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Abstract-

To understand the importance of radar polarimetry for remote sensing of random me-
dia, statistics of the phase difference of the scattering matrix elements must be studied.
In this paper the probability density function of the phase differences is derived from
the averaged Mueller matrix assuming that the elements of the scattering matrix are
jointly Gaussian. It is shown that the probability density functions of the co-polarized
and cross-polarized phase differences are similar in form and can be obtained indepen-
dently. The expressions for the probability density functions are verified by comparing
the histograms, the mean, and the standard deviations of phase differences derived di-
rectly from polarimetric measurements of variety of a rough surfaces to the probability
density function and its mean and standard deviation derived from the averaged Mueller
matrices of the same data. The expressions for the probability density functions are
of special interest for non-coherent polarimetric radars and non-coherent polarimetric

models for random media such as vector radiative transfer.
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1 Introduction

In the past decade substantial effort within the microwave remote sensing community has
been devoted to the development and improvement of polarimetry science. Polarimetric
radars are capable of synthesizing the radar response of a target to any combination of
the receive and transmit polarizations from coherent measurements of the target with two
orthogonal channels. Polarimetric radars have demonstrated their abilities in improving
point-target detection and classification [Ioannidis and Hammers, 1979]. That is, for a
point target in a clutter background the transmit and receive polarizations can be chosen
such that the target to clutter response is maximum. Also, different point targets in the
radar scene can be classified according to their optimum polarization. Although radar
polarimeters have shown a great potential in point-target detection and classification,
their capabilities in remote sensing of distributed targets is not completely understood
yet.

Considering the complexity involved in designing, manufacturing, and processing the
data of an imaging polarimeter as opposed to a conventional imaging radar, it is neces-
sary to examine the advantages that the imaging polarimeter provides about the targets
of interest. For example, in retrieving the biophysical parameters from the polarimetric
radar data one should ask whether there exists a dependency between the parameters
and the measured phase of the scattering matrix components. If the answer is nega-
tive, obviously gathering polarimetric data for inversion of that parameter is a waste
of effort. One way of confirming this question is by collecting data over a range of the

desired parameter while keeping other influential parameters constant. This procedure,



if not impossible, is very difficult to conduct because of problems in repeatability of
the experiment and difficulties in controlling the environmental conditions. Moreover at
high frequencies (millimeter-wave frequencies and higher) coherent measurement of the
scattering matrix is impossible because of instabilities of local oscillators and relative
movements of the target and the radar platform [Meads and McIntosh, 1991]. At these
frequencies non-coherent radars are employed which provide the Mueller matrix of the
target.

Another approach to examine the dependency of the radar response to the desired
parameters of the targets is the application of theoretical models. One of the most
successful polarimetric models for random media is the vector radiative transfer theory
[Tsang et al., 1985]. This model is based on conservation of energy and the single
scattering properties of the constituent particles. The solution of the radiative transfer
equation relates the scattered-wave Stokes vector to the incident-wave Stokes vector via
the Mueller matrix. The Mueller matrix, as computed by this method, is an ensemble-
averaged quantity because of the inherent nature of the radiative transfer theory. Since
the Mueller matrix is related to the scattering matrix through a nonlinear process and
the components of the scattering matrix are statistically dependent, the information
about the phase difference of the scattering matrix components cannot be obtained from
the Mueller matrix directly. To achieve information about the phase statistics, one may
resort to the Monte Carlo-type models [Chuah and Tan, 1989] which are computationally
inefficient and in general inaccurate.

Experimental observations of phase difference statistics from a polarimetric SAR at

L-band [Ulaby et al., 1987; Zebker et al., 1987] over agricultural terrain and bare soil



surfaces indicate that the statistics of the co-polarized phase difference depends on the
target type and its conditions. Recent measurements of bare soil surfaces by polarimetric
scatterometers show that the variance of the co-polarized phase difference is a function
of the roughness parameters and incidence angle but is less sensitive to moisture content
[Sarabandi et al., 1991].

In view of difficulties in measuring the scattering matrix at high frequencies and
performing controlled experiments, it is necessary to establish a relationship between
the averaged Mueller matrix and the statistics of the phase differences of the scattering
matrix elements. In the next section we derive the probability density function of the co-
and cross-polarized polarized phase difference in terms of the averaged Mueller matrix
elements assuming that the scattering matrix elements are jointly Gaussian. Then the
assumptions and final results are compared with the experimental data acquired by

polarimetric scatterometers in Section 3.

2 Theoretical Derivation of Phase Difference Statistics

The polarimetric response of a point or distributed target can be obtained by simultane-
ously measuring both the amplitude and phase of the scattered field using two orthogonal
channels. If the incident and scattered field vectors are decomposed into their horizontal
and vertical components, the polarimetric response can be represented by the scattering

matrix S, which, for plane wave illumination we can write




where 7 is the distance from the radar to the center of the distributed target. It should
be noted that in the backscattering case reciprocity implies Sy5 = Sp,. Each element of
the scattering matrix, in general is a complex quantity characterized by an amplitude
and a phase. When the radar illuminates a volume of a random medium or an area of a
random surface, many point scatterers contribute to the total scattered energy received

by the radar and therefore each element of the scattering matrix may be represented by

N
Spq = ISpq|ez¢pq = Z |qu]ez¢‘°" p,g=v,h . (2)
n=1

Here N is the total number of scatterers each having scattering amplitude |sp,| and

]

phase ¢7,.

It should be mentioned that the phase of each scatterer, as given in (2),
includes a phase delay according to the location of the scatterer with respect to the
center of the distributed target. Without loss of generality all multiple scattering over
the surface or in the medium can be included in (2). Since the location of the scatterers
within the illuminated area (volume) is random, the process describing the phasor s,,
is a Wiener process (random walk) [Davenport, 1970]. If N is large enough, application
of the central limit theorem shows that the real and imaginary parts of the scattering
matrix element S, are independent identically distributed zero-mean Gaussian random
variables. Equivalently it can also be shown that |S,,| and ¢,, are, respectively, Rayleigh
and uniform independent random variables. The three elements of the scattering matrix,
in general, can be viewed as a six-element random vector and it is again reasonable to
assume that the six components are jointly Gaussian.

Observation of polarimetric data for a variety of distributed targets such as bare

soil surfaces and different kinds of vegetation-covered terrain all indicate that the cross-



polarized component of the scattering matrix (Sp,) is statistically independent of the co-

polarized terms (Sy, and Spp). Therefore the statistical behavior of Sj, can be obtained

from a single parameter, namely the variance (02) of the real or imaginary part of

S}w = X5 + iXe, that is

1 z? + 3
fXs,x6(25,%6) = 27mgexp[_. 207 ]

or equivalently the joint density function |S,| and @,y is

Fisurtoon (150 don) = —sescpl— 122 3)
Ivh ,¢vh vniY Yv 27[.0.3 20.2

which indicates that ¢, is uniformly distributed between (-, +7).

Since measurement of the absolute phase of the scattering matrix elements is very
difficult, it is customary to factor out the phase of one of the co-polarized terms, for
example Sy, and therefore the phase difference statistics are of concern as opposed to
the absolute phases. Since S}, is assumed to be independent of S, and both ¢y, and ¢,y
are uniformly distributed, it can be easily shown that the cross-polarized phase difference
@c = Gun — Puy is also uniformly distributed between (—m,+).

The co-polarized elements of the scattering matrix, however, are dependent random
variables which can be denoted by a four-component jointly Gaussian random vector X.
Let us define

Svu = Xl + 11X, Shh = X3 + zX4

and since Xp,--- X4 are Gaussian their joint probability density function can be fully

determined by a 4 x 4 symmetric positive definite matrix known as covariance matrix



(A) whose entries are given by [2]

Aij = Aji =< XX > i,j €{1,---,4}

The joint probability density function in terms of the covariance matrix takes the fol-

lowing form:

(o, 20) = —renp [~ XAX] @

4n2|A|2
where X is transpose of the column vector X. To characterize the covariance matrix the
following observations are in order. First, it was shown that the real and imaginary parts

of the scattering matrix elements are mutually independent and identically distributed

zero-mean random variables, therefore

Mi=dp=<Xi>=<X2> _ (5)
A2 =< X1Xp >= 0 (6)
Aazs=dg=< XZ>=<X?> (7
Aas =< X3X4 >=0 (8)

Second, it was shown that the absolute phase @pp is uniformly distributed and is inde-
pendent of |Sy,|. Thus the random variable @y, + ¢y is also uniformly distributed and

is independent of |Sy,||Sks| from which it can be concluded that

< ISW”Sth COS(¢’UU + ¢hh) >= 0 (9)
< |SUU||Shh|Sin(¢vv + ¢hh) >= 0.

In fact, the complex random variable S,,S); is obtained from a similar Wiener process



which led to the random variables Sy, and Sy;. On the other hand

X1X3 - XXy = |va||Shh| COS(¢vv + d’hh)

(10)
X1X4 + X2X3 = IvaHSth Sin(¢vv + ¢hh)-
In view of (9) and (10) it can easily be seen that
/\13 = )\24 (11)
Alg = —Ag3 (12)

The properties derived for the entries of the covariance matrix, as given by (5)-(8) and
(11)-(12), indicates that there are only four unknowns left in the covariance matrix. The
unknowns, namely A1, Ars, Ai4, and Ags, can be obtained directly from the averaged
Mueller matrix of the target as will be shown next.

The Mueller matrix relates the scattered-wave Stokes vector to the incident-wave

Stokes vector by [van Zyl and Ulaby, 1990]
W:%MP
T

where F* the modified incident- and scattered-wave Stokes vector defined by

|Ey|?
| Ex|?

2R(E, E}]

23(E,E}] |

The Mueller matrix can be expressed in terms of the elements of the scattering matrix



as follows [6]

|va|2 Isvh|2 §R[‘S':';hsvvl

|Shol? |Shal? R[Sh, Sho

R[S0 St 2RISkoSTA] RISuuShy + ShuSi] ~S{SwuSiy — ShuSi]

29’[va5}:11] 2(‘\3[Shvsl,:h] g[‘S'uvs;‘z‘h'*"S'hvS;‘h] §R[‘S'mﬂ-(’vl’:h_‘Svhvsz’:‘h] ]

=[5k Sw]

~S(Si1 Sho]

In the case of a random medium we are dealing with a partially polarized scattered

wave and the quantity of interest is the ensemble averaged Mu

eller matrix. Using the

fact that the co- and cross-polarized terms of the scattering matrix are independent and

employing the properties given by (5)-(8) and (11)-(12), the averaged Mueller matrix in

terms of the entries of the covariance matrix is given by

( 2\11 207 0 0
20‘3 2/\33 0 0
M=<M>= (13)
0 0 2)\13 + 20’3 2>\14
0 0 —2/\14 2)\13 - 20’3

Equation (13) provides enough equations to determine the un

known elements of the

covariance matrix and variance of the cross-polarized component, i.e.

2 . Mo
O = 2
M= Mu, hag = M2
A3 = an:‘itﬂu, A\ = Miu

With the covariance matrix, the joint density function of X7,

+++, X4 can be obtained

as given by (4). Using a rectangular to polar transformation, i.e.

T1 = p1COS Pyy,

Ty = p1Si0 Py,

T3 = p2COS Ppp, T4 = p2sin@pp



the joint probability density function of the amplitudes and phases takes the following

form

1 1
Fo1,02,800,0nn (P15 P25 Puvs Php) = mmpzexp {—E[alpf + agp3 - 20391;02]} (14)

where

A= [Al= (Andas — My - A2’
a1 = As/VA, az = An/VA
a3 = [A13cos(Pnp — duy) + Mg sin(dpn — duo)] / VA

To obtain the co-polarized phase difference statistics the joint density function of ¢,

and ¢pp is needed which can be obtained from

o0 [o 0]
fq’vv,q’hh(¢vl/7¢hh) = ‘[) /0 fp1,p2,<I>uu.<I>hh(PlaP2, ¢vm¢hh)dP1dP2 (15)

Noting that a; is a positive real number, the integration with respect to p; can be carried

out which results in

_ 1 1 f® _ap,
f@uu,¢hh(¢uvy¢hh)— 4W2¢Z{TA poe” 2 2dp2

T oo 2 |a3| ] —-2-‘1‘-(0,10.2—0%)[)%
+‘,_8a?a3[) 03 [lierf(\/STIM) e 2a dp2
(16)

where erf() is the error function and the plus or minus sign is used according to the sign
of az. To evaluate the integrals in (16), we need to show that both a; and a;ay — a3 are
positive numbers. By definition, a; is positive and to show a;a; — a3 is positive we note
that A is a symmetric positive definite matrix, therefore its eigenvalues must be positive.
It can be shown that A has two distinct eigenvalues v; and 7, each with multiplicity 2

and their product is given by

MY2 = M1daz — Ay — Al > 0.



Thus

a162 — a2 = 7172 + [M3 c0s(Phh — duv) — Arasin(Bpp — buo )]’

is positive. After integrating the first integral and the first term of the second integral in
(16) directly and using integration by parts on the second term of the second integral,

(16) becomes

2
1 a3

1
Jauu 2 (Y00, 911) = 4r2/A {ala2 * aiaz(aaz — a — 32%)

oo
e )
1141 - U3

By expanding the error function in terms of its Taylor series, interchanging the order of

summation and integration, then using the definition of the Gamma function it can be

shown that
*© |as)| — 5 (a1a2—a3)p2 2a, -1 |as]
erf e 21 372dpy = | ————tan —_—_—
/0 ( Ras p2) P2 7(a1az — a?) 9 /a1a2 —a?

The joint density function of ¢,, and ¢ is a periodic function of ¢ = ¢pr — ¢y,
and therefore the random variable ¢, after some algebraic manipulation, can be shown

to have the following probability density function over the interval (-7, +)

_ /\11/\33 - /\33 - /\%4
f¢(¢) - 27r ()\11/\33 - D2)

{1 + D [g + tan~!

where we recall that

D = Ajzcosd + Ayysing

and the elements of the covariance matrix in terms of the Mueller matrix elements are

10



given by

M M
Ay = 211 has = 222

M3z + Myy Mazy — My
Ma= ——— Au= ——

Some limiting cases can be considered in order to check the validity of (17). For example,
when Sy, and S}, are uncorrelated, then both Ai3 and Ay4 are zero for which fe(¢) =
1/(27), as expected. Also, for the case of completely polarized scattered wave where S,
and Sy are completely correlated, the determinant of A is zero and so fg(¢) is a delta
function. It is interesting to note that the p.d.f. of the phase difference is only a function

of two parameters defined by

[22, 422, 114
oa=\——=, =tan™ " —
A11A33 ¢ A13

where o and ¢ can vary from 0 to 1 and 0 to 27 respectively. In fact if the wave were
completely polarized, ( would have been the phase difference between the co-polarized
terms. The parameter ¢ will, henceforth, be referred to as the polarized-phase-difference.

In terms of these parameters (17) can be written as

1-a?
27 [1 — a? cos?(¢ — ()
acos(¢ — () 7r+t -1 a cos(¢ - () ]}

fo(9) =

b V1 —-02cos?(¢ - () gt V1 - a?cos?(¢ - ()

It can be shown that the maximum of the probability density function occurs at ¢ = ¢
independent of a. However, the width of the p.d.f. (e.g. the 3 dB angular width) is only
a function of & which will be referred to as the degree of correlation. Figure 1 shows the
p.d.f. for different values of  while keeping a constant, and Fig. 2 shows the p.d.f. for
a fixed value of o while changing ( as a parameter. The calculated mean and standard

deviation of the phase difference as a function of both the polarized-phase-difference and

11



the degree of correlation are depicted in Figs. 3 and 4 respectively.

Lastly, it is necessary to point out that the formulation of the co-polarized phase
difference p.d.f., as given in (17), is not restricted to the backscattering case or to the
co- and cross-polarized components being uncorrelated. In fact we can derive the cross-
polarized phase difference statistics in a similar manner and the p.d.f. in this case for
the backscattering case can be obtained from (17) upon the following substitution for

the elements of the cross-polarized covariance matrix

M M
= Mr ap= Ma
Mia My
Mz = 55 Mg = =5

3 Comparison with Measurements

Using the polarimetric data gathered by scatterometers from a variety of natural targets,
the assumptions leading to the probability density function of phase differences as derived
in the previous section are examined. Also by generating the histograms, means, and
standard deviations of the phase differences from the data and comparing them with
the results based on the p.d.f. derived from the measured averaged Mueller matrices
validity of the model is also examined. The polarimetric radar measurements of bare soil
surfaces were performed at L-, C-, and X-band frequencies for a total of eight different
soil surface conditions (four roughness and two moisture conditions). For this experiment
we tried to preserve the absolute phase of the measured scattering matrix by calibrating
the surface data with a metallic sphere located at the same distance from the radar as
the center of the surface target. For each frequency, surface condition, and incidence

angle a minimum of 700 independent samples were collected. The detailed procedure of

12



the data collection and calibration is given in reference [5].

By generating the histograms of the real and imaginary parts of the elements of the
scattering matrix for all surfaces, it was found that they have a zero-mean Gaussian
distribution as we assumed. Figure 5 represents a typical case where the histogram of
the real and imaginary parts of Sy, and Sk of a dry surface with rms height 0.32 cm
and correlation length 9.9 cm at C-band have a bell-shaped distribution. The properties
of the covariance matrix as given by (5)-(8) and (11)-(12) are verified by calculating the
covariance matrices of the data for all cases. Table 1 represents a typical situation where
the covariance matrix for the same rough surface at C-band possesses the mentioned
properties approximately, that is Ad;y & Az, A2 & Azq & 0, A3z & Ay, A1z & Mgy, and
A14 & —A23. The small discrepancies are due to the fact that the measurement of the
scattering matrix with absolute phase has an uncertainty of £30 degrees.

Table 2 gives the averaged Mueller matrix of the typical surface (Table 1) at C-band
from which the co- and cross-polarized phase difference probability density functions
are calculated using (17) and are compared with the measured phase histograms in
Figs. 6 and 7 respectively. Similar comparisons were also made for the rest of surfaces,
frequencies, and incidence angles and it was found that the expression (17) predicts the
density functions very accurately. Some example of these comparisons are shown in Figs.
8 and 9. Figures 8 and 9 compare the mean and standard deviation of the co-polarized
phase difference versus incidence angle at L- and X-band for a surface with rms height
0.4 cm and correlation length 8.4 cm in dry condition using the results based on the

direct calculation and the results derived from (17).

13



4 Conclusions

The statistical behavior of the phase difference of the scattering matrix elements for
distributed targets is studied. The probability density functions of the phase differences
are derived from the averaged Mueller matrix of the target. The derivation of the density
functions assumes that the real and imaginary parts of the co- and cross-polarized terms
of the scattering matrix are jointly Gaussian and their covariance matrices are found in
terms of the averaged Mueller matrix. The functional form of the co- and cross-polarized
density functions are similar and are obtained independently. The assumptions and final
expressions are verified by using a set of polarimetric data acquired by scatterometers

from rough surfaces.
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0.69

Table 1: Normalized covariance matrix of co-polarized terms of scattering matrix for a

surface with rms height 0.3 cm and correlation length 9 cm at C-band and at 30 degrees

incidence angle.
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0.030

0.767

0.000

0.000

0.000

0.000

0.770

0.110

0.000

0.000

-0.11

0.711

Table 2: Normalized Mueller matrix for a surface with rms height 0.3 cm and correlation

length 9 cm at C-band and at 30 degrees incidence angle.

17



MISSING
PAGE



0.020 ———4r————1———T———T———T— —_—
0=0.8

0015} i
Id)
e ¢=180 (=0 (=45 =90 (=135
o |

. ~ r
S ’/\ [\ 1 i
2 [ \ ! \‘,' |
g 0010 /' AW
O | [ \
a \[, .\
2
::‘é
[a+]
LD
e
0005

0.000 L

-180. -135. -90. -45. 0. 45 90. 135. 180.

., -®  (Degrees)

Figure 1: The probability density function of the co-polarized phase difference for a fixed

value of & (degree of correlation) and five values of ¢ (coherent-phase-difference)
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Figure 2: The probability density function of the co-polarized phase difference for a fixed
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Figure 7: The histogram and p.d.f. of the cross-polarized phase difference for a rough
surface with rms height 0.32 cm and correlation length 9.9 cm at C-band and 30° inci-

dence angle.
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Figure 8: Angular dependency of the mean of the co-polarized phase difference for a dry

rough surface with rms height 0.4 cm and correlation length 8.4 cm at L- and X-band.
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Figure 9: Angular dependency of the standard deviation of the co-polarized phase dif-

ference for a dry rough surface with rms height 0.4 cm and correlation length 8.4 cm at

L- and X-band.
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