3 0. 0 ti5. 0 FMjEQUENCY (MHZ) Figure 38L. Axial Current at STA:HSl58T, Excitation 6, 1/72 Model. 98 8 0. 0

10. 0 I I S. 0 tm 0 I8- -, 6.0 EC-130 HS5158T JR St 1/1414 T38S E~4 k -4 15 JUNE 78 UI 14. 0 2. 0 0. 0 15. 0 30. 0 80. 0 2 00. 0 I I EC-130 HS5158T JR 8; 1/14LL T3BS 100.0 L Va 0.0 ~ I I I i 5-i I I iI I i i I i i I i II i I i I I -100.0 ~ 15 JUNE 78 U -200.0 L 0. 0 15.0 3 0.0 FMFlEUENCY (MHZ) 45. 0 80. 0 Figure 38S. Axial Current at STA:HS158T, Excitation 6, 1/144 Model. 99

20. 0 I I I I EC-130 HS158T Q l; 1/72 T39L E k 15. 0 Iul 0 fr- CdO.0 5. 0 I I I I i I I i i I i I I i I I i I O.0 OL 0. 0 1 5. 0 3 0.0 I45. 0 0 20 0. 0 I EC-130 HIS158T Q l, 1/72 T39L 100.0 ~ G tu F4 ui cn a 0.0 L -1 00. 0 -2 00. 0 -- 0. 0 15 JUNE 76 U 15.0 30.0 I45.0 FMiEQUENCY (MHZ) 60. 0 Figure 39L. Charge at STA: HSI158T, Excitation 1, 1/72 Model. 100

20. 0 --— T- I EC-130 HS158T Q 1; 1f11iL T39S E, k 15. 0 ~. 1 Ca 0 -4 UJ I 1 1 1 I i 5. O L 0.0oL 0. 0 15.0 30.0 1L5.0 60.0 200. 0 I I I I EC-130 HS158T Q Is 1/1'k' T39S 100.0 G uj F uj 4n cl.. 0.0 L -100. 0 j 15 JUNE 78 U -200.0o 0. -4 - 0 15. 0 30. 0 FREQUENCY (MHZ) L&. 0 60. 0 Fi gure 39S. Charge at STA: HSl 58T, Exci tati on 1, 1/ 144 Model. 10]

25. 0 I I I 20. 0 L I r4 LLI 0 cm = LAj I — -- 1- 4 r_ -j LLJ 9kM. 15.0 ~ EC-130 HSIS8T Q 2; 1/72 T40L k E k. 10.0 ~ 5. 0 0.0o 0..0 15.0 30. 0 LLS. 0 80. 0 200. 0 100. 0 a uj p uj cn cc CL 0. 0 -1 00. 0 -20 0. 0 0. 0 3 0. 0 FREQUENCY (MHZ) Figure 40L. Charge at STA: HSl 58T, Exci tati on 2, ]12 Model. 102

25. 0 EC-130 HS158T Q 2s 1/144 T40S VE {k I 20.0 L I~ = LO a: - 15. 0 L -I I I I 4 10.0 L 5.0 L I 1i 15 JUNE 78 U 0.0 0.0 200.0 I 15.0 30.0 [L5. 0 80. 0 -r HS158T Q 2. 1/144 T40S 100. 0 I at a: 3G a. 0.0 L -I I -100.0 -200.0 L____ -- 0.0 Figure 40S. Charge 15 JUNE 78 Uj - -- -, - - '. 15.0 3 0.0 FREQUENCY (MHZ) 4 5.0 80.0 at STA:HS158T, Excitation 2, 1/144 Model. 103

5. 0 I -- lr EC-130 H1S158T Q 3; 1172 T41IL 3.0. Lu C3 0 2.0 1. 0 -8JNE7 0.0 15030.0 115.0 60.0 200.0 ~1~ EC-130 H1S158T C 3t. 1/72 TL~ 100.0 -. 0.0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _1 6 JU N E 7 8 U -200.0. _ _1 — -- - - 0.0 15.0 30.0 115.0 60.0 FfiEQUENCY (MHZ) Fi gure 41Th. Charge at STA:HS158T, Excitation 3, 1/72 Model. 104

5.0 EC-130 HS8158T Q 3, 1/11&L TI41S '4.0 1. E k czz Ca LLi = 1 3k0: 3.0 [ 2. 0 0. 0. 18 JUNE 78 U I 15.0 30.0 [5. 0 80. 0 200. 0 EC-130 HS158T Q 3i 1/I1LI TI41S 100.0 ~ G uj R ui en cr a 0.0 L -100.0 ~ -200. 0 0. 0 I 18 JUNE 78 U 1 5.0 30. 0 FRiEQUENCY (MHZ) 80. 0 Figure 41S. Charge at STA:HS158T, Excitation 3, 1/]44 Model. 105

6.0 I I - -- -- EC-1S0 HS158T 4iLI, /72 TLI2L k it. 0 ~ a: -1 ui 0 Ca W =3 -- I — c. LLJ -i CL 3m 2. 0h 16 JUNE 78 U o.o L0. 0 200. 0 -100. 0 - - I I 5. 0 30. 0 LIS. 0 80. 0 EC-1S0 H151S8T Q LI: 1/72 TLI2L 1; uj E! LAJ W) cr. CL 0.0 -100. 0 -200. 0 0. 0 I ____ ____ ____ ___18 JUNE 78 U - Figure 42L. 15. 0 3 0.0 [15. 0 FRiEQUENCY (MHZ) Charge at STA:HS158T, Excitation 4, "1/72 Mode]. 106 80. 0

6.0 EC-130 H1S156T Q L; 1/i1AL TLL2S Lt.O L =1-J.4 LLU 16 JUNE 76 U 2. 0 L 0.0 0. I0 15. 0 30. 0 1L5. 0 60. 0 200. 0 I ~EC-130 HS158T Q LI: 1/144L T4A2S I 100.0 ~ G uj E! 0. 0 U.j cn cc a -100.0 L 16 JUNE 76 U -200. 0L 0. 0 15. 0 3 0.0 US5.0 FREQUENCY (MHlZI Figure 42S. Charge at STA:HS158T, Excitation 4, 1/144 Model. 107 60. 0

1 0. 0 EC-130 tIS158T Q 5s 1/72 T4A3L I 8.0 6.0 -j cm LAJ 2. 0 0.01L1 JN 7 0. 0 15. 0 3 0.0 s. 0 60. 0 EC-130 HS1585T 0 5; 1772 T43L 100.0~ r 0. 0~ -20 0.0 __ __ _ __5 JUL _76-UM j 0.0 15.0 3 0.0 t4 5 0 60. 0 FRiEQUENCY (MHZ) Figure 43L. Charge at STA:HS158T, Excitation 5, 1/72 Model. 108

10. 0 EC-130 HS5158T Q 5t 1f14 8.0 j k -a UJ 0 c3 LLI =2 -- I.- c... LLJ -j ft W., 6.0 L IL4 T'43S I 16 JUE 78 I tL. 0 ~ 2.0 1 - 0.0O 0. 0 -— L- L 15. 0 30. 0 US5.0 80. 0 20 0.0 _____ 71 EC-130 HIS158T Q 5; Ii 1LLL T143S 1 0 0.0 - I. -10. -2 00.0 L 0. Fiur 4S - I I I I I I i I I II I i i i i I i I i I 5 JUL 76 UM I 60. 0 1 5. 0 3 0. 0 FREQUENCT 1MHZ) LL 5.0 Charge at STA: HS1 58T, Exci tati on 5, 1/144 Model. 109

8.0 6. 0 -2.0 0.00 100.0 - 0. 0 -100. 0 - 15.0 30. 0US 60. 0 -2 0 0. O L1. 1 0U - I Uri__ _ _ _ _ _ -.. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0. 0 15. 0 30. 0 115. 0 60. 0 FflEQUENC~t MHI) Figure 44L. Axial Current at STA:VSl4O, Excitation 1, 1/72 Model. 110'

6.0 I 9 I EC-130 VS140 JR Is 1/144 T44S 6.0 1 C20 =3 =: I — -. i 2.0 L 0.0 29 JUN 78 UM -9 JN 7-.... I 0.0 15.0 30.0 4 5.0 60. 0 200.0 A-......... EC-130 VS140 JR 1; 1/144 T44S 100.0 L I 0.0 L -100.0 L -200.0 L 0. 29 JUN 78 UM K 60.0 0 15.0 30.0 FREQUENCTY MHIZ 415. 0 Figure 44S. Axial Current at STA:VS140, Excitation 1, 1/144 Model. 111

6.0 EC-130 VS1'10 JR St 1/72 T'45L k ~L.0 ~ 9= 0 I — -- 2.0 [ 0. 0 0. 0 20 0.0 -- 15. 0 30.0 I15. 0 60. 0 EC-130 VS140OJR 3; 1/72 TLI5L 100.0 1 - M U4 E! 0. 0 LLJ cn cr CL -100.0 ~ -20 0. 0 0. 0 15. 0 30. 0 15 FREQUENCY (MHZ) Figure 45L. Axial Current at STA:VS14O5 Excitation 3,, 1/172 Model. 112 60. 0

6.0 EC-130 VS140 JR 3S 1/lI4 T45S k 4.0 I- ~ 2.0 i 1 0.0 30 JUN 78 UM 0.0,,. 0.0 15.0 30.0 S.0 60.0 0.0 15.0 30.0 45.0 80.0 200.0 -,,_l Figure 45S. Axial Current at STAVS40, Excitation 3 1/144 Model. 100.0 113

6.0 I a.-l EC-130 VS140 JR 4s 1/72 T46L < -I- -- E 4.0 O -1 ILJ 0 I = 9.- -- 2.0 L 0.0 i0.0 200.0 r 30 JUN 18 UM - 15.0 30.0 45.0 60. 0 EC-130 VS140 JR 4s 1/72 T48L 100.0 L w tJ _U en IL. 0.0. -,, -100.0 L -200.0 L 0. -.,, - - 30 JUN 76 UM 0 5. 0 30.0 FREQUENCY LMHZ) 45.0 60.0 Figure 46L. Axial Current at STA:VS140, Excitation 4, 1/72 Model. 114

6.0 EC-130 VS140 JR 4; 1/14IL T4BS 4. 0 Lu 0 a: 2.0 ~. 30 JUN 78 UM 0.0 O1 0.0 200. 0 1 5. 0 30. 0 45. 0 60. 0 100.0 1 - G LLI p W cn cr VA 0. 0 EC-1SO VS140 JR 4; 1/1LLL T465 s0 JUN 76 UN -1 00. 0 I -200.0 L 0. I0 1 5. 0 3 0.0 LA5. 0 FREQUENCY (MHZ) 80. 0 Figure 46S. Axial Current at STA:VSl4O, Excitation 4, 1/144 Model. 11 5

6.0 - EC-130 VS1LI0 JR 5; 1/72 T47L E kT 6.0 ~ Lu r- 0 I — - Li. 0 [ 2. 0 15. 0 30. 0 Q15.0C 60. 0 EC-130 VS1410 JR 5t 1/72 TLA7L 1 00. 0 i I I ii i f i I I I i -1 i G LLJ E! LLJ gn cc 7.1 9L. i I I 0. 0 i I I 7, 1 i I I i I I I I -1 0 0. 0 L i I I -t 5 JUL76 U 60. -200.0 L — 0. 0 1 5. 0 FMFlQUENCYI MHI!) 11.0... 4 Figure 47L. Axial Current at STA:VSl4O, Excitation 5, 1/72 Model. 116

8.0 - % _uJ -U - -- a: cc. - 2.0. 2 0 0. 0 - 200.0 60. 0 - 1.... —, z EC-130 VS140 JR 5; 1/144U T47S L-1) LU at: (L. 100.0 L 0.0 3! I -200.0 I0 0. 0 15.0 30.0 1 5. 0 3 0. 0 6 JUL 78 UM J U5. 0 60.0 FREQUENCY (MHZ) Figure 47S. Axial Current at STA:VS140, Excitation 5, 1/144 Model. 117

1 0. 0 I EC-130 VS1L4O JR Bs 1/712 T'48LI 6.0 L E -j ui C:3 0 =3 =: -1 -D CL3a cr. 6.0 f. 4. 0 L 2. 01. 0.0O L-. 0. 0 6 JUNE 76 UM - I I 15s. 0 a.0 -0[s 60. 0 200. 0 EC-130 VS1L40 JR 6: 1/72 TL48L 1 00. 0 G uj R LU gn C2; CL. 0. 0 -1I0 0. 0 -200.0 1._____ 0. 0 15. 0 30.0 5. 0 FREQUENCY (MMlE 8 JUNE -78 UmJ. 60. 0 Figure 48L. Axi a] Current at STA: VS] 40, Exci tati on 6, ]/72 Model. 118

10. 0 I -— r 6.0 ~ EC-130 VS1'40 JR Bs 1/150 T4I8S klz-:~ -1 ui 0 en =: I-D -4 C2: cr 6.0 ~ Li.o L 2. 0 ~ 0.0 L 0. 6 JUNE 78 UM - I - - i 0 1 5. 0 3 0. 0 I&5. 0 60. 0 2 00. 0 EC-130 VS140 JR 6; 1('150 T4L8S 100.0 L G ui p ui Ul) ci 0. 0 -1 00. 0 - -2 00.0 OL — 6 JUNE 76 UM 0. 0 1 5. 0 3 0. 0Li 0 FREQUENCY (MHZI Figure 48S. Axial Current at STA:VS14O, Excitation 6, 1/144 Model. 119 60. 0

20. 0 I I 15. 0 ~ -j Ul 0 " LUJ e..1 5. 0 0.0 L__ 0. 0 2 00. 0 --- 1 00. 0 L. EC-130 VS1L40 Q 13 1/72 T'k9L 15.0 30.0 '&5.0 80.0 EC-1 0 VS14~0 Q 1: 1/72 T'k9L 5 JUL 78 UM 15.0 30.0 '4s.0 80. G uj P LU cn CL. 0.0O -100.0I -200L 0. FRiEQUENCY (MHZ) Figure 49L. Charge at STA:VS14O, Excitation 1, 1/72 Mode]. 120

20. 0 -- - I EC-1S0 VS1L40 Q 1; 1I11IL T49S E k 15.0 ~. -j IAJ P 10.0 A5. 0 16 JUNE 78 U 0. 0 1 001 5. 0 30. 0 60. 0 1; uj E! LU (n CL. 10 0. 0 -10 0. 0 -200. 0KiY i 0. 0 15. 0 KI EC-130 VS1LI0 Q It 1/1Lk4 T49S Ii ii 1 4 i i I i i i I I I I I I I I 5 JUL 78 UM - -- 1 14 5. 0 60. 0 i i I I I I I I 3 0. 0 FRiEQUENCY (MHZ) Figure 49S. Charge at STA:VS14O, Excitation 1, 1/144 Model. 121

8.0 IL. 0 0 --4 -j uj =3 I-. 4 -3 VkN,. cc ci CL 2. 0 [ 0. 0 L0. 0 200. 0 EC-130 VS1LLO0 3;S 1/72 T5OL 100.0 ~ G ui C3 LLI en a 0. 0 -1I0 0.0 18 JUNE 78 U — 200.0 L 0. I0 15. 0 30. 0 FMEGUENCY (MHZ) ILS. 0 80. 0 Figure 50L. Charge at STA: VS1 4O, Exci tati on 3, 1/72 Mode]. 1 22

6.0 I. 0 6.1 -j uj 0 C3 LLJ =2 -- I — Ljjc -1 CL.:K cr 2.0 L 0.0 0.0 200.0 100.0 15.0 30.0 45.0 80. 0 I In EC-130 VS140 Q 3; 1/144 T50S 0 LU Cm cr 2.1 IL 0.0 L -100.0. 18 JUNE 78 U -200.0 L. -. - 0.0 15.0 30.0 45.0 FREQUENCY (MHZ) Figure 50S. Charge at STA:VS140, Excitation 3, 1/144 Model. 123 80. 0

10.0 EC-130 VS140 0 4g 1/72 T51L 8.0 E 8.0 UJ 0 S 0.. -a0.0 2.0. O_. o __1 JUNE 76 U 0150.0 15.0 300 0 0.0 ECg130 VS140, i 4 1/72 T51L 100.0 0.0 I \0 A -100.0. -200.0 _______ ___________________ 5 JUL 78 UM 0.0 15.0 30.0 45.0 80.0 FREQUENCY (MHIZ) Figure 51L. Charge at STA:VS140, Excitation 4, 1/72 Model. 124

10. 0 8.0o EC-130 VSILIO Q Z4; 1/1LLI T51S <r<If LIl 0 I-. B.0 L t&. 0 #Ii I 1 2. 0 II n n - I i I I i I i f I I 18 JUNE 78 U 0. 0 200. 0 - - — L- - I 15.0 30. 0 t15. 0 80. 0 EC-130 VS1'A0 Q 'Ag IhALL T51S 100.0 1 - G ui LU Gn cc T., a 0.0 J -100.0 ~ 16 JUNE 78 U -200.0 1L 0. 0 1 5.0 30. 0 FRiEQUENCYCMHZt) 'A5. 0 60. 0 Figure 5] S. Charge at STA:VS14O, Excitation 4, 1/144 Model. 1 25

10. 0 F I — r I EC-130 VS140 Q 5i 1172 TS2L 8. 0 S. 0 6-J C3 LLo IaLC. 2. 0 E czL szz4. I 0.0 L0. 0 15. 0 30. 0 200. 0 EC-lSO VS1L40 Q St 1/72 T52LI 100.0 L 0. 0 0,J -100.0 ~ -200.0 Vo L-__________ 0. 0 1 5.0 I0 FREQUENCY (MHZ) Figure 52L. Charge at STA:VS14O, Excitation 5, 1/72 Mode]. 126

EC-130 V 8.0 -j uj Cl I". 4 -1 CL ct 0 8. 0 4. 0 2. 0 i I i I i I i I I 5S140 Q 5: 1/11414 T52S _____l1 JUNE 78 U 15. 0 30. 0 145. 0 80. 0 G LLI m LLJ (n CC CL 20 00 0.4. -20 0.0 0. 0 15. 0 EC-130 VS1lUO Q 5: 1/1414 T52S I 6 JUL 76 UM I 14 5.0 60. 0 3 0. 0 FHEQUENCY (MHZ) Figure 52S. Charge at STA:VS14O, Excitation 5, 1/144 Mode]. 121

6.0 [L 0 Lij 2.0 0.0 __ __________________________________16 JUNE 78 U 0.0 15.0 30.0 45.0 60.0 2 0 0. 0 EC-130 VS1410 Q 6; 1/72 T53L - 0.0 -100.0 - -200. 0 ----. ---— 5 JUL 78 UM 0.0 15.0 30.0 45.0 60.0 FREQUENCY (MHZl Figure 53L. Charge at STA:VS140, Excitation 6, 1/72 Model. 128

6. 0 I EC-1S0 VJS1L0 Q 6; 1/1111 T5Ss VI [i.0 L Lu 0 C3 LUJ I.- c 2.0 L 18 JUNE 78 U O.0 I 0. 0 200. 0 15.0 30. 0 115. 0 60. 0 EC-1S0 VS140 Q St 1/1111 T3SS 100.0 ~ G ui uj cn cc 12 - 0. 0 -1 00. 0 -200. 0 L0. 0 I ______ 16 JUNE 78 U 1 5. 0 3 0. 0 FRiEQUENCY CMHI) 115. 0 60. 0 Figure 53S. Charge at STA:VS14O, Excitation 6, 1/144 Model.129

8.0 F- j EC-130 F870B JR 68 1/72 T54L k,em^ 8.0 -j;.0 cc 2.0 0.0 -_________________ 0.0 15.0 200.0 r-' LU L -100.0 L -200.0 -. - - 0.0 15.0 Figure 54L. Axial Current at 30.0 - EC-130 F870B JR 6 1/72 T5L --- - EC-130 F870B JR 8 1/72 T54L 8 _ — __ - _ 5 JUL 78 UM 30.0 45.0 60.0 FREQUENCY MHI) STA:F870B, Excitation 6, 1/72 Model. 130

8. 0 EC-1SO F870B JR St 1/144 T54S 8.0 L k a C3 =0 -J I. 0 2. 0 ~ 30 JUN 78 UM 0.0 L 0. 0 15. 0 30. 0 80. 0 200. 0 --- I I F870B JR 6; 11144 T54S i I i I I I I I 100. 0 ~ G uj p ui en cc Cl.. 0.0 ~ -I -1 00. -20 0.I II 0 __ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ U 8 U 0. 503. 508. FREQUENCY (MHZ) Figure 54S. Axial Current at STA: F870B. Exci tati on 6,5 1/144 Model. 1 31

60. 0 - - - -4 -1 uj cl 0 I — -- " 1-3 -1 A cc EC-180 FS'&ST JR It 1/72 T55L kF 20. 0 1. 0. o V. IWAIr I - - - - - - - - - -- 15. 0 3 0. 0 115.0 60. 0 EC-130 F3415T JR 1: 1/72 T55L G w p w in cr CL. I 0 0. 0 i I i I I I I I I 0. 0 k i I i I - i o o. o I I: I I i I i I I 1 1 -200.0 L 0. 0 6 JUL 76 UM ~~I — - I 1 5. 0 30. 0 FRiEQUENCY 1MH2) u 5. 0 6' 0. 0 Figure 55L. Axial Current at STA:F345T, Excitation 1, 1/72 Model. (Repeated Measurement, see Table 4) 1 32

600 * a 4 'to0.0 ~. -J -&J EC-130 F3'&5T JR Is 1/1111 T55S 30 JUN 78 UM 20. 0 ~ 0.0OI 0. 0 200. 0 15.0 30. 0 115. 0 60. 0 I I 100o. 0 ~ G lu R tu in cc CL. O.o OL EC-130 F3IL5T JR It 1/1111 T55S - 30 JUN 78 UM -100.0 1 - -200.0 O 0. 0 Figure 55S. 1 5. 0 3 0.0 15. 0 FREQUENCY CMH1Z) 80. 0 Axi al Current at STA: F345T, Exci tati on 1, 1/1 44 Model. (Repeated Measurement, see Table 4) 1 33

8.0 lr I I I EC-130 F345T JC 2; 1/72 T56L E7E '.^^ 8.0 L -._1 a. &o rII J Lc 2.0 0.0 0.0 30 JUN 78 UM 15.0 30.0 45.0 60. 0 200.0 r EC- F3T JC 2 1/72 T5 L EC-190 F345T JC 2, 1/72 T56L 100.0 L IC. u a 0.0 L -100.0o -200.0 L 0. 30 JUN 78 UM 0 15.0 30.0 FREQUENCY (MHZ] 60.0 Figure 56L. Circumferential Current at STA:F345T, Excitation 2, 1/72 Model. (Repeated Measurement, see Table 4) 134

8.0 - -- - ---- --- I --- ---— --- —-- 6.0 LJ =. I — _1 AI. o 0 '-D EC-130 F345T JC 2s 1/114& T56S FrU JE 30 JUN 78 UM _,, 2.0 0.0 0. 0 15.0 30.0 45.0 80.0 200.0 IEC-130 F5T JC 2 1/1- T56S I EC-130 F945T JC Z. I/1L4 T56S 100.0 L a:t: ALa CA. 0.0 -100.0 L -200.0 L 0. 30 JUN 78 UM 0 15.0 30.0 FREQUENCY (MHZ) 45. 0 80.0 Figure 56S. Circumferential Current at STA:F345T, Excitation 2, 1/ (Repeated Measurement, see Table 4) 135 144 Model.

1 5.0 EC-130 F345T JR 3s 1/72 T57L 12.0 L k k -1 =J - a o a: 9.0 L 6.0 1 3.0 L 0. 0.0 15.0 30.0 45.0 30 JUN 78 UM 80.0 400. 0 EC-130 F345T JR 3; 1/72 T57L 300.0 200.0 - tu 0 tlJ cn cr 3~. a. I I I 4 100.0 i 60. 0 6 JUL 78 UM 0. o -.0.0 15.0 30.0 [u5.0 FREQUENCY (MHZ) Figure 57L. Axial Current at STA:F345T, Excitation 3, 1/72 Model. (Repeated Measurement, see Table 4) 136

15. 0 I I EC-130 F3LI5T JR 3; 1/14LL T575 E 12.0 ~ -4 LLJ gn 0 =3 = I — ' — " '-D -3 CL Mc cc 9q.0 ~ 6.0 1. Ii 3.0 ~. 30-JUN 78 UM 0.0o L — 0. 0 15.0 3 0. 0 US. 0 60O. 0 G uj e LAJ (n cr 7. a.. 0iU. 0 K. 0. EC-130 F345T JR 3; I/14~4 T575 ~ 6 JUL 76 UM 30.0 f 3 0. 0 15. 0 FRAEQUENCY'kMH2) Figure 57S. Axial Current at (Repeated STA:F345T, Excitation 3, 1/72 Model. Measurement, see Table 4) 137

a6.0 EC-1SO F3LI5T JR 'A; 1/72 T58LI 6.0 1. k -J I'J -I 0 IL 2. 0 -0.0 OL 0. 0 76 UM 1 5. 0 30. 0 1AS. 0 60. 0 20 0 -0 - --- I i I i I i i I I 1 0 0. 0 1 i I I i I i I i G ui i e O. O ILU (n cr. M. I I I - 1 0 0. 0 1 r I i I II I -200. O i —.0 - 0 --. --------- V --- - ---- -- --- T - — "- - EC-130 F4S'LT JR 1/72 T58L -1 i i i II I t i I i i I i 5 JUL 76 U 5. 0 60. 0 1 5. 0 3 0. 0 FREQUE-NCY (MH!) Figure 58L. Axial Current at (Repeated STA: F345T, Exci tati on 4, 1/72 Model. Measurement, see Table 4) 1 38'

8.0 EC-130 F3'L5T JR 4; 1/11LL T58S 6.0 uj0 A2. 0 0.01L 0. 0 200. 0 100.0 f -<7.30 JU 70 U 15.0 30. 0 45s.0 60. 0 EC-130 F3'&5T JR 4; 1/144 T58S G ui e uj Ws cc a 0.0 -100.0 1 - -200.0o L 0.1 30 JUN 78 UM 30JNa8U 0 15. 0 30. 0 FRiEQUENCY (Mti! 415. 0 00. 0 Figure 58S. Axi al Current at STA: F345T, Exci tati on 4, 1/144 Model. (Repeated Measrement, see Table 4)

20.0 -- -, ----~- - -~-I 15.0 L -j I 0 - 10.0 -A N._ - EC-130 F345T JR 5s 1/72 T59L 30 JUN 78 U 30 JUN 78 U _ 5.0 0.0 L 0. I, 0 15.0 30.0 U5.0 80 0 C3 L: LLJ cn cc S: &. LIOO.0 300.0 L 200.0 100.0 f 0.0 0. 0 0. 0 i I I1 EC-130 F35T JR 5s 1/72 T59L EC-130 F345T JR 5; 1/72 T59L __6 JUL 78 UM J. - -,.. J 15.0 30.0 U5.0 60.0 FREQUENCY (MHZ) Figure 59L. Axial Current at STA:F345T, Excitation 5, 1/72 Model. (Repeated Measurement, see Table 4) 140

20.0 - -- EC-IO F35T JR 5 1/1 T59S EC-130 F345T JR 5i l/144 T59S 15.0 L E w -1 w3 5.0 L 30 JUN 76 UM 0.0 L 0. - =. 0 15.0 30.0 45.0 60.0 400.0. 300.0 G uj rl C3 Ii: 200.0 i --— _ _ — ---- - - - I --- - - ~- - EC-130 F345T JR 5 1/144 T59S I I I 6 JUL 78 UM j 30.0 45.0 60.0 100.0. 0. 0 L 0.0 15.0 FRE QUENCY (MHZ) Figure 59S. Axial Current at STA:F345T, Excitation 5, 1/144 Model. (Repeated Measurement, see Table 4) 141

5.0 I. EC-130 F345B JR 1s 1/72 T60L E L.o0 L C2 0 I.- -~ 3.0 L 2.0 L 1.0. 0.0 -- 0.0 30 JUN 76 UM 15.0 30.0 80.0 200.0 ___ I, K EC-130 F345B JR 1I 1/72 T6OL 100.0 k I MU L3 uM u9 in cc Q 0.0 L -100.0 e -200.0 -L- -- 0. 0 1U JUL 76 UM i 80. 0 15.0 30.0 45.0 FREQUENCY (MHZ1 Figure 60L. Axial Current at STA:F345B, Excitation 1, 1/72 Model. (Repeated Measurement, see Table 4) 142

I 0. 0r — -- i - - -- - -- I i EC-130 F345T JR lt 1/72 T61L 11 i i 8. 0 F E k C3 0 =3= I- -.. 6. 0 L 140 I I Ii i 2. 0 L 114 JUL 78 UM 60. 0 o.o L~ 0. 0 15.0 30.0 145.0 20 0.0 EC-130 F3145T JR Is 1/72 T61L 100.0 Lt 4 I i i i I i I I I E- 0. 0 a-, -100. 0 L I 114 JUL 78 UMI 6 0. 0 - 2 00.0o L _____- -_ __ 0. 0 - I I 15. 0 3 0. 0 FfiEQUENCY (MHZ.) 145.0 Figure 61 L. Axial Current at STA: F345T, Exci tati on 1, 1/72 Model. (Repeated Measurement, see Table 4) -143

1 0. 0, - - -— __ __ _ i EC-130 F3115T JR 13 1/1414 T61S 8. 6.0 E~I kzzz 2 ul r.3 - I a)r cr. 2. 0 h~ 0. 0 L, 0. 0 I i 80. 0 1t4 JUL 78 U 15. 0 30. 0 115.0 2 00. 0 EC-130 F3L15T JR lt 1/1441 T615 G uj F uj tn m:rl CL:, 1 00. 0 0. 0 - 1 00. 0 I20 0 K __ _- - 0. 0 Figure 61S. Axia] _______ ___ 11 JUL 78 UM 1 5. 0 3 0. 0 F9EQUENCY (MHZ) US5. 0 8 0. 0 Current at STA:F345B, Excitation 1, 1/144 Model. (Repeated Measurement, see Table 4) 1:44

EC- 130 4S158T Q 1; 1 / 1 L4 T82S5 -E I ~k 15.0 ~ -I C3 0 CL4 5. 0 ~ 0. 0 - 0. 0 I" 60.0 - 1 5. 0 30. 0 US. 0 G uj R LU:9 CL. 2 00. 0 EC-130I-H5158T Q 1I 1/II4LL T625 I 0.o k 0.0 -10 0. 0 ~ -200.0 _____ _ 12 JUL 78 UM 0.0 15.0 30.0 '15. 0 80.0 FfiEGUENCY (MHZI Figure 62S. Charge at STA:HS158T, Excitation 1 1/144 Model. (Repeated Measurement, see tab] e 4) -145

I EC-130 F34~55 JR l: 1/72 TB3L 4.7! LLJ C3 0 =1 = I — -, -j ) CL. a: cc 3. 0 2. 0 0. 0 0. 0 Nli%.^) 4 -3 1 1 1 f '7 10 I I LA I I - -L 60. 0 15. 0 30. 0 S45. 0 2 00. 0 _____ - - I, T I~ — - EC-130 F3145B JR 1i 1/72 T53L G W p Lu cn cc W. W 1 00.0(I 0.0 -100L-I -20.OLi I- 4 -1 U 0.0 5.0 0.0 ~5.Q60. FREQUENCY (MH1ZI Figure 63L. Axial Current at STA:F345B, Excitation 1, 1/172 Model. (Repeated Measurement, see Table 4) 146

I- - a 5 F --- — 4. F I.0 i 0 I~_ _ - _ _ __ _ _ _ _ _ _ _ 0. 1 - EC-130 F3455 JR l5 1/1LL4 T63S E I 12 JUL 78 UM 3 0. 0 4s. 0 6 0. 0 ll-. V 20 0. 0 ___ I- ---- I EC-130 F34~58 JR It 1/1'44 T63E Ii 100o.0 L G LLS R LU gn cc CL 0.0 L - -.- I 5 I I I I I2 JUL -78 UM —_ ___ -100.0 ~ -2 00. 0 L — ____ 0.0 - 12 JUL 78 UM 15. 0 3 0. 0 FREQUENCY (Mill) ti S. 0 80. 0 Figure 63S. Axial Current at STA:F345B, Excitation 1, 1/144 Mlode]. (Repeated Measurement, see Table 4) 147

EC-130 F345B JR 3; 1/144 T84L i 4. 0 d k LLU en 0 C-.-. 3.0 Ai II 1.0 I 0.0[ 0.0 - -. = 12 JUL 78 UM I 60..0 60. 15. 0 30.0 200.0, EC-130 F345B JR 3: 1/144 T64L 100.0 L G UJ t~ <n a: IL. 0. 0 -100.0 t -200.0 L0. 0 ~...... 12 JUL 78 U M 45. 0 60.0 15.0 30.0 FREQUENCY (MHZ) Figure 64L. Axial Current at STA:F345B, Excitation 3, 1/72 Model. (Repeated Measurement, see Table 4) 148

C3 = -3 CL2: 5, -- r -I t! EC-130 F345B JR 3S i/144 T64SS k 3.0 i 0I 0.0_ 12 JUL 78 UM 0.0 15.0 30.0 5.0 60.0 200.0 -- EC —130 F3tB JR 3; 1/,1L T64S EC-130 F35U5 JR 3; 1/144 T64S j- - 100.0 i I I L3 Lai C3 UN in <Xt% c. a: 0. 0 L -100.0 F ~UIs — _ _ _ 12 JUL 78 UM -200.0, __. -....... - ---- - 0.0 15.0 S30.0 5.0 60.0 FREQUENCY (MHM) Figure 64S. Axial Current at STA:F345B, Excitation 3, 1/144 Model. (Repeated Measurement, see Table 4) 149

5. 0 _ _ _ _ _ _ _ - EC-130 F3459 JR 4; 1/72 T65L c:n 0 =1 = I --- -- L. 0 3. 0L 2. 0 L 1. kw *1 0. 0 L. 0. 0 2100. 0 r —,1 00. 0 0I -1 12 JUL 78 UM 60. 0 1 5. 0 30.C0 Lis. 0 EC-130 F3L458 JR l4p 1/72 T65L G U.3 E! L&J in =41 CL. 12 JUL 78 UM 60. 0 -— 4- - 15. 0 3 0. 0 FRiEGUENCY 1MHZ) LLS. 0 Figure 65L. Axial Current at STA:F345B, Excitation 4, 1/72 Mode]. (Repeated Measurement, see Table 4) 1.50

5. 0 _ _ EC-130 F3'455 JR 4; 1/M M~ 0 t-. -. 1 - k "' ---- r i 144 T65S I I E 1. 0. 0 0 I I LLOO. 0 L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 2 J U L 7 8 U M J 015.0 30.0 u 5 0 60. 0 EC-130 F3L45B JR Lj, 1/1L4L T65S 30 0. 0 200. 0 1; LLS C3 uj in C5 1 00. 0 0. 0 _ _ _ _ _ _ _ _ _ -- -~ _ _ _ _ 0. 0 15. 0 3 0. 0 FREQUENCY (MHZ) ___12 JUL 78 U 5. 0 60. 0 Figure 65S. Axial Current at STA:-F345B, Excitation 4, 1/172 Mode]. (Repeated Measurement, see Table 4) 15]

5. 0 -I - 5 -- T — I EC-130 F34SB JR 5: 1/72 T66L c 0 -r -, 1.0 - ________________12 JUL 78 UM 0.0 1. -.0.0 4.0.0 15.0 30.0 05.O 60 I0. 0 200.0 t EC-130 F315B JR 5s 1/72 T66L 100.0:! Ul uS i i I I I I - 1 0 0.0 I -2 00.0 - 0.0 12 JUL 78 UM 80. 0 15.0 30.0 FREQUENCY (MHI) U45.0 Figure 66L. Axial Current at STA:F345B, Excitation 5, 1/72 Model. (Repeated Measurement, see Table 4) 152

5. 0 EC-13O F3i45B JR 5; 1/14LL T665 k 4:2 LLI C3 0 7-3 = I — --.-4 -) -1 CL WI' Cs: 3. 0 2. 0 I. F 1.0 ~. 0. 0 L ~ ~ _ —4 --- 0. 0 1 5.0 I 12 JUL 76 UM - 60. 30.0 20 0. 0 100.0OIt EC-130 F3L455 JR 5; 1/1L14U T66S G LLJ s uj in ct CL - I 0.0 k I.4 1 I -100.0 L 12 JUL 78 UM 115.0 60.0 - 20 0. 0. — 0. 0 I 15. 0 3 0. 0 FMEQUENCY (MH!) Figure 66S. Axial Current at STA:F345B, Excitation 5, 1/144 Model. (Repeated Measurement, see Table 4) 153