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1. Introduction

The purpose of this research has been to develop theoretical and
numerical procedures which can contribute to the interpretation and
prediction of lidar experimental observations of the scattering and
absorption of polarized light by snow and ice crystals in cloud forma-
tions. Our results can also be used for the study of absorption and
scattering of natural unpolarized or partially polarized radiation by
any disc-like particles of lossy dielectric material. They can
serve as inputs to studies of the influence on cloud formation of radia-
tion absorption, of weather and climate as it is influenced by the
greenhouse effect, and of various effects of air pollution.

The scattering and absorption of electromagnetic radiation has been
treated purely analytically only for spheres and infinite circular
cylinders. For these cases the well known Mie theory is used. For all
other cases recourse must be made to numerical (or experimental) methods
or to approximate theories such as Rayleigh-Gans or geometric optics
which are valid only in the extremes of very long or very short wave-
length respectively relative to the body dimensions.

This report describes a numerical technique we have developed to
efficiently compute the scattering and absorption by thin circular discs
of lossy dielectric (complex refractive index material). Sample numerical
results are given for the case of infrared radiation incident on a disc
of ice, the wavelengths being comparable to and somewhat less than the
disc radius and about 10 times the disc thickness. Such a disc could be
thought of as simulating a thin flat plate hexagonal ice crystal, parti-
cularly when the crystal is symmetrically rimed. Such crystals fall flat
side horizontal in natural clouds (Zikmunda and Vali (1972)) and since
their orientation in the horizontal plane is random a circle represents
an ensemble average shape as well as approximating the individual crystal.

The work we have done on this grant extends earlier work described

in Chu and Weil (1976) and Weil and Chu (1976). In those papers a method,



tailored for its efficient applicability to thin discs, was developed to
compute the current density distribution induced by an incident electro-
magnetic wave of arbitrary polarization and from this to compute the
scattered fields and absorbed power. While the method could in princi-
ple apply for any directions of incidence relative to the discs, the
formulas were in fact worked out and programmed only for incident pro-
pagation directions perpendicular or parallel to the flat surfaces of
the discs. This of course severely limited the practical situations
where the results could be applied. On the present grant, the method
was pursued to generate the detailed formulas and associated computing
programs for arbitrary directions of incidence. The new program, of
course, automatically handles the broadside and edge-on cases when these are
called for. It does this in an improved fashion based on some reformu-
lation of the equations used previously.

The present program, incorporating as it does all angles of incidence
can now be used with appropriate number densities and probability distri?
butions for crystal dimensions to model the effects of clouds of disc
scatterers. However, the only experimental data on size distributions for naturally
occurring plate crystals is that summarized in Auer and Veal (1970) which leads to the
empirical relation between thickness § and radius a: § = 2.02 (2a)0"449 um.

Multiple scattering and absorption (multiple photon-particle inter-
actions) may be treated by radiation transfer computations. Some radia-
tion transfer codes depend intrinsically on the use of Mie theory and so
are limited to exploring the effects of spherical particles. The program
we have developed for disc particles can however be used as an external
subprogram or function input to those radiation codes which are not in-

trinsically limited to use of Mie theory.
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2. The Integral Equation and Reduction to Algebraic Equations
The integral equation for current density J induced in a homogeneous
dielectric object of refractive index n is

i -1 J
- [L-J - 5] (1)
Jugy = n? -1

where L is the self-adjoint integral operator defined by

L-g = [[] av'J(R")G(R/R")
~ D
-ff{ ds'J(R")-A"' (R")VG(R,R'), (2)
S

D and S represent the volume and surface of the object and

G=-exp(j|R-R"[|)/(4m|R - R'|) . (3)
All lengths are normalized by multiplication by kO = ZF/KO where XO is
the free space wavelength. The time devendence of the fields is assumed

to be of the form ejwt

so that the refractive index n has a negative
imaginary part except for ideal nondissipative, nonconductive dielectrics.
Eg. (1) is reduced to a set of linear algebraic equations via the

method of moments. To do solg(g) is expanded in a series of basis func-

tions W. (R).

j ~A

J@R) = -Ju€ Lo, (R) - (4)

The basis functions should satisfy the requirement
V'ﬂi =0 in D
W'n # 0 on S (5)
to ensure the similar properties (which exist in a homogeneous medium)
for va) itself. Substitution of (4) into (1) yields
B = Jo, LW, - (/G - 1)W,] (6)
- i i'= i it

Using the inner product



<f,g> = [[fav £@R")-g(R") (7)

i _ _ 2 _
§wj,§ > = g oci[zij Wij/(n 1)] (8)
where
Zij = <W. /L ﬂj>' -Hij = <ﬂihwj> . (9)

The symmetric matrix [Zij - Wij/(n2 - 1)] is termed an impedance
matrix. All material effects are confined to the factor (n2 - l)-l
while shape effects are included in Zij and Wij'

To specify the basis functions Wi we use a cylindrical coordinate
system (p,¢,z) with z along the symmetry axis of the disc. The disc
fills a region given by -§/2 <z < §/2,0< p £ a. Then, bearing (5) in
mind, we choose thejﬂi from the following sets of functions. To most

: : i ; A
concisely express the induced current when E~ is perpendicular to z we

use the TE mode

(n,m)

Wo = Vx{zR(p)Z_(z)2_ (¢)} (10)
where
Zn(z) = zn; @m(®) = sin mo or @m(¢) = ~-cosmo. (11)

The form of Zn(z) is chosen to permit easy integration over z when
evaluating the impedance expressions. In accord with the thin disc
assumption only terms of order 62 or greater will be kept in the impe-
dance, hence only n = 0 and 1 functions will be needed. The following
odd TE modes resulting from the choice of sin m¢ in (13) result

(0,m)

. = p{mR(p)/p)sin mp + R' (p)cos m¢

TEO ODD: W

TE1l ODD: W(l’m) S(mR(p)/p)z sin m¢ + $R'(p)z cos m¢ , (12)

~E

etc.

Similarly, TM modes defined by



most concisely express the currents induced when the incident magnetic
field H, 1l 2. The odd TM nodes are

(0,m)

TMO ODD: W = 5[(R'(p)/p) + R (p) - (m°R(p)/p?)] sinmo

~M
. (lrm) — Ap!? . N
TM1 ODD: HM = PR'(p)sinm¢ + ¢ (mR(p)/p)cosm¢
+ 2[-(R'(p)/p) = R'(p) + (m°R(p)/p?)Isinmy . (14)
etc.
For even modes m¢ is to be replaced by m¢ + (m/2) in (1ll) and (14).
When neither gl nor g} are perpendicular to Z, a combination of TE and
TM mode W functions will be required.

With these W functions there is no coupling between the different

values of m; that is, the impedance terms corresponding to use of

I/l(n,m) (n,m')

and W are zero when m # m'. Likewise there is no coupling
between even and odd modes. We achieve further decoupling by using our
assumption that the discs are thin and dropping all terms of order 53 or
higher relative to the lower order terms when carrying out the volume inte-
grations called for in determining the matrix elements. As a result the
impedance matrix has many zero elements and can be partitioned as shown
in Egs. 3.3 - 3.6 of section 3 which greatly facilitates the numerical
solution.

In our earlier work involving solely broadside and edge-on incidence

only TEO modes were excited and hence only matrix terms involving these
modes were not zero [the z(TEO,TEO) terms of the present section 3].

We choose a set of radial functions R(p) : {Ri(p)} so as to facil-
itate the integration. Each Ri(p) is chosen to be zero over all but a
fractional part of the interval 0 < p < a. The subintervals are taken
small enough to permit the integrals to be evaluated by approximate
means with adequate accuracy, yet an excessively large number of intervals

is avoided with the choice of Ri(p) given below. We are then able



to treat the singularity region to desired accuracy by reducing the pro-
blem to the singularity integration for a statics problem plus correction
terms, all of which are evaluated analytically. We do end up, however,
with rather lengthy expressions for the matrix elements. One needs
second derivatives of R(p) so we choose symmetric functions made of
segments of second order polynomials. Specifically, we divide the
interval 0 < p < a into N contiguous segments of length a/N. Then the
functions Ri(p) are the spline functions illustrated schematically in

Fig. 1 and defined for i = 1,2,...,N by (15).

(a/N) (i-1)<p<(a/N) i, (1/2) (N/a) > [o- (a/N) (i-1)12
(a/N)iSpS(a/N)(i+l): -1+2(N/a) [p-(a/N) (i-1)]

~(1/2) (N/a) 2 [o- (i-1) (a/M) 1% (15)
(a/N) (i+1l)<p<(a/N) (i+2) -1+2(a/N) [ (a/N) (i+3)=-p]

- (1/2) (N/a) 2 [ (a/N) (i+3)-p]2

(a/N) (i+2) <ps(a/N) (i+3), (1/2)(N/a)Z[(a/N)(i+3)-p]2
provided p<a. For p>a, Ri(p)=0. This treatment of the radially depend-
ent part of the problem is typical of techniques used in finite element
methods so our numerical method may be thought of as a hybrid moment-
finite element method. Note that there is an overlapping of the Ris in

the integrations for Z,. and W,..
1] 1]

R; (p)

radial distance in units of %

Fig. 1. TIllustration of the function defined in Eq. (15).



Numerical evaluation of the integrals is facilitated by use of average
values over short intervals for Ri(p), and functions involving Ri(p),
and its derivatives. For this purpose each interval (a/N) (i-1) < p <
(a/N) (i+3) is subdivided into eight equal parts denoted by p=1,...,8
each extending from aip to Bip and centered on Yip (see Egs. 2.5 -

2.7 of section 3), We define averages over these intervals

-1 Bip 1
Aj, = <Rylp)>) = (a/2) ({Ri(o)dp (16)
ip

and similarly

B, = <R!(p)>., C. = <R.(p)>_,

ip 3 (P) b ip ;(0) b

Dip = <Ri(p)>pl Eip = <Ri(p)/p>p' (17)
Table II in section 3 lists the explicit formulas for Aip . Eip'

The Wij and excitation terms Qﬂj{£i> each involve only a single
volume integral and can be evaluated analytically with our choice of
polynomial functions for the Ri(p) by straightforward integration.

The Zij each involve double volume and surface integrals with sin-
gular integrands. They are carried out by partly numerical and partly
analytical methods in which the two z integrations are done analytically
to 0(62), the singularities are handled analytically and the two angu-
lar integrations reduced to a single integral approximated by a finite
sum. The result of the analytic treatment of the singularities plus
the use of the averages defined above reduces the radial integrals to
finite sums. The results of this somewhat lengthy analysis leads to
the formulas which are given in section 3 and where were programmed

and used forrqomputation.
Once the oy and hence J are determined, classical EM theory permits

one to compute the reradiated and the absorbed power by straightforward

integrations over the disc volume which can be carried out analytically.



Specifically, the far-zone electric field in the direction ﬁs(es,¢ )

may be expressed as

jou.k —jg'ﬁs
s _ 0 e jwt
Epar = 4r R ;§KGS'¢S) € (18)
where
- -4R' R
= x> [ff av' R Rs grny (19)
Then by substituting Eq. 4 for J one can express N as
N = —ij k Za Py (6 ' ¢ ) (20)
where
P* (g 8+ 157 (o 3 21
PM]S‘ - Ik ( S’¢S)e + Ik ( S’cbs)(b . ( )

The Ii and Ii functions are given by Egs. (4.5) of Section 3 for the

present choice of basis functions ﬂk'
ing the excitations wj,gl of Eq. (8).

They are used also in evaluat-

The incident fields are taken to be of unit magnitude with
elliptical polarization. They are expressed as

i

' = (pb + s§el¥t

(22)
where p and s are complex and satisfy lplz + |q|2 = 1. Then Egs.
(23) - (27) which follow and define the various cross-sections which
characterize the scattering and absorption are evaluated. The final

formulas which result are given by Egs. (5.1) - (5.7) of Section 3.



radiated power per solid angle in direction (8, ¢)

GB(6'¢) - incident power per area. (23)
the absorption cross-section
_ power dissipated in the object

g, = —— / (24)

A incident power per area
the total scattering cross-section,

Opg = foB(e,cb)QQ (25)

4

the total cross-section, also called extinction cross section

Op = Opg * Op (26)
and the assymetry factor

Opgy = ch(6,¢)coseSdQ (27)

where es is measured relative to the incident direction. Op and 0, are

given in terms of the o by Egs. 5.1 and 5.2 of section 3.

3. Computational Formulas

The explicit formulas to be programmed are given in this section.

3.1 Ordering the Coefficientsand Partitioning the Matrix
The procedures involve solving the linear algebraic matrix equation

(2.8) which we rewrite as

o =1 (1.1)

$ies

for unknown vector a, then computing several functions of the elements

a. of a. The matrix z may be decomposed in the form

z2=12-w (-1 (1.2)
where the elements of Z and W depend explicitly on two real parameters a
and 6 while n® is a given complex number. I, the excitation vector

depends on a and § plus four other real parameters 60, ¢O' p and s. Each
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row of (1.1) (corresponding to the element I of I) is associated with a
number of parameters; integers i, j=1...N, m=1...M and "mode labels"
TM0, TEO, TM1l, even and odd. The association with index k is given by
Table I which covers the case m = 1. The k numbering continues from
k = 6N+1 through 12N following the same ordering as the m=1 case, but
with m=2. This pattern continues until m=M. The maximum k value is

K=6NM.

Table I

Index numbers, k, for the excitations
Ik and coefficients o

k
sub-
mode matrix
see Eqg.
k label m ior j (1_4)q
1 TMO ODD 1 1
: : ' I
N N
N+1 TEO ODD : 1
2N : . N
2N+1 | TM1 oDD ) 1 11
3N : . N
3N+1 TMO EVEN : 1
. . ) : I
4N : L] N
4N+1 TEQ EVEN . 1
SN . . N
5N+1 TM1 EVEN : 1 II
6N ) : N
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Although the overall array of 6NM equations may be large, the
solution is reduced analytically to a number of subproblems involving
much smaller arrays as follows. First z may be shown to reduce to a
diagonal array of submatrices so that equation subsets correspondong

to "odd" and "even" and to the different m values are uncoupled and

may be solved separately. Thus

Fz(m=1, ODD) 0 0 - -
z = 0 z(m=1, EVEN) 0 - - -
~V A
0 0 z(m=2, ODD) - - -| (1.3)
| ~- 1~
i } AN
| i | No= - -

Furthermore, although the excitations are different for each m in the

odd and even cases, the z's are not; g(m=mo, ODD) = 5(m=m0, EVEN) = z(m_).

0
Each of the submatrices z(m) may be further partitioned as follows:

z+ (m) 0
-z.(m) _ sl

0 gJI(m) (1.4)

where the z(m) and z(m) are associated with mode combinations as indi-
I II
cated by the following notation (and by the fifth column of Table I).

z; = z(TMO, TMO) (1.5)
E(TEO, TED) Z(TEO, TM1)
zZrr 5| -
- z(TM1, TEO) z (TM1, TM1) (1.6)
In (1.5) and (1.6) the dependance on m is "to be understood". Each of

the matrices on the right hand sides is specified by symmetric N x N
arrays of complex elements. Thus the largest set of equations which

cannot be decoupled has 2N complex unknowns and is a symmetric complex

matrix.
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3.2 The Matrix Elements Zij

The individual elements of the submatrices in (1.5) and (1.6) will
be expressed in terms of a number of auxiliary functions of the given
parameters a and §. These functions are given in Tables II and III and
formulas (2.1) - (2.23). In addition to the subscript index numbers
previously introduced (i,j=1...N, m=1...M) there will also be used
p,g=1,...N and %=1,...L where N, M and L are all integers whose values
must be determined by numerical experimentation but are fixed in a given
computer run. To distinguish integer values i and j from the symbol for
/=1 we use j = /~1.

The auxiliary functions are

R(r,r') =R = (r2 + r'2 - 2rr' cosu + 62)1/2 (2.1)
R(a,a') = [2a2(l - cosu) + 62]1/2 (2.2)
D(r,r') =D =R = (r2 + r'2 - 2rr! cosu)l/2 (2.3)
§=0
Gj _ (0 if i # 3
i 1if i =93 (The Kronecker §) (2.4)
aip = (a/N)[i - 1 + (p-1)/2] (2.5)
B, = (a/N)(i - 1 + p/2) (2.6)
ip
Yip = (a/N)[1 - (5/4) + (p/2)] = (1/2)(otip + Bip) (2.7)



-]13~-

u, = (/1) 12 - (1/2)] (2.8)

B. ) + F(a. ,0. )

F(i,p;j,q) = F(Bip, jq ip'%iq

- F . ,(x- _F . ,B- 2-9
(Bipr®yq) ~ Flag, /Bl (2.9)
F(r,r') = r'4n(r-r' cosu + R) + r 4n(r'-r cosu + R)

' 2

+ 2(sinu)/§ {r tan-l[r'dsinu/[(r—r' cosu)R + D2]]

2111

+ rztan_l[rSvsinu/[(r'—r cosu)R + D
2 L2 2
+ (D" cosu - 2rr' sin“u){R - D - 26 ¢n[(8+R)/D]}/6§

-(sin2u/62){r'32n[(r—r' cosu + R)/(r-r' cosu + D)]

+ r3 n[(r'-r cosu + R)/(r'-r cosu + D)]} (2.10)

G(i,q) = G(qu) - G(ajq) (2.11)

G(r) = &n[r-a cosu + R(a,r)]

+ (a/6§)sinu tan_l{aﬁ sinu/[D(a,r) + (r-a cosu)R(a,r)]}

+ tn{[8 + R(a,r)]/D(a,r)}/s (2.12)

H{i,p:3,q) = H(B, ,B. ) + H(a._ ,a. )

ip'"iq ip' “iq
- H(B. .o. - ._sB. .
(Blp'ajq) H(Otlp qu) (2.13)
H(r,r') = {r'an[(r-r' cosu + D)/(r-r' cosu + R) ] *

*H(0,0) = -

§dsinu
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+ rn[(r-r' cosu + D)/(r'-r cosu + R)]

- (6/sinu)tan_l[(Résinu)/(rr' sin2u + 62 cosu)]}/é2 (2.14)
K(U) = (2/8)4n[(R(a,a) + 6§)/D(a,a)l
- (2/6%)[R(a,a) - D(a,a)] - ] (2.15)
S(i,p:j, =S r Bz + S s 70O
(i,p;j,9) (Blp B]q) (alp ajq)
- S(R._ra. - S(a. . 2.16
(Blp ajq) (alp,BJq) ( )
S(r,r"') rygn(r'-r cosu + D)
+ r'gyn(r-r' cosu + D) (2.17)
Table II
Mean Values of the Radial Functions
Aig Biq Ciq Pig ig
1 1 1. 1 3 5 i . 2, 2i-1
pr et i |t-7 gzt Uhiinggg
7 1 3 3 1 7 i . 2 21
74 et g t-g |g- 7t (SbiingrTm
17 1 3. 3 1 i 2. i+
57 etz 1 -1-7 %+% - (i +21-l)2n%%1%
33 1 1. 1 3 5,1 2~ 2i+2
24 -6— + Zl Z— -1 - Z‘ ‘8'!"2— - (1 +21‘l)£nm
23 11, -1 P2 . P+
51 -5- 4 I |- 3 e -(fe2a-nmdES
17 4 3. 3 ) i . . i+
17 -4 -7 -1 13 -Pei-n i
7 _ 5 _ 3, _3 a 15 i . ,....2, 2i+5
37 37 7t 2 L4z |75 -7 T3 057G
1 2 1. 1 11 | 13 i .. 2.2, 2i+6
ﬂ -3— Zl 2 1 + ——4 -——8- "‘E +(l+3) 2n2i+5
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The following combinations of the functions in Table II occur

frequently here and in Section 4.

2
Fiq(m) = Fiq = (Ciq + Diq - m Eiq)(N/A)
63%m) = 639 = n®A. A. + B. B.
ip ip ip g ip~iq
H9m) = 539 = m(a. B. + B, A, )
ip ip ip iq ipiq
Py M) =mA By M M = ma; - By
Table III

Summation Limits Py and 9

i Por 9o
<N -3 8
N - 2 6
N -1 4
N 2

Further auxiliary functions are

p q >
g.. =1 T {e P )9 (1 + ID(Y. Y. .))
3 7E G ip'"jq

F(i,p;j,q) - 3 a2/(2N)2][Gig COS mu cos u

+ 39 sin mu sin u]} _
ip u=uf

and

P, 9 2
L. = (e P 1+ by, v,
55 pzl qzl [(L+ 3D 0v50))

"

F(i,pij,q) - 3 a2/(2N)2][Gig sin mu sin u

iq
+ ;
Hlp COS mu Cos u]}u=u2

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Note that Eij is obtained from gij by interchanging Hig and G

jq
ip’

In terms of all the above auxiliary functions the impedance

submatrices are

TMO, TMO
5 L
Zij(TMO, ™O0) = 76 /(2L)2£l cos m u,
P, g &
0 0 =3D(v._,v..)
[] ] e W p PO+ 3D(Y, s )
p=1 gq=1 iq jq ip’’jq
Fin:- PR ) 2
(F(i,p;j,q) - 2H(i,pid,q)) - § a™/(20)71} _
% (2.24)
TEO, TEO
L A
z,4(TEO, TEO) = ﬂ62/(2L) ;o {E.. - eTIP (@) ooy
J =1 1]
2 i i i j j
m°K (u) [(1/2) 8y + 8y 1 + (1/2)85_,10(1/2)85 + 85 4 +
(1/2)63 1} _
N-2""u=u, (2.25)
TEQ, TML
5 L
Zij(TEO, ™1) = 76 /(2L)221{§ij + m cos mu
q A
. . . 0 -jD(a,Y..)
i i i jq
[(1/2)8 + 854 + (1/2)6N_2]q£l{e Fig
[+ 3D(a, Y, )6 ,a) - 3 a/(2m)])
-mie P 212) cog muek(w) 11/2)6] + 61 L+ (/2163 )
(83 - 63 ) _
N N-2u=u, (2.26)
TM1, TM1
) L
Zij(TMl, TM1) = 78 /(ZL)gzl{gij
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Po 9 2

Y )

=DV, Y.
-cos mu[ } } e b Jd
1

(1 + 3D(ys sys))
p=1 gq= P

Jg

. . ~ 2 2
Sg(er:]:q) j a”/(2N)"] Fiijq]

P A
0 —JD(aIY- ) A
-N ] [e P+ 3D(a,y, )6 (4P
p=1 P

s I _ &3
-3 a/(2N) 1 (8 GN—Z)Fip]

q0 -jD(a
-N ] [e
q=1

IY ] ) A
[1+ JD(a,qu))G(J,q)

A i i
-3 a/ (@M1 (85 = 8y_,) Fy ]
e @@ gy (s~ sty (ed - 8) iy
'3 (2.27)

3.3 The Matrix Elements Wij

1 xndx

0 (x+a)

The Wij will be expressed in terms of the integrals I

m(n+l)(a) =

with explicit expressions as follows provided a#0. In this

section a is not the radius of the disc which is denoted by a.

m=1

_ 1+a
Ill = Qn-g—
I =1 _ al n=2,3,4,5
1n n-1 1(n-1)" “—=r-r=r
I =__._].'..._._.
21 a(l+a)
N 1lt+a
Y I e
I, = 1 - {n=l)a , n=3,4,5

2n (1+a) (n-2) n-2 2 (n-1)
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m=3
1 1 1
I, =-5I - =]
31 2 (l+a)2 a2
1, - Wsaa 3 1
2(1+a)
1 (n-1)a
I = - I 7 1’1-2,4,5
3n (l+a)2(n-3) n-3 “3(n-1)
m=4
1 1 1
I, =-%[ —s-—=]
41 3 (l+a)3 a3
2 3
_ 3at+(a/2)a"+(1l1/6)a 11 1+a
Tgg = 3 T Tg
(1+a)
1 1 (n-1)a
I = — - — I _1yr n=2,3,5 (3.4)
4n (l+a)3 n-4 n-4 4 (n-1)

These integrals will be used to express a number of functions

fl"'f4’ gl...g3, hl’ h2 and Wi,' as shown in Table IV.

i+3
Table IV
Structure of W..
. 1]
1 W, i Wi+l Woivz | Y143
N f1 0 0 0
N-1 fl+f2 91 0 0
N-2 £ +E +E 9,+9, h; 0
< N-3 fl+f2+f3+f4 gl+g2+g3 hl+h2 Wi,i+3

The fi&ﬁ.amihi functions are different for each submatrix. In their
formulas we have not written the argument a explicitly in each Imn(a).

Note that a takes on different values in different formulas. Two
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special cases corresponding to a=0 occur. These are for fl when i=1

and are treated separately in footnotes.
T™™O - TMO

2 I ,+TI

£ o= HG(N/E)Z[(3/2)+a+Il3—m (I,5+1,,)

DL NN

£ = ﬂG(N/é)z[a-(l/2)+Il - 2.+ I

1 12 13

+m"(I,,+ 21, ,-I,,-I, .- I+ 31,,-1I

11 12 13 21 22 23 24)

4
+(M°/4) (T0+ 4T+ 21,,-415 + To0)] .

£ = m8(N/3)2[(3/2)+ a+ I

3 13
+ m2(2I - I..+2I..-1I.,)
117 “13 227 24
b om¥/a) (AT - 4T+ T.)]
31 337 35/ la=i+1
_ 2. _
f4 = 7§ (N/a) " [-(1/2)+ a+ Ill 2I12+ 113

2
+ m (-Ill+ 2I12- Il3+ 121— 3I22+ 3I23— 124)

+ m/a) (1. - 4T. .+ 6I..- 4T

317 43 33 347 I35) 152142

g, = T6 /) [-(1/2)- a+ T -1,

2 _ _
=(m%/2) (I 2175 2155+ I+ 31,,- 21,,)

+ /ey (1L .+ 21 - T

33 34 35)]a=i

g, = 16 /&) 2 1(1/2)+ a- I+ I,

*When a=i-1,i=1 so that a=0

£, = (n8/2) /&) 2 [4-2n%+ (m/4) )
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2I,,- 2I.. - 21..+ 3I,,+ 3I,,- 2I

2
+ (m7/2) (31,0+ 2I,5- 21747 215+ 3I,0+ 31,4- 2I,,)

4
+ (m /4)(213l+ 4I32— 3I33- 2134+ 123)]

a=i+l

= xy 22 _ _
gy = T8 (N/&)“[-(1/2)- a+ I ,- I;,

2
+ (m /2)(—111— 2112+ 2113+ 2121— 122— 3123+ 2124)

4
+ (m /4)(2131— 414,+ I54+ 2134- I35)]a=i+2

h. = 16 (N/3)2[-(3/2)- a- I,

2
+ m (—Ill+ 123— I22+ I24)

/) (2133 T3],

h. = m8(N/3)2[(1/2)- a- I..+ 2I..- I

11t 41127 113

+ m2(=2T. .+ I..+ 2T. .= 3T+ I

12 13 22 23 24)

+ miay (1. - a1+ a1 - 1

317 %733 347 I35) 100540

- 2 _ _
Wi,i+3 = 7§ (N/a) " [-(1/2)+ a I12+ I13

-(m2/2)(I 2.+ 2I. .+ I..- 3I..+ 21

117 “712 137 "22 23 24)

+ (m4/4)( 2T ,+ I

Ty37 2I34% I35) 12440

TEO - TEO and TM1 - TM1

These two cases have identical Wi

’

£ = 18[(1/4)+(a/3)+(m?/4)T

1. L%
1 15 a=i-1,i#1

*When a=i-1, i=1 so that a=0

£, = (16/4)[1 + (n°/4)]
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f, = n8[(1/12)+ (a/3)

2
+ (m%/4) (I + 4T, 21, 5= RI 0+ I;0)1

£, = n8[(1/4) + (a/3)

2
tom/4) (A - AT gr Tigd i

£, =7n8[(1/12) + (a/3)

+ (m2/4)(I..- 4T. .+ 6I..- 4T. + I

11 *712 13 147 150 1 amito

g, = m8[(1/12) + (a/6)

/) (T3 2T T,

g, = m8[-(1/12) - (a/6)

2I.,- 2I..,- 2I,,+ 1

2
+ (m7/4) (21, ,+ 21, ,- 21,5- 21,

15)]a=i+l

m§[(1/12) + (a/6)

Q
w
]

+ (m%/4) (2T. .- 4T. .+ I.. + 2T. - I

11 12 13 14 15)]a=i+2

h, = n§[-(1/4)-(a/3)

/4 Q3 1],

h, = né[-(1/12) - (a/3)

+ (m2/4)(Il - 4T, - I

17 4T937 T1g) laniy0

W, i3 = T80-(1/12) - (a/6)

/0 (T3 214 10T
TE¢ - TML
£, = mom/4

f2 = mém(3/4)



f3 = -mém(3/4)
f4 = -7ém/4
9, = mém/2

9, =0

93 = -mém/ 2
hl = 7ém/4

h2 = -1ém/4
Wi,i43 = 0

In this case (TE0-TM1l) the results of applying Table IV may be

summarized as in Table V. This can give an easy check on a bit of the

programming.
Table V
W. 3 for TEO-TM1 Case
W i N N-1 N-2 <N-3
Wi,i 1/4 1 1/4 0
Wi,i+l 0 1/2 1/2 0
Wi,i+2 0 0 1/4 0
'Wi,i+3 0 0 0 0

4. The Excitations Ik(60,¢0)
The index k is determined by the scheme in Table I. It will
facilitate writing the subsequent formulas to introduce the notation

m = 6MN(m-1) (4.1)
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In the following Jn(x) indicates the Bessel function of the first
kind of order m and argument x. We will use the following auxiliary
functions IIk - IIIIk to define the Ik(6,¢). For excitations we

use 6=60, ¢=¢0 but the same Ik functions, evaluated for other 0,9 values,

are needed in Section 5.

p
0
- : ; 4.2

IIk(e) szl Fég) Jm(ykp sinf) (4.2)

Py
IIIk(e) = szl{Pﬁg)Jm‘l(Ykp sinf) - kp(m)Jm+l(Ykp sinf)}

Py
T (®) = szl Pﬁg){Jm—l(Ykp sin6) + Mkp(m) Jm+l(ykp sing)}

Here ka(m), Pkp(m) and Mkp(m) are given by (2.18) and (2.21); the

constant II is defined as

m=ms(-5)""1 a/(am) (4.3)
Fach I, is decomposed into two parts with factors p and s, 0 <lp|s 1,
0 <|s]s 1, |p|2 + |s|2 = 1, and p and s either real or imaginary. Then

I, (8,¢) = pI£(61¢) + in(e,¢) (4.4)

(The symbols p and s stand for the German words parallel and senkrecht
meaning parallel and perpendicular.) The Ii and Ii are specified as
follows:

l+m <k <N+mnm (TMO ODD)

A -

p _ooa-l .
Ik(e,¢) 23 sinf sinm¢ IIk(e)

|
[«

S —
Ik(e,¢)
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N+1+m<k<2N+m (TEO ODD)

p - .
Ik(6,¢) = cosf sinmd IIIkAe)
k' = k=-(n+m)
s —
Ik(e,¢) = cosm¢ IIIIkKe)
2N + 1 + m £ k £ 3N + m (TM1 ODD)
p _ .
Ik(6,¢) = cosf sinm¢ IIIIH(G)
k' = k=-(2N + m)
s —
Ik(6,¢) = cosm¢ IIIK(G)
3N+ 1+ m Sk 4N +m (TM0 EVEN)
p — - .
Ik(6,¢) 27 sin6 cosm¢ IIH(G)
k' = k=-(3N + m)
Ip(8,¢) = 0 (4.5)
AN + 1+ m Sk S5N+m (TEO EVEN)
p —
Ik(8,¢) = cosf cosmd IIIkJe)
k' = k=-(4N + m)
s e
Ik(e,¢) = —-sinm¢ IIIIH(G)
5N +1+mSk S6N+m (TM1 EVEN)
p —
Ik(6,¢) = cosf cosm¢ IIIIH(G)
k' = k-(5N + m)
s — lad
Ik(6,¢) = —-sinm¢ IIIkJS)

5. Cross-Sections

Once the a, are computed for a given set of data (60, ¢0, pr Si
a, §, n), one or more of the quantities given below will be desired.
The formulas use notation |A], 1 (A) and A* for absolute value,

imaginary part and complex conjugate of complex quantity A.
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Bistatic or édifferential cross-section

_ 2 M 3N+m P *
7 (0gr0) = (k)T ] T L T oy T (6g00)

6N+m

b T a2 e 6] (5.1)
k=3N+1+m

M 3N+m

*
+ [ 0, I3 (0,0 )
Imzl k=§+m k'k s''s

6N+m
+
k=3N+1+m

s* 2
Sy (es,¢s)| }

Eq. (5.1) could be expressed more compactly by not grouping the summa-
tions over k into subsums of 3N terms, but this grouping is necessary
in (5.2) and in fact corresponds to the data storage procedure used in
our computing code.

To determine the integrated or total scattering cross-section

the integration over ¢s can be performed analytically leading to the

result

M 3N+m

N -2 p* 2
G.(68.) =m(ark) = J [] | o I (6_,m/2m)]
B s 0 m=1 k=l+m k7k S

3N+m ok 2 6N+m p* 9
' |k=§+m “cli (000 +|k=3N§l+maka (0501
6N+m - 2
+ 'k=3N§l+maka (Gs,n/Zm)l 1. (5.2)

The integration over es must be done numerically leading to the

following results:

Total Scattering Cross-Section

m

Opg = é OB(es)sines de (5. 3)
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Absorption Cross-Section

K K
2 2 -2, =2 *
o, = -1_(n°) |n°-1] “k ) a0, W,. (5.5)
A m 0 i=l j=1 i7"y 13
Total or Extinction Cross-Section
= .6
Op = 9pg * 9a (5.6)
Assymmetry Factor
T
= 0 i - .7
Opsy é G5(8,)sing_ cos (8 Go)des (5.7)

The forward scatter theorem* provides a relationship between
O and the component of the far-zone scattered electric field which
is parallel to the incident electric vector (assuming plane incident
polarization) and which is propagating directly forward; that is, in
the same direction as the incident wave so that es=60, es=60- This

relationship provides a check on o as determined by (5.6) although

T

one would expect its accuracy to be less for approximate numerical
solutions such as ours. This is true partly because the theorem hangs
the entire determination of Op On the value of the field in one direc-
tion; there is no smoothing of errors by integration as there is in
(5.3) which provides one term in (5.6). A second reason is that the
theorem is based on the interactions between excitations of the various
elements of the scatterer. It will not apply for an approximate theory
which does not take these into account sufficiently accurately. For
example it does not hold for lowest order Rayleigh theory (Van de

Hulst, 1957) and would not hold for our analysis if we had not adequately
taken account of interelement interactions in the impedance evaluations.

In any case we have programmed and evaluated the following

*Formula (110) Section 13.5 of Born and Wolf (1959 or 1975). We will
apply the theorem for elliptical incident polarization and so use a
slight generalization of the derivation and formula in Born and Wolf
since they considered only plane incident polarization.
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formula which 1is derivable directly from the forward scatter theorem.

We use the notation of Section 4.

Extinction Cross-Section

Va

s £ '3nM o
6. = k Im{p* ) a, I (6r0y) + q* ) o Iy (eo,¢0)} (5.8)

T 0 k=1 kk k=1
4. Computational Code and Results

A skeletal description of the FORTRAN programs for numerically
evaluating the formulas detailed in Section 3 follows. All equation
numbers refer to the numbering in that section.

Programs ZMAIN and WMAIN govern computation and storage of the
symmetric complex matrices gﬁand‘gkrespectively. In each case the
matrices are packed for storage into vectors using column major order
using separate vectors corresponding to each of the 3N x 3N submatrices
for each m value. The matrices were stored since the slowest and most
expensive part of the program lies in computing the glelements, yet
they are needed for each computation involving the same disc dimensions
relative to wavelength regardless of different incident wave amplitudes,
directions and polarizations or different disc materials. The ELmatrix
elements, although inexpensive to compute are similarly reusable.

Each of the submatrices is calculated by separate subroutines:
ZTMO, ZTM1l, ZEOM1, ZTM1 for Egs. (2.24) - (2.27 corresponding to the
different mode combinations for g;elements and WTMO, WTEO, WEOM1l, WTM1l
for Egs. (3.6) - (3.9) for the E.elements.

The excitations, Egs. (4.5 are computed as needed for specified

incident waves by program IMAIN using function subprograms for the sums
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of Eq. (4.2). The excitation values are not stored since they are very
inexpensive to compute.

Program AMAIN uses the stored Z and‘g—elements plus the excita-
tions computed by IMAIN to solve Eq. (1.1) for the coefficients Oy with
the help of subfunctions CSPCO and CSPCL available on the Michigan
Terminal System (MTS). CSPCO computes the condition number and a
decomposition of matrix z =2 - W / (n2 - 1) into the form UDU* where
U is a product of elementary unit lower triangular and permutation
matrices and D is a block diagonal matrix with blocks of order 1 or 2.

CSPSL then solves for the a, by back substitution.

k

Finally, program XSECTS governs computation and printing of the
various cross-sections, Egs. (5.1 - (5.8. The cross sections, and all
auxiliary functions are computed in function subroutines. The integra-
tions involved are done by calling subroutine QCRP, an adaptive quadra-
ture scheme available in the MTS system.

Apart from debugging the program we have had time and money on
the grant to obtain only a few illustrative numerical results. Tables
1(a)-(c) list normalized cross-sections for a disc of normalized dimen-
sions a = 2.95, § = 0.1 irradiated by plane polarized radiation of
wavelength A = 3.0 um and composed of ice. This wavelength corresponds
to the center of an infrared absorption band for ice and the refractive
index is n = 1.130 - i0.2273. To exhibit how the scattering was
influenced by the absorptivity we also list oB(es,¢s) results for
n = 1.130, I.n=0.

Results are presented for three incidence angles, 60=0° (broadside), qo=45° and
eo = 90° (edge-on), each incident wave propagating in the x-z (¢=0°)

plane with electric vector parallel to the y axis. For each incidence

*Length units are k;l.
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angle three scattering patterns are presented; i.e., OB(GS,¢S) as a
function of es for fixed values of ¢s; ¢s = 0°, 90° and 180°. When

eo = 90° the forward scatter directions correspond to ¢s = 180° and
the backscatter directions to ¢S=0°. We also list the values of

Opg and O the latter computed both by Eq. (5.6) and Eq. (5.8), and
the assymetry factors.

We note the agree.uenc in the OT values obtained by integration and
by the forward scatter theorem. In light of the discussion just prior
to (5.8) it may therefore be inferred that the computed induced current
is quite accurate. The listed data clearly show various flat disc
scattering characteristics which are radically different from those of
particle scattering. Thus for broadside incidence the scattering is
symmetric in the forward and backward hemispheres corresponding to the
0° < BS < 90° and 90° < es < 180° results while in the plane of the
disc in the direction of E the scattering drops almost to zero. The
resemblance to Rayleigh scattering from a sphere, simple dipole radia-
tion is strong. On the other hand there is an appreciable forward to
backward assymmetry for edge-on incidence; a forward bulge and a
depression in the direct backscatter direction. There is also only a
mild dip in the scattering pattern in the plane of the disc in the
direction of the incident E vector; i.e., for es = ¢s = 90°. Thus

there is no vestige of the independence to particle orientation which

is inherent for spherical scatterers.

The pattern for broadside incidence can be thought of as due to
a superposition of parallel thin dipole currents in the y direction
induced by the incoming electric field and all excited and radiating
almost in phase because § << 1. The effects of the loop currents gen-

erated by the incident magnetic field is negligible since oppositely
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directed current elements on the top and bottom surfaces can be thought
of as giving mutually cancelling radiations because they too are radi-
ating in phase.

For edge-on incidence the pertinent phase differences for excit-
ation and radiation are not small since the disc diameter is about a
wavelength. Hence the § directed dipoles due to incident E are not
excited in phase so that forward to backward symmetry should not be
expected. Similarly the oppositely directed current elements in the
current loops induced by the incident magnetic field need not produce
mutually cancelling fields. In this way one can explain the "fill-in"
of the pattern in the plane of the disc (relative to the almost zero result
purely § directed current elements would yield) as being due to the cir-

cumferential current components.
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degs.

10
20
30
40
50
60
70
80

100
110
120
130
140
150
160
170
180

Table 1. Normalized Cross Sections for disc,
incident electric polarization parallel to flat disc

a=2

(a) Broadside direction of indidence, 6

BISTATIC CROSS SECTION QwA®m~9mv

n=1.130 - i0.2273

Avm
0° 90° 180°
0.169E-01 0.169E-01 0.169E-01
0.159E-01 0.154E-01 0.159E-01
0.133E-01 0.115E-01 0.133E-01
0.998E-02 0.707E-02 0.998E-02
0.689E-02 0.363E-02 0.689E-02
0.451E-02 0.156E-02 0.451E-02
0.293E-02 0.561E-03 0.293E-02
0.201E-02 0.163E-03 0.201E-02
0.154E-02 0.295E-04 0.154E-02
0.140E-02 0.362E-14 0.140E-02
0.154E-02 0.295E-04 0.154E-02
0.201E-02 0.163E-03 0.201E-02
0.293E-02 0.561E-03 0.293E-03
0.451E-02 0.156E-02 0.451E-02
0.689E-02 0.363E-02 0.689E-02
0.998E-02 0.707E-02 0.998E-02
0.133E-01 0.115E-01 0.133E-01
0.159E-01 0.154E-01 0.159E-01
0.169E-01 0.169E-01 0.169E-01

ABSORPTION CROSS SECTION

0.145E+01 1.61 DB
TOTAL SCATTERING CROSS SECTION
0.457E-01 -13.4 DB
TOTAL CROSS SECTION EQ. (5.6)
0.149E+01 1.64 DB
TOTAL CROSS SECTION EQ. (5.8)
0.151E+01 1.80 DB

ASSYMMETRY FACTOR
0.743E-09

o

.95, 8§=0.1 with

surface
=Q°

n 1.130

0° 90°
0.453E-02 0.453E-02
0.426E-02 0.411E-02
0.357E-02 0.307E-02
0.269E-02 0.189E-02
0.187E-02 0.978E-03
0.124E-02 0.423E-03
0.816E-03 0.153E-03
0.564E-03 0.477E-04
0.437E-03 0.818E-05
0.398E-03 0.102E-14
0.437E-03 0.818E-05
0.564E-03 0.447E-04
0.816E-03 0.153E-03
0.124E-02 0.423E-03
0.187E-02 0.978E-03
0.269E-02 0.190E-02
0.357E-02 0.307E-02
0.426E-02 0.411E-02
0.453E-02 0.452E-02
0.0
0.124E-01 -19.1 DB
0.124E-01 -19.1 DB
0.183E-01 -17.4 DB
0.768E-09
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degs.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

Table 1(b). 45°

BISTATIC CROSS SECTION qu®m~emv

direction of incidence,

n=1.130 - 10.2273
Gm
0° 90° 180°
0.560E-02 0.560E-02 0.560E-02
0.745E-02 0.516E-02 0.384E-02
0.901E-02 0.411E-02 0.244E-02
0.996E-02 0.299E-02 0.148E-02
0.102E-01 0.216E-02 0.884E-03
0.991E-02 0.168E-02 0.546E-03
0.932E-02 0.143E-02 0.362E-03
0.872E-02 0.130E-02 0.266E-03
0.829E-02 0.123E-02 0.220E-03
0.814E-02 0.121E-02 0.206E-03
0.829E-02 0.123E-02 0.220E-03
0.872E-02 0.130E-02 0.266E-03
0.932E-02 0.143E-02 0.362E-03
0.991E-02 0.168E-02 0.546E-03
0.102E-01 0.216E-02 0.884E-03
0.996E-02 0.299E-02 0.148E-02
0.901E-02 0.411E-02 0.244E-02
0.745E-02 0.516E-02 0.384E-02
0.560E-02 0.560E-02 0.560E-02

0.114E+01

0.330E-01

TOTAL CROSS SECTION EQ.

0.117E+01

0.117E+01

0.162E-01

ABSORPTION CROSS SECTION

0.55 DB

-14.8

TOTAL SCATTERING CROSS SECTION

DB

(5.6)

0.67 DB

TOTAL CROSS SECTION EQ. (

5.8)

0.67 DB

ASSYMMETRY FACTOR

S

= 45°
(o]
n 1.130
0° 90°

0.153E-02 0.153E-02
0.201E-02 0.140E-02
0.241E-02 0.111E-02
0.265E-02 0.785E-03
0.272E-02 0.550E-03
0.264E-02 0.417E-03
0.249E-02 0.351E-03
0.233E=02 0.317E-03
0.222E-02 0.299E-03
0.218E-02 0.293E-03
0.222E-02 0.299E-03
0.233E-02 0.317E-03
0.249E-02 0.351E-03
0.264E-02 0.417E-03
0.272E-02 0.550E-03
0.265E-02 0.785E-03
0.241E-02 0.111E-02
0.201E-02 0.140E-02
0.153E-02 0.152E-02
0.0

0.878E-02 -20.6 DB
0.878E-02 -20.6 DB
0.723E-02 -21.4 DB
0.428E-02
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degs.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

Table 1(c). Edge-on direction of incidence, 6 = 90°

o
BISTATIC CROSS SECTION op(8_,¢_)
n=1.130 - i0.2273 n=1.130
em
0° 90° 180° 0° 90°
0.140E-02 0.140E-02 0.140E-02 0.398E-03 0.398E-03
0.252E-02 0.135E-02 0.729E-03 0.694E-03 0.380E-03
0.407E-02 0.128E-02 0.398E-03 0.110E-02 0.343E-03
0.583E-02 0.129E-02 0.258E-02 0.157E-02 0.316E-03
0.746E-02 0.126E-02 0.212E-03 0.200E-02 0.310E-03
0.870E-02 0.129E-02 0.207E-03 0.233E-02 0.313E-03
0.946E-02 0.129E-02 0.218E-03 0.253E002 0.312E-03
0.983E-02 0.126E-02 0.233E-03 0.263E-02 0.303E-03
0.996E-02 0.122E-02 0.242E-03 0.267E-02 0.293E-03
0.999E-02 0.121E-02 0.246E-03 0.268E-02 0.289E-03
0.996E-02 0.122E-02 0.242E-03 0.267E-02 0.293E-03
0.982E-02 0.126E-02 0.232E-02 0.263E-02 0.303E-03
0.946E-02 0.129E-02 0.218E-03 0.252E-02 0.312E-03
0.870E-02 0.129E-02 0.207E-03 0.233E-02 0.313E-03
0.746E-02 0.126E-02 0.211E-03 0.200E-02 0.310E-03
0.583E-02 0.124E-02 0.258E-03 0.157E-02 0.316E-03
0.407E-02 0.128E-02 0.398E-03 0.110E-02 0.343E-03
0.252E-02 0.135E-02 0.729E-03 0.694E-03 0.380E-03
0.140E-02 0.140E-02 0.140E-02 0.398E-03 0.398E-03
ABSORPTION CROSS SECTION
0.114E+01 0.55 DB 0.0
TOTAL SCATTERING CROSS SECTION
0.231E-01 -16.4 DB 0.612E-02 -22.1 DB
TOTAL CROSS SECTION EQ. (5.6)
0.116E+01 0.65 DB 0.612E-02 -22.1 DB
TOTAL CROSS SECTION
0.116E+01 0.65 DB 0.5165-02 -22.9 DB
ASSYMMETRY FACTOR 0.4795-02

0.182E-01
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