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ABSTRACT

MICROWAVE PROPAGATION THROUGH CULTURAL
VEGETATION CANOPIES

The need to understand the interaction of microwaves with vegetation canopies has
markedly increased in recent years. This is due to advances made in remote sensing
science, microwave technology, and signal processing circuits. One class of the earth's
vegetation cover is man-made canopies, such as agricultural fields, orchards, and artificial
forests. Contrary to natural vegetation terrain, location, spacing, and density of plants in a
man-made vegetation canopy are deterministic quantities. As a result, the semi-deterministic
nature of cultural vegetation canopies violate the random assumption of the radiative
transfer theory and leads to experimented results that are in variance with model
calculations. Hence, an alternative approach is needed to model the interaction of
microwaves with such canopies.

This thesis examines the propagation behavior through a canopy of corn plants. The
corn canopy was selected as a representative of cultural vegetation canopies that are planted
in parallel rows with an approximately fixed spacing between adjacent plants. Several
experimental measurements were conducted to determine the transmission properties of a
corn canopy in the 1-10 GHz range. The measurements which included horizontal
propagation through the canopy as well as propagation at oblique incidence, were
performed for defoliated canopies and for canopies with leaves.

Through experimental observations and model development, the propagation
behavior was found to be strongly dependent on the wavelength and the path length. Ata

wavelength in the neighborhood of 20 cm, for example, it was found that scattering by the



stalks was coherent in nature for waves propagating horizontally through the canopy,
which necessitated the development of a coherent-field model that uses Bragg scattering to
account for the observed interference pattern in the transmitted beam. As the wavelength is
made shorter, the semi-random spacing between plants becomes significant relative to the
wavelength, thereby destroying the coherent properties of the propagating field, in which
case propagating wave becomes partially incoherent in nature.

Because of the short path lengths associated with oblique propagation through the
canopy, Bragg scattering need not be considered and a much simpler formulation was

found to provide good agreement with experimental observations.
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CHAPTER I

INTRODUCTION

1.1  Background

The need to understand the interaction of electromagnetic waves with vegetation
canopies has markedly increased in recent years. Sensors mounted on spaceborne
platforms offer enormous scientific potential for studying the earth's surface on a global
scale that was impossible before. Electromagnetic sensors operating in various parts of the
electromagnetic spectrum have been used for numerous applications. The more common
instruments operate in the optical, thermal-infrared, millimeter, and microwave regions of
the electromagnetic spectrum. Each band of the spectrum provides new information about
the target by virtue of its spectral properties.The ability of microwave energy to penetrate
clouds over a wide range of frequencies has made microwave remote sensing an attractive
tool for observing the Earth’s surface [Ulaby, er al., 1982]. A device operating in the
microwave region of the spectrum has the all-weather capability that is not shared by
others. Microwaves can penetrate a variety of land-covers, thus providing subsurface
information about the illuminated target. Furthermore, because radars provide their own
source of illumination, incidence angle and polarization are additional parameters that can
be used along with frequency to retrieve information about the earth's surface. Monitoring
the Earth’s vegetation cover is one of the objectives of todays microwave remote sensing

research, which has been examined by several researchers [Bush and Ulaby, 1978; Eyton,



1979; Brisco and Protz, 1980]. Agricultural applications of microwave remote sensing
include crop classification, and quality and quantity prediction of the final yield.

Besides remote sensing applications, horizontal wave propagation over the earth's
surface has also been of interest to researchers. With increased use of communication
devices, line of sight propagation of microwaves through forested areas has gained
increased consideration [Brown and Curry, 1980; Low, 1988]. Additionally, information
about plant biomass and other features of the vegetation canopies can be obtained by
measuring horizontal wave propagation through forests [Stutzman, et al., 1979]. In order
to utilize all these potentials, an understanding of the interaction between microwave energy

and vegetation canopies is necessary.

1.2 Models of the Earth's Vegetation Canopies

Earth's vegetation cover can be classified into two groups, natural terrain and man-
made canopies. Location, spacing, and density of plants in a natural vegetation cover tend
to be random in character. On the other hand, in man-made vegetation canopies such as
agricultural fields, orchards, and artificial forests, location, spacing, and density of plants
are deterministic quantities.

The randomness in natural vegetation covers provides justification for treating the
vegetation canopy as a statistically homogeneous medium and using random media
approaches to model propagation through and backscatter from vegetation-covered areas.
Traditionally, all volume scattering models developed for vegetation cover have considered
the canopies to be random in character. Solution of scattering from random media can be
pursued in a number of ways. Continuous and discrete random-medium techniques are the
two major approaches that are used to model natural vegetation canopies. In the continuous
case, the vegetation canopy is modeled by assuming that its dielectric constant € (x,y,z) is a

random variable whose moments are known [Fung and Ulaby, 1978; Fung, 1979; Lee and



Kong, 1985]. The analysis of the problem is carried out in two ways, the wave approach
[Lang, 1981; Eom and Fung, 1984] and the radiative transfer approach [Tsang and Kong,
1978; Tsang, et al., 1985; Ulaby, et al., 1986; Ulaby, et al., 1990]. If the density of
scatterers in the medium is low, single-scattering theory is applied to model the wave-
vegetation interaction [Engheta and Elachi, 1982; Lang and Sidhu, 1983; Karam, ef al.,
1987].

Models for man-made vegetation canopies are also needed for situations where the
location and density of plants are deterministic quantities, with some random fluctuations.
Many cultural vegetation canopies are planted in a row arrangement. For example, row
spacing is fixed, but within a given row the orientation, size and location of the constituent
particles could be either random or deterministic. For such a vegetation cover, which
includes orchards, row crops, plantations, and artificial forests, the random-medium
techniques may not be applicable over the entire microwave spectrum. We need a hybrid
model that treats the scattering problem in a semi-random fashion. That is, the
electromagnetic interaction between the constituent particles within a row can be obtained
using random or nonrandom-media techniques, but the interaction between the periodic
rows should be treated deterministically. So far, no report has been found that takes this
deterministic or semi-deterministic characteristic of man-made vegetation covers into
consideration in model development.

Most vegetation canopies are composed of trunks (or stalks), branches and leaves.
A model representation of each plant constituent is needed to be employed in scattering
models. In the literature, leaves are usually assumed to be small dipoles, spheres, or planar
dielectric disks, and stalks, trunks, and branches are modeled as circular homogeneous

dielectric cylinders.



1.3  The Purpose of Experiments

Experimental measurements not only can be used to check the validity of a model,
but they also can provide insight to guide the development of the theoretical representation
of the medium. Also, it is possible to conduct experiments that will help separate the
scattering contributions of the different constituents of a plant, thereby eliminating some of
the guess-work associated with modeling wave scattering in a vegetation canopy. Hence, in
this study, a series of experiments were performed first, and then the theoretical models
based on the experimental observations were developed.

Modeling the vegetation cover independently of the soil surface contribution will
reduce the complexity of the problem. Propagation measurements are one way of achieving
this goal and many investigators have attempted to measure the attenuation of microwave
energy by vegetation. Horizontal propagation at 16 GHz through a wheat canopy were
reported for both vertical and horizontal polarizations by Story et al. [1970]. Two-way
attenuation measurements for potatoes, oats, barley, and wheat at X-band, using a 45°
incidence angle and vertical polarization were reported by Attema and Kuilenburge [1974].
Kastern and Smit [1977] have also reported attenuation measurements of a potato field at
X-band at six different locations within the field with inconsistent results. Lopes [1983]
has documented horizontal attenuation through wheat stalks at 9 GHz for both vertical and
horizontal polarizations, and Ulaby and Jedlica [1984 reported one-way attenuation values
through corn and soybean canopies on a temporal basis at 10.2 GHz and 52° incidence
angle for vertical polarization. Allen and Ulaby [1984] reported height profile attenuation
measurements for a wheat canopy at 10.2 GHz and 52° incidence angle for a vertically
polarized wave and separated the head contributions of the attenuation from the stalk's
contribution. They also measured one-way attenuation of soybean at 10.2 GHz and 37°
incidence angle using a vertically polarized wave. The first result of multi-angle, multi-

frequency, and dual-polarized measurements were reported by Ulaby and Wilson [1984].



They have reported attenuation loss measurements for wheat and soybean canopies at L-,
C-, and X-band frequencies, 24° and 56° incidence angle, and for both polarizations. These
attenuation measurements show that the statistical distributions of the constituents of a plant
canopy, size, shape, and their dielectric properties determine the propagation loss factor at a
specific frequency, polarization, and incidence angle.

Because atmospheric losses are low in the L- to X- band frequencies, many remote
sensing probes operate in this frequency range. Furthermore, in terms of the dimensions of
canopy constituents, this 10:1 frequency range provides the opportunity to infer extensive
information about the canopy by observing its scattering properties at multiple frequencies.
As mentioned previously, a series of propagation measurement were made in this
frequency range for this study.

A canopy planted in corn was selected for conducting the experiments in support of
this study because a corn canopy is a useful representative of many types of row-structured
vegetation. The corn plants (Fig. 1.1) include a vertically oriented cylinder (the stalk) and
semi-randomly oriented leaves. In the above frequency range, the constituents of a comn
canopy exhibit weak scattering properties at the lower end of the range and strong
scattering properties at the higher end. A inodel that can explain the propagation properties
of a corn canopy should prove applicable to other vegetation canopies as well. Two
separate sets of experiments were conducted to measure the signal transmitted through a
corn canopy. The purpose of the first set of experiments was to study the effect of
polarization, frequency, and incidence angle on the propagating wave through the canopy
and its relation to the canopy parameters. The wave was transmitted at oblique incidence
with respect to the nadir and power attenuation measurements and polarization phase
difference measurements were performed. The experiments were performed over a wide
frequency range (1.5 GHz, 4.75 GHz, and 10.2 GHz), at many incidence angles (20°, 40°,
60°, and 90° from nadir), and for various canopy conditions (full and defoliated) at both

vertical and horizontal polarizations. The second series of measurements were aimed at



investigating the effect of row direction on horizontal propagation and its relation to the
propagating beam and canopy parameters. Beam patterns of the transmitted power and
phase were measured when both transmit and receive antennas were located at the same
height above the ground surface and the wave was transmitted horizontally. Frequencies of
1.5 GHz and 4.75 GHz were selected for these measurements, and the experiments were
performed for look directions both parallel and perpendicular to the row.

Measurements performed for this study have many advantages over the previous
attenuation measurements reported in the literature. To name a few, they include a wide
span of frequencies and incidence angles, measurements of the polarization phase,
extensive canopy parameter measurements, and horizontal-propagation beam patterns of

power and phase.

1.4 Propagation Models

In order to take advantage of the many uses of microwave sensors, the physics of
the wave-vegetation interaction must first be understood. This understanding can be gained
through theoretical electromagnetic investigations and extensive experimentation. The
former provides explanations for certain observations in the experiments, whereas the latter
verifies or refutes the proposed theories. Through these efforts theoretical models evolve.
The success of each model depends on how well the simulated data matches the
experimental measurements and the degree to which the guess work related to estimating
the canopy parameters has been eliminated. In microwave remote sensing, soil conditions,
plant constituent sizes, plant density, and plant dielectric constant are among the canopy

parameters needed for successful verification of the proposed models.



Figure 1.1 A corn plant composed of a stalk, leaves and cobs



The role of the soil in radar backscattering has been studied extensively by several
researchers [Batlavala and Ulaby, 1977; Ulaby et al., 1982; Dobson et al., 1986]. The
relations between the water content of the plant constituents and their dielectric constant
have also been examined [Ulaby and El-Rayes, 1987; Sarabandi et al. 1988]. The area that
needs much further research is the interaction of the electromagnetic wave with the
vegetation canopy. One of the first theoretical models to successfully relate radar
backscatter to vegetation parameters [Attema and Ulaby, 1978] used experimental data to
estimate some of the model parameters. As models become more elaborate, their
dependence on experimental data for modeling purposes diminishes and the experimental
tasks are then only performed to check the validity of the theoretical models.

The microwave attenuation coefficient of a vegetation canopy is one of the key
inputs in volume scattering models. Propagation models are also needed when direct
transmission through the canopy is of interest. There are many approaches to characterizing
attenuation by vegetation canopies. In 1984, Ulaby et al. [1984] considered leaves to be
thin layers of a lossy dielectric material, and then proceeded to model the scattering along
two approaches. In the first approach, the dimensions of the leaves were assumed to be
much larger than the wavelength and the leaves were assumed to be horizontally aligned.
The coherent transmissivity through a leaf layer was calculated and a multi-layer
transmissivity approach was adopted to account for all the leaves in the volume. The
second approach treated the leaves as small (compared to the wavelength), lossy, disk-
shaped inclusions of finite thickness, and a dielectric mixing formula was used to obtain the
effective dielectric constant of the volume. The second approach was further extended by
Allen and Ulaby [1984] and Ulaby and Wilson [1984] to model the attenuation of vertical
stalks of wheat. The stalks were assumed to be very thin compared to the wavelength and
oriented vertically. Dielectric mixing models for needles oriented vertically in air were

adopted to obtain the effective dielectric constant of the medium. These approaches, even



though successful at certain frequencies and for certain vegetation types, can not be
extended to the entire microwave spectrum and other crop types.
In radiative transfer theory, the extinction matrix characterizes the attenuation of the

Stokes parameters due to absorption and scattering [Ulaby et al., 1986]. The extinction

p

cross section, O, (p='V or H), can be calculated by applying the optical theorem and is

given by

P _An .

where Spp(8;, ¢, ;0, ¢; ) is the forward scattering amplitude of a single scatterer. The

extinction coefficient, Kp is obtained through Kp= N< cp >, where N is the number of

ext

particles per unit volume and < > denotes ensemble average over sizes and orientations.
Since in radiative transfer theory the wave propagates incoherently, phase information of
the propagating wave is not incorporated in the model. Recently, backscatter phase
measurements have been Shown to contain useful information about the target, which
indicates the need to develop models that predict the phase properties of the scattered wave
[Ulaby, et al.,1987].

In summary, previous propagation models have many limitations. First, phase
information is not considered in most models. Second, those models that incorporate phase
are only applicable in the Rayleigh region where the size of the scatterers are small
compared to the wavelength and only absorption loss is taken into account [Ulaby et al.,
1984]. Finally, these models are only applicable to wave propagation in random-media and
their applicability to wave propagation in man-made semi-deterministic media has not been
investigated. The goal of this thesis is to develop propagation models for semi-deterministic
vegetation media. Both propagation at oblique incidence and horizontal propagation
through periodic structures are considered. Through model development and
experimentation, it was concluded that for the case of oblique incidence a random-medium

approach is quite satisfactory. This result can be attributed to several reasons. The plant
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constituents are different at various canopy heights, therefore, the wave does not go
through identical environments in different rows. Another reason is that the propagating
wave travels through a very limited number of rows and, as a result, row periodicity does
not exercise much influence on the propagating wave. A general random-medium model
that takes both absorption and scattering losses into consideration is developed and
presented in chapter I, along with the corresponding experiments. Then, for modelling
purposes, stalks are modeled as infinitely long dielectric cylinders. Two frequency regions
for modelling the leaves are considered. At low frequencies, where leaf surface dimensions
are small compared to the wavelength, leaves are modeled as randomly oriented circular
disks and dielectric mixing models are used to represent them. When the surface
dimensions of the leaves are much larger than the wavelength, leaves are modeled as
randomly oriented dielectric slabs of arbitrary shapes. By application of the resistive sheet
model, together with the physical optics approximation, the scattering properties of leaves
are then calculated.

Chapter III contains experimental procedures and model developments for
horizontal propagation through man-made vegetation canopies. The corn canopy under
investigation was planted in a row arrangement with plants periodically distributed in each
row. Through experimentation, we found that a deterministic approach that accounts for the
periodicity of the rows and plants is needed in order to characterize wave propagation
through such canopies. In the developed model, stalks are represented as infinite cylinders
and a two-dimensional deterministic wave approach is used to model wave propagation in
the defoliated canopy. The effect of leaves when their surface dimensions are much smaller
than a wavelength is further incorporated in the model.

When the leaf surface dimensions are comparable to or larger than a wavelength,
their presence in the canopy makes the coherent wave approach impractical. Strong
incoherent scattering by the leaves takes over the coherent scattering by the stalks. As a

result, the periodicity between plants in each row becomes unimportant, but row periodicity
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is still important. A two-dimensional periodic radiative transfer technique is developed for
this situation. Stalks are modeled as infinitely long dielectric cylinders again, and leaves are
presented as resistive strips. Chapter IV contains a brief review of the radiative transfer
formulation and the development of the two-dimensional model. Chapter IV also includes
comparison of this model with the measured data of chapter III. The conclusion chapter,
chapter V, contains a summary of the results of the research presented in this dissertation

and a list of topics recommended for future work.



CHAPTER II

MICROWAYVE PROPAGATION CONSTANT
FOR A VEGETATION CANOPY WITH
RANDOMLY POSITIONED PLANTS

2.1 Introduction

In microwave remote sensing, the energy backscattered from a vegetation canopy
consists of three major sources: direct backscattering from plants, direct backscattering
from the soil attenuated twice by the canopy, and multiple scattering due to plant-soil
interactions. Hence, models representing the attenuation loss factor of the canopy must be
developed and incorporated into the canopy backscattering models. Information about wave
transmission through vegetation media is also needed when line of sight propagation is
considered. Some natural vegetation canopies consist of randomly located plants each
having a vertical trunk and randomly oriented leaves. In contrast, many man-made
vegetation canopies are planted in a row arrangement, but also with plants made of vertical
stalks surrounded by randomly oriented leaves. The purpose of this study was to
characterize wave propagation at oblique incidence on a man-made vegetation canopy.
Through model development and experimentation, it was concluded that a random-medium
approach is applicable when the wave is obliquely incident upon the canopy or when the
horizontal-propagation path does not exceed a few rows. This result can be attributed to
several reasons. First, the plant constituents at the various canopy heights are different,

causing the wave not to go through identical environments in the different rows. Second,

12
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the propagating wave travels through a very limited number of rows and, as a result, row
periodicity does not affect the propagating wave. Based on these observation, a random-
medium propagation model was developed. This propagation model, which is applicable to
man-made vegetation canopies at oblique incidence and natural vegetation canopies at both
oblique incidence and horizontal propagation, makes no assumption on the individual
shapes of the scatterers and takes both absorption and scattering losses of the canopy
constituents into account.

The experimental study of this research was performed on a corn field. A corn plant
consists of a stalk surrounded by leaves (Figure 1.1). At very low frequencies, where plant
constituent dimensions are much smaller than a wavelength, both stalks and leaves are
weak scatterers and quasi-static models can be used to model the vegetation canopy [Allen
and Ulaby, 1984; Ulaby and Wilson, 1984]. As the frequency of operation increases, the
stalks' dimensions become comparable to the wavelength and behave as strong scatterers
and quasi-static models are no longer applicable [Ulaby et al., 1987]. At still higher
frequencies, leaf dimensions also become comparable to the wavelength and scattering by
leaves must also be taken into consideration. In this study, it was concluded that at the L-
band, C-band, and X-band frequency ranges, corn stalks are always strong scatterers and
quasi-static approaches are not applicable to them. Corn leaves on the other hand, exhibit
quasi-static behavior at L-band (1.62 GHz), but not at C- and X-bands (4.75 and 10.2
GHz, respectively). Therefore, in the model stalks are represented as infinite dielectric
cylinders, but leaves as randomly oriented dielectric disks in the Rayleigh region and
randomly oriented resistive sheets of arbitrary shapes in the X-band region. Neither
representation is appropriate for leaves at C-band, since the leaf dimensions are comparable
to the wavelength.

The experimental measurements are presented in section 2.2. They include
simultaneous coverage of wavelength, incidence angle, and polarization. Section 2.3

contains the general development of the propagation model. Section 2.4 presents the
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application of the model to the defoliated canopy ( stalks only) and sections 2.5 and 2.6

discuss the inclusion of the leaves in the model at L-band and X-band, respectively.

2.2 The experiment

Measurements of the transmission loss through a corn canopy were made at
incidence angles of 20°, 40°, 60°, and 90° for both vertical and horizontal polarizations
where the 90°-case represents horizontal propagation through the canopy. In addition, the
phase difference between the vertically and the horizontally polarized waves transmitted
simultaneously through the canopy was measured. The configurations used are illustrated
in Figure 2.1. The transmitters for the 20°, 40°, and 60° measurements were placed on a
truck-mounted platform at a height of 11.5 m above the ground surface and the receivers
were placed underneath the canopy. For the 90° measurement, the transmitter platform was
placed on the truck bed and the receiver was placed on a wooden platform whose height
above the ground was the same as that of the transmitter. Because a vegetation canopy is an
inhomogeneous medium at microwave frequencies, its coherent attenuation coefficient
should be treated as a random variable. Consequently, to measure the mean attenuation
with a reasonable degree of precision, it is necessary that the estimate be an average over a
large number of statistically independent samples. Therefore, the arrangement shown in
Fig. 2.2 was used to get statistically independent samples. The receiving platform was
placed on a rail system on which it slid in synchronism with the motion of the truck as it
was pulled by a rope connected to the truck through a pulley system.

The transmitters used three dual-polarized dish antennas with center frequencies of
1.62 (L-band), 4.75 (C-band), and 10.2 GHz (X-band). Table 2.1 presents a summary of
the overall system specifications, including antenna sizes, beamwidths, and canopy
parameters, and Fig. 2.3 is a block diagram of the receiver configurations used for power

(amplitude) and phase measurements.
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Figure 2.2 The pulley system was used so that as the truck moved forward,
the transmit and receive antennas moved in space at exactly the same
speed, thereby maintaining line of sight.
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Antenna beamwidths
L-Band C-Band X-Band
Transmitter 7.8° 4.6° 4.7°
Receiver 90.2° 53.1° 24.7°

Incidence Angle Information

Distance between 2° 4 o0° xN°
Transmitter and Receiver 117m 143 m  220m 130m
Transmitter Height 115m  115m 115m 12m
Receiver Height 03 m 03m  03m 0.3m
Slant path in canopy 26m  32m 48m  22m
Canopy Parameters
Average row spacing: 0.76 m Stalk gravimetric moisture: 0.77
Average plant spacing: 0.20 m Leaf gravimetric moisture : 0.72
No. of plant per unit area : 6.6 Stalk volume fraction = 0.0035
Stalk diameter: 2.8 cm at base Leaf volume fraction = 0.00058
1.8cmatl2m Leaf area per unit volume : 0.78
0.6 cm at top Average leaf thickness: 0.27 mm

Table 2.1 Characteristics of the measurement system and the canopy
parameters
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Figure 2.3 Block diagrams of the receivers used to measure (a) the amplitude
of the received signal and (b) the phase difference between the V-
polarized and H-polarized signals
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The amplitude receiver consisted of microstrip patch antennas at L-band and dual-polarized
horn antennas at C-band and X-band connected to a microwave detector, which in turn,
was connected to a power meter through a 50-m coaxial cable. The output of the power
meter was recorded on a strip-chart recorder for immediate display in the field as well as on
a digital cassette recorder (using an HP 85 computer) for later analysis. The canopy loss
factor L is defined in dB as
P0

L=101log (—P_r—) (2.1
where P; is the power received when the canopy is present and Py is the free-space level
received under identical conditions (antenna pointing, range between transmitter and
receiver, etc.) but without an intervening canopy between the transmitter and the receiver.

The phase measurement refers to the phase difference A¢ between the vertically
polarized (V) and horizontally polarized (H) waves transmitted through the canopy. On the
transmitting side, H- and V-polarized waves were transmitted simultaneously by the dual-
polarized antennas. At the receiver, the outputs of the antenna H- and V-polarization ports
were down-converted in frequency to 20 MHz and then relayed to a network analyzer
through a pair of 50 -m coaxial cables (Fig. 2.3). The phase difference measured by the
network analyzer was recorded on a strip-chart recorder and on a digital recorder.

By cutting and removing the corn plants from an approximately 3-m wide strip on
both ends of the canopy area (Fig. 2.2), it was possible to establish a free-space reference
signal for both the amplitude and the phase measurements. Furthermore the stability of the
signal across each of the 3-m wide strips provided an indication of the presence (or
absence) of multiple ground reflections. As an additional test, the entire corn canopy was
cut and removed at the conclusion’ of the experiments and direct free-space transmission
measurements were made across the entire 10-m wide test area. The variability in the

reference signal was found to be within £ 0.3 dB for amplitude and+ 4° for phase.
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Measurements were conducted for a full canopy of stalks and leaves and then, the
plants were defoliated and the measurements were repeated for the stalk canopy. Amplitude
measurements were performed at all three frequency channels, four incident directions,
and both polarizations. The polarization phase-difference measurements were made at L-
band and C-band only, and the incidence angles were limited to 20°, 40°, and 90°.

Field measurements were performed to determine the density of plants, leaves, and
stalks, row spacing, and the geometric sizes of stalks and leaves. In addition, samples were
processed in the laboratory to determine their moisture contents. Figure 2.4 shows spectral
plots of the relative dielectric constant of corn leaves and stalks at the moisture contents

given in Table 2.1 based on the formula reported by [Ulaby and El-Rayes, 1987]:

€'=(0.429 +0.074 f) + (14.62 - 0. 834 f)rn +(39.396 - 0. 616f) mé

e'=0.59 - 2911 0,599 fym , + (0.463 + 2% 238 1 enm? @2
40
§ 30 i N w.\-.“.,....A..,“....A.\..s.x-.u...”..w....‘.h__
2 \ €' stalks
g
&) L T ¢" stalks
2
§ L o g leaves
) 0~ 7| T €' leaves
(=

Frequency (GHz)

Figure 2.4 Dielectric constant of the corn leaves and stalks as a function of
frequency. The moisture contents were mg=0.82 for the stalks and
mg=0.71 for the leaves.
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where f is the frequency in GHz and m, is the gravimetric moisture content of the stalks or

leaves.

As examples of the measured power of canopies containing both stalks and leaves,
Figs. 2.5, 2.6, and 2.7 display the power level recorded by the digital tape recorded at L-
band, C-band, and X-band at 60° incidence angle and their corresponding histograms.
Each figure contains records for both H and V polarizations. The relatively flat levels at the
ends of each record represents the free-space reference level of the received signal. The
canopy transmission loss is measured in decibels relative to this reference level. It can be
seen that as frequency of the operation increases the fluctuations in the received signal also
increases. Figure 2.8 illustrates the received power when only stalks are present at X-band
and 60° incidence angle. Close inspection of the recorded data reveals that at L-band stalk’s
contributions to the loss is much higher for V-polarization than H-polarization, but this
difference reduces as frequency increases. Leaves are the main cause of the loss in the

entire measurement frequency spectrum and they almost display the same level of loss at

both polarizations. Another observation is that in the absence of leaves, the record of Ly(x)

contains more high-frequency fluctuations than the record of Ly(x) does, which indicates

that the coupling between the propagating wave and the stalks is strongly dependent on the
stalk’s orientation relative to the direction of the wave’s electric field. When leaves are
present, diffuse scattering increases, thereby reducing the sensitivity of L(x) to the
polarization of the propagating wave.

Figure 2.9 is an example of the phase measurements and their histograms when
only stalks are present at 90° incidence angle at (a) L-band and (b) C-band. Observations
suggest that at L-band the vertically polarized wave leads the horizontally polarized wave,
while at C-band the vertically polarized wave lags the horizontally polarized wave. The

frequency of fluctuations at C-band is also higher than at L-band.
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Figure 2.5 Received power at L-band as a function of spatial position,
measured for a full corn canopy with (a) H-polarization, (b) V-
polarization and corresponding histograms (c) H-polarization, and (d)
V-polarization.
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Figure 2.6 Received power at C-band as a function of spatial position,
measured for a full corn canopy with (a) H-polarization, (b) V-
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Figure 2.7 Received power at X-band as a function of spatial position,
measured for a full corn canopy with (a) H-polarization, (b) V-
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Figure 2.8 Received power at X-band as a function of spatial position,
measured for a defoliated corn canopy with (a) H-polarization, (b) V-
polarization and corresponding histograms (c) H-polarization, and (d)
V-polarization.
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Figure 2.9 Measured propagation phase difference between the vertically
polarized and horizontally polarized waves as a function of spatial
position for a defoliated corn canopy at (a) L-band, (b) C-band and
corresponding histograms (c) L-band, and (d) C-band.



27

2.3 Theoretical Model

The following theoretical development pertains to a general medium comprised of
two-dimensional and three dimensional scatterers. The canopy is modeled as a slab-like
region containing both two-dimensional and three-dimensional scatterers. Then, the
equivalent dielectric constant of the medium based on the scattering properties of the
scatterers in the medium are derived. Later, the stalks are modeled as infinitely long
dielectric cylinders pointing in the Z-direction (two-dimensional scatterers) ; and the leaves
are modeled as thin (compared to the wavelength) dielectric disks or sheets (three-
dimensional scatterers). We seek an expression for the propagation constant y of an
equivalent dielectric medium such that it is applicable at any incidence angle 6 relative to the
z-direction for both H- and V-polarization configurations. The slab contains two-
dimensional scatterers (cylinders, stalks) with identical dielectric properties but not
necessarily identical diameters, and statistically similar three-dimensional scatterers (leaves)
with prescribed orientation and size distributions. Figure 2.10 represents a narrow layer of
the canopy. It is assumed that the scatterers are sparse and interaction between them is
negligible. The incident field travels in the x-direction and can be represented as

L inc ikox
=p¢ (2.3)

ot

-1 . A . . ‘,
where ¢1®" is assumed and suppressed and p is a unit vector representing the wave

polarization. The total field at the observation point P(x,,0,0) is composed of three parts:
(1) the direct incident field at P, (2) the field due to scattering by the three dimensional
scatterers (leaves), and (3) the field scattered by the two-dimensional scatterers (stalks).
The fields corresponding to terms (2) and (3) will each be derived separately and then will

be added to the incident field at point P.
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For a sparse medium, the incident field on the ntl leaf located at (Xp»YnsZp) 18

represented by:

> A ikoxn
Up=pe 2.4)

Assuming the observation point is far away from the slab, the scattered field due to this leaf
observed at P(xO,O,O) is given by

ik r
1 ik.x_ o ‘0'n
=1 1XoXne 3 A
Un-—-e korn Sn(rn) (25)
y
A
= - _/_§>| Three dimensional scatt
I /Q e dimensional scatterers
’ﬁ | (leaves) (%, ,yn,zn)
[— : . .
——— < (D Two dimensional scatterers
H © (stalks)  (x .y,)
_.|_>

Incident wave

I

Figure 2.10 Geometry of a narrow slab containing leaves and stalks and the
observation point P
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where r, is the distance between the nth leaf and the observation point and § o ( T a) 18

the scattering amplitude of the leaf for scattering in direction f‘n (Fig. 2.10). Since the
medium is sparsely populated (vegetation volume fraction in a canopy is typically less than
1%), multiple scattering between the leaves may be ignored. Thus the total scattered field at
the observation point is the superposition of contributions of all individual leaves in the

slab, i.e.

o 0°n 3 A
U=>Ye T Sa(f) (2.6)
If N, the number of leaves per unit volume in the medium, is large, then the

summation in (2.6) can be approximated by

rv

. k
| ik x'
T o 0 9___ Q — [ ] ] '
U -N”Jc kor' <S(x0,x,y,z) > dx'dy 'dz Q2.7)

where <§ (XO; X', vy, z") > is the scattering amplitude averaged over the prescribed size

and orientation distributions. To evaluate (2.7), two changes of variables are in order.
First, the integration in y'-z' plane can be performed by cylindrical variables p' and ¢',

therefore,

vonffe e <S(x0,x p.o'>pdpddds’  (pg)

where r'="\ p2+(x¢-x")2.
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Second, the integration with respect to p' and x' can be performed by changing to

variables v and p defined by:

H=tan ' (2.9)

In (2.9), p is the angle between forward scattering direction (x-axis) and the observation

point P (Fig. 2.10). Thus (2.8) becomes

Ul_—_ N J.21t J,d/ZCikOV

0 -d/2
. XO"‘V
7 . e 0 COSp
JO<S(1t—u)>-1-(0m—su(x0—V)tanudu dv do' (2.10)

If the observation point is far away from the slab, that is kox > > 1, then the

0

integrand of (2.10) rapidly changes with small changes in p for values of u away from zero
(=0 is the stationary phase point). Therefore, the integral is dominated by the contribution

of the integrand around the stationary phase point where the integrand can be approximated

by its Taylor series expansion, i.e.,

jo<§(n)>e » (xg=V) pdu dvde 2.11)
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Direct evaluation of (2.11) leads to

k (2.12)

Following a similar approach, we can derive an expression for the total field due to

scattering by the stalks. The field incident on the mth stalk located at (x0,Y0) 1s given by

ik x

Un=pe (2.13)
which gives rise to a scattered field at point P(x,0,0) given by [Stratton, 1941]
Ls kx5 iacopm—§>T )
U, =¢ T m(Pm) (2.14)

where T m(Pm) is the scattering amplitude of the stalk for scattering in direction p . and

P, 1s the distance between the stalk and the observation point. The total scattered field at

point P due to the contribution of all the stalks in the slab is

.S ik x ) ik oP
— 0°m m 4

If M, the number of stalks per unit area of the medium, is large, then the summation

(2.15) can be approximated by
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.S 1— ik x elk P
U =M “ e <Tu(xgixey) > dxdy" 516

where <_'I°‘m(x0; X, y') > is the scattering amplitude averaged over the prescribed

cylinder diameters. The total scattered field at P due to the two dimensional scatterers,

derived in a manner similar to that used previously for the three dimensional scatterers, is

.S ik x -
Uze O O%a(n» 2.17)
0

where < T(m) > is the forward scattering amplitude of the stalks, averaged over the
specified diameter distribution.

The total field at the observation point P is

ot k

U=e 0 0p42Md gy 128N g
k 2 (2.18)
0 kK,

Now, if we represent the thin layer of scatterers by an equivalent homogeneous dielectric

slab with the index of refraction n, the total field at P would be

t 1k X, 1(n—1)k0d

k x
=pe O 0[1+i(n—1)k0d] (2.19)
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The Taylor series expansion used in the above approximation is justified by the fact
that d is small, n'=Re[n] =1 and n"=Im[n] <<1. Upon equating (2.18) and (2.19), we

obtain the following expression for the index of refraction of the equivalent medium

n=n'+n"
n =1—12M<T(n)>+ 27N g (m) > (2.20)
p 2 p 3 p

kO k0

where S (™ =§p(n), p and T (n)= _Tp(yt), p. The subscript p is used with np to

emphasize its dependence on the wave polarization vector p. The propagation constant of

the equivalent medium Y, is related to n, by

Yp=Kon, =k, +in" ) 2.21)

and since 1 Yp =- 0+ Bp, the attenuation constant ap and phase constant Bp are given

p
by

ap=k0n"p, p=VorH

Bp=kyn'p, p=VorH (2.22)

The power extinction coefficient «p is associated with propagation of the mean field

through the layer and incorporates losses due to both scattering and absorption by the

scatterers. The loss factor L corresponding to propagation over a distance d is given by
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L =4343 X d =8.686 ko np" d, dB. (2.23)

The polarization phase difference for one-way propagation is defined by
Ap=By-Byd=kyd(n'-n'y). (2.24)

In the above derivation no assumption on particular shape and sizes of the scatterers
are made. By selection of appropriate models for single scatterers, the model can predict the

average power and phase properties of the propagating wave.

2.4 The Defoliated Canopy

As mentioned before, stalks can be modeled as infinitely long cylinders oriented
vertically in the z-direction. For a defoliated canopy the contribution of the three-
dimensional scatterers (leaves) in equation (2.18) must be ignored. Hence, the equivalent

index of refraction of the defoliated canopy is given by

i2M
n,=1- l_ki— <Ty(m) > (2.25)

0

Because the wave is obliquely incident on the cylinders, the scattering amplitude Tp will be
a function of the incidence angle 8. Also, M, the number of cylinders per unit area in the

plane of propagation (defined as the plane containing the direction of the propagation and

the y-axis) is related to the number of plants per unit area on the ground, M_ by

g

M= Mg sin 0 (2.26)
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The V- and H-polarized forward scattering amplitudes of the cylinders are given by [Ruck,

et al., 1970]

o0

N ™
T@m=gg X C ®
1 - TE
T 0 m=— ,,ZZ_WC“ ®) (2.27)

where the functions C};M(G) and CﬁE(G) for cylinders with diameter aj and relative
permittivity & are given by :
® 2
™ VaPa- @RI (xH (x ) T5(x)

PuN, - (4, Hy (x ) Tp(x )]

®m 2
1 MaNy =il (x 0 H, (x) Jh(x)
clF=- 0 . (2.29)
PN, —[q, Hy (x )T (x))]

(1

where Jj, and H | “are Bessel and Hankel functions of the first kind of order n, and

xozkoaosin 0 (2.30)
x1=k0a0 £r-c0526 (2.31)
q. = n cos 0 1 1 53
no o kya, er—cosze sin2 @ (2.32)

Vn=len(xo)J'n(xl)—SOJ'n(xo)Jn(xl) (2.33)
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@) , 1y
Pn=r1Hn (xO)J n(xl)—sOHn (xO)Jn(xl) (2.34)
1) , 9
N,= slHn (xO)J n(xl)—sOHn (xo) Jn(xl) (2.35)
Mn=r1Jn(x0)J'n(x1)—sOJ'n(xo)Jn(xl) (2.36)
and
S, = L s, = s r, = L (2.37)
0 sin 6’ 1 sr—cosze’ ! er—cosze .

In the above formulas, prime denotes derivative with respect to the argument.

Figure 2.11 provides the angular variation of the extinction coefficient Kp (0) at (a)
L-band, (b) C-band, and (c) X-band for a canopy of stalks using the dielectric function
given in Fig. 2.4. Also included are the data obtained at 20°, 40°, 60°, and 90°, presented in
the form of the mean value of the measured loss and the associated standard deviation.
Overall, excellent agreement is observed between the measured data and the theoretical
curves for vertical polarization. Since stalks are not completely vertical and the horizontally
polarized wave suffers some vertical attenuation the calculated data underestimates the
propagation loss for horizontal polarization.

The variation of the polarization phase-difference with frequency was calculated
using (2.22) and is compared with the measured data in Fig. 2.12 at (a) 20°, (b) 40°, and
(c) 90°. The calculation reconfirms that the vertically polarized wave leads the horizontally
polarized wave at L-band, but the lead diminishes as frequency increases and eventually the
V-polarization lags the H-polarization at C-band. Good overall qualitative agreement exists

between the theory and the experimental observations.
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Figure 2.11 Comparison of calculated extinction coefficient for stalks with
measured values at (a) L-band, (b) C-band, and (c) X-band.



38

o
3]
e
Q
Q
B
13
&
&
Q
(7]
< s
i -401llll|lllllllllll.l
1 2 383 4 5 6 7 8 9 10 11
Frequency (GHz)
(a)
ab
O
e
(5]
Q
=
5
&
@
2
< L
b‘:j B, T J S S N Y U U GNP U R N
1 2 3 4 5 6 7 8 9 10 11
Frequency (GHz)
(b)
g
°
&
g ................................................
'85 L/——\/
Q
2
&
i I 3 T S B PR P
5 6 7 8 9 10 11
Frequency (GHz)
(c)

Figure 2.12 Comparison of calculated phase difference Ad with measured
data at incidence angles of (a) 20°, (b) 40°, and (c) 90°.
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2.5  Full Canopy at Low Frequencies (Leaf Dimensions << A)

At low frequencies, when leaf dimensions are small compared to the wavelength,
leaves behave as weak scatterers, which allows the use of the quasi-static approximation to
represent scattering by the leaves. If we consider leaves to be thin circular discs, small in
size relative to A, and randomly oriented, we can use a dielectric mixing formula [de Loor,
1968; Ulaby, et al., 1986] to relate the relative dielectric constant of the leaf material €] to
that of a medium with equivalent propagation properties for the mean field. The equivalent

medium, which is comprised of a background dielectric constant €, representing the stalks

in air derived in section 2.4, and inclusions (the leaves) of dielectric constant €] and volume

fraction v}, has a relative dielectric constant € given by

Vi &
8c=£+?(81“8)(2+e ) (2.38)
1

Because the background dielectric € = & () is a function of both the incidence angle 6 and

the polarization p, so is the canopy dielectric constant €.. The background dielectric

constant is related to the index of refraction defined by (2.23) through € = €p )= ng(e).

Using the preceding formulation, k. was computed for V and H polarizations at L-band

and C-band and the results are presented in Figure 2.13. Comparison of the theoretical
results with the measured data indicates very good agreement at L-band, but under-
estimates the propagation loss at C-band. This result can be attributed to the fact that at C-
band the geometrical sizes of the leaves are comparable to the wavelength and scattering

loss is not negligible, which is an inherent assumption of the model leading to (2.38).
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Figure 2.13 Comparison of calculated extinction coefficient with measured
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2.6 Full Canopy at High Frequencies (Leaf Surface Dimensions >> A)

When the leaf surface dimensions are much larger than the wavelength, the
scattering loss is comparable to the absorption loss of the leaves. Therefore, the scattering
amplitude and orientation distribution of the leaves must be taken into consideration.
Here,we will model the leaves as randomly oriented thin dielectric sheets of arbitrary
shapes and surface dimensions that are much larger than a wavelength. A leaf can be
considered as a thin layer (of thickness T) of a non-magnetic dielectric material with
permittivity €. Then it can be represented by a resistive sheet whose resistivity R in ohms

per unit area is given by [Harrington and Mautz, 1975; Sarabandi, 1989]

iZO

R = KD (2.39)

where Z is the free space impedance. When R = 0 the sheet appears perfectly conducting

and when R = oo it ceases to exists. The sheet is an electric current sheet whose strength is

proportional to the tangential electric field and is related to R. If 1 is the unit vector normal

+
drawn outward to the upper (positive) side of the sheet and [ ] denotes the discontinuity

across the sheet, the boundary conditions for the resistive sheet are

x E)=—R7J (2.40)
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where

T=[AxT’ (2.41)

is the total electric current supported by the sheet. The scattering properties of a leaf with

large surface dimensions compared to A can be derived by using the physical optics
approximation for a finite size sheet in conjunction with the electric current supported by an
infinite resistive sheet. The reflection coefficients of an infinite resistive sheet for V- and H-

polarizations are:

B 2Rsec y
Fy= (1 Tz ) (2.42)

where V is the incidence angle with respect to the normal to the sheet surface. For a plane

A
wave traveling in the x-direction and a leaf whose normal n to the surface is defined by the

angles v and & (Fig. 2.14), the forward scattering amplitudes are given by [Sarabandi,

1989]
iAk] ) )
Sv(n) == 5 Cos \u[I‘Vcos §+I“H sin 2’;]
Ak , .
S y(m=- yq €0 \y[FVsin E+ I cos E.] (2.43)

where A is the leaf area and I'y; and I'yy are as defined in (2.42). In the propagation model,

we need an ensemble average of the forward scattering amplitude of the leaves. The
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average forward scattering amplitude for randomly oriented leaves can be obtained by

averaging S(m) over all possible orientation angles; thus,

<S (TC)> <S(1t)>——f dF, J SV H(1t)s1n ydy (2.44)

Iy and I'py are independent of the angle €, therefore, the integration over £ can be easily
performed to give:

1Ak0

<S(m)>=- J'(I‘ +I )coswsm vy dy (2.45)

Upon substitution of the values of FV and I‘H in (2.45), the following relation is obtained:

<S(m)>=-

1Ak 2R _
J (1+ c0s W) cos y sin yd&y +

-1 .
J 1+ 7 cosw) cos Y sin ydy} (2.46)

Through the change of variable o = cos y, <S(n)> assumes the following form

iAkg J,l J .2
<S(m)>=- { do+ ———da}
T Sis ZZR “la+ 28 (247)

0 0
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>~

& (in the y-z plane)

normal to the leaf surface

Figure 2.14 Scattering geometry for an arbitrary shaped thin dielectric leaf

which leads to the result

_ 1Ak0 ZO 4R R2 4R2 ZO Z0+2R
<S(7E)>-———8——' —E—-—'—Z——-*- 4 2+ 5 2 In 7 7R
T 0 Z, |z, 4R 0
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Because the physical-optics approximation is used in the derivation of <S(m)>,
equation (2.48) is valid for leaves with surface dimensions larger than a wavelength. Upon
substituting (2.27) and (2.48) in (2.20), we obtain the following expressions for the

equivalent dielectric constant of the canopy:

i2M 00
g TE, TM
n =1 —5 % ¢ -
k NnN=-—o0
0
2
iy % . R% |4r? Zo| (Zot2R
5" 'E'———‘+141t 2+ 2~ 2 In 7 — 3R (2.49)
0 0 Z Z 4R 0

where ( is the leaf area per unit volume. It can be seen that as long as the leaves are large
compared with A, the exact sizes and numbers of leaves are not needed in the
computations, and only the knowledge of { suffices.

Figure 2.15 depicts the contributions of the stalks and leaves to the total extinction
coefficient %p (0) according to (2.49) and the data given in Table 2.1 at X-band. The
simulation reconfirms the experimental observation that the attenuation loss in the medium
is dominated by the leaves at X-band. Since the leaves are assumed to have uniform
orientation distributions, the dependence of the extinction coefficient on the incidence angle
is only caused by the stalks. Figure 2.16 shows the calculated angular variation of the
extinction coefficient including the data measured at 20°, 40°, 60°, and 90°, presented in the
form of the mean value of the measured extinction coefficient and the associated standard
deviation. Overall, good agreement is observed between the measured data and the

theoretical curves for both polarizations at X-band.
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Figure 2.15 Comparison between the contributions of the stalks and leaves to
the extinction coefficient at X-band for (a) V-polarization, (b) H-
polarization.
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Figure 2.16 Comparison between the calculated extinction coefficient and the
measured data for a full corn canopy at X-band for (a) V-polarization,
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Similar calculations were performed at C-band and the calculated values of Kp (©)

exceeded the measured values considerably (Fig. 2.17). This result is due to the fact that at
C-band the corn leaf dimensions are smaller than or comparable to the wavelength and, as a
result, the physical-optics approximation fails to predict the correct leaf scattering

amplitude.

2.7  Conclusion

The propagation model developed in this chapter can account for both scattering and
absorption by the canopy scatterers. The model can also characterize the phase information
associated with the propagation of the mean field. Representation of the stalks by infinitely
long cylinders produced results in good agreement with the measured data. A simple
representation of the leaves that could produce satisfactory results at all frequencies was not
attained. At low frequencies, where leaf dimensions are small compared to A, scattering
loss is negligible and the dielectric mixing formula for randomly oriented dielectric discs
was successfully used to represent the leaves. When surface dimensions of the leaves are
much larger than A, the physical-optics approximation along with the resistive sheet
representation of thin dielectric sheets was used to represent the leaves. Both absorption
and scattering losses of leaves are accounted for in this representation and successful
results were obtained at 10.2 GHz. In the intermediate frequency range where leaf

dimensions are comparable to the wavelength, a different model for leaves is needed.
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Figure 2.17 Comparison between the calculated extinction coefficient and the
measured data for a full corn canopy at C-band for (a) V-polarization,
(b) H-polarization.



CHAPTER 1II

COHERENT WAVE PROPAGATION
THROUGH MAN-MADE VEGETATION
CANOPIES

3.1 Introduction

In many man-made vegetation canopies such as agricultural fields, orchards,
artificial forests, and plantations, the position of each plant within each row and the
separation between rows ‘are deterministic quantities (Fig. 3.1). In other words, the
distance between plants in each row and the row spacing are kept constant within some
small fluctuations. In certain wavelength ranges depending on row spacing and plant
spacing, horizontal wave propagation through the canopy becomes a coherent process and
a field approach is needed to characterize wave-vegetation interactions.

The goal of this chapter is to formulate a model that can adequately characterize
coherent horizontal wave propagation in a medium comprised of a one-dimensional
periodic row structure with known row periodicity, and known within-row plant
periodicity. A two-dimensional semi-deterministic model has been developed for media
containing vertical cylinders, representing the stalks, and randomly oriented disks,
representing the leaves. The vegetation canopy is divided into slabs (rows) that statistically
exhibit similar electromagnetic properties. For a given incident direction, transmission
through and reflection by an individual slab occurs at only a specific set of directions

determined according to diffraction Bragg theory. After deriving the transmission and

50
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reflection coefficient matrices corresponding to the Bragg-modes for a single slab, network
theory is applied to derive the overall transmission and reflection coefficient matrices of the
entire canopy (cascaded slabs). The overall transmitted field due to the cylindrical incident
wave is then calculated by taking the inverse Fourier transform of the product of the total
transmission coefficient spectrum of the medium and the angular spectrum of the incident

field.

Plant-spacing

KWW % ¥ %
#9696 % % % %
#9469 % % %

Figure 3.1 Top view of three rows of an agricultural field depicting the row
and plant spacings.

Row -spacing

-
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A set of measurements were conducted, first, to investigate experimentally the
effect of look direction on the wave propagation behavior, and second, to help the
development of a model that can explain wave propagation in such media. Details of the
measurement procedure and the experimental results are given in section 3.2. Sections 3.3
through 3.6 contain the development of the coherent propagation model. Comparison
between the theoretical model and the experimental results for a defoliated canopy are made
in sections 3.7 and 3.8. Section 3.9 discusses inclusion of leaves in the theoretical model
when the leaf surface dimensions are much smaller than the wavelength and provides

comparison with the experimental data.

3.2 Description of the Experiment

Experiments were conducted to examine the role of row direction and azimuth angle
on a wave propagating horizontally in a semi-deterministic medium. Measurements of the
magnitude and phase of waves transmitted horizontally through a corn canopy were made
at 1.50 (L-band) and 4.75 (C-band) GHz for both vertical and horizontal polarizations,
using the two configurations shown in Figure 3.2. The receivers on the truck were
stationary and the transmitters were made to glide along a rail system at the same height
above the ground (1.2 m) as the transmitters. Vertical and horizontal polarizations were
transmitted simultaneously and the detected power and phase of the received fields were
recorded using an HP-8510 network analyzer. The reference field for the network analyzer
was supplied through a cable from the transmitter. At L-band the transmitter used
microstrip patch antennas with a beamwidth of 90.2° each and the receiver used a dual-
polarized dish antenna with a beamwidth of 7.8°. At C-band the transmitter used a dual-
polarized quadridge horn antenna with a beamwidth of 53.1° and the receiver used a dual-

polarized dish antenna with a beamwidth of 4.6°. Each measurement was repeated several



53

<
[\
3

- Transmitters
il.lm %% xxxxxxx - ——
- ¥XX¥xxx%x%x%xx 16m I
Truc Receivers R R :
----- W X K KK N WK XX
. FA A A A
16 X EXX KX XX X¥
=m==ccaoo-- Om H K K KKK KK KX
-1— X KKK XX XK KN
X EE TR
X KKK KX XX XX
XK XKE XX KK XN
FEXEX XX XX XX
Birirssiid
XX %X ¥
Network X KX XXX R XXX
Anal FXXEX XX XX XX
yzer
10 Rows

Reference Cable

(a)

12 Rows Transmitters

14.8m
B> sokokokokokokok ok ok ok ok <_>62m "
Truck Receivers 3k sk ok ok o sk ok sk ok ok sk sk ok . "

Xl Hi

ﬁ16 3k ok sk ok sk sk ok ok sk sk sk ok
.0 sk ok skokok sk sk ok sksk sk sk ok
‘ sk sk ok ok Sk sk sk 3k ok sk sk ok ok

sk ok sk sk sk skok ok sk sk sk ok ok

3k 3k 3k 3k sk ok sk sk sk ok sk ok
skk sk sk sk sk sk ok ok ok ok ok ok
sk ok sk sk skeoskok ok sk skok ok ok

Network
Analyzer

(b)

Figure 3.2 Measurement configuration showing the transmitter and receiver
sections, both at the same height at 1.2 m above the ground level for
(a) perpendicular to rows configuration and (b) parallel to rows
configuration. The transmitter platform was made to glide on a rail
under motor control.
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times to check repeatability. The observations show that the data is quite consistent, with
the received power and phase patterns being repeatable within 2 dB for power and 20° for
phase.This variation is attributed to wind-induced movements of corn plants and
movements of the reference cable. Propagation measurements were conducted for look
directions parallel to the rows and perpendicular to the rows. For both configurations, the
measurements were performed for various canopy path lengths. Measurements with and
without cobs and leaves were performed to study the effects of individual crop
constituents. Then, the density of the remaining stalks was reduced to one half by cutting
and removing every other plant in each row, and the measurements were performed again.
At the end of the experiment, the corn plants were cut and removed and then direct line-of-
sight measurements were conducted for calibration purposes and to check that ground
reflections were not present.

The moisture content, sizes, and densities of each constituent of the canopy were
measured for incorporation in the theoretical calculations. Figures 3.3 and 3.4 show
examples of the data. Figure 3.3 shows a comparison of the received and reference
(without vegetation) powers at L band for stalks with no leaves. Figure 3.4 depicts the
received power at C band when both stalks and leaves were present. Note that a "beam
widening" effect occurs when the vegetation is present and the received power pattern does
not follow the reference power pattern.

Figures 3.5 and 3.6 present estimates of the transmission loss measured over the
central part of the beam for perpendicular and parallel row orientations. The number next to
each data point is a measure of the variation in power level observed over the central part of
the beam, relative to the mean value. The following observations can be made about the
data:

1- Row direction affects the beam pattern of the transmitted wave and a

propagation model that takes the effect of rows into consideration is needed to

explain wave propagation in the canopy.
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2- At 1.5 GHz, for H polarization, leaves are the dominant contributors to the loss
suffered by the wave, but for V polarization, the stalks are the major attenuators
of the electromagnetic wave.

3- At 4.75 GHz, leaves are the major contributors to the loss at both polarizations.

4- Power loss is higher when the electromagnetic wave travels perpendicular to the
rows than when it travels parallel to the rows.

5- Leaf distribution is not azimuthally symmetric because the leaves tend to hang
out more in between rows than in between plants. The horizontally polarized
wave suffers more loss when travelling parallel to the rows than the vertically
polarized wave. The reverse is true when the microwave energy is transmitted
perpendicular to the rows.

6- Frequency of variation of received power is higher when the transmitted wave

travels normal to the rows than in a direction parallel to the rows.
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Figure 3.3 Comparison between canopy and reference measurements of
amplitude patterns for (a) V-polarization, (b) H-polarization and phase
patterns for (c) V-polarization, and (d) H-polarization. The wave was
transmitted through seven rows of stalks at L-band.
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Figure 3.4 Comparison between canopy and reference measurements of
amplitude patterns for (a) V-polarization, (b) H-polarization and phase
patterns for (c) V-polarization, and (d) H-polarization. The wave was
transmitted through seven rows of stalks and leaves at C-band.
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Figure 3.5 Loss estimates for perpendicular-to-rows configuration. The
number next to each data point is a measure of the variation in power
level observed over the central part of the beam, relative to the mean
value.
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Figure 3.6 Loss estimates for parallel-to-rows configuration. The number

next to each data point is a measure of the variation in power level
observed over the central part of the beam, relative to the mean value.
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3.3 Theoretical Approach

Based on the experimental observations, it was decided to develop a propagation
model for a non-random scattering medium. The purpose of the model is to produce wave
patterns similar to those observed experimentally. During the course of model
development, it was concluded that the propagation mode is primarily coherent in nature
when only stalks are present. Therefore, the following treatment pertains to a row-crop
vegetation canopy comprised of vertically oriented stalks or any medium with similar
structure. Each row is modelled as a slab-like region composed of an infinite number of
infinitely long cylinders located periodically with spacing L between adjacent cylinders.
Guided by the experimental observations noted in the preceding section, a wave structure
propagation model (WSPM) was developed, consisting of three major steps:

(1)  Using wave theory, expressions were derived for the effective
reflection and transmission coefficient matrices [Rg] and [T] of an
individual row of vegetation (slab).

(2)  Then, using the above matrices for a single row, the total transmission
matrix of the multi-row structure was derived for any specified
number of rows .

(3)  Finally, using the resultant total transmission matrix of the canopy for
plane wave incidence, the transmitted wave pattern through the
medium was derived for a non-uniform incident wave. This is called a

Wave Structure Propagation Model (WSPM).

3.4 A Single Slab of Periodically Distributed Cylinders

Figure 3.7 depicts a top view of an array of periodically distributed cylinders.

Consider a plane wave illuminating the array at an angle ¢. The scattering from such a
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periodic structure can be formulated via an integral equation involving polarization currents

whose domain is confined over a period L of the structure using the Floquet's theorem

[Sarabandi, 1990]. For a vertically polarized incident wave, the polarization current, J g of
the cylinders can be found from the following integral equation:
ik _(sin ¢ x+cos¢ z)
Ty(x,2) == ik Y, (€(x, 2)- 1) {e 0 0 0

+ ”Jy(x', z") Gl;y(x, z;x', z)dx ' dz'} (3.1)

Figure 3.7 Top view of a row of periodically distributed cylinders. The
arrows depict the directions of scattered Bragg modes.
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where the integral is over the area of a cylinder, Y|y is the free space admittance (1/Zg), and
€ (x,y) is the permittivity function of the cylinder. The quantity Ggy is the periodic Green's

function and is given by:

k.Z + o . { ,
p st on __ 070 1 1kmzlz—z|—1kmx(x—x)
Oyrzsxn) =50 2 3¢ (3.2)
where
K _271m K_si K = [K2—K2
mx = L, KoSm q)(y mz ™~ 0~ “mx (3.3)

For a horizontally polarized incident plane wave, the polarization currents, J, and J, can

be found from the following coupled integral equations:

ik _(sin¢ x+cos¢ z)
— _ 0 0 0
Jx(x,z)-—lkOYo(e(x,z) 1) {cos ¢Oc

+ (17, 2) GPo(x, z:x, 2) +T (X, Z) Goo(x, 2 X, 2) ]dx' dz')  (3.4)
X XX Z XZ

ik _(sin ¢ x+cos¢ z)
— _ ; 0 0 0
J,(x, z)—lkOYO(e(x, z) — 1) {sin 4)06

17,00 2) Ghxzx, 2) +T,(x, 2) Goyx zx, 2) 1dx' dz)  (3.5)

where the corresponding periodic Green's functions are given by:

k. .Z 2
P n__ S0%0,,1 0
Gxx(x’ Z X, Z) - 2L (1+k2 axz)
0
+ oo

1 ik,lz-zf-ik  (x-x)

(]
e K (3.6)
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yA 2 + o0 .
P 0 0 1 ik lz-zl-ik (x-x")
G, (xzx,z)=— e mz mx
xz 2Lk, ox oz m:z_mkmz (3.7)
p Y Y [
G (% 2 X, 2) =G (% z X, 2) (3.8)
k. .Z 2
P von___070,.120
G, (x zX,2) = 2L (1+k2 22
0
+ oo

1 cikmz|z—z1 -—ikmx(x-x')

k (3.9)

The solution of the integral equations can be obtained by numerical techniques, from which

the scattered fields can be calculated. Far away from the scatterers (i.e. z >> 7»0 ), only the
contributions of the terms corresponding to real values of k  in the summations of the
periodic Green's functions are observable. The scattered plane waves associated with these
terms are known as Bragg modes. For a plane wave incident at angle ¢, the travelling

direction of the mth Bragg mode is defined by the angle v such that:

m?»o
cos ysz— sin q)o (3.10)

where L is the period and A is the wavelength. The mth mode is a propagating Bragg

mode if

(= 1+sin q>0)kL <m <(1 +sin ‘f’o);% 3.11)
0 0
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Numerical techniques such as the method of moments can be used to solve the
integral equations, as discussed by [Sarabandi, 1990]. However, such techniques are
computationally inefficient when the size of the scatterers or the spatial period of the
cylinders are large compared to the wavelength. For the purpose of reducing the
computational time needed for the calculation, an approximate solution for the scattering
problem of an array of periodic infinite dielectric cylinders is derived assuming that the
separation between the cylinders is large enough so that the internal field of each cylinder is
not affected by the fields of the other cylinders. In other words, the internal field of a
cylinder in free space is assumed to hold true for each cylinder in the infinite array of
cylinders. Refering to figure 3.7, scatterers in the array are infinitely long dielectric
cylinders illuminated by a plane wave at an incidence angle ¢y. If the tangential electric and
magnetic fields on the cylinders are known, then the scattered field can be calculated by
employing the field equivalence principle [Harrington, 1961]. The equivalent electric and

magnetic source functions in terms of the total surface fields are given by:

Jo=10xH, (3.12)
Jp=-10xE (3.13)

where 01 is the unit normal to the cylinder surface.The Hertz vector potentials due to electric

and magnetic sources are then given by:

3 B, 1
R Zj J(x,2) Hy )(ko\/(x— )2 +@-2)%) dc (3.14)
c

n
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Y . 1
Ry =— Z—-EO— J J (X, 2" HE) )(ko\/(x—- x')2 +(z - z')2) dc’ (3.19)

0 ZCn

where zCn represents the contours of all the cylinders in the array. Since the incident

field is a plane wave and the cylinders are identical, it can be concluded that the equivalent
surface currents on the cylinders are similar except for a progressive phase factor. Thus,

the current on the nth cylinder in terms of the currents of the zeroth cylinder is given by:

. ' ' - . ' ikosinq)OnL
Je,m(x n’zn)zle,m(xo’zo)e (3.16)

where L is the period. Using (3.16) in (3.14) and (3.15), the Hertz vector potentials can be

represented as:
. z, 1 ., ik sin¢ mL
ne=—zki jJe(x',z')c 0 0
Omz—ooc
0
Hg)(kO\/(x—x‘—mL)2+(z—z')2)dc' (3.17)
Y pilhiod . ik _sin ¢ mL
_ﬁm:——ko— D IJm(x',z')e 0= "0
Omz—ooc

Hg)(ko\/(x —x-mL)*+(z-2)%)de’  (3.18)
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Using the following identity, the Hankel function can be represented in an integral form as:

Hg)(km/(x —x-mL)+(z-2)%) =

b ikyl2=Z1- ik, (=X = mL)
T J_m K dky (319

Z

where k= _/ k%) - ki . By employing the Poison's summation formula [Davis, 1985],

T® ik sing mL e
de O ®o™t on > 8(ik,sin ¢ L +27m) (3.20)

m=—oo m=— oo

and (3.19),the following relation can be derived:

t® ik sineg mL (1

T 0?0 H(O)(ko—\/(x—x'—mL)2+(z—z‘)z)

m= — oo

+o00 ik __lz-2z21-ik__(x-x")
2 e ™ mx
= (3.21)
Lm=2’—oo ka
2t m 2 2

Where kp, =7 —kgsin ¢4 and kp,=./kg—kp, . The branch cut of the

square root function is chosen such that V-1 = i. By changing the order of the summation

and the integration in the (3.17) and (3.18) and applying (3.21), the Hertz vector potentials
simplify to
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Z ke .

- _ 0 1 1[k lz-2z' ( -x9],

.= T m; - jcj'(x ) e de' (3.22)
Y, e

o 0 1 = , o ik _lz-z1-k__(x-x"], ,
Fn= = 57 T ; TL T (x,2)e ™ mx de' (3.23)

07 n=-ow"mz g

Far away from the scatterers ( Iz-z'| » A), only few terms of the summations
contribute to the scattered field. These terms correspond to the Bragg-modes for which the

kmz is real, or equivalently | kyx | < ko. Thus m corresponds to a propagating Bragg mode

if m e M, where

M={m:(—1+sin ¢0)-):I‘—Sms(1+sin ¢0)—;L} (3.24)
0 0

By defining kpx = ko cos Ym and kmyz = ko sin ym , the far field approximation of the

Hertz vector potentials are derived as:

q l(ikmzz—kmxx) on — ik reos(@' - v ,)
oS- 2 K Je@)e a0' (3.25)
meM mz
Y 1(ikmzz_kmxx) 2n —ik_ rcos(¢' -y )
R == 3T 2 Kz Jo Ta@he ° " do' (3.26)
meM

where r is the radius of the cylinders and the plus and minus signs correspond to the upper

and lower half space.
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In equations (3.25) and (3.26) ]’e and ]'m are the equivalent electric and magnetic

current on the surface of the cylinders. Generally, presence of other cylinders affect the
equivalent surface currents, but if the period is large compared to the
wavelength, ]’e and J qcan be approximated by their values when no other cylinder is
present (i.e. an infinite cylinder in free space).

Consider the cylinder which is oriented vertically in the z direction, and is

illuminated by a plane wave of the form (Figure 3.8)
iko(sin ¢0x— COS(bOZ) (3.27)

E, (Hiy) —¢

Incident plane wave y

A\ %

Figure 3.8 Scattering geometry for an infinitely long cylinder with axis
perpendicular to the page.
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The scattered field for V-polarization is given by [Ruck, et al., 1970]:

+ oo _l¢ l
B\, 00= % (-¢ O ATH (k)P
B:—-oo
Hoozd 3 (—e 10PaBa0 peibe
PPz = prp 0P

For H-polarization, the scattered wave is represented by:

+ oo -ICI) .
Hyp. 0= 3 (-e O ANH (el P

B=- o

-1Z T oo -i6 1)
1 O)BAH H()

Ey(p’ ¢)= k —¢€ B B (kop)elB(p

\' H
where coefficients A B and A[3 are given by:

neJ gk T g(nckgr) =gl (kgr) T (n ok o)

Aﬁ: H(l)(k J k.r)- H(l)vk J k
n, B Or) B(nC 0r) n, B(Or) B(nC Or)

n,J (kor) J B(anOr) -n/J (kor) JB(anOr)

H_.
AB ) H(l) knlJ k.r)- H(l)' k1)l k
n, B( Or) B(nc of) ~ 1, B ( of B(nc Or)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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n, and n, are the indices of refraction of the homogeneous cylinders and the surrounding

1
homogeneous material (air), J B and Hl(3 ) are Bessel and Hankel functions of the first kind

of order B, and prime denotes derivative with respect to the argument.
The tangential fields on the surface of the array of cylinders may now be

approximated by the tangential fields of a single cylinder in free space. Using (3.28)

through (3.31) at p =r in (3.12) and (3.13), the equivalent surface currents for V and H-

polarizations are:

v 1 A
T.@=Y, ¥ cpe'P®y (333)
_.V to V 1B¢ A
Tn®= Y, Dye'™® ¢ (3.34)
B:—oo
+ o0 H A
Te@= 3 CpelP?s (3.35)
B:-—oo
_H 2 H iBo A
In@®=2, 3 Dge'"?y (3.36)
B:—-co
. V:H VH :
where coefficients CB and D[3 are given by:
—id '
C‘B’=i(—e O)B[J'B(kor)+ A;Hg)(kor)] (3.37)
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v . —ie,B v, @)
DB—(—e 0) [JB(kor)+AﬁHB (k)] (3.38)
H__ _ _i¢oﬁ H (1)
CB— (-e )[Jﬁ(kor)+ABHB (k)] (3.39)
H_. _ —l¢0B . H (1)' .
DB—I( e ) [J B(kor)+ABHB (kD] (3.40)

Upon inserting (3.33) through (3.36) in (3.25) and (3.26) the approximate Hertz vector
potentials can be obtained. The scattered field in terms of Hertz vector potentials for an V-

polarized incident wave is given by:

O S |
x Tmz az"mx) (3.41)

Similarly for an H-polarized wave the Hertz vector potentials are given by:

s .2 . d _d
Hy =KoTmy =1k Yo (g Tez ™ 37 Fen) (3.42)
N S
HS =H}=0
Upon applying the following integral identities
T iBo +k r cos@ £y ) B TipBy
[e ap'=2m (=) Tykorye " (3.43)

0
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2n . -
iBo'—k rcos(¢'ty ) a i
[e Pe'=ky $do'=—2m(—i) e PYm

0

. , B
([ isin y,) p(k r)—cos ym?OTJm(kor)] X

—[i sin YT (k) < sin ymk—Br—Jm(kOr)] 7} (3.44)
0

in the scattered field expressions, the scattering amplitude of the mth Bragg mode is found

to be:

m_ 2 P 3 T\7 4P
Fp =Tk, sin 'ym{ Ag*2 EICOS[B @oETm*3 )]AB} (3.45)

where again ) and v, are respectively the incidence and Bragg mode angles (Figure 3.7),

L is the spatial period of the scatterers within the row, k, is the wave number of the

homogeneous material surrounding the cylinders, and p indicates the polarization.

The approximate representation of the far field scattering amplitude of an array of
periodic cylinders becomes more accurate as the frequency or the spatial period of the
cylinders increases. In order to investigate the accuracy of the approximate solution, a
comparison is made with the exact solution, calculated by the method of moments, for the
following set of canopy parameters:

Cylinder spacing, L = 25 cm,

Diameter of the cylinders, 2r = 1.75 c¢m,

Permittivity of the cylinders, € = 36 + 10,

A =20 cm.
The scattering amplitudes of both the exact numerical solution and the approximate solution
are given in Table 3.1. The amplitude of the approximation is in excellent agreement with

the numerical solution and the phase difference is at the most 20° off from the exact value.
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Incidence angle, ¢ =0°

m Exact Approximate Exact Approximate
(transmission) (transmission) (reflection) (reflection)

0 0.778£ -0.97° 0.821£ -5.47° 0.196Z£-166° | 0.196£ -146°

t1 0.329£ -174° 0.347£ -154° 0.331£-168° | 0.326£ -148°

Incidence angle, ¢ =153.08°

m Exact Approximate Exact Approximate
(transmission) (transmission) (reflection) (reflection)

0 0.649« -2.1° 0.7074£ -10.6° 0.340£-172° | 0.328Z£-152°

1 0.208£ -174° 0.197£ -154° 0.199£-168° | 0.196Z -148°

2 0.337£ -170° 0.327£-150° | 0.328£-167° | 0.326£-146°

Table 3.1 Exact versus approximate solutions of the scattering amplitude
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3.5 Transmission and Reflection Coefficients of Cascaded Slabs of

Periodically Distributed Scatterers

Expressions for the Bragg-mode scattering amplitudes of a single row were derived
in the preceding section. The vegetation canopy consists of many rows and we want to
relate the scattering properties of a single row to the scattering properties of the whole
canopy. A slab (row) of periodically distributed scatterers is conservative in terms of the
number and directions of its Bragg modes. In other words, if the wave is incident upon a
slab from one of the Bragg mode directions aésociatcd with the waves transmitted by the
previous slab, the number of new Bragg modes will remain the same as for the previous
slab.Therefore in a cascaded arrangement of identical slabs, the directions of multiple
bounces between the slabs are quantized and limited to the directions associated with a
single slab. Each Bragg mode direction can be considered as a port of a multi-port system
and network theory can be utilized to characterize the behavior of the cascaded slabs.
Figure 3.8 illustrates an example of such a slab when L, the period of the scatterers, is

1.25A. with superscripts denoting the slab number and subscripts denoting the port

number, the plane waves incident from ports u£11, u é, or ué will be scattered only into the

12 prescribed directions shown in Figure 3.8. Due to the symmetry of Bragg modes,
incident waves from any other Bragg-mode directions will be scattered into the same
directions constituted by ports 4, 5, and 6. Therefore, a 12-port network can completely
represent the scattering behavior of the example in Figure 3.8. If Rjj represents the
scattering amplitude of the plane wave scattered into port i due to a plane wave incident at
port j on the same side of the slab, and Tij is defined similarly for the wave scattered into

the other side of the slab, then [Rg] and [T], the reflection and transmission coefficient

matrices, are given by:
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Figure 3.8 An example of a multi-port network for an array of periodically
distributed scatterers next to a slab of air
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ool

=

12 13 In
R21 R22 R23 R2n
[RS] = R31 R32 R33 R3n (346)
i Rnl an Rn3 .. Rnn
and
[ Tll Tl2 T13 Tln
T21 T22 T23 T2n
[TS] = 31 T32 T33 T3n (3.47)
| Tn1 Tn2 Tn3 ) T“"

where n is the total number of Bragg modes at each side of the slab.
With reference to Figure 3.8, the [U!] fields on one side of the first slab are related

to the [V1] fields on the other side of the slab by a scattering matrix [S'],

(3.48)

whose elements are given by

(Tg " (T4 '[Rg
[S]=
(3.49)
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The fields [V!] of the first slab can be related to fields [U2] of the second slab by the phase
shifting matrix [¢], such that [V1] = [¢] [U2], with

(0,1 0]

The diagonal matrix [¢1] is defined by:

- ik d -
¢ 0% 0 . 0
—ik_d_cos¢
0 e 0° 1. 0
R ol 51
i 0 0 o e—ikodscosq)n—

and [¢7] is the complex conjugate of [¢1]. Then,the overall ABCD matrix, [S] representing

the combination comprised of a row of periodically distributed scatterers next to a slab of

air can be represented by:

(Td[#,] [T [R[0)]
[S]= (3.52)

[RJIT 0] [Td[0,]- [RALT TR[S)]

Finally, for a periodic array of n slabs, the total ABCD matrix, [Sy], of the

cascaded structure is:

Cou] Pryl

[sd=[$"=

N [San

(3.53)
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h

for a plane wave incident on the jt port of the first slab, the total transmission and

reflection coefficients of the resultant medium at ports i can be obtained from

T[ij = {[s 0] } (3.54)

and

-1
R = {5, o] '} 355)

All multiple coherent wave scattering between the stalks has been taken into account in the
above derivation. It should be noted that if the spacing between the slabs dg does not satisfy

the condition dg << Aq, then some of the non-propagating Bragg modes should also be

included in the formulation.

3.6 Transmission of a Non-Uniform Wave Through Cascaded Slabs

The field U radiated by an antenna aperture located in the z=0 plane (Figure 3.9),

can be expressed in terms of its angular spectrum representation [Collin, 1985]:

ik x +ik y+ik 2z

+ oo
_— 1 _
Uy, 2) = ;—;J [ Gk ke Y di , dk (3.56)
T

where G= gy X+ gy 9+ g, 2=G i+ & z, and (_}[ is the two-dimensional Fourier

Transform of the tangential field Ua(x,y,0) over the antenna's aperture,
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x—1kyy

_ ik
ijﬁgmxon dx dy (3.57)
Sa

By invoking the divergence relationship, g , can be obtained from

B —kt.Gt_ -k, g,k
gz_-_k-z_—_"'

y8y

2.2 2 (3.58)
kg — Ky —ky

Figure 3.9 Antenna aperture with the illumination field I_Ja(x,y).
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The integral (3.56) can be evaluated asymptotically to give

ik .cos O ik r_

L—ge 0 G(k0 sin 6 cos ¢, kO sin O sin ¢) (3.59)

GG) = 27T

where 6 and ¢ are spherical coordinate angles, and T = ./ x2+y2+z2, Equation (3.59)

states that the diffraction pattern of the aperture field is directly related to the Fourier

transform of the aperture field with
kx=k0 sin O cos ¢ and ky=k0 sin O sin ¢ (3.60)

Since we are dealing with a two-dimensional solution of the wave propagation problem, the
antenna aperture can be assumed to be an infinite strip with no field variation along the y-
direction ( aa_y =0 ). Then, the integration over y in equation (3.56) yields 27 and the wave
pattern incident on the canopy can be represented by the two-dimensional antenna angular

spectrum as:

—inc 1 T ik_z+ik_x
U =-—27'[ A(kx)c z X dkx (3.60)

- 00

where K(kx) is a complex function (two-dimensional analogue of G(kx,ky)) representing
the one-dimensional Fourier transform of the field distribution on the transmitting antenna
aperture. X(kx) is in the y-direction and represents the electric field for a vertically polarized

wave and the magnetic field for a horizontally polarized wave. Since it is assumed that there

is no field variation in the y-direction, the two-dimensional g, 1s found to be zero through

the divergence relationship. The above representation of U™ shows that the incident wave

. e . A AL
is the sum of an infinite number of plane waves travelling in the (kz z + kx x) direction,
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Ak
each having an amplitude 2( X). The field transmitted through the cascaded slabs is the
T

product of the incident wave and the total transmission coefficient of the medium. Since the
incident wave is the sum of an infinite number of plane waves travelling in different
directions, the transmitted wave will be the superposition of all transmitted plane waves

. o AGkTilky) _— . .
with amplitudes 5 , where Ty(ky) is the total transmission coefficient of the
T

k
cascaded slabs for the incident angle ¢g = tan-1( k_x ) which is represented by (3.54).
z

At the transmit antenna, the incident field is equal to the Fourier transform of K(kx).

If we shift the reference from the antenna aperture to the edge of the canopy at a distance z
away (Figure 3.9), then the incident field at that point becomes equal to the Fourier

transform of the function

F(k,) <A (k e 2t (3.61)

The total transmitted wave can now be obtained by taking the inverse Fourier transform of

the product of _Ii(kx) and the total transmission coefficient of the medium, Tt(kx). Thus

1 + oo — i.kxX
= o= I_mF(kx)T(kX)C dk (3.62)

The reflected wave pattern can be derived in a similar fashion. This equation

suggests that if Tt(kx) is a narrower function than I_J(kx) in the ky domain, the incident

wave widens as it propagates through the medium, which is consistent with the beam-
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widening observation noted in the experimental observations. The function IE(kx) may be

represented by:

— +m— -1
k=] fe < dx (3.63)

— o0

where f(x) is the incident wave pattern at the edge of the canopy. Assuming a one
dimensional uniform field distribution at the aperture of the transmitting antenna, f(x) can

be asymptotically approximated by:

1 ikop sin(ako sin ¢) .
e cos ¢ : y
NG ak sin ¢

f(x) = (3.64)

where a is a function of the antenna size, frequency, and polarization, ¢ is the angle
measured from the boresight direction of the transmitting antenna, and p is the distance the
wave travels at the angle ¢ from transmitter to the edge of the canopy. Using the measured
data, o can be estimated such that the simulated reference pattern is the same as that of the

measured reference field. As an example, Figure (3.10) is the plot of f?(kx) versus ky at

1.5 GHz for vertical polarization.
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3.7 Comparison with Experimental Data for a Defoliated Canopy

The model introduced in the preceding section (WPSM) was applied to
configurations for which the experimental data is available. Figure 3.11 compares the
resultant amplitude and phase of the simulation of seven rows of stalks with measured data
at 1.5 GHz for vertical polarization. Parts (a) and (b) are the measured amplitude and phase
and parts (c) and (d) are the simulated results. Part () is the simulation solutions of 'T(kx)
and part (f) is T(kx)?(kx), i.e. the product of part (e) and Figure 3.10. The canopy
parameters that were used are:

Row spacing = dg = 77.3 cm,

Plant spacing =L =25 cm,

Diameter of the stalks = 2r = 1.75 cm,

Permittivity of the stalks = £ = 36 +i10.

The simulation results are in good agreement with the experimental measurements
for the overall pattern, attenuation level, and the peak to peak variation of power that is
exhibited by the measurements. The simulated phase complies with the measured data in
predicting that the field in the canopy leads the reference field at 1.5 GHz. Figure 3.12
displays the same calculation for horizontal polarization at L-band. Both the pattern and the
attenuation level of the simulation are in excellent agreement with the measured data. The
phase calculation reconfirms that the canopy phase at horizontal polarization, unlike the
vertical polarization, lags the reference phase. It should also be noted that the simulation
underestimates the attenuation level by about 2 dB for horizontal polarization. This is
attributed to the fact that the stalks in the canopy are not perfectly vertical and the
component of the field parallel to the cylinders is attenuated by an amount proportional to

the attenuation for vertical polarization.
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Results similar to those shown in Figures 3.11 and 3.12 were also obtained for the
case where the canopy was reduced to one-half by cutting and removing every other plant
in each row, resulting in a plant separation of 50 cm. Because of the greater separation, the
number of Bragg modes is doubled in comparison with the full-density case. Figures 3.13
and 3.14 display the comparisons between measurement and the simulation for the half
density case at 1.5 GHz. From Figure 3.13, it can be seen that the model can predict the
attenuation level and its frequency of variation, but not the peak to peak variation for

vertical polarization. This discrepancy is due to the fact that the high amplitude of T(kx)
coincides with the null of f*’(kx) of the simulation. In reality, the illumination field at the

antenna aperture is not perfectly uniform and its spectrum has minima, but not nulls as in
the simulation. The horizontal-polarization power and phase calculations are in excellent
agreement with the data and within the error range of the measurements (Figure 3.14). The
same calculations were performed at 4.75 GHz and the Figures 3.15 and 3.16 compare the
measured data with the simulation for vertical and horizontal polarizations respectively.
Again good agreement between the measured data and the simulation is observed. At C-
band, unlike L-band, the canopy propagation phase lags the reference phase at both
polarizations which is confirmed by both the experiment and the theoretical simulation.

In general, the behavior of the wave in the stalk canopy (with no leaves) is
completely characterized by the WSPM when used in conjunction with the Bragg mode
technique. It is concluded that wave propagation in such man-made canopies is a coherent
process and incoherent random-media techniques are not capable of explaining scattering

in such environments.
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field; (a) measured power, (b) measured phase, (c) simulated power,
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3.8  Sensitivity Analysis of the Bragg-Mode Technique

The goal of the canopy model is to establish the behavior we would observe for
plane-wave incidence upon the canopy, and WSPM has been developed to confirm the
validity of the model by establishing means for comparing the measured data with the
calculations. Since the Bragg mode technique is a coherent process, it is expected that
distances (or frequency variation) have major effects on the propagation of waves through
the canopy. A sample of a sensitivity analysis for vertical polarization will be presented in
this section. Figure 3.17 displays the effect of changing stalk parameters (permittivity, and
diameter) on the loss suffered by the wave. Parts (a) and (b) depict the amplitude of the
transmitted wave versus row spacing for two different stalk dielectric constants and stalk
diameters, respectively. In the figure, m indicates the Bragg mode number (3.11), €g 1s the
stalk dielectric constant, and dc is the diameter of the stalks. Row spacing can change the
attenuation level for a wave incident at seven rows of a stalk canopy by as much as 50 dB.
Small variations in dielectric constant and diameter of the stalks do not play a major role in
the total attenuation level. Figure 3.18 depicts the attenuation level versus the number of
rows for six different row spacings. The loss level goes through a cycle as the row spacing
changes and can vary up to 200 dB for 40 rows depending on row spacing. Observation of
Figures 3.17 and 3.18, display the high sensitivity of the model to distances compared to
the wavelength. Therefore, a small variation in the frequency will change the wave
attenuation by the canopy to a great degree. Since WSPM is a coherent model, the effect of
the approximation in the solution of the Bragg-mode scattering amplitudes are also studied.
Figure 3.19 (a) compares the solutions of the seven rows of stalks when the exact and
approximate scattering amplitudes are applied. The general patterns of the solutions are
similar, but do not predict the same attenuation level at an equivalent row spacing. In order

to confirm that this discrepancy is the result of the phase inaccuracy, the same plot in given
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in Figure 3.19 (b) where the exact phase is used in conjunction with the approximate
amplitude. It can be seen that both the approximate attenuation level and pattern are in good
agreement with the exact solution. Since plant spacing in terms of the wavelength increases
as frequency increases, the approximate solution should yield better phase results at higher

frequencies, or, similarly, for canopies with larger stalk separations.
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3.9 Propagation Model for a Canopy of Stalks with Leaves

At wavelengths much longer than the dimensions of a leaf (1.5 GHz), the leaves in
a canopy exhibit weak scattering properties, and their presence serve primarily to alter the
effective dielectric constant of the background medium surrounding the stalks. If leaves are

treated as randomly oriented disks with volume fraction v, the equivalent dielectric

constant of the medium is given by the mixing model [de Loor, 1968; Ulaby, et al., 1986]:

v
ea=1+_3—l_(8l—1)(2+_8_) (3.65)

where €, is the dielectric constant of the leaf material, for which expressions relating to the
leaf moisture content are available (see equation 2.2). Therefore, by using the value of €, in
calculation of k, in equation (3.45) and substituting this value for kg in equation (3.51) the

effect of leaves at low frequencies is considered. This model was applied to the seven rows

of stalks with leaves at 1.5 GHz with the same stalk parameters of section 3.7 and &, = 28
+ 18, and v, = 7.5x10-4. Figures 3.20 and 3.21 compare the model results with measured
data for vertical and horizontal polarizations, respectively. The pattern, oscillation, and
attenuation levels are in very good agreement with the measured data. It should be noted
that for vertical polarization, the field transmitted through the stalk canopy leads the
reference field, but the opposite is true for the leaf canopy. Therefore, these two
phenomena tend to cancel each other's effect when both stalks and leaves are present in the
canopy, which is supported by both the simulation and the measured data. The apparent
inconsistency for vertical polarization phase is within measurement accuracy. The

simulation did not produce satisfactory results at C-band which indicates that the corn

leaves are not weak scatterers
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Figure 3.20 Comparison between measurement and simulation for seven
rows of a full canopy of both stalks and leaves illuminated by a
vertically polarized incident field at 1.5 GHz; (a) measured power, (b)
measured phase, (¢) simulated power, (d) simulated phase.
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and the scattering loss by the leaves should be taken into account in the development of the

model. This phenomena is due to the fact that the leaf surface dimensions are comparable to

the wavelength at 4.75 GHz.

3.10 Conclusion

The propagation model developed in this chapter is a deterministic field approach to
the solution of wave propagation through man-made vegetation canopy comprised of stalks
and leaves. Both multiple, coherent, wave scattering by the stalks and intrinsic absorption
by the leaves are accounted for in the derivation. Excellent agreement between theory and
experiment is obtained for canopies with and without leaves at 1.5 GHz and 4.75 GHz.
Very good agreement is obtained for the full canopy (stalks and leaves) at L-band, but the
inclusion of the leaves could not be accounted for at C-band. In order to extend the
frequency range coverage of this model to higher frequencies, it will be necessary to
account for scattering by the leaves explicitly. Inclusion of the leaves at C-band destroys
the coherent scattering observed in this chapter and will necessitate the use of an

appropriate incoherent scattering model that incorporates the size and orientation

distributions of the leaves.



CHAPTER IV

INCOHERENT WAVE PROPAGATION
THROUGH PERIODIC VEGETATION
CANOPIES

4.1 Introduction

In chapter III, coherent wave scattering through a man-made vegetation canopy was
studied. It was concluded that in a corn like canopy, when the surface dimensions of leaves
are much smaller than a wavelength, leaves behave as weak scatterers and contribute
mostly to absorption loss, hence, stalks are the main cause of multiple scattering in the
canopy. Domination of the stalks in the scattering process, combined with the periodicity of
plants in each row and rows in the whole canopy was the cause of coherent multiple
scattering in the medium. As the frequency of operation increases, the leaves' dimensions
become comparable to the wavelength and their scattering amplitude becomes comparable
to that of the stalks. Consequently, scattering by leaves becomes important in the scattering
process in the canopy, and due to leaves' random distribution, incoherent wave scattering
takes over the coherent wave scattering that was considered previously. As a result, the
plant periodicity in each row is over shadowed by presence of the leaves and only row
periodicity in the medium affects the propagating wave.

The goal of this chapter is to formulate a model that can adequately characterize
incoherent horizontal wave propagation in a medium comprised of a one-dimensional

periodic row structure with known periodicity. A two-dimensional periodic radiative

101
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transfer model is developed for a medium containing vertical stalks,‘ represented by smooth
cylinders, and leaves, represented by infinitesimally thin resistive strip. In section 4.2 a
brief review of the radiative transfer technique and the development of the radiative transfer
equation for the two-dimensional medium will be presented. Solution of the radiative
transfer equation for a two-dimensional periodic random medium is pursued in two ways:
(1) iterative, and (2) a new numerical technique based on the discrete-ordinate
approximation and Taylor series expansion (DOT). Sections 4.3 and 4.4 discuss the
iterative and DOT solutions of the radiative transfer equation, respectively. In section 4.5
the extinction and phase function for stalks, and in section 4.6 the extinction and phase
function for leaves will be provided. Section 4.7 contains comparisons between the results

of the theoretical model and the experimental data of section 3.2.

4.2 Radiative Transfer Technique

The radiative transfer technique examines the radiation intensity in a medium that is
able to absorb, emit, and scatter electromagnetic radiation. The technique was first
introduced by Schuster in an attempt to explain the appearance of absorption and emission
lines in stellar spectra [Schuster, 1905]. The subject is further investigated by
astrophysicists and physicists for the problem of diffusion in neutrons [Davison, 1957;
Chandrasekhar, 1960; Case and Zweifel, 1967]. Recently, many investigators have utilized
the technique to explain the wave vegetation interactions for remote sensing purposes
[Fung and Ulaby, 1978; Fung, 1982; Tsang et al., 1985].

Generally, two approaches are used in dealing with the problem of scattering in a
medium. First, the wave theory, such as in chapter III, where the wave propagation is
formulated via Maxwell's equatibns and scattering and absorption characteristics of the
medium is studied. Radiative transfer theory, on the other hand does not start with

Maxwell's equation. It begins with the radiative transfer equations that govern the
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propagation of energy through the scattering medium. It assumes that there is no correlation
between fields and therefore, the addition of intensities rather than the addition of fields is
considered.

In radiative transfer theory, the quantity of interest is the specific intensity I(r,$),
which is defined as the power per unit area and per unit solid angle propagating along §,
and which is a function of position in the random medium, (r). In applying transport theory
to the electromagnetic problem, the specific intensity I(r,§) usually is defined by a four -
component vector. For a monochromatic elliptically polarized plane wave with electric field

vector

— A ikor
E=(Evoi+Ehhi)c 4.1)

and unit vertical and horizontal polarization vectors /\}i and ﬁi, I is defined through the

modified stokes parameters:

i ) -
I ’EV‘
v 2
Tl =nl IEhI
Y 2Re(E ,E;) (4.2)
\Y%
2ImE E})

The vector radiative transfer equation, which simply expresses the conservation of energy

in a unit volume of the medium (Fig. 4.1), is given by

VIEH=-x@HTEH+[ P8, 89T 8) a0 (4.3)
Q
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where ¥(r,8) and P(r,8,8") are, respectively, the extinction and phase matrices of the
medium. The extinction matrix represents the losses due to absorption and scattering by

particles per unit volume and, in general, is a function of position and direction of

propagation.
1(r,%) I (r+ds, S)
__*O e,@;@@f%*— O - =
9
7
/
/
Particles dQ

/
-/

1(t,%)

Figure 4.1 Radiative energy transfer for specific intensity I(r,8) incident upon
a cylindrical column of particles.

For a plane wave illumination on a single particle, the scattered field assumes the form

S.E. (4.4)

where S is the scattering matrix of the particle. Identifying the elements of the extinction
matrix as the attenuation rates in coherent wave propagation, the extinction matrix is given

by [Ishimaru and Cheung, 1980]:
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[ -2 Re(M,,) 0
0 ~2Re(M,,)
—2Re(M, ) -2ReM )
2Im(M, ) -2Im(M_ )

Al
Il

- Re(Mvh ) - Im(MVh ) 1
- Re(Mhv ) - Im(Mhv ) 45)
-ReM,) —Re(Mhh) +ImM ) - Im(Mhh)
-ImM,) +Im(Mhh) -Re(M,) —Re(Mhh) |
where the attenuation rates, Mij, are defined as:
_ 12N ) .
Mij_ .ko <Sij(9, ¢, 9, ¢)> l,]—V,h (46)

In equation (4.6), N is the number of particles per unit volume, and Sij (8,9; 0,9) is the
forward scattering amplitude of individual particles. The angular bracket denotes average to
be taken over the orientation and size distribution of the particles.

Phase matrix, P(8,4"), of the medium relates the scattered intensity in the direction

§ to the incidence intensity from the direction §'and is defined by

PR.8&)=N<L ¢,¢.8> 4.7)

where the Stokes matrix, L, relates the scattered modified Stokes vector IS to the incident
modified Stokes vector Ii for a single particle of orientation ’s\p, and < > is ensemble
average over the size and orientation of the particles in the medium. The Stokes matrix, L,

is given by [Ulaby er al. ,1986]
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S
2

B [

2Re(S 1 S,) WSt

| 2Im(S,,S; ) 2Im(S ,S})

hhl
2 Re(S

]
Il

Re(S., S ) -Im(S’,S,,)
Re(Shh h) Im(S hh hy )
Re(S ) —Im(S -5 STy | “8)
wd hh hS hv wd hh vh> hy
* %*
Im(S,S hh SnShy) ReGyS hh—svhshv) ]

If the extinction and phase matrices of a particular medium are known, then by applying the
boundary conditions, the solution of the radiative transfer equation (4.3) can be obtained
either iteratively or numerically [Tsang et al., 1985; Ulaby et al., 1986).

As discussed previously, in a man-made vegetation canopy, such as a corn field,
the plants are arranged in a row-structured fashion as shown in Fig. 4.2. In formulating the
problem, we assume that there is no variation along the z-direction and treat the medium as
a two-dimensional one. We further assume that the canopy structure is statistically periodic
in the y-direction and homogeneous in planes perpendicular to the periodic direction (i.e.,
in the x-z plane). Each period of this structure includes a slab of corn plants adjacent to a
slab of air. The stalks are uniformly planted along the row direction (x-axis) with leaves
filling the space around the stalks. The leaves may have a distribution along the y-direction.

Referring to Fig. 4.2, for a plane wave incidence, there would be no variations with

respect to variables x and z, and therefore (4.3) is simplified to

A1 = = . = .-
é\.?—_dy}i—z—i((y’S)I(y,s)-i-JQP(y,s,s')I(y,S')dQ (4.9)
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Since scatterers are infinite in the z-direction and the incidence direction is normal to 2, then

§=cos 0 R +sin ¢ § and dQ=do (4.10)

noting that the intensity is redefined by power per unit length per unit angle. Thus, the

radiative transfer equation for this problem takes the following form:

di(y, ¢) = _ o = _
—d%i —x(y,¢)1<y,¢)+fo P(y, 0,001 (1, 0) do' (4.11)

sin ¢

> Y

Figure 4.2 Top view of a row structured periodic canopy. Each period
consist of a row of vegetation next to a slab of air.
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In the above formulation of the mean field intensity in a two-dimensional random medium
by radiative transfer, the scattered intensity by a unit cross-sectional area of the random
medium into direction ¢ is related to the intensity incident upon the unit area from direction
0; by the phase matrix 1=3(y, ds, 07). Also, the extinction matrix i(y, 0) characterizes the loss
of intensity due to absorption and scattering by the unit area. To relate the extinction and
phase matrices of the medium to the constituent particles in the two-dimensional canopy,
we ignore near-field interactions between particles and only consider single-scattering
interactions, which is a reasonable approach for low-density media (the volume fraction of
the végetation material in a canopy seldom exceeds 1% ). The field scattered by a two-
dimensional object whose generating axis is parallel to the z-direction and is illuminated by

a plane wave is given by

E=% _ SE 4.12)

where S is the scattering matrix of the object. Since in two-dimensional problems,
vertically and horizontally polarized fields are decoupled, the scattering matrix becomes

diagonal, i.e.

= va 0
S=[ 0 S ] (4.13)

Using a similar definition for the scattered Stokes vector as given by (4.2), modified by ‘l) ,

and using (4.12), it can be shown that the Stokes matrix L is given by
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-, -
Sw~ 0 0 0
2
=_| 0 1Sl 0 * 0 *
0 0 Re(S,,S,) -Im@S,S,) (4.13)
* *
0 0 Im(Sy,S,) Re(S,S;)

Because the radiative transfer formulation is based on conservation of energy, the Stokes
vectors are added incoherently. Thus, the phase matrix must be obtained from the Stokes
matrix averaged over the particle type, size, and orientation-angle distributions. If m types

of particles exist in the canopy and each has Nj particles per unit area, then

= m =
P(y,0,0)=< Y, NL.> (4.14)
i=1

The extinction matrix of the canopy can also be obtained by applying the optical theorem
for the two-dimensional particles. Using definition (4.12) for the scattering matrix, it can
be shown that the extinction cross section is related to the forward scattering amplitude by

[Van Bladel, 1985]

ol =- /%’i Re[S,(0,0)]  p=vor h 4.15)
0

Because no cross coupling occurs between the V- and H-polarized waves propagating in a
two-dimensional medium, the extinction matrix (4.5) can be shown to have the following

form:
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r m
ZN.<0‘Q> 0 0 0
. J
1=1
m
0 ZNJ.<02> 0 0
= _]=1
K= m
h
0 0 2'2Nj<o;+ce> K34
j=1
1w h
\"
0 0 LY 71-2‘le<06+0"’>
(4.16)
where
2T -
K34=—K43=— E‘(;‘ Z’INJ<Im[S Vv(¢, q))_shh((p’ ¢)]>

From (4.14) and (4.16) it is obvious that the first two components of the Stokes vectors are
decoupled from each other and from the other Stokes components. Hence, the vector
radiative transfer equation reduces to uncoupled scalar equations for I and Ip,. Since the
total energy is carried by the first two components only, we just consider the solution to
scalar radiative transfer equations for these components. It is worth noting that the
scattering matrix (for the two-dimensional particles) is a function of ¢ - ¢; (where ¢; and ¢
are the incident and scattered azimuth angles) and the particle orientation ¢p- Hence in the
case of uniform particle distributions, the extinction coefficient of the medium becomes

independent of the incidence and scattering angles, and the phase function becomes a

function of ¢ - ¢; only.
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The radiative transfer equation (4.11) is an integro-differential equation with
nonhomogeneous boundary conditions. If we assume that the air-canopy boundaries are
diffuse, there would be no reflections at boundaries and the intensity would be continuous
across each boundary. Also the intensity should approach zero as y approaches infinity.
Solution to this equation in analytical form is very difficult, if not impossible. However,
under certain conditions, approximate solutions or efficient numerical solutions are
attainable. In the next two sections, an iterative solution and a numerical solution to the

radiative transfer equation will be presented.

4.3 Tterative Solution

For a canopy condition where extinction is dominated by absorption, that is the

o o .
albedo o =—> << 1, the iterative method is the standard approach used to solve the
Oext

radiative transfer equation (R.T.E.). In this approach, first the contribution of the phase
function to the intensity is ignored (i.e. Py h (9,0") = 0) so the equation reduces to a first-
order homogeneous ordinary differential equation which can be solved easily. Then the
solution of this equation (the zeroth-order solution) will be substituted back into the R.T.E.
to obtain the first-order solution. By continuing this process, solutions to any desired order
can be obtained in principle. To set the formulation in a form amenable for boundary
conditions, common practice is to separate the intensity in the random medium into two
functions I*(y,) and I (y,0) corresponding to positive and negative going intensities,

respectively. In this form, ¢ ranges from 0 to 7, and the R.T.E. becomes
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dr*(y, ™
sin ¢ (g Y T 04 jo [P(y, 6, 01"y, 9
(4.17
+P(y, 0,0+ I (y, ¢+ m)] do’ ]
dl (y, ¢) _ T
—sin ¢ fii Y kT 0+ [ P 0+ 5T (5, 0)
0 (4.18)

+P(y,0+7 ¢'+ I (y,0'+ )] do

But P(¢,9") = P(¢ - ¢") which is a periodic function with period 2m, i.e. P(a) = P(a. + 27x),

thus

PO+ 0 +1)=P0 -¢) =PT0-0) 0<p o' (4.19)

PO+, ) =P($,¢' +1) =P(n + ¢ — ¢) = P70-0) 0<¢,¢0'sm (420

To get the zeroth-order solution, P(¢ - ¢") must be set to zero, then

Ay, 0) .
sin ¢ dy ==x(y) Iy, ¢) (4.21)

Ay, 0) i
—sin ¢ — g == KNIy, 0) (4.22)

If the incident wave is a plane wave in direction ¢;, then

"0, 6)=1'5(0 - ¢) (4.23)
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and the zeroth order solutions are given by

Fyo=re " 50-0 (4.24)
To(y. 9)=0 (4.25)
where
y
t(y) = jo k() d& (4.26)

Now by substituting back (4.24) and (4.25) into (4.17), the first-order solution for the

positively going intensity can be obtained to be

oo =[e " Ve -9,) +

B y (csch —cscd.)T(y' : 4.27
csc 0 e” 0T [Py, 90 )e : y)dy']l‘ -

Equation (4.27) can be simplified by noting that k(y) and P(y,$-¢') are periodic in y.
Defining the integral over one period, L, of x(§) by T, i.e.,

L
T= jo K(E) d& (4.28)
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and also assuming that the observation point is in the (N+1)t row, then by subdividing the

integral in (4.27) into summation of integrals over multiples of a period, IT becomes

— cscd . T(y) _
Fyn o =[e " a0-0.) +csc gm0
N—-1 (@n+1)L - . '
[2 Pro-ope 0 gy @)
n=0nL
y . (cscd—cscd )ty Y]
| P'r0-0.e dy' ||t
NL
Noting the fact that
nL
jox(g)(ﬁ:nT (4.30)
and also defining Tp(y) as
. y
T, =] x®d (4.31)
nL

equation (4.29) can be written as

csc¢it(y)6(¢ _¢i) fosc b e csc o 1(y)

Ly 0)=|e

N-1 (n+1)L (csco—cscd ) [nT+1 ()]
[2 P+(y',¢—¢i)e v P”dyur (4.32)
n=0nL v

y (csco—cscd ) nT+ 1 _(y)] i
JNLP+(y', 0-0.)e ‘ ’ dy’j]ll
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Since the medium is periodic in y, then

P'(y + 0L, - ¢) =P(y, 6 — ¢)
Also defining

(fesco—cscd ) T(d)

Fi(X,(D,q)i):'[)Pi(C,q)—q)i)ﬁ dC’ 0<x<L

equation (4.32) can be further simplified to

csco

0 =[e 50 -0,) osc g 0”01

N-1
(cscd — cscd )nT
{Ze TR 6,0)

(csco —cscdp JNT ;
e ' F (y—NL,(b,q)i)):‘I

n=0

(4.33)

(4.34)

(4.35)

Summation over n can be carried out in closed form and the final result of IIL can be shown

to be

- (NT+ csc(bit(y—NL

IT(y, 0)=e )5(¢ —(i)i)Ii +csc ¢ e CscoTl ~NL)

e—NTcchJ_e_NTCSCq)i + - NT csc
—T(csc¢-csc¢)i) F(L,¢,¢i)+e

l-e

¢i + i
F (y—NL,(D,d)l) [

(4.36)
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The first-order solution for the intensity travelling in the negative directions can be

obtained by noting that I-l (Yo, 9) = 0, where Yy is a distance after which there is no

canopy, thus

Y .
- 0 (escd —cscd ) (y) | j
0y 0) =|ese g e” ™0 [ TP 0 0e U gy 1 (4.37)

In a manner similar to that of the positive going intensity, the final solution of the negative
going intensity can be obtained by assuming that Y¢ is some integer multiple of a period

(i.e., Yo=ML) and is given by

—(cscd)—cscq)i)(M -N)T
—T(cscd —csch i) F L. o, d)i) +

II(y’ 0) = csc o ecscd)’c(y—NL{l—e

1-e
NTcscd . i
e IF(L0,0)- F(y - NL 6,)1]1

(4.38)

Higher order solutions can be obtained by substituting (4.36) and (4.38) into (4.17)

and (4.18). However, obtaining the solutions in a closed form seems difficult. Therefore
the higher order solutions must be computed numerically. If the observation point is not in

between a row (i.e. y = NL), the first-order solutions can be further simplified to

. - e—NTcscq) e— NTcsccj)i . .
—_ - 1
Il(y, ¢)=1¢ 8(¢—¢i)+csc ¢ —T(csc¢—csc¢i) F (L, ¢’¢i) I (4.39)

l-e
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—(csc¢—CSC¢i)(M"N)T NTcsc

) e 0. _ ;
I (y, ¢) =csc ¢ 1 —T(esc ¢~ csco ) te F o ¢i)]l (4.40)
-e

4.4 Numerical Solution (DOT)

If the albedo of the medium is not much smaller than one, the iterative solution does
not cdnverge rapidly. In such a case we have to resort to an appropriate numerical method.
One such technique is the discrete ordinate eigen-analysis method in which the continuum
propagation direction of the intensity within the medium is discretized into finite number of
directions [Tsang et al., 1984]. By this approximation the integro-differential equation can
be cast into a system of first-order differential equations. For cases where the medium has
homogeneous extinction and phase functions, the system of linear differential equations can
be solved by the eigen-analysis method. For the general case, however, this method cannot
be applied. The extinction and phase functions of the row-structured canopy as discussed
earlier are periodic and an alternative approach must be pursued.

In what follows a new numerical technique for the solution of the radiative transfer
equation with inhomogeneous extinction and phase functions will be introduced. This
method is specifically very efficient for problems with periodic extinction and phase
functions. We discretize the direction of propagation and subdivide each row into many
thin slabs, then we relate the input-output intensity of each thin slab by keeping the first
term of the Taylor series expansions of functions. Finally by multiplying the resultant
transmission matrix of individual slabs, the overall transmission matrix can be obtained.
This method henceforth will be referred to as discrete ordinate Taylor expansion (DOT)

method.
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Starting from (4.17) and (4.18), and numerically approximating the integrals, the

following coupled system of differential equations can be obtained

'y = o =t = -

5= KOTW+P MTM+P I ) (4.41)
dl (y) = — = . =t

& =KOT )-P MITW-P NI ) (4.42)

-t
where P (y) isa2n X 2n matrix whose elements are defined using the following

approximation

n n
oo 0, [ 20, T 0) 0= X PTG 0) @)

j=-n

and Iz((y) 1s a diagonal matrix with

[Klii (y) = csc ¢i k(93,y) (4.44)

Equations (4.41) and (4.42) are valid for all of the thin slabs. Suppose thickness of each

slab (A) is chosen thin enough so that the functions in equations (4.41) and (4.42) can be
approximated by their Taylor series expansion around the values of y at the left boundary

of the slabs up to the first term. That is, for the mth slab we have

EK+K Y=y, and (4.45)
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After substituting (4.45) into (4.41) and (4.42) and rearranging the terms of equal power in

y, the following algebraic equations for the coefficients are obtained

—+ = - _+ = -
m=—(K_+P Jag+P a_ (4.46)
— = == __ =" _+
bmz(Km—Pm)am—Pmam (4.47)
ym ym+1
a’ a+
m m+1
— I
a' a-
m m+1
A
- - - - P
th th th
m-1 m m+1
aTow

Figure 4.3 Configuration showing a row of vegetation consisting of M slabs.
Also depicting the incidence and reflected intensities on the mth slab.

Thickness of each slab is A.
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The intensity in the (m+1) slab is related to the intensity of the mth slab by (see Fig. 4.3)

=a_+b_A (4.48)

m+1 m m

Using (4.48) in (4.47), the intensity on the right-hand side can be related to the intensity on

the left hand side of the mth slab by

_+ = = = = —+

mar | [ T-ACK =P ) AP i
| =- SR P B CR D)
m+1 ~AP_ I+ACK _-P ) [*m

where T is the unit matrix. The matrix in (4.49), which relates the input-output of the thin
slab (’T"m), will be referred to as the transmission matrix. The transmission matrix of a row

comprised of M thin slabs is given by

= M

Tow= 11 Ty (4.50)
m=1

which relates the input and output intensities of a single row. If there are N rows of the

canopy under consideration the overall transmission matrix can be obtained from

Z
=31
=31l

11 12

-3 n
e

[

=l
I

o)

(4.51)

31l
=31l

21 22
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The overall transmission matrix for large values of N can be calculated by diagonalizing

the matrix. Suppose "I_"row can be diagonalized, i.e.,

(4.52)

31l
3
3]
I
Yol
>
o)l

where Q is a diagonal matrix whose columns are eigen-vectors of Trow , and A is a

diagonal matrix whose enteries are the eigenvalues of Trow- Thus

N N _-1

[Tr] =0

>
i

(4.53)

:N =
where A is a diagonal matrix whose entries are the eigenvalues of Trow raised to the Nth

power. Noting that there is no intensity incident on the (M+1)!h boundary, (i.e.,

a M1~ 0), the reflected and transmitted intensities, respectively, are given by
+

[ -- [;22]_ 1[;21} fi (4.54)

- [ﬁzz}_ Flz]ﬁ 22} F 21]] P (4.55)
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4.5 Extinction and Phase Function for Stalks

As mentioned previously, stalks are modeled as infinitely long, vertically oriented
homogeneous dielectric cylinders. The cylinder is one of the few geometries for which an
exact electromagnetic scattering solution exists. If a plane wave propagating in a direction
denoted by ¢; is illuminating an infinitely long dielectric cylinder with radius ro whose axis
coincides with the z-axis, it can be shown that the bistatic scattering matrix elements can be

represented by [Ruck et al., 1970]:

Sw= 2 Cpoosn(0g—9.) (4.56)
n=0
S, = goclj cos (9 9.) (4.57)

In equations (4.56) and (4.57) ¢s denotes the scattering direction and

CV-— —2—(_1)"+1a \/EJn(xo)Jn(xl)—Jn(xo)Jn(xl) (458)
n- K n ) . ' '
7K VEH () Tp(x )~ HY (x ) T,(x )
cH_ 2 (—1)" g Tax ) Tn(x) = Ve Ty (x ) Tp(x)) (4.59)
n k n , ' )
X Hff)(xo)Jn(xl)—\/EHfll)(xO)Jn(xl)
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where

xO:kOrO, and

_ (4.60)
X, = k 0\/Er0.

€ 1s the relative dielectric constant of the cylinders and

I n=0
o, = {2 ! (4.61)

Since the cylinders are vertically oriented and azimuthally symmetric, evaluation of the
extinction and phase function does not involve particle orientation averaging. Using (4.56)

and (4.57) in (4.14) and (4.16) gives the phase and extinction functions of the stalks.

4.6 Extinction and Phase Function for Leaves

Leaves in this two-dimensional model are considered as long thin dielectric Strips.
The thickness and dielectric constant of leaves are usually such that they can be modeled as
resistive sheets at centimeter wavelengths [Senior ez al., 1987; Sarabandi ez al., 1988]. At
high frequencies, where the width of a leaf is large compared to the wavelength, the
physical optics approximation can be used to find the scattered field. Otherwise numerical
techniques such as the method of moments should be employed instead. Consider a
resistive strip of width w illuminated by a plane wave as shown in Fig. 4.4 where the
orientation and incidence angles, measured from the x-axis, are denoted by 01 and ¢;
respectively. Depending on the polarization, the incident field is assumed to have the
following form
I_Ei

zé\eiko(xcos¢i+y sin ¢>i) (4.62)
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for V-polarization and

i ik (xcosd.+ysind)
H=YO£e 0 i I

(4.63)

Figure 4.4 geometry of a resistive strip depicting the orientation, incidence,
and scattered angles.
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for H-polarization. Following the procedure outlined by Senior et al. [1987], the physical

optics currents for V- and H-polarized incidence waves are given by

\T& PC
=T (3-[0,-e ) %, (464
Hyn PC
Jo=T (7"l¢i'¢1l) T (4.65)
where J C refers to the physical optics current that would exist on the surface of the

resistive sheet had it been a perfect conductor. I'V and T'H are the reflection coefficients for

the resistive sheet for horizontal and vertical polarization and are given by
V 2R T
(7 -[0;- ¢1D [ Z, " (5 0; - 1’)} (4.66)

1
PG oo [ 2p (3 -[0- o)) “n

where Z is the free space characteristic impedance and R is the resistivity of the leaf given

by

i Z0
R= m (468)

In (4.68) T and € are the thickness and dielectric constant of the leaf. Noting that the

physical optics currents J f ¢ andJ PC
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ikocos(<|>i—¢l)x'

JIZC (4.69)

=-2Ysin (|¢i_ ¢1|) e

ik cos(d.-— !
Ji?:+2yoe' 0 oS0~ o) x (4.70)

and using the far field approximation, the scattered field due to the physical optics currents

Jz and Jx' can be obtained from

k ikop_% W/2 —ik B
0 e ik Ccos(¢ —0)
E,=-Z I,Qe ° U4 @4.71)
z 8 \/p J’-w/z A0 ¢
ik p- it |
"4 w/2 ~ ik, Coos(d - )
S 0 e . s
H,= 8 \/a Sml‘bs"q’ll f_w/zlx'(C)e 0 ! d¢ (4.72)

Finally, after evaluating the integrals, the scattered field for V- and H-polarizations are

o in _
. k, elk()p 4 sm|<|>i"¢1| {Wsin X} .
SRELEEVA) 1+27103sin|¢i—¢1| X '

1k p—-i—1t . _
_y kg o 0P sml(t)S ¢1,

H w sin X 474)
z 0 27 \/5 1+£Z%Csc|¢i—¢l|{ X }
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with
kow
X= —2—[cos(¢i—¢1)—cos(¢s—¢l)] (4.75)
Hence,
[ Sin]q)i—q)l‘ sin X 0 ]
2R . X
_ ko 1+—Z—Osml¢i —(bll
S= _[=— .
W . sml(l)s—q)lI sin X (4.76)
2R X
_ 1+70—csc|q)i -¢l| |

The averaging over the orientation angle ¢; involved in the derivations of the extinction and

phase matrices cannot be evaluated analytically; hence, the integrals should be calculated
numerically. The physical-optics approximation is valid as long as the width of the strips is
large compared to the wavelength, and if the material is lossy, this approximation provides
reasonable results for values of w as small as Ay.

For cases where the width of the strips is not large compared to the wavelength,
numerical techniques, such as the method of moments, may be used to find the scattered
field. However, use of such computational techniques to compute the phase and the
extinction matrices from the scattered field would be prohibitive in terms of computational
time. In what follows, we demonstrate an efficient procedure for numerical computation of

the extinction and phase matrices. The integral equations for the induced currents on the
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resistive sheet, as shown in Fig. 4.4, for V- and H-polarizations are respectively given by

[Sarabandi, 1990]

ik _cos(¢.—¢ )x' Kz, .w/2 1
RJZ(x')ze1 0@ 7% —%J’ M
-Ww

O Hy gy =gt @.77)

) ik cos(d.-¢ )x'
RJX,(x')z—sm'q)i—-q)l'e A

kz _w/2 2
0%0 0 O P
- j_mex.(C)[H Zon? ]Ho (kolx =gyt

(4.78)

(1)

where Hy) * is the Hankel function of the first kind and zeroth order. These integral

equations can be cast into a linear system of equations by applying the method of moments
and point matching technique. By solving the linear system of equations an approximate
solution for the currents can be obtained. Having found the induced currents, the scattered
fields can be obtained from (4.71) and (4.72). The approximate form of the scattering

matrix assuming that the strip is divided into M small sections takes the following form

S=-

[ %o
0V 8=

Z
M )
z Jrznc—lkoxmcos(cbs—(pl) 0

-

m=1

(4.79)

M .
v —ik -
° sinfo, =0 | 3, e 0im e
: =1
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where xp, is the coordinate of the mth cell in the x' coordinate system and J, is the value of
the current for the mth cell. The matrix approximation of (4.77) and (4.78) can be written

as

V. H J . x = VV, H (4.80)

where Zy; and Zyy are the impedance matrices and Vy; and Vg are the excitation vectors

whose elements are

VX] eikO COS(¢i—¢l)xm (4.81)

ikocos(cpi—q)l)xm

Vin=sin| 0, - 0 Je (4.82)
From (4.80)-(4.82) the induced current supported by each cell is given by
m==11 ik cos(d. -0 )x
I = Z[ZV} e O T I (4.83)
I=1 ml
m -1 .
X' = . ik cos(¢p.—-¢ )x
Jo, =- 2 [ZH} sm‘q)i-q)ly e O o (4.84)

=1 ml

Finally by substituting back (4.83) and (4.84) into (4.79), the scattering amplitudes of the

scattered field can be derived to be
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(4.85)

ml

0 M M
Sin@p 05 0)=-Z /g X X

-1 .
- k [cos(®.— ¢ )x, —cos(d. - )x ]
[ZH] Sin|¢i_‘1’1|Sin|q’s‘¢1|¢1 0!8 =407 TP (4.86)
ml

Suppose the orientation angle distribution of the leaves is uniform in the interval (0, 27),

then the ensemble average of Syy and Spp, in the forward direction (¢ = ¢y) is

szl $ 3 1]

m=11=1 ml
(2™ ik, cos(® .~ 0 ) (x,~x)
T € d¢1
-—7 8_ 2 Z Tkl X =% ) (4.87)
=11= ml
kO M M[_-1
<Shh>=—Z T 2 ZZH
m=11=1 ml
1 2n ik [cos(¢i—¢)(x -x_1]
ﬁjo sin 2(9; —¢)e M

(4.88)
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where Jo and J; are the Bessel function of the zeroth and second order, respectively, and
the + or - sign must be used according to the sign of (x| - xm). Therefore, the extinction

coefficient of leaves for vertical and horizontal polarization, respectively, are

JJ()(kotxl—me) (4.89)

(4.90)
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where Ny, is the number of the leaves per unit area. Inspection of (4.89) and (4.90) reveals
that the extinction coefficients are independent of the incidence angle.

For evaluation of the phase matrix we note that

%

) Z%)ko M M M M[_- -1
<USyy F>=—— 3 222[2] [z]
T . \ Vv
m=1Il=1n=1j=1 ml nj
2n ik - —x )= - -
51_J nel oleos@, = 0) (x = x;)-cos(0 = ¢ ) (xpy xj)]d(p (4.91)
T 0 1

The integral in (4.91) can be represented as

2m ik [cos(®.-¢ ) (x.—x )—cos(d .- )(x. —x)]
1 0 i 1 “n sT T Vim T T B
2T -[0 © , dq)l—
27 _ 4.92)
1 1k _qcos(¢.—7v) (
_J e 0 1 d¢1

2750
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where

q= \/(Xl - Xn)2 + (Xm—xj)2 -2(x, —xn)(xm—xj)cos(tbi -9 (4.93)

1 (xl_xn)Sin(¢s—¢i)

=tan~ (4.94
VS X 0050, = 0) ~ (k- x) :
The solution to the definite integral in (4.92) is
1 (2™ ikggcos@ - B

Therefore, the phase function for the V-polarization becomes

*

M [_-17 [_-1
lgl[zv} [Zv],lo(koc“ (496)

ml nj

Z k. M M

0
Pov=Np 8T z z
m=1 1=1n

o N

gk

Following a similar procedure for H-polarization and using the following integral

identities,

2n ikOqcos(tbl—y)

L J eos®e,-aye = cos (47-200 T (k@) — 27 (k@) (4.97)

and
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27 ik @.-v ‘
[ Teos 0w TN T cmcos 2y Tk @98)
0

the phase function for the H-polarization can be shown to be

Z%)ko M M M Ml:z—l} l:=~l:|
P =N, —g= mgl E D Z Zo | 12l
L cos 20~ 0,01 (k@ +
2cos(¢S—¢i)cos(2y—(¢S—¢i))12(k0q)+
cos (47 = 2(¢5 = 0.3 ,(k (@] (4.99)

Equations (4.96) and (4.99) show that the phase functions are independent of the incidence

and scattering angles and are only dependent on the difference angle (¢ - ¢; ).

4.7  Comparison with Experimental Data

In order to use the iterative and DOT solutions for practical applications, the validity
of the developed model should be checked against experimental data. The horizontal
propagation measurements, presented in section 3.2, can be used for this purpose. A
summary of the measured canopy parameters are given in Table 4.1. Before proceeding
with the comparison of the theory with experimental data, it is useful to examine the
behavior of the phase function of cylinders and resistive strips. Using the data of Table
4.1, the phase functions of a single cylinder and a single resistive strip (i.e., Nsp=1)at
4.75 GHz were calculated as a function of (¢s-¢;) and are presented in Fig. 4.5. It can be
seen that considering the number of leaves and stalks in the canopy, the phase function of
leaves becomes comparable in amplitude to the phase function of stalks at C-band. Hence,

leaves play as important a role in the scattering process as stalks, which was also observed
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in the experimental data. Referring to Fig. 4.5b, it can be concluded bthat the physical optics
solution is in good agreement with the exact solution derived by the method of moments at
4.75 GHz. It should be mentioned that in computation of the phase function by the method
of moments, the size of the cells (segments) does not have to be as small as the size that is
required for accurate computation of the scattering amplitude (usually A/15). This is due to
the fact that the averaging process over the magnitude of the scattering amplitude in the

calculation of the phase function washes out the fine features of the scattering amplitude.

A £ ; €
f=1.5GHz 20 cm 28+1i8 33+110
f=4.75 GHz 6.3 cm 26+18 31+110

Leaf: w=5cm 1=0.25mm
Stalk: d=175cm

Row spacing = 80 cm

Number of plants per square meter = 6.2

Number of leaves per plant = 13

Table 4.1 Canopy parameters used in the calculation of the theoretical results
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Figure 4.5 Calculated phase function of a single (a) cylinder, (b) resistive

strip as a function of phase difference, ¢s-9;, at 4.75 GHz for the
parameters of Table 4.1.
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Figure 4.6 shows comparisons between the phase function of a single strip
calculated by the physical optics method and the result obtained by using the method of
moments. The phase functions is calculated as a function of w/A using the parameters of
Table 4.1. It can be seen that the physical-optics solution is a good approximation for
calculation of the leaves’ phase function at C-band. But, at lower frequencies, the exact
solution derived by the method of moments must be used (i.e., at L-band). Therefore, in
the calculation of the phase function for leaves, the exact solution at 1.5 GHz, and the
physical optics solution at 4.75 GHz are used. For a plane wave incident normally on
seven rows of a full corn canopy, the bistatic scattering coefficient was calculated and is
presented in Fig. 4.7. The result of the iterative and DOT solutions are comparable at both
L- and C-bands. The first order solution underestimates the DOT solution by up to 3 dB. It
can be concluded that both methods produce similar results for corn-like canopies at
frequencies in the L- to C-band range. The coherent component of the calculated

transmitted wave is also given in Table 4.2.

V-polarization H-polarization

First order DOT First order DOT

L-band 24.1 227 27 22

C-band -30.8 -27.3 -18.6 -16.8

Table 4.2 Coherent component of the transmitted wave (in dB), when a plane
wave of unit magnitude is incident normally on seven rows of a corn
canopy.
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Figure 4.6 Calculated phase function of a single resistive strip as a function of

w/A, using the iterative and DOT methods with the parameters of
Table 4.1 for (a) V-polarization, and (b) H-polarization.
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4.7 Calculated bistatic scattering coefficient for a plane wave incident
normally on seven rows of a corn canopy, using both iterative and
DOT methods at (a) L-band, (b) C-band.
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As it was discussed in section 3.2, measurements of the magnitudes of wave
patterns transmitted horizontally through seven rows of a corn canopy were made at 1.5
GHz (L-band) and 4.75 GHz (C-band) for both vertical and horizontal polarizations. We
can now compare the simulated results of the iterative and DOT solutions with the
experimental data. Equation (3.64) was used to simulate the incidence wave patterns. In
calculation, each row was subdivided into sections of 1.95-cm wide slabs for L-band and
1.77 cm-wide slabs at C-band, where stalks are only present in the central slab and leaves
are uniformly distributed in all slabs. Figures 4.8 and 4.9 compare the result of simulation
with the experimental data for stalks at 1.5 and 4.75 GHz, respectively. It should be noted
that the radiative transfer technique produces the statistical average of the transmitted wave
pattern and the experimental wave patterns are not averaged over many measurements. It
can be seen that both the first-order iterative solution and the DOT solution produce
satisfactory wave patterns at both L- and C-band frequencies. Figures 4.10 and 4.11 depict
similar results when leaves are also present. Good agreement between the experimental
data and the theory is obtained for a vertically polarized wave, but poor agreement is
achieved for the horizontal polarization. The model underestimates the propagation loss for
horizontally polarized waves. This shortcoming is due to the fact that leaves are modeled as
vertically oriented strips, whereas in reality, leaves are also oriented in non-vertical

directions. Therefore, the simulated propagation loss is not accurate for H-polarization.

4.8 Conclusion

In this chapter, a two-dimensional radiative transfer model for horizontal wave
propagation through a random medium with inhomogeneous particle distribution was
developed. Solution of the radiative transfer equation was pursued both iteratively and by a
new method based on the discrete-ordinate approximation and the taylor series expansion

(DOT). As an example, a corn canopy was considered where stalks were represented as
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infinitely long, vertically oriented dielectric cylinders, and leaves were represented by
vertically oriented thin resistive strips. An efficient numerical procedure was developed to
compute the extinction and phase function of particles with arbitrary cross section. This
model was used to compute the extinction and phase function of the leaves at L-band and
the physical optics approximation was used to calculate the extinction and phase function of
the leaves at C-band. It is shown that the models agree with the experimental data for a
canopy of stalks at both polarizations. The model also predicts the propagation
characteristic of a vertically polarized transmitted wave through a full corn canopy, but
underestimated the horizontal propagation loss due to the fact that leaves were modeled as
vertically oriented resistive strips. Overall, the model can be used to study the
electromagnetic interaction with a random medium with inhomogeneous particle
distribution of arbitrary cross section when their longitudinal dimension is much larger than
their cross sectional dimensions for horizontal propagation through periodic vegetation
canopies. The performance of the model for leaves at horizontal polarization will improve
as the frequency of the operation increases. This is due to the fact that the leaves' phase
function for vertical and horizontal propagation become comparable in magnitude by

increasing the frequency of operation.
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Figure 4.8 Comparison between the theoretical and experimental transmitted
wave patterns for seven rows of stalks at L-band at (a) V-polarization,
and (b) H-polarization.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1  Summary

This thesis examines the problem of microwave propagation through semi-
deterministic media such as man-made vegetation canopies. The reason for classifying the
earth's vegetation cover into natural terrain and man-made canopies is beacuse of the
orderly structure associated with man-made vegetation covers. Location, spacing, and
density of plants in a natufal vegetation cover tend to be random in character, whereas in
man-made vegetation canopies, such as agricultural fields, orchards, and artificial forests,
location, spacing, and density of plants are deterministic quantities. Since many cultural
vegetation canopies are planted in a row arrangement, a series of experiments were
performed on corn canopies to investigate the possible effects that the semi-deterministic
arrangement of plants may have on microwave propagation through the canopy. The first
set of experiments were performed at oblique incidence angles on a corn canopy. The
second set of experiments examined horizontal propagation through corn canopies along
different directions. Through these experimentations, it was concluded that for short, man-
made canopies, such as a com field, the canopy behaves like a non-deterministic vegetation
cover and random medium techniques for modelling the wave propagation are applicable.
For horizontal propagation through the man-made canopy, the periodicity of plants in each
row and rows in the whole canopy necessiated propagation models that take the

deterministic properties of the canopy into the consideration. Two distinctive cases were

145



146

observed. For a canopy of stalks, or when leaves are in the Rayleigh region of the
operating frequency, a coherent multiple scattering phenomenon was observed taking place:
in the canopy. At the frequency regimes where leaves are not weak scatterers, multiple
scattering contributions in the canopy were no longer coherently related, eventhough, the
periodicity of rows had certain effects on the propagating wave.

In chapter II, a model that characterized wave propagation in a random medium was
presented. The model takes both the absorption and scattering losses of the canopy
constituents into account and is capable of predicting the average propagation phase
changes that the wave experiences. Stalks were modeled as infinitely long dielectric
cylinders at all frequencies, but for leaves two frequency domains were considered. In the
Rayleigh region, dielectric mixing models were used to represent leaves and in the high
frequency region, the physical optics approximation and resistive sheet models were used
in modeling the leaves. The models proved useful in characterizing the wave propagation at
oblique incidence angles for corn canopies in the L- to X-band region.

Chapter III presented a deterministic model that could effectively explain the
coherent multiple scattering phenomenon that is observed due to the presence of stalks. The
model is a two-dimensional wave approach and network theory was used to characterize
the cascaded row arrangement of the canopy. The periodicity of stalks in each row was
modeled through Bragg-mode theory and approximate expressions for the scattering
amplitude of each Bragg-mode was presented for deployment in the model. The presence
of leaves in the Rayleigh region was modeled by dielectric mixing formulas which was
further incorporated into the coherent model. The model has also the advantage of
predicting the propagation power and phase patterns of the transmitted wave. Overall, the
coherent model proved to be satisfactory for a canopy of stalks and for a full canopy when
the leaf dimensions are much smaller than a wavelength.

In chapter IV, the problem of incoherent wave propagation in a periodic vegetation

medium was studied. A two-dimensional radiative transfer model for a periodic random
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medium was developed. Both the iterative solution of the transfer equation, and a new
efficient numerical technique (DOT) were presented. Stalks were modeled as infinitely
long dielectric cylinders, and leaves were modeled as thin infinitely long dielectric strips.
Comparison between theory and experimental data showed that the model behaves
reasonably well for stalks. For a vertically polarized wave, the leaf model proved to be
satisfactory, but it did not produce satisfactory results for a horizontally polarized

propagating wave.

5.2 Future Work and Recommendations

The models presented in this thesis provided some insight into the problem of wave
propagation in man-made vegetation canopies. Development of the theoretical models were
based on the experimental data. Therefore, the need for more experimentation on different
man-made vegetation canopies is evident. In chapter II, it was concluded that at oblique
incidence angles, a random medium approach is applicable when considering microwave
propagation in a corn canopy. But, for example, in artificial forests with tall trees, this may
not be true. Additional experimental data is needed to reach the conclusion that random
medium models are applicable at oblique incidence angles for all man-made vegetation
canopies.

Models for leaves in the intermediate frequencies (i.e., when the leaf dimensions
are less but comparable to A) are also needed for incorporation in the volume scattering
models. At this point, leaf models are only applicable in the Rayleigh or physical-optics
regions.

Three-dimensional radiative transfer models are also needed to take the scattering by
leaves into consideration for horizontal polarization. This, however, will definitely make

the model more complicated and computationally less efficient.
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