028948-1-F

NASA EOSDIS Information Management
System V0/V1 Evaluation:
Final Report

Anthony W. England

Nigel Hinds

DECEMBER 1996

28948-1-F = RL-2402






NASA EOSDIS Information Management System V0/V1
Evaluation: Final Report

Nigel Hinds and Anthony W. England

Radiation Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
Report RL-945

December, 1996






Abstract

This report summarizes our activities as members of the NASA EOSDIS IMS
evaluation team in FY96. Based on our experiences we have identified a number
of issues and provided recommendations. We also give a preliminary progress
report on our information discovery work.






Contents

TIRtroduction ...............ccoiiniiiiniiuiiniuniieuneiiisessessessassassssnsenssnsens
2 Issues and Recommendations ...................ccoooviiiiiiiiiiiiiiiiiiiniiriniieenns
2.1 Web-based Interface ...
2.2 Application Programmer Interface ...
2.3 Client Statistics Collection ..................cooiiiiiiiiiiiii i
2.4 Client SubsCriptions ..............ccoiiiiiiii
2.5 Catalog Interoperability .....................
SCONCIUSIONS ......oovvniiuiieiniiiiniieiiitiieineeetasessnsesenssssnsosasssassossnnons
AMB-IMS ..ottt tttiiitetet et taiiteeesseeeessssnsesesessssnnnnsessssnsns

iil



v



1 Introduction

An Earth Observing System Data Information System (EOSDIS) priority is to provide a
collaborative environment in which science investigators can share data, models, and modeling
tasks. Success of EOSDIS requires that its Information Management System (IMS) overlay
present the science user a uniform and friendly interface which is relatively independent of
location and nature of the data. As a principal investigator on NASA, USGS, and NSF non-EOS
grants concerned with global climate change, and as a member of the Land Processes Distributed
Active Archive Center (DAAC) Science Advisory Panel for the EROS Data Center (EDC),
SSM/I Products Working Team (SPWT) of the National Snow and Ice Data Center (NSIDC),
and the Science Advisory Group to the Polar DAAC, we would very much like to see EOSDIS

succeed. Furthermore, we have been in an ideal position to assist in EOSDIS evaluation.

Over the past four years we have been funded to assist the EOS developers design and build the
EOS Information Management System. Our approach to this task was partially defined by our
role as "tirekickers". In that capacity we have evaluated numerous VO and V1 IMS releases.
Written feedback was provided in the form of reports as well as responses to developer surveys.
In addition, we continually incorporate feedback from local users of the system. We have also
evaluated many EOSDIS design specification documents and participated in

technical meetings. Throughout the duration of our funding, the unique combined computer and
Earth science backgrounds of the authors have allowed us to provide substantive information

systems design feedback in addition to our user interface recommendations as tirekickers.

2 Issues and Recommendations

During the last year we have participated in the major design reviews (PDR and CDR) as well as a
number of workshops, smaller review meeting and telecons. The Release-B CDR panel

discussion format was very productive. The format gave the attendees time to discuss the system



in enough detail to provide substantive feedback. As the project continues, this format will
become more important. We would encourage Hughes and NASA to continue and expand this

practice.

The remainder of this document summarizes our observations and recommendations.

2.1 Web-based Interface

We strongly encourage the move toward a web based interface to NASA metadata with the
development of JEST. Our experience and those of other VO/V1 tirekickers has been that
non-Web versions of VO & V1 require considerable system support to install and maintain. For
example, a DCE client environment will be necessary to run the V1 client. These requirements are
likely to be prohibitive for a large group of potential users outside the core group of EOS
investigators. We do not consider the Guest login as a viable alternative. The current strategy of
Guest login allows an unregistered user to connect to a DAAC (or other site with an ECS client),
run the client at the DAAC and display graphic screens on the user's local workstation. We have
argued (see Appendix A) that this approach has a number of performance issues and could
become a bottleneck. The DAAC computer will run a separate process for each user that logs
into the system. This means user interactions with the screen, such as button clicks and mouse
moves, will generate network traffic. Any network delays will interrupt system response to the
user. For example, network delays can interrupt line drawing as a user mouses a box to select a

geographic area.

Clearly an easily maintainable local V1 client would be ideal, but barring that, for the reasons
stated above, a Web/Java client will be an important point of entry into ECS. Web/Java is a
generic client that runs at the users workstation, avoiding much of the network traffic associated
with VO or V1 running at a remote DAAC. We admit that there are a number of problems with
Java and in general with Web based user interfaces. One of the more important issues is that Java
only allows an applet (a program down-loaded from a Web server) to communicate with the host

from which it was down-loaded. It is conceivable that this restriction could be relaxed. And we



would encourage Hughes and NASA to pursue this approach and if necessary to aid and guide the

Internet community as it develops these technologies.

2.2 Application Programmer Interface

An Application Programmer Interface (API) is a set of low-level data access routines that are
common across many applications. APIs are very useful in environments where many different
applications are accessing similar data. ECS is an example of such an environment, where many
ECS subsystems will need access to metadata and the data dictionary. Further, based on our
experiences with the VO and V1, there will likely be many flavors of the user interface. APIs will
make it easier to build and evolve these applications by providing a stable infrastructure on which
to build. Being one of the early advocates for such a library we are pleased to see it included in
Release B. However, after a number of conversations with Hughes developers, it is clear that
Hughes is not using the library to build its own client. Since the Hughes client will not directly
depend on this library there is a danger that the library will not provide a complete set of functions
necessary to build effective clients. This also begs the question; if Hughes is not using the API

library (described in 819-RD-001-001) to build its user interface, then what is Hughes using?

2.3 Client Statistics Collection

As members of the Client Statistics collection Tiger team we made the following observations and

recommendations:

+ Some of the statistics can and will be captured at various EOS servers, however, if not

reassembled to provide a user perspective we may loose potentially useful information.

* Once the data has been captured at the client, the existing mechanisms (e.g. email) can be
used to transfer the data to the MSS. The user feedback tracking requires the client to send
messages to the MSS. This mechanism should be generalized as much as possible to allow

arbitrary data to be sent to the MSS.



¢ We realize there may be privacy issues with collecting user statistics. We recommend
developing mechanisms and policies to ensure the general public can not obtain user

statistics.

+ Some Statistics we recommend collecting at the machine hosting the ECS client are:

« Configuration data
+ Client failures: when and how the software crashes

+ User Context:

When a user submits a comment while performing an

operation in some cases it will be helpful (to the technician
reviewing the comment) to know what the user was doing that led
to the comment. This type of context data can be captured at

the client and transmitted with the user comments.

« Query response time

« Number and frequency of searches
- Fields used in search

- Local cache size

« Local cache hit rate

2.4 Client Subscriptions
As members of the Subscription Tiger team, formed at the end of September, we are making the

following initial recommendations:

¢ The subscription system should define an event model that includes a Event Type class and

Event Instance class system as described below:

Event Type Class System:
The event types are assigned from a hierarchical event class
structure. This allows subscribers to higher level events to

receive general notification messages while those processes or



users interested in more detail can subscribe to lower level

events.

Event Instance Class System:

This would allow users/processes to receive events grouped

by application. This will require an Event Type Class and an
Event Instance Class. So, an event would have a type attribute,
such as Invalid-Input and a group parent attribute, such as

MODIS-DATA-PRODUCT1.

¢ Size and location of subscriptions can have a major impact on system performance. The
project should consider architectures that include centralized as well as distributed
subscription management, including mechanisms that allow subscription consumers (or their

agents) to assume considerable management responsibility.

2.5 Catalog Interoperability
Many of the catalog interoperability issues overlap our work on distributed information discovery.
As a result we have provided feedback to the catalog interoperability protocol work. We

summarize that feedback below.

We recommend using the Web as the substrate for any distributed information system. There are
the obvious installed user-base advantages. Further, HTTPD's CGI provides a flexible mechanism

on which to build fairly complex database interfaces.

The serious drawback is that current Web indexing uses a "pull" approach where custom robots

search for data. In some cases it will be more efficient to notify brokers of new or modified data
("push"). This can be accomplished with companion services that run along side HTTPD, using

JAVA for example.



Information Discovery Status:

Our information discovery work suggests that it may be possible to use hierarchical subject
indices, such as the GCMD, to reduce search times for distributed data. Over the last year we
have developed the Domain Metadata Service (DMS) design and prototype. The DMS
architecture uses a version of the IMS parameter list to construct centroids. Centroids are
synthetic data averages; they are, in effect, higher levels of metadata. Because centroids are
smaller than the original data and metadata, more of them can be stored in the same amount of
space. Together with pointers to archive sites, the centroids make-up referrals. Referrals form a
distributed data structure used to direct the DMS distributed search engine. The prototype is

currently being tested, the results of which will be published next year.

3 Conclusions

This report has summarized our activities as members of the NASA EOSDIS IMS evaluation
team. Based on our experiences we have identified a number of issues and provided
recommendations. Finally, we gave a preliminary progress report on our information discovery

work.



A MB-IMS






An Experimental Mosaic Interface to Scientific Information Systems

Nigel Hinds and A. W. England
Radiation Laboratory
The University of Michigan
Ann Arbor, Michigan 48109-2122, USA
nigel@eecs.umich.edu, england@eecs.umich.edu
Phone: (313) 763-5243
Fax: (313) 747-2106

ABSTRACT

The NASA Earth Observing System (EOS) informa-
tion system, EOSDIS!, is a key component for dissem-
inating EOS instrument data. Within EOSDIS the
Information Management System (IMS) provides ac-
cess to products maintained at data archives distributed
throughout the country. At the heart of the IMS graph-
ical user interface is the widely accepted X11 display
protocol. An important feature of X11 that has facili-
tated IMS prototyping is that it allows users to separate
the host computer on which an application program
runs from the host where the output is displayed.

Running remote X11 applications in this manner is
appealing to organizations that for one reason or an-
other do not want to distribute and support software
packages or release the source code for their applica-
tions. The drawback is the X11 network message traffic
generated when an application is run remotely.

Our work investigates the feasibility of eliminating
X11 network traffic by using HTML+ and Mosaic to
configure interfaces to information systems such as the
NASA IMS. This approach offers advantages to both
the information supplier and consumer. To the infor-
mation consumer the system provides a single X11 soft-
ware package which can communicate with any World
Wide Web (WWW) information supplier. For the in-
formation supplier the approach will eliminate the need
for X11 programming.

INTRODUCTION & MOTIVATIONS

There are many network data systems which provide
access to a wealth of information [5]. Most of these sys-
tems offer only simple character-based user interfaces.
The X11 window system has created a new generation
of sophisticated graphical user interfaces.

'Earth Observing System Distributed Information System

X11
Server Software

Software | — y

— - —_—
' IMS 7 [
LXH Client Internet F

Figure 1: X11 Remote Server Model

Assuming each user has a graphics workstation run-
ning X11, then application software can run on the
user’s workstation, or on a remote host. X11 accom-
plishes this by separating the system that displays data
on a screen from the application that makes the dis-
play requests. In the X11 model the screen on any
workstation is called the X11 server which accepts dis-
play commands on a designated communication port,
and the computer running the application is considered
the X11 client.? The X11 application is also commonly
referred to as the client.

Although running applications on the host with the
X11 server avoids network delays, many organizations
do not have the mechanism to distribute and support
software packages. Furthermore, administrative, secu-
rity, and licensing issues may make it impossible for
these organizations to release their source code. Even
if source code were released, those users having the ex-
pertise to configure and compile it for their computing
environment could potentially have to compile a new
X11 client for each information server they wanted to

?We should note that some consider X11’s client /server model
to conflict with the traditional client/server definition. Typically,
in distributed data systems, a client process on the user’s com-
puter sends a request to a data server. In X11 the user’s computer
receives display commands and is called the display server while
the computer sending the display commands is called the client.



contact. For these organizations, running applications
remotely is an appealing alternative. Figure 1 uses the
NASA EOSDIS-IMS graphical user interface to illus-
trate the X11 remote execution model. In figure 1, the
IMS user and the IMS software are located at different
network sites. The user’s computer is equipped with a
graphics computer running the X11 server which allows
it to function as a display for any X11 client. On the
other side, the IMS software runs as an X11 client pro-
gram. To operate the system, the IMS user logs into
the IMS client computer and starts the IMS X11 client
program, instructing the software to display the screen
images on the user’s local X11 server. Unfortunately in
this model almost all user input including mouse move-
ments at the local X11 server is sent back through the
network to the X11 client computer. So, even minor
network delays can profoundly affect the user interface
and frustrate users.

To get rough figures of the network traffic generated
by running the IMS remotely, we counted the bytes
transferred from the X11 client and server. An IMS ses-
sion was initiated and Sun Etherfind was run to monitor
traffic between the application run at Goddard Space
Flight Center (GSFC) and the X11 server at the Uni-
versity of Michigan. Once the application was running,
the experiment consisted of repeatedly displaying and
closing the IMS search window (Figure 2). The bytes
received by the local X11 server ranged between 20,120
and 20,444. The number of packets ranged between 61
and 67. Although 20K bytes does not appear signifi-
cant, network performance can have a major impact on
the time it takes to display a screen.

The new generation of information systems such as
the Wide Area Information Server (WAIS) (7], Gopher
[6], and World Wide Web (WWW) [2] address the issue
of multiple X11 clients as well as network traffic. Each
of these systems define a traditional client-server archi-
tecture for building distributed data servers. For exam-
ple, WAIS uses the Z.39.50 [7] protocol to describe how
client programs and WAIS servers communicate. Sim-
ilarly, WWW uses HTTP and HTML [2] to describe
client-server communication. By defining a standard
client-server protocol, these systems make it possible
to provide the user with one interface application that
is capable of communicating with any data server sys-
tem using the protocol standard. Since the user now
only needs one application, administration and support
are simplified and building an X11 application which
runs locally is much more feasible. Unfortunately, be-
cause each of these systems use a different client-server
protocol, the user is once again faced with having to
use three different applications to access data stored in

WAIS, Gopher, and WWW. However, supporting three
powerful applications is an improvement over the sce-
nario described in the Introduction.

At the University of Michigan we are exploring the
feasibility of implementing the IMS forms-based user in-
terface in WWW. We chose to start with the WWW ar-
chitecture and its X11 interface application Mosaic be-
cause their Hypertext Markup Language (HTML) was
very easy to use and had the form building features we
needed.

DESIGN

Hypertext Markup Language (HTML) (3] is based
on the Standard Generalized Markup Language
(SGML) [1]. Both languages annotate plaintext docu-
ments with tags to impose logical structure. Examples
of tags are chapter and section headings, item lists, and
character highlight.

In the WWW system, authors use HTML to con-
struct documents stored at their WWW server. HTML
documents along with text and other multimedia may
contain hypertext links (hyperlinks) to other HTML
documents at any WWW server. Users access WWW
documents with the Mosaic X11 application. Mosaic
is the X11 client to the user’s X11 server, as well as
a client to the WWW data server. The single Mosaic
X11 application reads HTML files retrieved from any
WWW server and displays them for the user. This
Mosaic X11 application runs locally and only gener-
ates network traffic when it sends queries to the WWW
servers.

Mosaic with the fill-in forms additions of HTML+ [4]
met many of our information system requirements.
HTML+ added input fields, radio button fields, and
Action buttons which send queries to WWW servers.
Figure 3 shows a portion of the prototype IMS search
screen document we have constructed using HTML+.
A WWW server has been configured to accept queries
generated by the IMS document and return results from
a test database.

STATUS & RESULTS

HTML+ allowed us to include many of the basic
forms features we needed in the prototype. However,
HTML being only a logical markup language, it does
not provide layout directives. Aesthetically the result
left something to be desired. Also, we encountered a
number of features which could not be rendered in our
HTML+ document. Many of the problems are due to
the document viewing model used by HTML/Mosaic.
It does not permit sophisticated interaction with the
user. We outline some of our difficulties below.



Figure 2: IMS Search Screen. This image consumes almost all the area on a 17 inch screen.

o The original IMS (Figure 2) uses popup menu
choices to reconfigure the screen. For example, the
fields displayed in the Geographic Area depend on
the item selected from the menu. In Figure 2 the
menu reflects our current choice, Rectangle, which
displays the lat/lon input fields you see in the fig-
ure. We could have also chosen Point Radius which
would have displayed a different set of input fields.
HTML+ does not provide tags to describe such
interaction.

o The original IMS allows users to fill fields from a
list of valid input choices. Using a popup scroll list
users may select items which are then automati-
cally entered in the field.

For example, in the current NASA IMS prototype
there are seven valid data centers which the user
may view and select in a popup list by clicking on
the List... button next to the Data Center field in
Figure 2. Although hyperlinks (displayed as List...
in Figure 3) allow us to display another document
containing valid entries, once a user makes a selec-
tion there is no way to reflect that selection back
on the search document.

e e

Figure 3: Mosaic IMS Prototype

Also, it is not possible to implement the notion of
dependent valids. With dependent valids, the list
of valid input choices is further restricted by the



input the user has already entered. For example,
the parameter field valids list would not display
WIND SPEED if SSM/I had already been entered
in the sensor field.

e HTML+ has only Submit and Reset action but-
tons. Submit sends a list of all the fields and their
values to the server where the document is stored.
The server evaluates the query and returns the re-
sults in a new document. Reset clears the fields
in the document. Arbitrary action buttons could
allow us to implement dependent valids. For exam-
ple, with a List... action button, the current value
of all fields could be sent to the WWW server to
restrict the valids lists displayed for the field asso-
ciated with the List button.

o The interaction with WWW and Mosaic is a syn-
chronous client-server model. Mosaic sends HTML
requests to the WWW server and waits for a re-
sponse. The model does not allow the WWW
server to notify the Mosaic system or otherwise
initiate communication. This would be very useful
in the event of a time consuming search. Instead of
waiting for a response from the WWW server Mo-
saic could allow the user to read other documents
until the search results were ready.

¢ With generic hypertext documents it might be
hard to anticipate usage, but with information sys-
tems the navigation paths can be predictable. It
might be faster to download a number of pages at
once. That way, hyperlinked documents could ac-
cess them without communicating with the WWW
server.

CONCLUSIONS

There are clear benefits of co-locating X11 applica-
tions with their X11 display servers. However, this
is not possible when there are large numbers of in-
formation providers requiring separate user interfaces.
Our preliminary results demonstrate the feasibility of
providing a generic information system interface with
HTML+ and Mosaic. Our current plans are to com-
plete the IMS search screen page and compare the Mo-
saic network traffic to the X11 traffic discussed in the
introduction.

Even with its features, H-TML+ and Mosaic will not
allow us to faithfully recreate all aspects of the IMS
screen. As we go on to implement more IMS screens
we anticipate proposing modifications to HTML+ and
Mosaic to overcome some of the issues mentioned in the
last section.

ACKNOWLEDGMENTS
This work has been supported by a grant from the

EOSDIS project through the Goddard Space Flight
Center.

REFERENCES

[1] ISO 8879:1986. Informaion Processing Text and
Office Systems Standard Generalized Markup Lan-
guage (SGML). International Standards Organiza-
tion, 1986.

[2] T. Berners-Lee, R. Cailliau, J. Groff, and B. Poller-
mann. World-Wide Web: The information uni-
verse. Networking: Research, Applications and Pol-
icy, 2(1):52-58, Spring 1992.

[3) Tim Berners-Lee and Daniel Connolly. Hypertext
markup language. Technical report, CERN and
Atrium Technology Inc., July 1993.

[4] IETF. HTML+ (hypertext markup format). Tech-
nical report, IETF, November 1993.

[5] J. Martin. There’s Gold in Them Thar Networks!
or Searching for Treasure in all the Wrong Places.
RFC-1290, Ohio State University, December 1991.

[6] M. McCahill. The internet Gopher: A distributed
server information system. ConneXions - The In-
teroperability Report, 6(7):10-14, July 1992.

[7] TMC. WAIS interface protocol, prototype func-
tional specification. Technical report, Thinking Ma-
chines Coporation, 1988.



