Valdis V. Liepa University of Michigan November 1980 Interaction Application Memos Memo 35 Scale Model Measurements of the F-16A ABSTRACT Frequency domain data are presented for the surface currents and charges measured in an anechoic chamber on F-16A models to simulate the aircraft response in free space environment. Models 1/48 and 1/32 in scale were measured over the frequency range 118 to 4400 MHz, simulating 2.46 to 91.7 MHz full scale. A total of 78 measurements are presented. These include eight test points measured on the 1/48 and 1/32 scale models and three excitations chosen to correspond to those used in the ATHAMAS I (HPD) and ATHAMAS II (VPD) full scale measurements. CONTENTS Section Page No. I INTRODUCTION 3 II MODELS 4 III MEASUREMENTS AND DATA 7 3.1 Facility and Instrumentation 7 3.2 Measurements 8 3.3 Data 10 FIGURES 15 DATA 20 17463-1-F = RL-2298

PREFACE The author is indebted to C. Bickley, D. Brown and R. Wang who assisted with the measurements, J. Travis who supervised the measurements and was responsible for the scheduling, W. Rasey who typed the manuscript and, last but not least, W. Prather of AFWL/ NTMOP for his support and encouragement. -2 -

SECTION I INTRODUCTION The data presented here were obtained for the Air Force Weapons Laboratory and TRW Systems to determine the surface response extrapolation function [1] for the F-16A aircraft. The test points and excitation conditions were therefore chosen to correspond to those of the full scale measurements made in the ATHAMAS I (Horizontally Polarized Dipole) and ATHAMAS II (Vertically Polarized Dipole) simulators at Kirtland AFB. Data are presented for eight locations or test points on the aircraft under three different excitation conditions: (i) top incidence, E parallel to the fuselage; (ii) top incidence, E perpendicular to the fuselage; and (iii) nose-on incidence, E vertical. The measured quantities are the axial surface current density component Ja, the circumferential surface density component Jc' and the normal electric field component En. Of the 72 measurement situations possible, 39 were selected, and since the measurements were made on two different size scale models, a total of 78 data sets were generated. The results are presented in the form of amplitude and phase plots as functions of the full scale frequency, and have been furnished to the AFWL and TRW in digital form on punched cards for further analysis. 1. Carl E. Baum, "Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in Terms of EMP Criteria," AFWL Sensor and Simulation Note 222, 1977. -3 -

SECTION II MODELS The two scale models of the F-16A aircraft that were selected were 1/48 scale (Scalecraft SC-4010) and 1/32 scale (Minicraft 100). Each came in the form of a plastic kit with a complement of armament that was full apart from the B-61 weapon. The models were good scale replicas of the F-16A, but did require some modification to make them electrically equivalent to the aircraft used in the full scale tests at AFWL. These modifications included cutting back the nose to STA:F60 to simulate the non-metallic radome, adding a metallic pitot tube, and modelling the radar antenna on the smaller model (the larger one had the radar antenna included in the kit). The cockpit canopies were also removed, since this is non-conducting on the actual aircraft. Both models had Sidewinder missiles (included in the kits) on each wing tip, but from the sketches and photographs supplied by AFWL it was necessary to construct models of the B-61 weapon and pylon that were attached under the right wings only. After the models were assembled and the above modifications made, the joins and any surface imperfections were filled in with auto body putty, which was then filed and sanded to a smooth surface. Apart from the radome and canopy, the entire aircraft was regarded as metallic, and several coats of silver paint (Dupont No. 4817) were applied to the models to make them conductive. Finally, the lengths -4 -

-5 - and wingspans of the models were very carefully measured to determine the scale factors to be used in translating the measured frequencies to the full scale ones. The scale factors are listed in Table 1. Figure 1 gives pertinent aircraft dimensions used in preparation of the models. Table 1 F-16 Model Scale Factors Length Wing Span Fuselage Wing Span Model (cm) (cm) Scale* Scale* Large (L) 46.14 31.39 1/32.70 1/31.89 Small (S) 30.78 20.82 1/49.01 1/48.09 * The scale factors are based on full scale dimensions of overall length 15.085 m and width 10.008 m, including Sidewinder missiles. Models such as those used here are seldom perfect replicas of the full scale aircraft. As seen from Table 1, the scale factors derived from the fuselage length and the wingspan differ slightly, and though we could use the average to process the data, it is possible to obtain more accurate results by using the scale factor for that portion of the structure which supports the measured field. Thus, for the axial current on top of the fuselage (top incidence, E parallel to fuselage), the fuselage scale factor was used in processing the data, whereas for the circumferential current on top of the fuselage (top incidence, E perpendicular to fuselage) the scale factor derived from the wingspan is appropriate.

-6 -Figure 2 is a photograph of the large (1/32) model, and Figure 3 is a closeup showing the bulkhead, radar and pitot tube. The diameter of the pitot tube is not to scale. We initially used a wire that did have the right diameter, but it was so fragile that it kept getting bent when the model was handled. It is not felt that the larger diameter has a measurable effect on the electromagnetic response of the aircraft.

SECTION III MEASUREMENTS AND DATA 3.1 Facility and Instrumentation The measurements were made in the Radiation Laboratory's anechoic chamber, a facility especially designed, constructed, and instrumented for this type of surface field measurement. The measurement procedures were similar to those used in previous programs [2 through 7] apart from changes resulting from the continued upgrading of the facility and the measurement techniques. 2. Valdis V. Liepa, "Sweep Frequency Surface Field Measurements," University of Michigan Radiation Laboratory Report No. 013378-1-F; Sensor and Simulation Note 210, 1975. 3. Valdis V. Liepa, "Surface Field Measurements on Scale Model EC-135 Aircraft," University of Michigan Radiation Laboratory Report No. 014182-1-F; Interaction Application Memo 15, 1978. 4. Valdis V. Liepa, "Surface Field Measurements on Scale Model E-4 Aircraft," University of Michigan Radiation Laboratory Report No. 014182-2-F; Interaction Application Memo 17, 1978. 5. Valdis V. Liepa, "Surface Field Measurements on Scale Model F-111 Aircraft," University of Michigan Radiation Laboratory Report No. 014449-1-T; Interaction Application Memo 13, 1977. 6. Valdis V. Liepa, "Current and Charge Measurements on Scale Model E-3A Aircraft," University of Michigan Radiation Laboratory Report No. 015814-1-F; Interaction Application Memo 29, 1978. 7. Valdis V. Liepa, D. M. Brown, F. E. Lenning, R. L. Turcotte, "Measurements of Surface Fields on Scale Model E-4B Aircraft," University of Michigan Radiation Laboratory Report No. 016708-1-F, Interaction Application Memo 33, 1979. -7 -

-8 - Figure 4 shows a block diagram of the facility as it exists now. When these measurements started the instrumentation and procedures were as described in [7], but as the program progressed, numerous changes were made. These include extending the low frequency operation from 125 MHz to 118 MHz, increasing the number of frequency bands from 3 to 4, and incorporating a calculator-controlled switching of the power amplifiers and low pass filters. The last two changes reduced the "between band" jimps evident in previously obtained data [5,6]. We have also experimented with rectangular data recording instead of the standard phase/log recording which produces ambiguities near i180 degrees, but this change was not made because of the limited dynamic range of the amplitude recording that this new procedure has. 3.2 Measurements Current and charge measurements were made at eight locations on the model as indicated in Fig. 5. On the fuselage the locations are identified by a station number given in terms of the full scale distance in inches from the bulkhead (STA:F60). Thus, F239T is 179 inches from the bulkhead. The wing stations were located on the line bisecting the wing at a distance (in inches) given by the station number measured perpendicularly from the center line of the fuselage. Table 2 lists the station numbers of the test points and describes their locations. The measurements were made for three different illuminations each having a prescribed polarization referenced to the fuselage of the aircraft (see Fig. 6). In our measurements the directions of

-9 - TABLE 2 DESCRIPTION OF MEASUREMENT LOCATIONS Test Point Stations Location,i. I 1 F76T 2 3 4 6 7 8 9 F239T W352R F488B F76RS FlOOB W352B F257B Upper Surface, Forward of Can FS = 76 WL = Top Surface BL = 0 (centerline) Upper Surface, Behind Canopy FS = 239 WL = Top Surface BL = 0 (centerline) Upper Surface, Right Wing FS = 352 WL = Top Surface BL = 96 (right) AFT Fuselage, Bottom FS = 488 WL = Bottom Surface BL = 0 (centerline) FWD Avionics Bay, Right Side FS = 76 WL = 88 BL = Right Surface FWD Fuselage, Bottom Surface FS = 100 WL = Bottom Surface BL = 0 (centerline) Lower Surface, Left Wing FS = 352 WL = Lower Surface BL = 96 (left) Mid-Fuselage, Bottom Surface FS = 257 WL = Bottom Surface BL = 0 (centerline) opy I i I I I I i i i I I i ii Ii i I - -

-10 - illumination and polarization are often referred to as orientations since these are fixed relative to the chamber and can be changed only by suitably orienting the model. Figure 6 also shows the direction of the measured current on the top and bottom of the aircraft. In all cases the component Jc is perpendicular to Ja. The data presented are normalized relative to the incident field, i.e., J/Ho for the surface current data and En/E0 for the charge data. The phase is referenced to that of the incident field at the station where the measurement was made, based on the eiwt time convention. All of the current and charge measurements were made using miniature surface-mounted probes [8]. To mount the probes, holes were drilled in the model and the probe lead passed through to the other side. When not in use a hole was taped over with conductive adhesive copper tape (see Figs. 2 and 3) and as far as we can ascertain, the taping had no effect on the measurements. 3.3 Data The data presented were measured in the anechoic chamber with the model supported by a styrofoam pedestal using specially prepared styrofoam supports to orient the model appropriately in relation to the incident field. For each measurement situation the data were obtained using both models over either three or four bands of frequencies, depending on the system in use at the time. The bands of data were then combined to give single data sets for the large (L) and small (S) scale models. Because different numbers of sampling points were used 8. Valdis V. Liepa, D. L. Sengupta, J. E. Ferris, and T.B.A. Senior, "Surface Field Measurements with Image and Ground Planes," University of Michigan Radiation Laboratory Report No. 014449-1-F; Sensor and Simulation Notes, Note 224, 1977.

-11 - in each frequency band, and because the measured frequencies were divided by the model scale factors to obtain the full scale frequencies, the sampling rate is not uniform throughout the data plots, nor was it uniform in the data delivered to AFWL and TRW. For the data recorded over three frequency bands, 187 points were used in Band 1 (118 to 1100 MHz), 122 in Band 2 (950 to 2200 MHz), and 144 in Band 3 (2000 to 4400 MHz). For the four band recording, 90 points were used in Band 1 (118 to 546 MHz), 95 in Band 2 (550 to 1000), 116 in Band 3 (1000 to 2100 MHz) and 138 in Band 4 (3100 to 4400 MHz). Thus, with some overlap, 453 data points were recorded with the three band system, and 439 with the four band system. However, due to the occasional failure of the network analyzer to properly lock onto the signal, a few (perhaps half a dozen) points were sometimes omitted from a data set. The result is that a data set generally contains about 430 data points regardless of the system. For any particular data set the exact number of points and the frequency range covered are given, with other information, in line 5 of a data file (see Table 4). Typically, the full scale frequency range for the F-16A obtained using the small (1/48) model is 2.46 to 91.7 MHz, and using the large (1/32) model, 3.7 to 137.5 MHz. Table 3 summarizes the cases for which data have been obtained and gives the figure numbers where the plots for each case can be found. The figure numbers are the same as those of the data files with the letter 'S' (small model) or 'L' (large model) specifying the particular model used for the measurement. The (digital) data files are also identified in the first line of the data set.

TABLE 3 F-16A SCALE MODEL MEASUREMENT MATRIX 1 2 3 EXCITATION OVERHEAD OVERHEAD NOSE-ON __E| FUS EFUS _E-VERT Test mponent Q A _ ___ Pt. st atoJA C Q l Q | C |A _ 1 F76T FO1 F02 F03 F04 F05 F06 2 F239T F07 F08 F09 F10 F11* F12 3 W352T F13 F14 F15 F16 F17 4 F488B F33 F34 F35 F36 F37 F38 6 F76RB F39 7 FlOOB F28 F29 F30 F31 F32 8 W352B F24 F25 F26 F27 9 F257B F18 F19 F20 F21 F22 F23 I i Note: Each measurement has two data the large model (L). sets, one measured on the small model (S) and one on *Data set FllL is inconsistent with that of FllS and is use F11L. believed to be inaccurate. Do not

-13 - Plots of the data are given in the following section. In addition to the plots the data has also been furnished to AFWL and TRW in digital form on punched cards and is stored on IBM compatible magnetic tape at the University of Michigan. The format used for the data is as follows: Line 1 FILENAME (4A4) 2 Comments (18A4) 3 Comments (18A4) 4 TITLE used in plotting (18A4) 5 FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN (4F8.3, 2F8.2, 15) 6 F(1) AMP(1) PHASE(1) F(2) AMP(2) PHASE(2) F(3) AMP(3) PHASE(3) 3(2F8.3, F8.2) -t c0 0= +................. F(NN) AMP(NN) PHASE(NN) where NN is the number of data points in the set. Table 4 is an example of a typical data file for the F-16A.

-1 4 - TABLE 4 SAMPLE DATA FILE ST F. — 1.1 6 A.3 4 I.6~ YS rF2.L39'r Y3 Y A J14 T 111 02/Oc"13/8()7 JT Sc,C'AI... I". FcdACT(1JR'49 (.)0..:; AM Fl:.. FieTC FOR" 17-.16C M-EASUR1IEMENTS c ) 1.4 15r 1 6 17 18) 3( 33 -4 36 17 31. 4 4 14~6 19 4 1. () I) C.), FIL 9.6 I'' 89.827al.1 1 998 3. I 9 9 1.89 3.493 1 690) 3 783- 1.*756 4,.7, 791. 4 6613 1. 777 5,2'5 6 1 7C31 5.550) 1.675 5.844:1.82B'S 6 1.3 8 1..7 ' 6 ',)J'.1.710 6. 72.)5 J.. 82.) 7.0:1.9.,I. 92I 7,313 1,960 7.607 2044 7*900 2 5- 4 8:1.19 4 1,84-19 8.1 488 I 2.0 0 2 8.3 72 2. 05~;7 9. 0'76 2 05 9.*370): *90 9.663- 2.1.05 9.957 1.8480 10(. 2 5:-1 1.8613.1.0.545 1.802 1(0.839 2191 I.:. ll:... 1 *640):1.045 2. 62e6 -186.e,76 0.65 2.1.0 1.802 -275 3,003 1 EJ".,29 -704 3.2I. )9 7 1.-806 -1.53 3.591 1 668 1.79 3.8815 1.777. —309? 4.179 1.639 1.913 4.473 1,*792le 1..06 4,766 1. 837 0.*79 5 *06() 1. 888S E.33'27 5.354 1.829 -1.43 5.648 1.668 3.11 5,94.2 1.768 -— 1.34 6.2-35 1.730 1.2() 6. 529 1.708) 5.85 6.8.2 3 1.816 3 29() 7.117 1.937 205 7.411. 1,968 — 0.1() 7.705 2.095 — 4,06 7. 998 1.988 '-2,9'2 El.2 92e 1.91 8 -1.89 8,586 2 O.:'02 -1.6 8B88 2.05 — 8. 64 9.174 2339 El.73 9.467 2356 12.97 9.761. 1.817 — 7.95 1 0.055 1.827 '26.93 10.349 1.801 -10.02I. 10.643 2:,.000 3!5,0O'2 10.937.1 * 726:14.1 6 1:1.2130 1.607 176.53 -4.61 — 3.51 —. *00 0. 11 253 -1 * 15 -0.806 - 2,43 0-.79 215' 4.60 2.20 -0.836 -a,.71. 1. 6 6 4'.7 8 0 -10.90 27.6)0) '-1-4.07...13.66 1 68.1I 2 1 683.57 165 *.41 164.36 163.94 1.61.013 1.59.50:1.59.40) 17 9 91 157.1.1 15'i9.2 1 60."22 161.00 163.73 1.66e. 41. 1.66.0(9 4 35r' 2.8108 3. 101 3,395 3. 689 3.983 4. 277 4.5',)7 0 4.864 5, 158 5. 452 5. 746 6.040) 6.333 6.627 6.9'2 1 7.215 7.509 7.8E02 8.096 8.390 B. 684 8.978) 9. 2721 9.565 9.859 -10.1.53 10. 447 10.741.11.034 1.1..328 E 74,401 75.429 76, 458 77.486 78%.1*5 1.5 79,543 80.-571I 81.600 8 2. 6'28E 83.*656 84. *685 8l5. 71.3 86. 74.1 177.70) C)3. -7 98f 8O 9 0'1 1.827 1. 784 1.765 1.727 1..8037 1.*761 1.*793 1,.805, 1.665 1.,7.49 1.791 1.*700 1, 734 1.922": 1.939 2,022 2.069 1.4854 1.960 2038 2 * 037 2.-159 2.044 1 *866 2.2165 1. 680) 1. 579 1.966 2044 2.044 2.040 2.0084 2.f.)36 2 '.009 1.935 1 196) 1 ""Ell7 I 2 /7 1-7I 6.48 -0,57 — 1.37 0.9, 0. 3/ 368 1.86 0.49 -0.24 4.20 4.25 1 * 30 1.15 -3. 01J.-5,77 -2.73 — 4.30 -6.78 9,33 94.44 19.833 -9.50 2C9. 27 33.51 -14.26 -13.66 166.48 165, 72 1 66. 26 1 6 4.21 162.11 159.58" 159.26:1.62.90:1.6 4. 2 6:6 6.1I4:1. 67. 3.2. 73 "716 74, 744 77, 11 '91 8. 1. 4 02 '9 7I 1313. 85, E '"l c-I c I 1.3 1.8J56:1 91J.9 1. *989 2.047 2.033 2.*0..22. 1.991. 1.. 972. "I.953 1 *8641 'I.. 7/7 7 1. '771. J1. c'' 1 67, 1.'7.165. 73 1.64.36:1. 63. 41 163.67 1.61.69:.15 9.88 1: '1. 5 %9 5 6 1.57. 73 J.:1.:)58I.I0 1158. 37.9. 4 4 160) 1.0 163.7:16.6;.5: 531.1. 66. 6 74.058 75.08EV7 76. 11 5 77. 143 78. 172 79.200) 80.l.22131? I 81 I 25 'j7 Fl21.X" 8 "1395 8l3. 31.4 El4.3 4.4 8;15.370( 1:16,1399 1 317 *47 8E. 45 8 9. 48'34 1.911 1.9/4 1.970 1. 9811 2078 1% o 9~ 35 2.806K. 195 1.9 3 1 '1)1.3

-15 - 539 STA:60 4. 394 Dimensions in inches (full scale) Notes: (1) (2) (3) (4) Radome and plastic canopy removed. Radar and pitot tube simulated. Sidewinder missiles at each wing tip. B-61 plus pylon, right wing only. Fig. 1: Pertinent Aircraft Specifications.

Fig. 2: Photograph of the Large Model (1/32 Scale). Fig. 3: Closeup of the Bulkhead Showing Radar and Pitot Tube.

*I L L ll->l / /I Display <,1 - Object - [(s(see Note 5) Vert. i -J ace -r ------ Lr-_Vol tnle te 6) L.-of Mich. Punch tIP 9830A Calculator Iof Michards Data Transmission Computer d r - - - - - - r< 1010 CRT Inistruinetit Coiterol Termiinal A I a I i L MagAeti Sorge Terminal T Data Storage Terinal I L Magnetic I Tape I. I D.E.C. LA-36 Digital I I I Plotter ' IP 7203A L -- ---- ee Note 8) Fig. 4: Block Diagram of the Present Facility.

-18 - Fig. 5: Location of Measurement Stations. (See Table 2 for details.)

-19-,K E H E H E k H (O E parallel to fuselage, top incidence. O E perpendicular to fuselage, top incidence. () E vertical, nose-on. Note: Dashed lines indicate bottom surface current components. Fig. 6: Illumination Directions (Orientations) and the Measured Current Components.

SECTION IV DATA -20 -

-21 - 8.0 F-lB. S. F76T. 1. JR;FOIS El. 0 CLU0 3 --- 4. 0 2.0k~ JAN 02/80 UM o.oL 0.1 0 3 0.0 60. 0 980.0 1 20. 0 1 50. 0 2 00. 0 F-16, S. F76T.I. J~iFOIS 100o.0 o G LLJ C3 ul tn cc Ck 0. 0 -100. oL -2 00. OL~ -__ I 0.0 3 0. 0 I JAN 02/80 UN 6 0. 0 9 0. 0 FREQUJENCY 1MHZI 1 20. 0 1 50. 0 Figure OlS. Axial Current at STA:F76T"1, Excitation 1,5 1/48 Model.i

-22 - 8. 0 _ _ _ _ _ _ _ _ _ _ _ _ _ - —, i F-1S.L.F76T.1.JRF01L I.0 -2 LU = 0 I — = -1 Cd a_ " 3c CZ 4.0 I' V/J 200. 0.~__ - -~~1. I I___ JAN 02/80 UM 6 0. 0 a90. 0 1 20. 0 1 150. 0...T- I -. F-16.L.F76T,1.JRiFOlL 10 0.0 [ G uj p ui tn T. CL 0. 0 100. 0 K I - IJAN 02/80 UM 90.0 120.0 150.0 -200. 0I0.0 30.0 - 6 0. 0l F 9FQ,, NC Y (Miiz) Figure OIL. Axial Current at STA:F76T, Excitation 1, 1/32 Model.

-2 3 - 20. 0 16a. 0 I F16. 3.F76T. 1.9tF025 i -l I i K i -/7 -J 0.0 k2 12.0 IO -4 S. 0 4 t FES 1it&/8 UMJ 1 20. 0 15 0. 0 0. 0.4 -L - - -_ -. 30. 0 60. 0 90. 0 0. 0 --- — I — - G uj E! ui W7 cc a 1. CL. F16.S. F76-. 1.QCsFO23 - -~ --— FEB- 1/80 UM 60.0 90.0 120.0 150.0 1-I00 * 0 ~. N-VJr 0.0 3 0. 0 FREQUENCY (MHYI Figure 02S. Normal Electric Field at STA:F76T, Excitation 1,5 1/48 Model

-24 - 20. 0 F16.L.Fl676.I1.QsFO2L. K4~ i8. oL.!.j 12. I- -=8. 0.0 - 0. 0 1 20. 0 ISO. ~ I ~F16.L.F76T.1.QtFO2LI I LB w C2 w cm cx 2.1 I%.. — 100 * 0 L II >4 900I2.0I5. -200. 0 o 0.0 3 0. 0 6 0. 0 FR4EQLENCY CMH1!) Figure 02L. Figur 02L-Normal Electric Field at STA;F76T, Excitation 1, 1/32 Model.

- 25 - 2.0C I.F I1S. S. F761'. 2. JR. F03S 2: C3 0 i2: i. o IAPR 17/80 UN 0. 0 I 90. 0 1 20. 0 1 50. 0 CA uj Im uj V) a. -100. 0 - -200. C 0. 0. I ---— T 4 4 I 150 -- _____~i- ~ _______ APR 17i'80 6 0. 0 9 0. 0 FREQUENCY f-MHVt 1 20. 0 Figure 03S. Axial Current at STA:F76T, Excitation 2, 1/48 Model.

-26 - 2. 0 F I I - IF 16, L.F76T. 2. JR.FO3L el. Z: 4 -1 uj C3 0 P- -- -1 P-) cli aM I.0o RI- PR 18/80 UN fl-n0 I %j,. %.F, 0. 0 6 0. 0 S0. 0 1 20. 0 1 50. 0 200. 0 I i I I i I I 0 0. 0 1 F 16.*L. F76T.*2.*JR *FO3L - 1 111 V-I, AI Le uj C3 uj cm cc S. -1 0 0. I1 RPFl 23/80 UPM I 1_0. 0.0 3 0. 0 80. 0 9 0. 0 1 20. 0 Figure 03L. Axial Current at STA:F76T, Excitation 2, 1/32 Model.

- 27-,- a =3 0 3.0 F26 20L..4 10 0 0.0 30.0 60.0 90.0 120.0 150.0 LI) ui rl uj tr) 7. CL 2 00. 0 1000 0.0 i! 11I I.11 i i i i . u I I I I I I 1. I i i I I I I I I I i I F:I~...F7 IiT.2. Q.FO043 I 00.0 90. t IIFC ~~Z 3 0. 0 RPPP 2L,8C UM 1 2 0.0 1 50. 0 Figure 04S. Figre 4S.Normal Electric Field at STA:F76T,, Excitation 2, 1/48 Model.

-28 - 3.0 2. 0 -j = 0 ~ I-J w 1. 0. 20 0 0 G LLS R ui WI a 0.0 30.0 60.0 50.0 120.0 150.0 Ff~fQUENCY (MHZ) Figure 04L. Normal Electric Field at STA:F76T, Excitation 2, 1/32 Model.

-29 - I I I 3. 0 I F- 16 * S. F76T. S.* JR iFOSS uj C3 10 =):z I — -- Cd -i -z CL2: m 2. 0 I.0 K IJRN 02/80 UM o.oL 0.~ I - I I 0 3 0. 0 6 0. 0 90. 0 1 20. 0 1 50. 0 4 0O. 0 3 0 0. 0 K F-B. S. F76T. 3.JRi FO5S I G U.: i E! 2 0 0. 0 U.1 cn CL- I i I i I I 100. u. U L — I I I -. — JN02/80 UM. 0 1 50. 0 0. 0 3 0.0 60. 0 9 0. 0 1 20 FRiEQUENCY (MHZ) Figure 05S. Axial Current at STA:F76T, Excitation 3, 1/48 Model.

- 30 - EL. 0 39. 0 K. = 0 '-I = 01 Cd F- 16.L. F76T. 3. J~tFO5L 2-. 0K i. o i i i JRN 02/80 um, I I 0. n I W I I I — j 0. 0 3 0. 0 6 0. 0 9 0. 0 1 20. 0 1 50. 0 4 0 0.0 i r - I I 30 0.0 k F-16,*L. F76T. 3.JR: FO5L G uj CM uj cn m X., CL 200. 0 K 1 00. 0 ~~~ IJRN 02/80 UM u. u I t - — L 0. 0 3 0.0 6 0. 0 9 0. 0 FREQUENCY (MH7! 1 20. 0 1 50. 0 Figure OSL. Axial Current at STA:F76T, Excitation 3, 1/32 Model.

- 31 - 5.0 F 716. L. F76T. S. go FOBL 4.0L -T l 1 -j 0 a. 3. 0 k 2.0O A FEB_1L/80 UM n - o I V., V! -,, 1I.. 0 0. 0 30.0 60 * 0 90. 0 1 20. 0 1 50. 20 0 0 --—... --- -- — T —. --- — FIB. L.F7B7. 3. 2.FOSL I 00. 0 l. t3 U., cl uj (n IL. 0. 0 -1 0 0 * 0 -200* 0 -~ - ~ -____FEB IU/80 UMN 0.0 30. 0 60. 0 90.0 1 20. 0 1 50. 0 FMEQUF.NCY (MHZ) Figure 06L. Normal Electric Field at STA:F76T, Excitation 3, 1/32 Model.

- 32 - 5.0 F1IB.. 3F76T,. Os FOB$ 4.0 K 0 -LL 0 k-I -. " 0 3.01 2,. 0 1. () FEB 14/80 UM 0.I n I V L — I - I 1 -4 - 0. 10 30.0 80.0 90.0 120.0 150.0 IF16. S.F78T. 3.QP.FOBS 200. 0 100. 0 - LD LLI C3 uj WI cc 7. IL. 0. 0 — I00. 0 0.0 3 0.0 80. 0 I__ ___ ___ _I FEB 1'4/80 UM F F 90 * 0 IEQUENCY (MMI 1 20. 0 150. 0 Figure 06S. Normal Electric Field at STA:F78T7, Excitation 3, 1/48 Model

- 33 - 16.0 6.0 -C3 0.0~ 20. I0 I I I I F 16. S.F2'39T.1. JS. FO73 I 1 0 0. 0 1; uj p uj WI T. a 0. 0 -1I0 0. 0 K -20 0.0 0.0 1 1 1 1RPR 03/80 UM 3 0.0 6 0. 0 9 0. 0 1 2 0.0 1 50. 0 FFlE12UPNCY (MHZ) Axial Current at STA:F239T, Excitation 1, 1/48 Model Figure 07S.

- 34 - I6.0 F16.L.F239T. 1.JR.FO7L 121 0 0.0 4.0 30.0 IJUN 26/80 uN 0. 0060.0 90.0 120.0 150.0 200.*0 F16.L.F239T. L.JR.FO7.L 1 00. 0 -100.0 -200.0 JUN 26/80 UN 0.0 30.0 60.0 90.0 120.0 150.0 FHEQUENCY 'IHM1Z) Figure 07L. Axial Current at STA:F239T, Excitation 1, 1/32 Model.

- 35 - 6. 0 F16.L.F2S9T,1.Q,FO8L 4z E' -A uj 0 1 C3 =:) w 0 -i w VA3c cr. 2. 0 1 - IEIB 08/80 uim 0.0L 0.1 - 0 30.0 60.0 80.0 120.0 1 50. 0 20 0. 0 I I F16.LF239T. 1.G.FO8L 1 00c.0 ~ G uj F? uj (n cr Q. 0. 0 -1I0 0.-0 k Vy - i IFES 08/80 UM 90.0 120.0 150.0 - 2 00. 0[1~-. 0 30. 0 60. 0 FREQUENCY (MHZ) Figure 08L. Normal Electric Field at STA:F239T, Excitation 1, 1/32 Model.

- 36 - 8. 0 I i - F18.S.F2~c39T.l1,.FOBS ta. oL I- w 01r IL A-r4 a. oL~ n - n,FEB 08/80 UN W. W. I - I I I -, -_- - -- - 0. 0 3 0. 0 80. 0 90 * 0 120. 0 150. 0 200. 0 G uj p LU M cc VA.. 60. 0 9 0 FREQUENCY CMHZI Figure 08S. Normal Electric Field at STA:F239T,, Excitation 1, 1/48 Model.

- 37 - 2. 0 0 I. 1. 0 Aj Cd FIG. S.F2SST.2.JA.FO9S IV -I -- - - -- --— I -- - --- - - - — I I APR_ 1 7/80 UM V. V I I 0. 0 200.0 r 30. 0 60 * 0 90. 0 1 20. 0 15 0. 0 F 16 *S.*F239T. 2. JR.*FOSS I100. 0i L9 "i C2 uj in Cl 0.ot -1 00.0 IAPR 17/80 UN I 0.0 3 0. 0 80. 0 90. 0 FREQUENCY CMMZ) 1 20. 0 1 50. 0 Fi gure 09S. Axi al Current at STA: F239T7, Exci tati on 2, 1 /48 Model.

- 38-. -1 00 0 0 0 RfAPR 09/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 2 00. 0 F 16.*L.*F2S9T.*2.*JA.*FO9L I 00. 0 -1 0 0.0.0 1 APR oaiao UM 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MH4Z) Figure 09L. Axial Current at STA:F239T, Excitation 2, 1/32 Model.

- 39 - I I I I f i ii 2. 0! r iII i I F I. S, F239T, -.2jC, F IS A I I I f I I I It I I I; -.. - 2 f74 LLJ Cl =3 0 -1 C) M.?-D 3: LL I 4 * C '-I % I J,, (III Al"-.4 L W. i 1, I,, 1% &d.1 I j I A I RR 21/80 UM V. V. I I 0. 0 3 0. 0 6 0.-0 9 0. 0 1 20. 0 1 50. 0 2 00. 0 I I I -- - - - I -- I i F 1 6, IS, F "' 3 9 TI, 2.. --, F 1 0 3 I I II 00. C; - i I jIIrlll I 0. 0 - i 1; ui 'IP cn cr 21. I%. -1 00. 0 ~ - 2 00.OL 0.0 3 0. 0 60. 9 0. 0;.I~ R 2'W,80 UMj 1 50. 0 I 20. 0 F4IE"U17JY 11Z Figure lOS. Circumferential Current at STA:F239T, Excitation 2, 1/48 Model.

-40 - 3. 0 iI II F 1 6,L.F239T.2.*JC. FI1OL 2. 0 ~. 2 r! ui cl =1 I. —, -1 CL. 2: cr I 1.0 k O.O I 0. 0 20 0. 0 I MPH 21/80 UM 3 0. 0 6 0. 0 8 0. 0 1 20. 0 15 0. 0 I0.0 Ft8. L *F2n39T * 2 * JC. FtOL cm uj ul cn CL W. Al~ — 0.0 L -1 00. 0 k MRR 2'./80 UM -200c.01 0.1 t I i I I I 0 3 0. 0 60. 0 a90. 0 I120. 0 1 5 0. 0 FfiEQ UEFMhCY (11IIHZ I Fi gure l OL. Circumferential Current 'at STA:F239T, Excitation 2, 1/32 Model.

-41 - a8. 0 -~~r — ~ rF16. S.F239T.3.J'R.FI13i 6... LLI =3 -1 a Li.0 I I i I t 2. 0 1 Ii I I i 0. 0 IAPR 25/80 UM I I I - I I I - 3 0. 0 60 * 0 90. 0 1 2 0.0 1 50. 0 2-00. Q I I.......... 11 - - -- -. — f F 16.*S F'239T,*3 *JR.*FlI13 I 0 0. 0-, I I I I 0. o , G 1.4i F w ITS 2i CL. -10C0. 0 -200.0L) I.. _____ 0.0 3 0. 0 60Q. 0 9 0. 0 IRPR 25/80 1 2 0.0 1 50. 0 F R o'U C Y CM11H Z) Figure 11S. Axial Current at STA:F238T, Excitation 3,, 1/48 Model.

-42 - 8.0 Fr - 1 rLF2 F16.L,F239T.3.JR.F11L /11 K 6. O L z UJ -. aI., tc Data inconsistent with the small model measurement. DO NOT USE THIS DATA. 2.oL FEB 28/80 UM I I I 0.0L 0. 0 30.0 60.0 0. 0 1 2 0. 0 150. 0 200. 0 I I I I, F16. 100.0 L. o.oL Incorrect phase, it sho b near zero degrees. See I be g. llS -100.0 FEB 28/80 UM -200 Q I. t I - I I - - -- - - 0.0 30.0 60.0 90.0 FfEQUEC.YT CMHZ] 120.0 150. 0 Figure 11L. Axial Current at STA:F239T, Excitation 3, 1/32 Model.

-43 - 14. 0 F16. 3.F239T. S.9,F128 F. - T ^ L,, , -= == S. O)~ rc2 0 "0 -J 2c 2. 0 k 1.01 - 20 0. 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _F E B 1 3 / 8 0 U M 3 0. 0 60. 0 9 0. 0 120. 0 150. 0 F18. S.F239T. 3.0,F128 I o o. oV en #A 0. 0 ll- -1 00.0 0. 0 I_____II_ FEB 08/80 UN 30 * 0 60. 0 9 0. 0 FREQUENCY CMHZ)3 1 20. 0 1 50. 0 Figure 1 2S. Normal Electric Field at STA:F239T, Excitation 3, 1/48 Model.

-44 - -~ -- - F16,L.F239T.9.Q.F12L,- - - - - - - - - T __._ 0. I I J X 3. O --- -.O 30.0 60.0 90.0 120.0 150.0 200.0 0_____-_-_ --- F18,L.F239T. 90.Q.F12L 100.0 W 0.0 aI -100.0 FEB 08/80 UM -200.0 I - I 0.0 30.0 80.0 90.0 120.0 150.0 FREQUENCY (M2TZ TI FMEQUENCY CMHZI Figure 12L. Normal Electric Field at STA:F239T, Excitation 3, 1/32 Model.

-45 -F16. S. N352T.l1. JR.Fl33 0 4 Cd 0.0 APR 03/80 UM 0030.0 60.0 90.0 120.0 150 0.1 -200.0 APR 03/80 UM 0.0 30.0 60.0 90.0 120.0 15C FFtEQUENCY (IIHY) Figure 13S. Axial Current at STA:W352T, Excitation 1, 1/48 Model. D. 0

-46 - 2. 0 I F16. L. N352T.1. JR. F13L 0.0 APR 03/80 UN 0.0 30.0 60.0 90.0 120.0 150.0 200.01 F16. L.N352T.l1.JR. F13L -10.0 -200.0 PR 03/80 UN 0.0 30.0 60.0 90.0 120.0 150.0 F6EQUENCY CM1IZ) Figure 1 3L. Figre 3L.Axial Current at STA:W352T, Excitation 1, 1/32 Model.

-47 - 3. 0 ea 0 =- 2. 0 4J C-) 1.0Q I I T IFl6. S.H352T. 1 JC.F14S 0. f RPH 07/80 UM L i - - - I I I0 3 0.0 6 0 0 9 0. 0 1 20. 0 150. 0 2 00. 0 p I I I 1 00. 0 Fl6. S. W352T. 1..JC. Fl'4 I 1; ui 9 uj cm E 0.0 -10 0. 0 IAPM 07/80 UM -:,no - 0 1 IC-VV. V I I 0. 0 3 0. 0 60. 0 9 0. 0 1 20. 0 15 0.0 FREQUENCY CMHII! Figure 14S. Circumferential Current at STA:W352T, Excitation 1, 1/48 Model.

-48 - I III F16.L.W352T.1,JC.F1'4L I T ^ j K 3. o L 0 = 0 I I.O IAPR 09/80 UN 0. (I'L.V, I 0. 0 30.0 60.0 90.0 120.0 1 50 0 200. 0 i III F16.Lk4352T.l.JC.F1'4L 1 00.0 o ~ 0.0 h G ui cn uj tn a: a -1I0 0.0 b IAPR 03/80 UN - 2 0 0 - O. v i I 0.0 3 0. 0 60. 0 9 0. 0 FMEQUENCY (MHZ) 1 20. 0 1 50. 0 Figure 14L. Circumferential Current at STA:W352T, Excitation 1, 1/32 Model.

2. 0 -49-. F16. S.I.352T.1I.Q. F I S K 4 7; C3 0 -) 0 1. * o RPR 03/80 UN o. oL2 00. 0 I I I I 3 0. 0 60 * 0 a90. 0 1 2 0 0 1 50. 0 II II F16. S.N352T.I1.Q F5SS 10 0.0 ~ U LLJ C3 uj gn cc 7.1 CL. 0. 0 k -1 00.0 1-. RPR 03/80 UN - 2 0 0.0 0.1 I I I T - - 0 3 0. 0 60. 0 9 0.0 1 20. 0 1 50. 0 FREQUENICY CMH1ZI Normal Electric Field at STA:W352T, Excitation 1, 1/48 Model. Figure 1%S.

-50 - 2. 0 I I I I.14 U 0 1. 0 F16.LW352T.l.Q.Fl5L I7 A 03/80 UN 0.oL 0.1 I I I I I 0 3 0. 0 6 0. 0 g0.0O 1 20 * 0 1 50. 0 200. 0 Un LLI C3 ui (n T., a - 1 FREQUENCY IM H Z) Figure 15L. Figre 5L.Normal Electric Field at STA:W352T, Excitati'(-;i 1, 1/32 Model.

-51 - 6. 0 T i I I 4. 0 ~. 2 Z LO. C3:3 = 0 -1 -- a- Cd = )-z CZ Fl 6 *S.W 352T,*2 *JS *Ft 65 'I Iv~' I I II IMPHi 21180 UIM 2. 0 k W. WL I I I 0.0 21100. 0 3 0. 0 60. 0 a90. 0 1 2 0 0 150. 0 I I T 1 0 0.0 1l6. 5* N3 52 T.*2, J. F16 S G ul P uj en CZ E7 0.0. - 100. 0 b-. -200.0 o L 0.0 -L L MR 21/80 tIm 3 0. 0 60. Q 9 0. 0 120-l. 0 1 50. 0 F REQ UEUC Y I M1H1F Fi gure 1 6S. Figre 6S. Axial Current at STA:W352T, Excitation 2, 1/48 Model,.

- 52 - F. L.W952T-. 2. JP. F16L 4r 0 LC.O.0 0 -' /0 0 090 010. 5. 0.0 6LL K5RR.21180.F I 6 0.0 -2 00.0 MRR 2!1/80 tim 0.0 3 0.0 60. 0 9 0. 0 2 0.0 150. 0 FREQUENCY T (H.!) Figure 16L. Axial Current at STA:W352T, Excitation 2, 1/32 Model.

- 53 - 2. 0 I I IF16. S. W3592T, 3. JR. F17S LE c^ C30 I — ~ iI I i 1. 0 0.OL V IRPR 09/80 um I I I I - - - -. - -. - - -.. - 0 0. 0 60. 0 9 0. 0 1 20. 0 1 50. 0 2 00. 0 G uj C3 uj tn 4 1 50. 0 FfJEQU.FNCY (MHZI Figure 17S. Figre 7S. Axial Current at STA:W352T, Excitation 3, 1/48 Model.

-54 - 2n 9 -j ui 0 ~- -,C( -J. F18.L.W352T. 5.JA. FI7L 1.0^ IPR 1/80 U 0. 0 0 0 50. 0 90. 0 1 20. 0 15 0. 0 200 0. 0 tm uj C3 uj tn CL Q. 60. 0 9 0 FREQUENCY CMHZ) 1 50. 0 Figure 17L. Figre 7L. Axial Current at STA:W352T, Excitation 3, 1/32 Model.

- 55 - 8.0 6. 0 I T- -I-T:16.!3. F2'57B.1. JR; Fl83 -LJ '4.0 1 - 21.C.0 0. _ _ 0. I JAN 24L/80 U~ 1 50. 0 5 0. 0 9 0.0 1 20. C G 6i C3 uj cn cr-:r Cl 2 00. 0 -_-_-_ 1 00.0O 0.0j k 100.0 3. P16.3. F257FB..JR1: FlSS I ___JN 2180U_ 6009.I2. 5. I~FUNA MZ Figure 18S. Axial Current at STA:F257B, Excitation 1, 1/48 Model.

- 56 - 8. 0 I I I t F16,L.F257B.1.JsFl:F8L 6. 0 en 0 _-C 4.0 1 2. 0k 10 UM n - o I W. V. I 0. 0 3 0.0 60. 0 9 0.0 1 20. 0 1 50. 0 20 0.0 ___-___ I --- -1 I F16, L. 10 0.0 j G LLJ e uj in cr VA. 0. 0 - 100. 0 k - o0. 0 _ _ - I - - - I 3 0.0 6 0. 0 90.0I JAN 2LI /80 UN 1 20. 0 1 50. 0 FREFQUENCr (MfIZj Fi gure 18L. Axial Current at STA:F257B, Excitation 1,9 1/32 Model.

-57 -L4 Q I F1B.S.F2576.I.Q.FIBS 0 0.0 30.0 60.0 90.0 120.0 150.0 2 0 0. 0 _ _ _ _ _ _ _ _ _ _ _ _ _ F16.S.F257B. Q.F19S 1 00.0 -1 00.0 i. -200.0RPR 08/80 WI 0.0 30.0 60.0 90.0 120.0 150.0 F~iFQUE-NCrY CM11ZI Figure 1 9S. Normal El ectri c Fi el d at STA: F257B, Exci tati on 1, 1/48 Model.

-58 - 4., 0 3.0 LI 0/8 u 1.0 - 0.0 30.0 60.0 90.0 120.0 150.0 200.0 L F__57_BI__ I O ILo oUoL Il F -200.0 I IAPR 08/80 UM 0.0 30.0 60.0 00.0 120.0 150.0 FREQUENCY (MM!) Figure 1 9L. Normal Electric Field at STA:F257B, Excitation 1, 1/32 Model.

- 59 — 2. 0 I.-.r - -, I I - - F ". iS. 3. IF2578. 2. Jrl. F2CS JTK' I I --- =U I>1.t PI ITv~~~2 I IPR 16/80 WI 1 20. 0 I 1 50. 0 VP 2 00 C 1 00. 0 I . I I F16.S.F2-j7B.2.JRF2CS i i I I it I I I I I i I I i i I i i I i I I I I I I I.; I I 1 1 ta ui en L — cn T., CL 0. 0 -100. - 20 0.0 —. 0.c I I I i j i r I I t I. i N 'I P! V 7, li, ~~1FfIFQIJ~CY CMH7' R PR 16/80 m — 1 20C.0 1 50. 0 Figure 20S. Axial Current at STA:F257B, Excitation 2, 1/48 Model..

0 0 C) c -j I. 0:F' I r):D. I i/ (C\ Kl IC) 0 -C)l (01 CC) 75 -J 0 Ii. - - CL C", a, 11) "I ______________________________________________________ -J -CD - IL a, a: 3Q) (:3 cmJ 10 0~ CO Cail III a) -0 0 C.) CY) C\J Fr4-) C.-, etC 0 0 CY) I0 (3. Cv) -1IF --------------,, — I C0 C\J 5rLL C===' -—, '.., I - - ift - I -..., - I. -- I... -.-.. - -TLI 7 — — =- - . -1 —.- I. - --- -- 0 0 C"' " a C) C (')I C-J 0 0 0& C) C) C-) (:a C) C) IDJ CA1 11I/ rV (NJI) Jfitilntilw (.9301

-61 - 2.0 _ _- X-_ _ F16,S.F257B,2.JC.F21S z o -J ^ o otV 1 0 Q__A RPR 25/80 UM 0.0 30.0 ' 60.0 90.0 120.0 150.0 F16,.S,.F257B.2.JC.F21S -100.o 0. 0 \ I -00PR 25/80 U -200.0 *._... -_. -.L.-... ___ j.. 0.0 30.0 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 21S. Circumferential Current at STA:F257B, Excitation 2, 1/48 Model.

-62 - F16.L.F257B.2.JC.F21L r4 Do C 3 APR 16/80 UX 0.0 -0.0 30.0 60.0 90.0 120.0 150.0 200.0 F16.L.F257B.2.jC.F21L I 0 - - -10.0 -2000i.~- ___-______APR 16/80 UM 2 Oo. o 0000 o. O 3 0 6. a 0. 0 1 20. 0 1 5 0. 0 F REQ UE.NL; (MhZ] Figure 21L. Circumferential Current at STA:F257B, Excitation 2, 1/32 Model.

- 63 - 3. 0 I F16,S.F257B.3.JRtF22S....... - _ _ en 0. I-J L 2. 0 1.oLI JAN 214/80 UM 0.01 0.1 I -- I I I 0 3 0. 0 6 0. 0 9 0. 0 1 20. 0 1 50. 0 2 00. 0 I I Th F257B. 3, JR; F223S 100o.0 o G ui C3 LLS'n cr CL. 0.0 30.0 60.0 JRN 214/80 UM 2 0. 0 1 50. 0 FRFiEUENCY CMHZ-) Figure 223. Axial Current at STA:F257B, Excitation 3, 1/48 Model.

-64 - 4.0 I I I 3.0L:3 t-e acc 0 O 2. 0 F16,L.F257B, 3,JRF22L. IJRN 24/80 UM I.01 0.0 0. O. O) ~ I J I I I 30.0 60.0 90.0 120.0 150. 0 200.0. I F16.L,.F257B.3.JRF22L 100. 0o G -l C3 ID <n cr 01: 0. o __________ JAN 24/80 UM I 30.0 60.0 90.0 120.0 150.0 -1 00.0 0L. O. O FREQUENCY CMHZ) Figure 22L. Axial Current at STA:F257B, Excitation 3, 1/32 Model.

-65 - I. 0 - -1.-. I -F?16. 3.F257B.S.G.F239 3I I LK4 2.: r- 0 5 —.-. 0 — _2 w 21. I.1 IFEB iS/SO UN -.j 0.0 30 a 0 60. 0 80. 0 1 20. 0 150. 0 200. 0 i _______I Fl8.35.F257B. 3 * tF23S 100.0. LaS Sni 0. -100.0 L -2 00.0. 0 I 1. FEB 08180 UM - -- - - 3 0.0 6 0. 0 9 0. 0 FMEQUENCY (MHZ) 1 20. 0 1 50. 0 Figure 23S. Normal Electric Field at STA:F257B, Excitation 3, 1/48 Model

- 66 - 4. 0 3. 0 F16. L. F257B,3 5.~F23L /E yvoJ tvj <'~- = u-j 0 en 2.0O 1. 0 0. 0 FES 1tS/80 UN 1 20. 0 t 1 50. 0 -1 - I -1 3 0. 0 60. 0 9 0. 0 2 00. 0 I i i i i F16.L.#F257B.S.Q.F23L 10. I. t G L" P LO cm a -1I0 0. 0 r I _____ _ FEB 08/80 UN 0. 0 3 O.Q 60 r. 0 9~ -a0.0 1 20. 0 I 50. 0 EF1t:Fr[ENCY M7 Figure 23L. Normal Electric Field at STA:F257B, Excitation 3, 1/32 Model.

- 67 - 6.0 r I i I I I I I Fj16. 3. F52S. 1. JA.F24 I + / *. 0 L. -j uj C3 0 1 — -- Ja-~ 2.0 F ___L FEB 111/80 UiMI --- - L — -I1 90. 0 1 20. 0 150. 0 0. 0 L0.0 3 0.0 80. 0 20.0 --- - -— t 1. F16.5.F352B.1.JA.F214S I 00.0, G w e us en CL: zr. a -1 00. 0 -. -2 00. 0 L — 0.0 -i i I - IL. - -__ FEB 111/80 uIm 90.0 120.0 150.0 3 0.-0 60. 0 P MEQU'kENCY (MHZI Figure 24S. Axial Current at STA:F352B, Excitation 1, 1/48 Model.

-J. -J. C) -5 rD C-f4-fr-I-.-J -ri __J m C-f (D) C+ I C, 0I?ASE fOEG) o 0 0 0 0 0 0 0 0 0 0 T '7 AKPLITUOE MIXN) Ja/1Ho 0 o;: N% 0 0 Im -u C-) -C m a' N 0 a? L - ___ L. 0 -n 0) *11 CA) N Ca r I I II II I I.-i I i i I i I — i I Cal 0i 0 0, 0 0) U, 0 I L — I~ fcx I I FI XA I I I - L -1

-69 - o o 100.0 00 0.0 z -100.0 -200.0 O. 0 I5 0 0 20 W.0 100.0 1 F16.S.F352B.1.JC.F25S K e 4 RPR 09/80 UM I 90.0 120.0 150.0 FREQUENCY (MMZ) Figure 25S. Circumferential Current at STA:F352B, Excitation 1, 1/48 Model.

2. 0 00 W. - 70 -F16,LF352B,1.JC.F25L K4~ I I - LAPR 03/80 UM 0 3 0. 0 80. 0 9 0. 0 1 20 * 0 1 5 0 0 2 0 0.0 tm uj M uj cn a 6 0. 0 9 0 FfiEQUE:NCY (MHIE Figure 25L. Circumferential Current at STA:F352B, Excitation 1, 1/32 Model.

- 71 - 2. 0 0 I- c i. I F16.S.FS528.2.JR.F26S — I - - I - I I IAPR 18/80 UN o - o 0. 0 2 00. 0 I10 0.0t 30. 0 60 * 0 8 0.0 1 20. 0 1 50. 0 Lo ui Im LLJ in 4 0.0 -10 0. 0 - 2 0 0.0 0.0 30.0 60.0 80.0 120.0 FREQUENCY (MHZI Figure 26S. Axial Current at STA:F352B, Excitation 2, 1/48 Model

- 72 - 2. 0 FiG. L.F352B. 2.JR.F26L 30. 12.0 R 21L180 UM 0. 0060.0 90.0 100150.0 200.0 Vi8lSL.F352F1.2.JR.F26L I 0 0I -100. O. 0.0 30.0 — K-6 --- — 9 1 20. 0 iso.o F A E9 I UNY.M H Z) Figure 26L. Figre 6L.Axial Current at STA:F352B, Excitation 2, 1/32 Model.

- 73 - 4~.0 I 3.OL. z t4 uj 0 tn =3 = 1- --- 2. 0 Cd -j -z a_ I F 16. S. F352B. 3. JP.F27S AvfA iV'~II - FEB 28/80 UN I. 0 o.oL 0.1 I I 0 3 0. 0 60. 0 9 0.0 1 20. 0 1 50. 0 2 00. 0 -__ _ -- -.- - - _ _ __ _ _ _ _ __I F16, S. F352B. S. JR. F27S 10 0.0 ~ 1; uj p uj in cc A 0.0 I -1 00.0 k iFEB 28/80 UM 0.0 30.0 60.0 30.0 FREQUEN]CY CMHZ), 1 20. 0 1 50. 0 Figure 27S. Axial Current at STA:F352B, Excitation 3, 1/48 Model.

- 74 - L4. r I 3.0k 2.0 U-1 F16. L.352B. 3.JR. F27L I - FEB 28/80 UM i.0o 0.0L 0.1 0 3 0. 0 60. 0 9 0. 0 1 20. 0 1 50. 0 2 00. 0 10 0.0 r I _ IF16. L.F352B. 3. JR.F27L G U.1 9 ul tm cr a_ 0.0 -1 oo0. - e v u. v I I I 0. 0 9 0. 0. IFEB 28/ 80 UH 1 20. 0 1 50. 0 3 0.0 6 0. 0 F ME Q U tiA (,I LMHZ' Figure 27L. Axial Current at STA:F352B, Excitation 3, 1/32 Model.

- 75 - 6. 0 i0~ -43 2. 0 0 0 LJAN 214/80 UMJ 0.0 30.0 60.0 90.0 120.0 150.0 200. 0 ----— ~~F16.S.FIO B. 1,JAsF28S too0. 0 8T 0. - 2___ _ ___ __ -__ __ JAN 2t4/80 UN 0.0 30.0 60.0 90.0 120.0 150.0 FRFI!FNr~Y CMHZ) Figure 28S. Axial Current at STA: Fl OOB,. Exci tation 1, 1/48 Model.

- 76 - a8.0 F16.1L..FIOOB.1.JFsF28L 6.OL~ C3 0 I- 4. 0 a-4 2.OL.k 0. 0 3 0.0 60. 0 9 0. 1 50. 0 200. 0 I - I i F16,L.FI00B,1.JRtF28L 10 0.0 Lk G ILJ R uj cn cr CL. 0. 0 - 10 0. 0 k 90.0 120.0 150.0 -2o0. oL.0. 0 3 0. 0 60. 0 FREQIJENCT (Mt HZ) Figure 28L. Axial Current at STA:FlOOB, Excitation 1, 1/32 Model'.

- 77-. 16.0 12. 0 'U 4. 0o I FEB 28/80 UN 0. 0 30.0 60. 0 90. 0 12 0. 0 150. 0 200. 0 FvIO9IQF9 100.0 0 0 -100.0 — 200.0 RA 05/80 UN 0.0 30.0 60.0 80.0 120.0 150.0 FR9EQUENCY CMHZI Figure 29S. Normal Electric Field at STA:FlOOB, Excitation 1, 1/48 Model.

- 78 - 16.0 I I F1G. L. FIOOB. I. Q. F29L 12.0 k C' 0 a U.OV ~ U N. W, 0. 0 200. 0 30.0 60.0 90.0 120.0 150. 0 1 00. 0 _ __ - -— r —I-r F16,L.FlO05.l.Q,F29L G uj R ul cm cr C16. O. oL. -1 00. 0 ~. IFA 28/80 UM -200o. 0 0.1 I I I 0 3 0.0 60. 0 9 0. 0 1 20. 0 1 50. 0 FFIE QU ENCT Y MHZ) Figure 29L. Figre 9L.Normal Electric Field at STA:F1OOB, Excitation 1, 1/32 Model.

- 79 - 2.0[0 = 0.0 -100.0 T- - I I F 16. S. F IOOB. 2. JR, FSOS, RP 1/8 U I I 90. 0 1 20. 0 1 50. 0 -2 00. 0 A --- -*-* -- - 0.0 30.0 60.0 90.0 120.0 FREQUENCY (MHZ) Figure 30S. Axial Current at STA:FlOOB, Excitation 2,' 1/48 Model.

-80 - 2. 0__ _ F18. L.F1O0B,2..,'A.F30L -j C 0.0 0.0 30.0 60.0 90.0 120.0 150.0 200.*0 _ _ _ _ F18.LF100B,2.JR.F30L O 0. IFR16/0 U -2 00.0R 680U 0.0 30.0 60.0 80.0 120.0 150., FREQUENCY (MfIZ) Figure 30L. Axial Current at STA:FIOOB, Excitation 2, 1/32 Model.

-81 - 4. 0O I F16. S. F1OOB. 3. JR: F31S 3. 0 -j ui C3 0 I Cd CL, cx I.oL 0. 0 JAN 2LL/80 UN V. U, 0. 0 3 0. 0 60. 0 9 0. 0 1 20. 0 1 50. 0 200. 0 F16.3,Fl00B.3,JR:F31S 100 o. 0 L G uj C3 LLJ cn cr. a_ 0.0 -1I0 0. 0 - 2 0 0.0 1_0.0 I I I___ __ _ __ __I___ _J AR 2 41/80 U M 3 0.0 60. 0 9 0.0 FREQUENCY (MthZ) 1 20. 0 1 50. 0 Figure 31S. Axial Current at STA:F]OOB, Excitation 3, 1/48 Model,.

-82 -F16. L. FIOOB.5. JR, F31L 4I. 0 3. Ok 9. 0 I- - 2. 0 i.of ~ 0. o L 0. 0 2 00. 0 I I JAN 211/80 UM 5 0. 0 60. 0 9 0.0 1 20. 0 1 50. 0 F 16 *L. FI OB. 3 *JRtF31iL I10 0.0 G uj p LU (n cr:r. a 0. 0 - 10 0.0 k JRN 241/80 UM -euu. u I - I 0.0 3 0. 0 6 0. 0 9 0.0 1 20. 0 FREQUENCY (MHZ) Figure 31 L. Axial Current at STA:FlOOB, Excitation 3, 1/32 Model. 1 50. 0

-83 - '4. 0 F 16. S. Fl 0GB. S. Q. F323 tE. uj* 2. 0 1.0 0. 0 MA~R 05/80 UM 0.0 30.0 60.0 90.0 120.0 150.0 F16. S. F'.0B. S.0. F32 S 300.0 E!200. 0 1 00. 0 0.0 MPR 19/80 tIm 0.0 30.0 60.0 90.0 120.0 150.0 FMEQ'UEJ'C~ "tIMZ Figure 32S. Figre 2S. Normal Electric Field at STA:FlOOB, Excitation 3, 1/48 Model.

-84 - Li. 0 F:S. L. F I08. S.C. F32L f E _ r 3.OL.[ -J ul 0 P. c2.0 IFES 28/80 UH n - n u. v I I 0. 0 30.0 60.0 90.0 120.0 1 50. 0 Ll0. 0 I...-....- ~ F:(:.L.Fl100B.3Q.F32L.300. 0 k -! 2 00. 0 a-8 1 00a.0 [. 0.I n i ________ FEB 28/80 UM W L - -I 0. 0 30a. 0 60.:. 90. 0 =iZOUENICT (MHz) 1 20. 0 1 50. 0 Figure 32L. Fiur 3L.Normal Elec-t-ric Fii-"d at STA:FlOOB, Excitation 3, 1/32 Model.

-85 - 5.0 -- - I F 16. S. Fi88B.1. JR. F33S 14. 0.. -j uj = 0 =3 = -1 Cd CL -z 3c ct 3.0k 2. 0 k 1.0O I MAR 05/80 UX 0.01 L 0.1 0 30.0 60.0 90.0 120.0 150. 0 200. 0 F16.S.F4i88B. 1.JS,F3SS vi uj C3 LU in cc M. -10 0. 0 r -20I 0. i I Iij, I i I h - - -- -- 6 0. 0 FREQUENCY 3 0. 0 90.0a (MHZ) iMRR 05/80 UM 1 20. 0 1 50. 0 Figure 33S. Axial Current at STA:.F488B, Excitation 1, 1/48 Model.

-86 - 5.0 FlS.L.F4&88B.'.JR~.F3SL K 4 4. o V -j uj C2 b =3 = I.-j Cd CL Ilz 3. 0 k i I I i I I I i I I I I I 2. 0L i. o /1/v mp I1vJk~vIMR0/0U 0.I A I U I I 0. 0 30a. 0 6 0. 0 90. 0 1 20. 0 150. 0 2 00. 0. pd. I -— T-T, I I k I i i i 100. 0 ~.. F16. '~FI488 B.!. 2FPF33LUVl G p "i an cc T., 9L. o. oL -100. 01. MAR 05180 UM4 - I ^ A^. 0 0. V L 0. 0 3 0.0 6 0.0 90. 0 F9iEQUE.1ICT "IMM?) 1 20. 0 1 50. 0 Figure 33L. Figre 3L.Axial Current at STA:F488B, Excitation 1, 1/32 Model.

- 87 - S. 0 0' LLI o 2.0 0.0 - _ _ _ _ _ _ 0. 0 3 0. 0 200. 0 1 0 0.N.1 0. - -00k F16,S.F4L88B,.1.f.F34S -2 00. 0 L- - 0. 0 LMAR 05/,80 UM 1 20. 0 1 50. 0 30.0 - 6 0. 0 - I _ -- 90. 0 FREhQUENCY (M~1z) Normal Electric Field at STA:F488B, Excitation 1, 1/48 Model. Figure 34S.

- 88 - 8.0[. 5.0. 0. T4 4. 2.00 0~ -. 0 - 0. 0 200. 0 - I0 ' —T — - ---- — ' ' iN F16,L.F4~88E3.1.Q.F34L uj M ui en cx a I I 0 a. 0 I I I i I II 0. 0 L. i I i i i -1 0 0. 0 I i -2 00. 0 L -_ 0. 0 3 0. 0 60. 0 - - - I- _ 90. 0 MAR 05/,80 Um 1 20. 0 150.0 FREQUENCY CMHZ~ Figure 34L. Normal El ectri c Fi el d at STA: F488B, Exci tati on 1, 1 /32 Model.

- 89 - 3.0 -4 0.00 0 200.0a 150. 0 I I I I 1 0 0.0 I i I I F16.SFU88B,2,JCF35S ii f I 11%% I %A6-1% i I W ui 9 LLJ gn m ul a0.01 -1 00. 0 7 I i I IMSR' 05/80 UM -evu. v I - i I 0. 0 3 0. 0 60. 0 9 0. 0 1 20. 0 1 50. 0 F fiE QU;E!1"-Y H Z I Figure 35S. Figre 5S. Circumferential Current at STA:F488B, Excitation 2, 1/48 Model

-90 -3. 0 F IB. L. F'4385, 2. JC. FS5L 2. 0 t' 0 10/ 0. 0 30. 0 60: 0 90. 0 1 20. 0 150. 0 200. 0 F16. L.FL488B.2.JC.F35L 1 00. 0 E~0.0 -1 00.0. -200.0~ VAR 05/-80 UM o.o 3 0.0 60. 0 00. 0 120.0 150.0 FREQUENCY flMH1Z, Figure 35L. Figre 5L. Circumferential Current at STA:488B, Excitation 2, 1/32 Model.

-91 - 2. 0 uj0 p- --- 1. 0 2_ F1B. 5.F'I8B. 2.0,F363 I, —, --- i- - q I I IAPR 16/60 UN n-n0 W. W I 0. 0 30. 0 60. 0 90. 0 1 20. 0 1 50. 0 2 00. 0 L* uj cm ui W$ CL. -1 00. 0 i FREQUENCY CMHZ) Figure 36S. Figre 6S. Normal Electric Field at STA:F488B, Excitation 2, 1/48 Model.

-92 - 2.0 z 4 T4 uj O 0 200.0 100.0 O.C a: a I 0.0 30.U 60.0 90.0 120.0 150.0 FREQUENCY (MHZ) Figure 36L. Normal Electric Field at STA:F488B, Excitation 2, 1/32 Model.

- 93. 2.O(T gci 0 1- -- 1. 0 _____ __ _MAR__ 0 /80 UM 0. 0 L _ _ _ _ _ _ _ — I0. 0 3 0. 0 60. 0 90. 0 1 20. 0 150. 0 F16. S. FL48B. 3. JR.F37S 10. -10. I -20. 00. 0 30O.0( 60. 0 9 0. 0 FMEQUENCY CMHZI MAR 05/80 um: 20. 0 1 50. 0 Figure 37S. Axial Current at STA:F488B, Excitation 3, 1/48 Model.

-94 - 3. 0 ___ _iL 1. I~ --- — T F16. L.FL&88B. B.JA. FS7L LK. L. _ _ _ _..I _ _ _ _ _ _ _ _ _ _ 0. 0 30. 0 60. 0 80. 0 ___I MAR 05/80 tIM 1 20. 0 150. 0 2 00. 0 F - -- - -r-I — v~ — F16.L.F4188B.S.JR.F37L 10 0.0 L G LLI E! uj cm cc a K 0. 0 -1 00. 0 L. 0. 0 3 0.0 60. 0 ~~~~1.~_______MRR 05/80 tmiM 8 0.0 1 20. 0 1 50. 0 FREQUENCY (MHZf) Figure 37L. Axial Current at STA:F488B, Excitation 3, 1/32 Model.

-95 - t&* 0 F 16. 3. E4888..C. F389 K ____-,_ S. oL. -J WJ 0 J 0 2. 0 V i.oI —. 1 FEB 14/80 -UM I 1 20. 0 150. 0 o.oL. 0..- I - --- - 0 30. 0 80. 0 90. 0 1400. 0 F16.S.F4885.3.9.F383 3 00.0 o th w C3 uj M cc 46. Po0. o 01. 1 0 0 * 0 o. o. -- 0. 0 3 0.0 80. 0 90. 0 12 0.0 1 50. 0 FFIEQUENCY CMHZI) Fig9ure 38S. Normal Electric Field at STA:F488B, Excitation 3, 1/48 Model.

-96 - 14. 01 1 i t I I I I 1 3. 0! I F 44-1 6.Lt.,F1889. S.Q. F38L - 2 K.4 ~ I i I I II I I -I I I. —4 -A a 2. o It. o.oL~ FEB 14/80 UM 0.0 30.0 60.0 g0.0 120.0 150.0 4 00. 0 I - - - II FIB.L.F488B.3.0.F38L.- I 300 * 0 ~ G uj C3 ILJ WI Cc X. a 200o.0 o 1 00o.0 o FEB 14/80 UM u. u I I I I I 0. 0 3 0. 0 60. 0 90. 0 1 20. 0 1 50. 0 FFIEQUENICY (MHZ) Figure 38L. Normal Electric Field at STA:F488B, Excitation 3, 1/32 Model.

-.97.. 24. 0 F A16. S. F76RS. 1.Q. F398 I1a. o Dn 0 = 12. ra.0k~ MRR 05/,80 UM 0. c n I v I I I 0. 0 30. 0 60. 0 90. 0 1 20. 0 1s50. 0 200. 0 I I i i -.- -. - ---- 1; uj Li LO (n T.' CA o.oL F IS, S. F76HS. i i I II I i i i I I I I II i i 11 p I I i Ii N 1'j -," li i IVV4 III __el I 1, C. F39S - 10 0.0k - 2 00a. 'II I. MPH 05/180 UM j I I i ).0 30. 0 60. 0 9 0. 0 1200 1 50. 0 F ME QU E:'.- CMHIIZ Figure 39S. Normal Electric Field at STA:F76RS, Excitation 1,, 1/48 Model.

-98 - 2'L. 0 I a. 0. -j = 0 ~-r w12. 0 (.4 FIS. L. F7BRS. I Q. F3L ItI I MP /80 UM 6.0 L 0.Oh 0..0 80. 0 60. 0 9 0. 0 1 20. 0 1 50. 0 200. 0 0 G uj F! uj gn CL. FREQUENCY 1MHZ)1 Figure 39L. Normal Electric Field at STA:F76RS, Excitation 1, 1/32 Model