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EXECUTIVE SUMMARY

Project Goal

The goal of this project is to develop techniques and codes for modeling antennas
and arrays on doubly conformal platforms. The first year emphasis is to be on
cylindrical platforms whereas the second year effort is to concentrate on doubly
conformal platforms such as those of satellites, missiles and aircraft.

1st Year Progress Summary

During the first year of this work we developed the general purpose program
FEMA-CYL for radiation and scattering analysis of printed antennas and arrays on
cylindrical platforms. The code is based on the finite element-boundary integral
method and a challenge in its development was the efficient computation of the
cylinder’s Green’s function. Extensive validation of the code was carried out using
measured data and data from reference planar antenna codes. In addition, the
effect of several parameters on scattering and radiation performance was examined.
Specifically, parametric curves were computed which show the effect of curvature
on input impedance, beamwidth gain and scattering. The theory and formulation of
the code are described in the U-M Radiation Laboratory Report 031173-2-T and a
user and test case manual was delivered along with the code FEMA-CYL.

To account for dielectric coatings and fully conformal (doubly curved platforms) it
was necessary to develop a code which does not rely on a Green’s function for
terminating the finite element mesh. This led us to the development of a finite
element ABC code. In this code the finite element mesh is terminated by an
absorbing boundary condition, whereas in FEMA-CYL the mesh is terminated by
the Stratton-Chu boundary integral. The ABC permits the analysis of antennas
recessed on any platform but has the disadvantage of being less rigorous than the
boundary integral. Nevertheless, it is a computationally attractive alternative
because the formulation provides reasonably accurate answers to otherwise
untractable problems. The code FEMA-CYLA was developed on the basis of this
formulation and results generated by this code were found in good agreement with
reference date when the mesh is terminated a mere 0.3 wavelengths from the
antenna surface. Because FEMA-CYLA still uses the cylindrical shell for
discretizing the volume, it is only applicable to antennas on cylindrical platforms
but can handle patches and arrays with superstrates. Only limited validation of the



code has been carried out for modeling antennas with superstrates because of a lack
of reference data. Measurements though have just been completed using the model
illustrated in Figure 1. The patches on this cylinder-ogive model were coated and
comparison between measurements and calculations will be carried out over the
next month.

Over the last three months of this year work shifted to the development of the
future code FEMA-PRISM suitable for modeling a variety of printed antennas
(circular, rectangular, spirals, slots, apertures, etc.) on a doubly curved platform.
The key feature of the code is the use of the new edge-based distorted prism shown
below.

Distorted Prism

So far, we developed and implemented the finite element matrix for these elements
and performed a number of validations for scattering and radiation analyses. Using
this preliminary version of FEMA-PRISM results were obtained for several patch
antennas on cylindrical and planar platforms. Thus, FEMA-PRISM supersedes
FEMA-CYL and FEMA-CYLA.

An important advantage of using the prism is the possibility of avoiding
sophisticated meshing packages for generating the volume mesh. Instead, by using
prisms the mesh can be “grown” off the surface, thus generating a simple structural
mesh (see Fig.2). Consequently, simple preprocessors can be developed to mesh
standard antenna elements. Of course, this does not preclude the possibility of
using sophisticated meshing packages for antennas of arbitrary shape.

An important development during the latter four months was the introduction of a
new approach for modeling coax and slot antenna feeds in the context of the finite
element method. This formulation is based on the continuity of the potential rather
than the tangential field and allows for the independent meshing of the antenna
volume and feed region. The document entitled “An Efficient and Accurate Model
of the Coax Cable Feeding Structure for FEM Simulation” describes this
formulation for a coaxial cable feed.



This annual progress report contains four independent sections as listed in the
Table of contents. Each section describes the formulation and provides validation
and results as generated by the codes mentioned above. The reader is referred to
reports #031307-1-T and 031307-2-T which are the users manuals of the codes
FEMA-CYL and FEMA-CYLA. The FEMA-PRISM code is still in development
and will incorporate the new feed models described in the section by Gong and
Volakis.
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FEM-ABC analysis of cavity-backed conformal antennas mounted on
doubly curved platforms using distorted triangular prisms as finite elements

Side walls of the
ABC volume

Top ABC surface

ABC volume

Side walls of the
~ ABC volume

Ground Plane

Distorted Triangular Cavity

| Prisms stacked up

Figure 2 : lllustration of the prismatic mesh for modeling antennas
on doubly curved platforms 5
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Abstract

Conformal antenna arrays are popular for deployment on curved
aircraft, spacecraft and land vehicle platforms due to their inherent
low weight, cost and drag properties. However, to date there has
been a dearth of rigorous analytical and numerical solutions to aid the
designer. In fact, it has been common practice to use limited mea-
surementsiand planar approximations in designing such non-planar
antennas. In this paper, we extend the finite element-boundary inte-
gral method to radiation by cavity-backed structures recessed in an
infinite, metallic cylinder. The accuracy of the developed FE-BI code
for a microstrip patch arrays is established by comparison with mea-
surements. The formulation is then used to investigate the effect that
the finite aperture has on the radiation pattern. In addition, the ef-
fect of curvature on resonant frequency, gain, input impedance and
pattern shape is examined.

'



1 Introduction

Modern aircraft and missile designs seek to utilize conformal antenna arrays
rather than conventional protruding antennas due to their low weight, low
drag, low cost and flexibility. Although most useful aircraft surfaces possess
some curvature, the vast majority of available design information assumes
planar elements. Indeed, the literature is rich with approximate [1], nu-
merical [2] and experimental [3] design and characterization data for planar
structures. The most common antenna element is a microstrip patch printed
on a dielectric coated groundplane. Dielectric coated cylinders have also been
investigated using approximate [4] and numerical [5] approaches.

Often, it is desirable to enclose each radiating element within a metallic
cavity to suppress parasitic substrate coupling [6]. Approximate methods,
such as the cavity model [1], do not include finite aperture effects since the
radiating currents are restricted to the immediate vicinity of the patch. Most
integral equation formulations such as the one proposed by Pozar and Voda
[2] utilize a grounded slab Green’s function in their construction which pre-
cludes practical finite aperture simulations. Recently, Aberle [6] proposed an
integral equation formulation which partitions the geometry into an exterior
half space and an interior homogeneously filled cavity. This approach deter-
mines the electric field attributed to the patch and feed currents and the two
regions are coupled by enforcing field continuity across the finite aperture.
Unfortunately, as with all integral formulations, the linear system requires
O(N?) storage and considerable computational effort due the fully populated
system and the slowly converging cavity Green’s function. The simulation
of large finite cavity-backed arrays using such an approach is therefore not
practical.

An alternative formulation, utilizing the Finite Element-Boundary Inte-
gral (FE-BI) method, was proposed by Jin and Volakis [7]. This approach is
also suitable for inhomogeneously filled cavity-backed antennas recessed in a
metallic ground plane. As with all partial differential equation formulations,
this approach is associated with a highly sparse system which requires only
O(N) storage. Additionally, when coupled with a Conjugate or Biconjugate
Gradient-Fast Fourier Transform (BiCG-FFT) solver, the computational bur-
den is significantly reduced. The FE-BI method has been successfully used
for scattering and antenna performance analysis involving planar platforms.

A similar FE-BI method was proposed by the authors [8] for scattering



by cylindrical-rectangular and wraparound patch antennas. New divergence
free, high fidelity edge-based elements were presented along with an efficient
solution strategy which exploited an asymptotic evaluation of the appropriate
dyadic Green’s function as well as a BICG-FFT solver. The resulting com-
puter code was shown to accurately compute the scattering by both planar
and highly curved elements. This paper investigates the accuracy and utility
of such a FE-BI formulation for antenna performance analysis. The radiation
pattern of a single element as well as that of a wraparound array is compared
with measured results. The importance of modelling finite apertures is exam-
ined and in addition, the effect that curvature has on the resonant frequency,
gain, driving point impedance and pattern shape is quantified.

2 Formulation

In this section, the FE-BI formulation appropriate for radiation analysis is
developed for cavity-backed antennas recessed in an infinite metallic cylinder
(see figure 1). As usual, the finite element formulation permits substantial
modeling flexibility, including cavity inhomogeneities, lumped loads and mi-
crostrip feeding lines.

The FE-BI formulation begins with the weak form of the ‘vector wave
equation followed by specification of appropriate vector shape functions and
dyadic Green’s function. The resulting FE-BI equations are then used to
solve for the total electric fields within the cavity and on the aperture (for

further details, see Volakis et al. [9]). The weak form of the wave equation
can be written as

EEJ{A [V X Wj(P,¢,Z)‘V X VV,'([),QS,Z)

| pr(p, @, 2)

Py

e (o, 2o, 2) - Wil z)]pdp i dz

+(koa)?62()84(3) /S | /s [Wila,6,2) - pla,8,2)

Ql

Gea,,%) x p(a,¢,7) - Wia,¢,2)] do dz’dqbdZ} =f" (1)

In this, W, are vector basis functions with support limited to the finite el-
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Figure 1: Illustration of a typical cavity-backed antenna situated on a metal-
lic cylinder and the associated coordinate system.



ement volume V; which is associated with the :** degree of freedom, and in
a similar fashion, S; and S; represent aperture surfaces associated with the
i** and j** degrees of freedom, respectively. The appropriate dyadic Green'’s
function is denoted by G,; and it has convolutional (¢ = ¢ — ¢, z = z — z)
form when evaluated on the surface of the cylinder, p = a. The unprimed
coordinates represent the test point while the primed ones denote the source
point and (p, ¢, z) are the usual cylindrical coordinates. The free-space prop-
agation constant is given by ko = %, where Ao is the free-space wavelength.
The cavity is filled with an inhomogeneous material having relative consti-
tutive properties ¢, and y,. The function é,(1)6,(j) identifies when both
the source and test unknowns belong to the aperture and accordingly con-
tribute to the boundary integral sub-matrix. The FE-BI equation (1) may
be rewritten in matrix form as

A {2 o e o 2
g Tl o) (Bl T

where the entries of [A] are due to the FE portion of the formulation and [G]
is'the boundary integral sub-matrix. In (2), E;” and Ei* denote degrees of
freedom associated with the aperture and interior fields, respectively. In (2),
fi™ represents the internal excitation and for this paper, a radially oriented
probe feed is considered. :

The vector elements, dyadic Green’s function evaluation, matrices [A]

and [G] and the far-zone field formulae are given in [8] and are therefore not
repeated here. The interior source function is given by

int M™(p, , 2 - fint 7
o= - /V {Vx[—yr—(p(i%z))—}+JkoZaJ (p,¢,z)}-V%(p,¢,2)Pdpd¢dz
(3)

-, -t .
‘where J*™ and M*™* are the impressed electric or magnetic current densities.

For a radially (p) directed probe feed, the impressed current located at (g, 2s)
1s given by

j?nt - ﬁ105(¢—¢3)(2—23)

; (4)
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and (3) becomes

fir = ko2l n (%) [(# = 6:) (2 — 2)] (5)
if the edge-based elements introduced in [8] are used.

Having computed the finite element and boundary integral matrices as
well as the internal excitation, the BiCG method is used to solve for the
unknown electric fields throughout the computation domain. Given that the
FE matrix is highly sparse and symmetric, the BiICG method is a well-suited
choice among iterative solvers. It is also important to note that the matrix-
vector product associated with the boundary integral can be performed using
FFTs resulting in a reduced storage and computational burden. The com-
puted electric field within and on the aperture of the cavity may now be used
to compute antenna parameters such as the gain and the input impedance.

The radiated magnetic field is computed by integrating the aperture fields
with the far-zone dyadic Green’s function given in (8]

H(r,0,6) = jYoksa [ Calri0,60,8,7)
[ﬁ(a,qSl,zl) X E(a,d)',z,)] dé dz (6)

where (r,0,¢) indicates the observation point in spherical coordinates. The
far-zone electric field may be obtained from (6) in the usual manner. The
radiation pattern, directive gain and other useful antenna parameters may

be calculated using (6). For example, the antenna gain may be computed
from the far-zone electric field as

Gun(6,6) = 10logsy [trE"(6,8)F] +10bogie [ =] ()

where R;, is the input resistance which is given below and E is the radiated
electric field as r — oo.

In addition to the antenna gain, designers are concerned with the in-
put impedance of an antenna for feed line matching purposes. The input
impedance is comprised of two contributions [10]

Zin. = Lp+ 4D (8)
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where the first term is the probe’s self-impedance and the second term is
the contribution due to the presence of the patch. The probe self-impedance
accounts for the finite radius of the probe and hence can be omitted when a
zero-thickness probe is assumed. Accordingly, the driving point impedance
may be found by calculating the voltage between the patch and the cavity
base

1 [ = -
Zu=Tp = -7 [ E(p,6,2)- T™(p,,2)pdpdédz (9)

n
where the impressed current is given by (4), V; refers to the volume of the
finite element which contains the probe-feed, E(p, ¢, z) is the interior field
and I, is the constant current impressed upon the probe. Substituting (4)
into (9), for the cylindrical edge elements presented in (8], it follows that the
input impedance if given by

Zin = i:Z:n (10)
where
i E(l) 5,‘,0“ P 7 -
gy = B0 (2 (6 -8)e-2)] ()

is the contribution due to one of the four radial edges of the element con-
taining the probe.

3 Results

Two types of antenna elements are considered in this paper and they are
shown in figure 2 where each patch is ¢a® x b in size with a denoting the
radius of the cylinder. Although the FE-BI method permits mixed-mode
feeding, for this paper it is convenient to consider only the two lowest order
non-hybrid modes. A patch whose radiating side walls are axially oriented
is termed an axially polarized patch and is fed at ¢, = §. Circumferentially
(or azimuthally) polarized patches have radiating walls forming constant z-
surfaces and are typically fed at z, = % The 6 = 90° cut is the E-plane
for circumferentially polarized patches and the H-plane for axially polarized

12
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Figure 2: Illustration of (a) a circumferentially polarized-patch element; and
(b) an axially polarized patch element. The radius of the cylinder is denoted
by a.
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elements. Observation is considered in the § = 90° cut/plane since creeping
wave effects are a primary interest of this paper.

Several computed and measured antenna patterns have been published
for patches printed on a coated cylinder. One such patch, which is 3.5 cm x
3.5 cm, was used by Sohtell [11] to compare the accuracy of the cavity model
[4] to a surface current integral equation [5]. The measured data was taken at
2.615 GHz for a metallic cylinder which was 63.5 cm long and had a radius of
14.95 cm. The cylinder was coated with a 0.3175 cm uniform dielectric having
relative permittivity of ¢, = 2.32. Data was taken for —180° < ¢ < 180° in
the & = 90° plane. Figure 3 compares these measured patterns with data
generated using the FE-BI method for an identical patch placed within a
360° x 7 cm cavity. This wraparound cavity was chosen to simulate the
coated physical test body. Note that the H-plane patterns are symmetric
due to the symmetric placement of the feed, whereas the E-plane patterns
are not symmetric. The placement of the feed was not specified in [11];
however, the agreement for the E-plane pattern shown in figure 3 indicates
that the position used in the FE-BI model (a¢, = -1 cm) is reasonable. The
feed was placed at z, = -1 cm for the axially polarized (H-plane) case.

We next consider patch arrays. Being a rigorous method, the FE-BI
formulation accounts for mutual coupling and cavity termination effects. The
H-plane pattern of a four element array was measured to gauge the accuracy
of the FE-BI approach. Each element is 2 cm x 3 cm and placed within a
9 cm X 6 cm x 0.07874 cm cavity which is filled with a dielectric having
€, = 2.17. The cylinder is 91.44 cm long and has a radius of 15.24 cm.
The cavities are placed symmetrically around the cylinder (e.g. a patch is
centered at 0°, 90°, 180° and 270°). Only the patch centered at 0° was excited
while the remaining patches were terminated with a 50 load. The driven
patch was axially polarized and the feed was located at z, = —0.375 cm.
Figure 4 illustrates the excellent agreement between the FE-BI formulation
and the measured data.

In a previous paper [8], discrete wraparound cavity arrays were found to
have a significantly lower radar cross section (RCS) compared to a continuous
wraparound cavity array. Thus, the size of the cavity had a significant effect
on the scattering properties of the array. The two antennas presented by
Sohtell [11] were placed within individual cavities which were 7 cm high and
approximately 30°, 50°, 90°, 180°, 270° or 360° in angular extent. Figure
5 ilustrates that the azimuthal cavity size has little effect on the radiation

14
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Figure 3: Comparison of measured and computed data for a circumferentially
polarized element (E-plane) and an axially polarized element (H-plane). The
antenna (3.5 cm x 3.5 cm ) was printed on a 14.95 cm cylinder with a 0.3175
cm coating (¢, = 2.32). The probe feed was place at (ag,,z,) = (-1.0,0.0)
for the circumferentially polarized patch and at (a¢,, z,) = (0.0,-1.0) for the
axially polarized antenna.
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pattern for a circumferentially polarized element and a similar comparison for
the axially polarized patch is shown in figure 6. The back lobe of the antenna
(near ¢ = 180°) is very small for cavities less than 180° but increases for larger
cavities. For cavities which lie solely on the forward face of the cylinder, the
substrate modes apparently diffract off the cavity walls; an effect which has
little influence on the main lobe of the pattern. However, for wraparound
cavities and cavities which extend into the back side of the cylinder, the
substrate modes either shed like creeping waves or diffract strongly behind
the cylinder thus giving rise to the back lobe.

Having examined the effect of cavity size on the radiation patterns, we
will now look at the effect of curvature on the gain of patch antennas on
cylindrical platforms near resonance. Each of the two antennas used above
were separately placed within 10.5 cm x 10.5 cm cavities which were em-
bedded in cylinders with increasing radius. The frequency was allowed to
vary from 2.4 GHz to 2.7 GHz and the gain (7) was recorded every 5 MHz.
Figure 7 illustrates that the gain decreases with increasing element curvature
for a circumferentially polarized patch. Since the input impedance is only
slightly affected by curvature as shown in figure 8 the resulting decrease in
gain implies a decreased radiated power which is expected since the effective
aperture area observed normal to the patch is reduced as the curvature in-
creases. The axially polarized patch exhibits a greater decrease in gain with
increasing curvature as shown in figure 9. For this polarization, the input
impedance is affected by curvature as shown in figure 10. The enhanced
sensitivity of the axially polarized antenna is due to the combined effects
of a decreased radiated power and driving point impedance. Both antennas
exhibit a small decrease in resonant frequency (less than 1.5 percent) with
increasing curvature as illustrated by the rotation of the curves in figures 8
and 10.

The radiation pattern of a circumferentially polarized antenna at res-
onance exhibits reduced creeping wave interactions with decreasing curva-
ture due to attenuation as shown in figure 11 when excited at a resonant
frequency. For circumferentially polarized E-plane observation, the radiat-
ing surface fields are aligned along the ¢-axis which results in little pattern
broadening. The radiation pattern of the axially polarized antenna broadens
as the curvature increases which is illustrated in figure 12. Since the radiat-
ing aperture fields are aligned along the 2-axis for axially polarized H-plane
observation, the pattern exhibits broadening due to the orientation of the

18
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Figure 8: Input impedance of a circumferentially polarized patch antenna for
various cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and the

cavity size was 10.5 cm x 10.5 cm.
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Figure 10: Input impedance of an axially polarized patch antenna for various
cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and the cavity
size was 10.5 cm x 10.5 cm.
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surface field with respect to the observation direction.

4 Conclusions

In this paper, we presented a rigorous analysis of the radiation by individual
and arrays of patches placed in a cavity recessed in a cylindrical platform. A
finite element-boundary integral code was developed and the data generated
by this code for a typical cylindrical-rectangular patches were found to com-
pare favorably with measurements. Since the cavity model does not include
mutual coupling and the usual integral equation formulations requires large
storage and computational resources, the FE-BI formulation is especially
attractive for array analysis.

This FE-BI method was used to study the radiation properties of circum-
ferentially and axially polarized patch antennas. The finite cavity size was
found to have little effect on the circumferentially polarized E-plane pattern.
However, for the H-plane pattern of an axially polarized element, the back
lobe is significantly larger for cavities which extend from the front side to the
back side of the cylinder. A wraparound antenna exhibited the largest back
lobe implying that this lobe is a result of creeping wave shedding rather than
diffraction off the lateral metallic walls of the cavity. The presence of a back
lobe must be considered when designing low observable, jam-resistant anten-
nas or antennas on complex platforms (e.g. an antenna near an obstruction).
Thus, as was the case for scattering reduction, it is advisable to configure
the patch antenna in the smallest possible cavity.

The effect of curvature on resonance, gain, radiation pattern shape and
input impedance was studied. Both circumferentially and axially polarized
antennas were considered and was found that the resonant frequency in-
creased with increasing curvature for both antennas. The gain of both types
of patch antennas decreased with increasing curvature with the axially po-
larized antenna exhibiting greater sensitivity attributed to the orientation
of the radiating surface fields and the decreasing driving point impedance.
The radiation pattern for axially polarized antennas broadens with increasing
curvature while the corresponding patterns for circumferentially polarized an-
tennas does not broaden; however, creeping wave interactions are reduced for
the latter element with decreasing curvature as expected. We conclude that
axially polarized antennas exhibit more sensitivity to curvature as compared

26



to their circumferentially polarized counterparts.
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Scattering by Cavity-Backed Antennas on a

Circular

Cylinder

Leo C. Kempel, Student Member, IEEE, and John L. Volakis. Senior Member, IEEE

Abstract—Conformal arrays are popular antennas for aircraft,
spacecraft, and land vehicle platforms due to their inherent
low weight, drag, and observables. However, to date there has
been a dearth of rigorous analytical or numerical solutions to
aid the designer. In fact, it has been common practice to use
limited measurements and planar approximations in designing
such nonplanar antennas. In this paper, we extend the finite
element-boundary integral method to scattering by cavity-backed
structures in an infinite, metallic cylinder. In particular, we
discuss the formulation specifics, such as weight functions, dyadic
Green'’s function, implementation details, and particular difficul-
ties inherent to cylindrical structures. Special care is taken to
ensure that the resulting computer program has low memory
demand and minimal computational requirements. Scattering
results are presented and validated as much as possible.

[. INTRODUCTION

ONFORMAL antenna arrays are attractive for aircraft,

spacecraft, and land vehicle applications since these
antenna systems have low weight, low drag, flexibility, and
cost advantages over conventional protruding antennas. The
majority of previous studies pertaining to nonplanar conformal
antennas has been conducted experimentally due to a dearth of
rigorous analysis techniques. Traditional rigorous techniques
involve an integral equation and are limited in terms of radius
of curvature and structural complexity. Some approximate
methods have been considered, but these are restricted in
accuracy and element shape.

Recently, the finite element-boundary integral (FE-BI)
method was successfully employed for scattering analysis
of large cavity-backed planar arrays [1]. The resulting system
is sparse due to the local nature of the finite element method,
whereas the boundary integral submatrix is fully populated.
However, by resorting to an iterative solver such as the
Biconjugate Gradient (BiCG) method, the boundary integral
subsystem may be cast in circulant form, allowing use of the
Fast Fourier Transform (FFT) in performing the matrix-vector
products. This BiCG-FFT solution scheme ensures O(N)
memory demand for the entire FE-BI system and minimizes
the computational requirements.

In this paper, the FE-BI formulation is extended to scatter-
ing by aperture antennas conformal to a cylindrical metallic
surface. In contrast to the planar aperture array. the imple-
mentation of the cylindrically conformal array requires shell-
shaped elements rather than bricks, and the required external

Manuscript received November 19, 1993; revised April 11, 1994,

The authors are with the Radiation Laboratory, University of Michigan,
Ann Arbor, MI 48109-2122.

[EEE Log Number 9404568.

Green’s function must satisfy the boundary conditions on the
surface of the cylinder. In its exact form, this Green's function
is an infinite series that imposes unacceptable computational
burdens on the method. However, for large-radius cylinders.
a suitable asymptotic formula is available and herein used for
an efficient evaluation of the Green's function. In addition.
the resulting BI system is again cast in circulant form to
ensure an O(N) memory demand and to take advantage
of the FFT's efficiency when carrying out the matrix-vector
product.

A primary difficulty in swdying cavity-backed antennas
mounted on curved surfaces is the lack of reference data.
In this paper, scattering calculations based on the FE-BI
method are compared with data based on different techniques.
Although such validation is necessarily limited, it provides
confidence in the formulation’s accuracy so that this ap-
proach may be used in extending the available reference
data.

An alternative approach for terminating the FE mesh is to
use an absorbing boundary condition rather than the exact
boundary integral used herein. The finite element-absorbing
boundary condition (FE-ABC) method is associated with
a higher CPU cost because of its enlarged computational
domain; however, it is more flexible than the FE-BI method
presented in this paper since it may include a complex
radome as well as the cavity-backed antenna elements. Such
an FE-ABC formulation will be the subject of a future

paper.

II. FE-BI FOR CIRCULAR CYLINDERS

In this section, the FE-BI formulation is developed for
cavities recessed in an infinite metallic cylinder, having walls
that coincide with constant p-, ¢- or z-surfaces (see Fig. ).

As usual, the finite element formulation permits substantial
modeling flexibility, including cavity inhomogeneities. lumped
loads, super/substrate antenna configurations, or microstrip
lines and so on.

The FE-BI approach possesses both low memory and
computational demand when implemented with a BiCG-
FFT solver. Although the svstem of equations associated
with the FE formulation is sparse, the boundary integral
submatrix is fully populated. However. if the aperture mesh
is a uniform grid. the BiCG-FFT solver may be employed
for that portion of the system. thus retaining O(N) memory
demand for the entire system. In addition, the solver has
low computational demand since the sparse matrix-vector

0018-926X/94504.00 © 1994 IEEE
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Fig. 1. Ilustration of a typical cavity-backed antenna situated on a metallic
cylinder and the associated coordinate system.

products require O(N) operations per iteration and the
discrete convolutions that utilize FFTs require only O(NlogN)
operations per iteration.

The FE-BI formulation begins with the weak form of the
vector wave equation followed by specification of appropriate
vector shape functions and a dyadic Green's function. The
resulting FE-BI equations are then used to solve for the total
electric fields within the cavity and on the aperture (see, for
example, Volakis er al. [2]). For the specific configuration at
hand, the weak form of the wave equation can be written
as

/ V x Wi(p.¢.2) -V x Wi(p. ¢.2)
| /“f(ptq)‘z)

— kler(p. 0. 2)W;(p.0.2) - Wi(p-¢-2)}pdpd¢dz

oo | J,

Gg(a é.2) x p(a. 0.z ) ( )]d¢ dz do dz
- f:nt +f:‘1‘t' (1)

In this, W; are vector basis functions with support over
the volume V;, which is associated with the ith degree of
freedom. and in a similar fashion, S; and S; represent aperture
surfaces associated with the ith and jth degrees of free-
dom. respectively. The appropriate dyadic Green’s function
I~ denoted by G,. and it has convolutional (¢ = ¢ - cb',

+ (koa)?6 a.¢,z) pla.¢.z)x

1269

z - z') form when evaluated on the surface of the
cylinder p = a. The unprimed coordinates represent the test
point, while the primed ones denote the source poim The
free-space propagation constant is given by kg = —’; where
Ao 1s the free-space wavelength. The cavity is filled with an
inhomogeneous material having relative constitutive properties
€ and p,. The function é,(¢)64(j) is the product of two
Kronecker delta functions. Hence, it identifies which pairs of
unknowns belong to the aperture and accordingly contribute to
the boundary integral submatrix. The right-hand side contains
an internal source (f!™') and an external source (ff*') term.
The former is used only for radiation analysis and is omitted
for this paper. The latter is used for scattering analysis and is
discussed later.

The FE-BI equation (1) may be rewritten in matrix form as

AlE7 [[91 [o}{E‘"’} (£

in n (2)
(g7 T Lol J{ER T (o)
where the entries of [A] are due to the FE portion of the
formulation and [G] is the boundary integral submatrix. In (2),
EZ? and Ei™ denote degrees of freedom associated with the
aperture and interior fields, respectively.

An important factor in choosing the finite elements for
gridding the cavity is the element’s suitability for satisfying
the mathematical requirements of the formulation as well as
the physical features of the antenna system. Traditional node-
based finite elements associate the degrees of freedom with
the nodal fields and have proven unsatisfactory for three-
dimensional electromagnetics applications since they do not
correctly represent the null space of the curl operator, and
hence spurious modes are generated [3]-{4]. In contrast, edge-
based elements correctly model the curl operator and therefore
the electromagnetic fields. In addition, edge-based elements
avoid explicit specification of the fields at corners where
edge conditions may require a singularity. Jin and Volakis [6]
presented edge-based brick elements, which are convenient for
rectangular-type structures and cavities. For cavities residing
in a circular cylinder, shell elements are the natural choice.

Cylindrical shell elements possess both geometrical fidelity
and simplicity for cylindrical-rectangular cavities. Fig. 2 illus-
trates a typical shell element, which has eight nodes connected
by twelve edges: four edges aligned along each of the three
orthogonal directions of the cylindrical coordinate system.
Each element is associated with twelve vector shape functions
given by

zZ =

le(p.(b,z) = W,,(p. G2 e 3 ).
Wis(p.0.2) = Wy(p.0.2:.01. 2. -)
Woe(p.d).z) = W'p(p 0.z O . =)
Var(p.9.2) = Wp(p. 0. 2. 01 2. +)
W14(P-¢~Z) = WVO(P @.2:pp." 2. )
Wzs(p.d). 2) = Wo(p.0.2:pa.w 2t —)
Wss(p.0.2) = Wylp. 6. 2: 9. - 25. ).
Ww(p.é.z) =W,o(p.0.2:pa. 26 +)
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Fig. 2. Cylindrical shell element.

Wis(p. 6. 2) = Wa(p, 6,2 pb, b1, . +),
Was(p, ¢, 2) = W.(p, 6, 2; Pay br, -, =)
W48(p z)=Vv,(p,¢, by Bty =)
War(p, 8, 2) = W.(p, 6, 2; pa, b1, . +) 3)

where W,k is associated with the edge which is delimited
by local nodes (I, k), as shown in Fig. 2. As seen from (3),
three fundamental vector weight functions are required for the
complete representation of the shell element. They are

- in(@-8)e-7)

Wolp.¢.2:5.6,%,5) = - ;

Wolp,9.2:5.6.5,) = (0 - 5)(z - £)9

K . -
t*;(ﬂ - p)(¢— )z 4)

where the element parameters (p,, ps, @1, P, 2, 2¢) are shown
in Fig. 2,t = pp — pa, @ = ¢ — ¢y, and h = z, — 2.
Each local edge is distinguished by j, ¢, Z, and 3 as given
in (3). The ;-term, which appears in the definition of the p-
directed weight (4), is essential in satisfying the divergence
free requirement, i.e. so that V- W; = 0.' Note that as
the radius of the cylinder becomes large, the curvature of
these elements decreases, resulting in weight functions that
are functionally similar to the bricks presented by Jin and
Volakis [6]. Having specified the vector basis functions, we
may proceed to develop the matrix entries for the system (2).

The FE-BI system is composed of two parts: a sparse FE
matrix and a fully populated BI submatrix, as shown in (2).

W.(p.¢.2:5.6,2,5) =

‘H'I(p. o. =) will satisfy this requirement only within the volume of the
element. These weighting functions introduce artificial charges on the faces of
the element and are not divergenceless at element interfaces. This is allowable
since these elements do not guarantee normal field continuity across the
element faces.

The FE matrix entries are represented by

1 (15 i
Ay = —I7 — ke IV (5)

.
where constant material properties have been assumed within
each element. The subscripts (2, 7) refer to the row and column
of the matrix entry and correspond to the test and source edges,
respectively. The auxiliary functions

I(l /VV x W, (0,0, 2; pJ,q§, 2;,5;5)
V X We(p, &, 2; bi, $s, 2. 3 )p dp d dz
=/V‘ W.(p. 6,255, i 25, 35)
3i)pdpdodz 6)

are identically zero unless both test and source edges share
at least one element in common, resulting in a highly sparse
system. Physically, such a system is a consequence of the
locality property inherent in a partial differential equation
formulation. In (6), the direction of the source and test edges
are represented by (s,t) € {p,¢,z}, respectively. Since
the edges of the mesh are aligned along three orthogonal
directions, only six unique combinations of (s,t) are required
for I1), and only three such combinations for I?). Since (6)
is symmetric with respect to source and test edges, the FE
matrix will also be symmetric. Evaluations of (6) using (4)
are presented in the Appendix.

A lumped impedance post may be included in the formula-
tion by adding a term to (1) and equivalently to (5); surface or
subsurface metallization layers may also be modeled. Radially
oriented lumped loads are approximated in the FE-BI formu-
lation by a filamentary load located at (¢, z) [2]. Such posts
have length [, cross-sectional area s and impedance Z. The
contribution to [A] is given by

hy=ikza / 6(6 - 916

p
-Wi(p, ¢, Z) i(p, 8, z)pdpdddz @)

which may be readily evaluated in closed form. In addition,
infinitesimally thin metallization layers may be represented
by simply fixing a priori the weight coefficients to zero for
weights associated with edges which are tangential to the
metal. This is a consequence of using a total electric field
formulation. The symmetry and sparsity of the FE system [.4]
is maintained after the addition of these loads, while the BI
system [G] remains fully populated and symmetric.

The boundary integral provides an exact boundary condition
for mesh closure, and its construction relies on a cylindrical
dvadic Green’s function The entries of the boundury integral

submatrix are
0)2/ / W,(a,qb.z:/ii.d;n:.
s, Js,

[ﬁ(a,db,z) x Gala.¢.7) x pla.d .z )}

Wt(pv ¢-z;ﬁia¢§iaiiﬁ

(z=21)

Gij=(k

W, (a, d) z: L 0; ¢>J 2;.8;)d d) dz dod: 8)
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Fig. 3. Geodesic paths on a circular cylinder.

where the weight functions are given by (4) and evaluated
at the surface p = a. In (8), the dyadic Green’s function
(G,) satisfies both the radiation condition, and the Neumann
boundary condition at p = a. This dyadic Green’s function
may be expressed exactly [8]

G**(a.¢.2)
& kp>21 HP() inbmies)
N koL Hn (V) itné-kingy
(2r)° ni:w/_x (ko T H )
G®*(a.9.%)
1 & /“ < nk, ) H() itnéoios)
= - oy € " ‘z dkl
(27)? Zx - \Ka1 ) H,®(y)
G*°(a.¢.3)
1 ol ¢ 1
= 2y Zx/x i
. 2 77(2)
an (v) —( = ) H'n )(’7) eJ(né—k:s)dk: 9
H:f’( ) koak, Hn(2)(“’)

where v = k,a and k, = \/k2 — k2. However, for large radius

cylinders (e.g., ka > 3), (9) is computationally prohibitive. In

these cases. which are of main concern in this paper. it is

advantageous to employ an asymptotic expression for G, [9]-

[12]. These employ a creeping wave series expansion of which

only the two direct path contributions (see Fig. 3) are retained.
The formula due to Pathak and Wang [9]

e = Jko
G*(a.¢.z) ~ o

e-—jkos

33

: {(60320 +q(1-¢)(2- 3{:()52()))1'(13)}

7ko
2w

e—]k(,s

G®(a.9.

ISl

) ~

-sin90050{(1 = 3q(1-q))- v(ﬂ)}

Jko
27 g

. {(sinQH +q(1 - q)(2 - 3sin6))v(3)

g ks

G%°(a.0.2) ~ —

+q[sec’6(u(f) - v(ﬁ))]} (10)

2
2513 .
%‘io—i and ¢ = 7% has proven quite

accurate. In the definition of (3, s is the usual geodesic path
length (s = +/(a®)? +22) and 6 is the direction of the
geodesic trajectory (9 = tan~! [9;‘2]) Depending on which

of the two direct paths (shown in Fig. 3) is used, & = ¢ or
® = 27 — ¢. The soft and hard Fock functions, u(53) and
v(0), respectively, are characteristic of on-surface creeping
wave interactions and have been extensively investigated by
Logan [13]. These functions are also presented in the appendix
of this paper. Although computation of the Green’s function
(10) is now tractable, evaluation of (8) must be done so that a
discrete convolutional system is maintained and the singularity
of (8) at s = 0 is properly treated.

Care must be taken in evaluating (8) so that the overall
storage requirement remains O(N) and the singular integrals
of (8) are accurately computed. If uniform zoning is used, the
resulting submatrix ([G]) is block Toeplitz and hence amenable
to solution using the BiCG-FFT method. For the nonself-
cell contributions, midpoint integration may be used while a
regularization procedure must be employed for the self-cell.
Bird [12] noted that (8) recovers the metallic screen Green's
function when 8 = 0 within the available approximation
order. This suggests that (8) may be regularized by adding
and subtracting from (10) the function

= VUV
1+'k—g—

where 8 = ks

e_jka R

250(0, ({3.2) = W

. R=[F=7| (1)

which is the free-space dyadic Green’s function multiplied
by two. The resulting regularized Green'’s function (curvature
contribution) is given by

G*(a.6.7) ~ —%i—{fqe_fk°“‘{((?u.q26 +4q(1-q)

(2 = 3cos’8)) [v(3) - 11}

G%(a.6.3) ~ ]?kf’-qe’jk”' sin()cosﬁ{(l -3q(1-1q))
T

[v(d) - 1]}
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G™a.0.3) ~ -‘12 (1«’""“3{(5’“?6 +qll-4q)

-
7

(2 = 3sin0))[v(3) - 1]

+ q[sec?6(u(3) - v(1))] } (12)
and since it is no longer singular it may be evaluated numeri-
cally. The planar contribution may be calculated in the manner
described previously by Jin and Volakis [5]. The FE-BI matrix
has now been fully developed and it remains to specify the
excitation function for external sources.

III. PLANE WAVE EXCITATION

Plane wave excitation of the geometry is considered in this
section for scattering analysis. The use of the exact boundary
condition in (1) allows coupling of an exterior excitation
field into the cavity. We will describe the form of the source
function f£7* and discuss its numerical implementation.

The forcing function, due to exterior sources (f£**) is given
by

2z

flerf :]‘Zokoa/ W,-(a.d)’..,,) ~ﬁ(a.¢,ezl)
S

xﬁcy’(a. ¢>'.z,)dd)( dz (13)

where W, (p. . z) is the testing weight for the ith row of the
matrix and H°Y' represents the magnetic field on the cylinder's
surface in the absence of the cavity. A plane wave

E = éle-jkowﬂ

H =Y, {ﬁ(sinw cos ; cos ¢; — cosysin ¢;)

- aa(sin v cos 8, sin ¢; + cos ¥ cos ¢;)

e]k,, [a sin @, cos 0,4z cos 91]

— Zzsin+vysin 9,] (14)
is assumed to be incident on the cylinder from the direction
(8:.6,). where v is the polarization angle and é = Bcosy +
¢'sin ~ is the electric field polarization. In these, the difference
between the observation and incidence angles is denoted by
¢; = ¢ — o,. The total surface field is given by the sum of
the incident and corresponding scattered field from the infinite
metallic cylinder [14]. Specifically,

HYa.0.2) = H(a.0.2) + H(a.0.2)
ol
=oHY +:iHM (15)
where
G cOS
HSVI((I.O.:):__ L Z s
mhoasing, = | g2k asing;)

7 Sin~ cos#,

/- )
Ko sty H 'k oasind,

)

x

(Jk‘o cos b,z 'z :

n=-n~

. .. sin~
-H;yl(u.o.:) =72}, —
wkoa

|

(16)

H.* (k,usinf,)

is obtained from traditional modal analysis. These expressions
may be approximated by retaining only a few terms of
the series if k,asinf; is small. However, as this parameter
becomes large (e.g., for large a and 6, — 90°), (16) may
be replaced with equivalent asymptotic representations similar
to those considered earlier. Utilizing Watson’s transformation
and Fock theory [14] in connection with (16), we find that
nyl ~ =Y, sin v sin f;e7%> <038
2
) Z e—Ikoasind, @, {9(0)(mq>p)]'
p=1
2

m
k,asinb;

l nxr ; .
HY' ~ j2Y, cosy glko cosb.z

2

_Ze—jkaasin&(bp [f(O)(mq,p)l'

p=1

— Y, siny cos ;€% «©s6:>

2
_Z(_l)pe-Jkoasin9,¢', [g(O)(mép)
p=1
_im .
]koasinﬁig (my)
(17)
in which &, = & - (¢ - &), & = (6 - &) - %,

m = [Reesind.] 5 and complex conjugation is denoted by an
asterisk. The appropriate far-zone Fock functions (¢(®), g(V),
and (%)) are given by Logan [13] and are also presented in
the appendix of this paper.

The asymptotic formulas (17) are quite accurate except
in the geometrical optics region (¢ = ¢;). In this case,
Goriainov’s [15] expressions
HY ~

~Y,sinasin 0iejk° cos b,z {e—jkaa sin 6, %, [g(O)(mQI)]
+ ejkoasino‘ cos (o—-¢>.)[G(_mCOS (¢ _ ¢:))]'}

2
HY ~ j2Y, cosa
@ J&e koasin 6,

) e-’k" cos b,z {e-—jkousine,dh [f(o)(mq)l)}‘
+ e]koa sin 6, cos(o—o,)[F(_mCOS(¢ _ ¢1))].}

+ Y, sina cos 87 °°59’z{e“)k”“"“0‘°‘ [g(ol(mdn)
m ‘ *
SN Y|
' koasin6,’ (mq’l)}
_ ejkoa sin 6, cos (0—0,) [G(—mcos (4) _ ¢l))

m

~1m (18)

G (~mcos (¢ - as,))} }
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have been found to be more accurate and can be used instead
of (17). The Fock functions (G, G'V) and F) are again defined
in Logan [13] and given in the appendix. These surface field
expressions may be used to calculate the entries of the column
vector { f£*!} efficiently via a numerical evaluation of (13). In
particular, the modal series (16) is used when k,asinf; < 10
and either (17) or (18) for k,asin §; > 10, as appropriate. With
the excitation function and the FE-BI matrix now specified,
the BiCG-FFT method [16)-[17] may be used to determine
the unknown electric fields within the cavity.

[V. SCATTERING

Once the cavity aperture and volume electric fields have
been determined by solving (2) for an external excitation, the
radar cross section (RCS) may be calculated. The far-zone
fields may be computed by integrating the aperture fields with
a suitable Green’s function. In this section we present the
relevant formula for calculating the far-zone fields and hence
the RCS due to excitation by a plane wave (14).

To determine the far-zone fields, we begin with the integral
representation for the scattered magnetic field in terms of the
aperture fields. We have

H*(r.60.9) =onkoa/ Go(r.8.0:0.9,2)
S
[,a(a.¢'.z') x E(a,¢’.z')] d¢ d2 (19)

with (r, 8, ¢) indicating the observation point in spherical
coordinates. When the observation point is very far from the
cylinder, the dyadic Green’s function in (19) can be replaced
by its far-zone representation

52(1‘, 0.¢:a, ¢’ , zl)
e—jkor P ~ ~ ar
~ [G""()d) +G%65 + G°’¢¢>¢]

ol

(20)

where the unprimed unit vectors are functions of the ob-
servation position and the primed ones are functions of the
integration point in (19). The components of this far-zone
Green’s function

ko cosfz

o J  2k,cosd
(27)? (koasin§)?
oC

n
Z 2)

M n(GHe-e)
L HAP (koasin8)

j z )kocosﬁ:'
(27)2 2
i 1
H

3 (kyasin )

Gez ~

pIn(F+(0=0")

J 2 ko cos§z’

G:Do ~ - e] o COs btz
(2r)? asinf
1

eJn(§+(o—w'))

@n

WK

H,(;Q)(koa sin 6)

n=-—>5

are determined by a mode matching procedure. As one might
expect, these series converge rather slowly for large koasin6.
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They must therefore be recast in another form by employ-
ing Watson's transformation and Fock theory. as was done
previously (17). In doing so. we obtain

2

G% ~ ko Cosgejko cosfz’ Z(_I)Pe‘)k'nﬂ sin 8¢,
4m =1

ko,asinf
2

- [gw)(m@p) y g<‘><rn<1>p>]

kosinf . K e T .
GO: ~ ___OT__e]kg cos 6z Z e—)k.)asmfm - [!I‘O {mQJp)}
e
T =
m? ks cosds T —skuasin b I
g -— \
G®¢ ~ __'____e] o cos Bz e~ IkoasinbP, (0,(7”(1) )
2arsinf p

=1

(22)

where the Fock functions are the same as those used with
(17) due to reciprocity. As was the case for the plane wave
source, Goriainov’s [15] approximations are more accurate in
the geometrical optics region (¢ = ¢) and similar expressions
may be obtained for (22), as was found for (17). The far-zone
scattered field can be computed numerically by using (19) and
either the series or asymptotic formula as appropriate. Having
done so, the RCS is calculated from

(23)

Above we presented a FE-BI formulation suitable for mod-
eling cavity-backed structures embedded in a circular cylinder.
Next, we consider a few numerical calculations aimed at
validating this formulation and giving us an appreciation
on how the cylinder's curvature influences the scattering
parameters.

V. RESULTS

Having solved for the electric fields induced by an incident
plane wave, the resulting RCS data must be validated with
known results. As previously mentioned, available measured
or computed data is rather scarce. and as a consequence we are
forced to rely on limiting cases.in order to validate this work.
As the radius of curvature decreases, a cylindrical-rectangular
cavity will approximate a planar-rectangular cavity. Another
limiting case involves comparison of an elongated 3-D cavity
with a corresponding 2-D cavity for normal incidence (6, =
90°). Finally, we may compare our infinite cylinder results
with a finite body of revolution (BOR) model for certain

polarizations and angles of incidence. We begin with the
quasiplanar case.

The first validation effort for scattering by cavity -hacked
patch antennas relies on the fact that a small patch on a very
large radius cylinder is quasiplanar and approximates rather
well an equal sized planar patch. For our test we chose as a
reference a planar 3.678 cm x 2.75 cm patch residing on a
7.34cm x 5.334 cm x 0.1448 cm cavity filled with a dielectric
having €. = 4. The equivalent patch on a 32.6 cm cylinder is
6.46°x 2.75 cm residing on a 12.90°x 3.334 cm x (.144x
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Fig. 4 Comparison of RCS for a planar patch (3.678 cm x 2.75 cm)
residing on a 7.34 cm x 5.334 cm x 0.1448 cm cavity filled with ¢, = 4
dielectric and a corresponding quasi-planar patch on a large radius (32.6 cm)
cylinder. The operating frequency is 9.2 GHz.

cm cavity. At the operating frequency of 9.2 GHz, the cylinder
has an electrical radius of 10),.

Fig. 4 shows the results for the patch on a large radius
cylinder with corresponding data for the planar cavity-backed
patch. Clearly, the two RCS patterns are in excellent agree-
ment, and although Fig. 4 illustrates only monostatic scattering
in the ¢ = 0° plane, additional runs for normally incident
monostatic scattering and various bistatic situations Yyield
similar agreement.

Comparisons may also be made for elongated cavities and
2-D MoM results. Long narrow cavities have very little axial
interaction for principal plane (§ = 90°) excitation and
therefore results based on this formulation should compare
well with corresponding 2-D data. It is well known that the
RCS of a 3-D scattering body of length L > )¢ is related
to the corresponding 2-D scattering of the same cross section

via the relation
2 L 2

Such a comparison is shown in Fig. 5 for monostatic
scattering by a 45° x 5\ x 0.1 cavity recessed in a cylinder
with a radius of 1A, for both principal polarizations. Once
again the agreement between the two results is excellent,
thus providing a partial validation of the formulation for
highly curved geometries. We remark that similar agreement
has been observed for bistatic scattering in the § = 90°
plane.

The planar approximation eliminates the effects of curva-
ture. which is a4 primary interest 1n this work, and the 2-D
comparisons done above are only valid for normal incidence
and observation. To consider oblique angles and a highly
curved structure, we resort to comparisons with a body of
revolution (BOR) code for wraparound cavities. Since the
BOR code can only model finite structures, we simulate an
infinite cylinder by coherently subtracting the far-zone fields
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Fig. 6. Comparison of the RCS computed via the FE-BI method and a BOR
code for a 3Ag X 0.1\ air-filled wraparound cavity recessed in a cylinder with
a radius of 1), that is excited by a normally incident H-polarized (a = 90°)
plane wave.

of the finite structure without a cavity from similar data
which includes the cavity. Such an procedure mimics common
measurement practices and was found suitable for near normal
incidence and quite acceptable near grazing incidence in the
case of H-polarization (a = 90°). An example calculation for
the former case is given in Fig. 6. where a bistatic scattering
pattern is presented in the ¢ = 0° plane due to a plane
wave incident at (6; = 90°.6;, = 0°). Clearly. there is good
agreement between the FE-BI rosults and daia based on e
BOR formulation.

The previous comparisons serve to validate the formulation.
Having done so, it is instructive to examine the effect that
curvature has on the scattering properties of cavity-backed
patch antennas. Consider a 2 cm x 3 cm patch residing on a 5
cm x 6 cm X 0.07874 cm cavity that is filled with a dielectric
having €, = 2.17. The cylinder has a radius of 15.28 cm. Figs.
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Fig. 7. RCS frequency response for a 2 cm x 3 cm patch residing in a 5
cm X 6 cm x 0.07874 cm cavity with €, = 2.17 as a function of curvature
for E-polarization (a = 0°).

7 and 8 illustrate the behavior of this geometry as a function
of frequency and curvature.

Evidently, the resonance behavior of this patch is sensitive
to curvature for both principal polarizations. The frequency
response for E-polarization is more sensitive to curvature since
the radiating surface field component is parallel to the long side
of the patch and cavity. If the patch and cavity were oriented
so that the long side is in the ¢ direction, the response to H-
polarization would exhibit greater sensitivity. Such an effect
is important to low observable antenna designers since they
want to operate the antenna in the region of lowest RCS. This
low return region is a consequence of delicate cancellations
due to the physical layout of the aperture. Such cancellations
are not as complete for highly curved structures as they are
for planar cavities.

Conformal antenna designers often use wraparound an-
tennas to achieve omnidirectional coverage. Two different
configurations are typically used: a continuous cavity where
the cavity is filled with a single continuous collar of dielectric,
and discrete cavities symmetrically placed around the circum-
ference of the cylinder. These two configurations are shown
in Fig. 9.

Since near resonance the radiation properties of these two
types of antennas are similar, any RCS advantage one might
possess could govern the appropriate choice of arrays. Fig. 10
compares the E-polarized monostatic scattering at 3 GHz in
the 6§ = 90° plane for a wraparound cavity and four discrete
cavities, where the patches and cavities are identical to those
used in the previous example. The radius of the cylinder
i< 1522 cm. and the four patches are centered at 0°. 90°.
180°, and 270°. Not surprisingly, the wraparound structure
has a higher return due to coupling within the substrate.
However, since in this case the scattered field is due to
the 2 component of the surface field (¢-directed magnetic
currents), both cavities yield large scattered fields in the four
directional lobes. Fig. 11 is the corresponding comparison for
H-polarization.
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Fig. 8. RCS frequency response for a 2 cm x 3 cm paich residing in a 3
cm x 6 cm x 0.07874 cm cavity with €, = 2.17 as a function of curvature
for H-polarization (@ = 90°).

In this case, the scattered field is attributed to the ¢
component of the surface fields (z-directed magnetic currents).
Therefore, substrate modes diffract near the patch, resulting
in discrete lobes for the discrete array while creeping waves
shed isotropically for the continuous wraparound cavity. Low
observable designs will favor discrete cavity arrays over
continuous cavities since the scattering may be channeled
in preferred directions and the overall scattering level is
consistently lower. A final example is shown in Fig. 12, where
we observe that other than the expected higher scattering from
the wraparound cavity, the scattering behavior of the two
arrays is very similar.

VI. CONCLUSIONS

In this paper, we have presented a finite element-boundary
(FE-BI) integral technique suitable for electromagnetic scatter-
ing calculations involving cavities embedded within a circular,
metallic cylinder. This formulation is analogous to the FE-
BI approach used by Jin and Volakis 1], (5], [6] and may
accordingly be used for the analysis of scattering by a large
array of cavity-backed patch antennas. These cavities need not
be identical, periodically spaced, or homogeneously filled and
may in fact may possess lumped impedance loads or surface
metallization layers. The FE approach employs vector finite
elements that properly represent the electromagnetic fields and
possess high geometrical fidelity for cylindrical-rectangular
cavities. Such elements were presented and are analogous to
the bricks used for modeling rectangular cavities. In addition.
we presented an efficient method for evaluating the on-surface
and far-zone dyadic Green’s functions. The presented formu-
lation is amenable to solution using the BiCG-FFT method
provided uniform zoning is used across the aperture. and as
a consequence this implementation has low computational
and memory demand. We have presented some validation
of this work with appropriate limiting cases that provides
further archival reference data. In addition. we showed how

this formulation may be used to influence conformal antenna
designs.
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(a) (b)
Fig. 9. Dlustration of two types of arrays: (a) continuous wraparound array; (b) discrete wraparound cavity array.
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Fig. 10. Comparison of E-polarized monostatic RCS at 3 GHz for a Fig. 11. Comparison of H-polarized monostatic RCS at 3 GHz for a four

four-patch array placed on a wraparound collar or in four discrete cavities.
The cylinder radius is 15.28 cm. The patches and cavities are identical to the
one used in Fig. 7. The observation plane is § = 90°.

APPENDIX:
Fock FUNCTIONS

The asymptotic form of the dyadic Green’s function with
observation both on the surface of the cylinder and in the
far field involves Fock functions. These have been extensively
studied and tabulated by Logan [13]. The numerical evaluation
of these functions is performed for either small arguments or
large arguments.

The on-surface Fock functions used in this paper are

_77r/4\/_'/ ) —-]E?’d
ocoe—J12%/3 w2 )

U(E) — 6]37/4 62 ’UJ2( ) —j(TdT

A-1)
\/— ooe~I2%/3 w?( ) (
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patch array placed on a wraparound collar or in four discrete cavities. The
cylinder radius is 15.28 cm. The patches and cavities are identical to the one
used in Fig. 8. The observation plane is § = 90°.

where wo(7) and its derivative w;(T) denote Airy functions
of the Second Kind. For small arguments (£ < 0.6), the
asymptotic expansion of (A-1) is given by

(€)~10——‘/——£1+J—£ +—fe ety

312

" 3 5 5 — hd 9
ul€) *“cs-;_53; — TR
' MRV 64

while a rapidly converging residue series is used for £ > 0.6:

10 _ ,
U(E) ~= e*]% \/;éz (T;) 16-151',.
n=1
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Fig. 12. Companison of H-polarized monostatic scattering at 3 GHz by a
four-patch array placed on a wraparound collar or in four discrete cavities.
The cylinder radius is 15.28 cm. The patches and cavities are identical to the
one used in Fig. 8. The observation plane is 0 = 0°.

TABLE 1
Table B-1
Zeros of the wy(7) and w;(r)
ra = [rale™3 and 7. = |raje s
n | |l |7l
1 | 233811 1.011879
2 | 4.08795 3.24819
3 | 5.52056 4.82010
4 | 6.78661 6.16331
5 | 7.94413 7.37218
6 | 9.02265 8.48849
7 | 10.0402 9.53545
8 | 11.0085 10.5277
9 | 11.9300 11.4751
10 | 12.8288 12.3848

10
w(€) ~=27F /7€ Y ()Tl (A)
n=1

where 7, and 7, are zeros of ws(7) and w;(‘r), respectively.
Those zeros are given in Table 1.
The far-zone Fock functions are given by

eJET
6= f/
j 15'
f(l () f r Uel
GU(€) = ¢V (€)er T
FO®E) = fOe) S (A4)

where w)(7) and its derivative w, (7) denote Airy functions of
:he First Kind and the mlegratxon contour is given by Logan

113] These functions. ¢'”(€). ¢'V(¢). and f()(¢), may be

TABLE 1I

Table B-2

Constants for (A-5) and (A-6)

¢(m)

a (m)

Ai(m)

S ©O00 NG W —g

0.7473831
-0.6862081
-2.9495325
-3.4827075
8.9378967
56.1946214

1.01879297
3.2481975
4.82009921

6.16330736 -

7.37217726
8.48848673
9.53544905
10.52766040
11.47505663
12.38478837

0.5356566
-0.41901548
0.38040647
-0.35790794
0.34230124
-0.33047623
0.32102229
-0.31318539
0.30651729
-0.30073083

calculated using
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with constant k = ¢=757/6 apd the coefficients
(A-6) given in Table II

£>4.

0 (A-6)

-1.1

~1.1<€6<05

(A-T)

for (A-5) and

The corresponding constants for (A-7) are given as shown

in Table III.
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TABLE 0
Table B-3
Constants for (A-7)

m c(m) a(m) Ai (m)
1 | 1.146730417 | 2.33810741 | 0.70121082
2 | 0.86284558 | 4.08794944 | -0.80311137
3| -2.0192636 | 5.52055983 | 0.86520403
4 | -9.977776 | 6.78670809 |-0.91085074
5 | -14.59904 | 7.94413359 | 0.94733571
6 49.0751 9.02265085 | -0.97792281
7 10.04017434 | 1.00437012
8 11.00852430 | -1.02773869
9 11.93601556 | 1.04872065
10 12.82877675 | -1.06779386

FE MATRIX ENTRIES

The matrix entries for the FE portion of the system (5)
are given in this appendix assuming that the cylindrical shell
elements (4) are used in (6). These integrals are given by
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(B-1)

Each of the above unevaluated integrals is of the form

[ (-8 (e-)ec=

-+

(L2 -7 (&.+ &)

(U3 = L¥) + &6, - L).
(B-2)

[Nl N S

The integrals Iftl)‘(z) are used in the assembly of the FE portion
([A)) of the system.
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FE-ABC FORMULATION FOR PATCH ANTENNAS ON A CIRCULAR
CYLINDER
Leo C. Kempel and John L. Volakis
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Abstract

The finite element-boundary integral (FE-BI) method has been shown to
accurately model the scattering and radiation of cavity-backed patch anten-
nas. Unfortunately, extension of this rigorous technique to coated or doubly
curved platforms is cumbersome and ineflicient. An alternative approximate
approach 1is to employ an absorbing boundary condition for terminating the
finite element mesh thus avoiding use of a Green’s function. In this report,
a FE-ABC method is used to calculate the radar cross section (RCS) and
radiation pattern of a cavity-backed patch antenna which is recessed within
a metallic surface. It is shown that this approach is accurate for RCS and
antenna pattern calculations with an ABC surface displaced as little as 0.3A
from the cavity aperture. These patch antennas may have a dielectric overlay
which may also be modelled with this technique.

1 Introduction

Recently, a Finite Element-Boundary Integral (FE-BI) formulation was pro-
posed by the authors [1] for modeling the scattering and radiation of cavity-
backed patch antennas recessed in a cylindrical platform. The use of the
boundary integral for terminating the FE mesh renders the FE-BI method
numerically exact but leads to a partially full and partially sparse matrix. To
obtain a fully sparse system, we must use approximate local boundary con-
ditions for terminating the FE mesh and this is usually done by employing
absorbing boundary conditions (ABCs).

In this report, a new conformal ABC recently introduced by Chatterjee
and Volakis [2] will be used for scattering and radiation parameter calcu-
lations in connection with cavity-backed antenna elements on a cylindrical
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platform. This second order conformal ABC allows the closure surface to
be brought quite close to the cavity aperture. As a result, the required de-
grees of freedom are significantly less than the number typically used with
traditional spherical surface/boundary condition such as the one proposed
by Peterson [3] or the one introduced by Webb and Kanellopoulos [4]. The
accuracy of this FE-ABC method will be established along with guidelines
for the distance between the structure and the ABC boundary. In addition,
this new FE-ABC approach will be used to compute the radiation pattern
and input impedance of conformal patch antennas with a dielectric overlay.

2 Formulation

Consider the computational domain shown in Figure 1. There are two volume

.............

stripline
Metal

Figure 1: Typical coated cavity-backed patch antenna with ABC mesh ter-
mination.

regions: an exterior region, V!, which includes any radome overlay and an
interior region, V/. Both regions may be inhomogeneous and are separated
by the aperture surface, 5%, and the surface metallization surface, S°™ both
of which lie on the surface of the metallic cylinder (p = a). Thus, the
exterior region is defined by p > a while the interior region has p < a.
The computational domain is bounded by the union of the metallic surface,
gmetal — Gsm L Gem where S°™ is the metallic walls of the cavity and the
ABC surface, .
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Within the computational volume, the total electric fields may be written
as
F) = ENA+EYFR) fev!

= E'(7) re vl (1)

E(

where Ecyl(F) = E(7) + E"(7) as before. The total magnetic fields are
likewise written
H#) = H(7)+HYF) FeV!
= A" Fevh (2)
where ﬁcyl(F) = ﬁi('f") +ﬁr(F). The boundary conditions are readily written

in terms of the electric and magnetic fields. Within the cavity, the tangential
electric field vanishes on the metallic walls

ax N7 = 0 Fesm (3)
while on the aperture, the total tangential fields are continuous
A x EY(F

—

fzxﬁl(r

= @ x EM(7)

re S
= ﬁxﬁ”(F)—ﬁxﬁCy’(F) F

S (4)

~~

€
€

~

On metallic surfaces, all tangential electric fields vanish, i.e.
Ax EYNF) = axEF) = axENf) =0 7esm (3)
while 7 x E®¥(F) also vanishes over the aperture
Ax EVF) = 0 7fe S (6)

since it contains both the incident and reflected fields. Thus, the only non-
zero electric fields on the surface of the metallic cylinder correspond to the
unknown fields within each region which are continuous across the surface
aperture as implied by (4).

The FE equations may be developed by considering the inhomogeneous
vector wave equation. Employing the method of weighted residuals and
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Gireen’s first vector identity. the weak form of the vector wave equation

3 0.2)-V Wi L0, 2
/VxE(po ) x Wi(p. o, )pdpdcbd:
Vi

pr(p.0,2)
42 [ elp.0.2)Ep.0.2)- Wilp. 0. 2)pdpdod:

_jkozofs fl(p, ¢’3) X ﬁ(p, ¢1 Z) ’ W}(Pa CDZZ)dS = f}"‘ (T)

where n(p, @, z) indicates the outward pointing normal of the element surface
associated with the :th unknown, S; is the surface area of that element, and
ﬁ(p, ®, z) is the total magnetic field. It can be shown that the surface integral
of (7) vanishes for all elements which do not border the cavity aperture.
Furthermore, their non-zero contribution is limited to the portion of their
surface which coincides with the aperture. The interior source functional,
fintis once again given by

it __ Mi(pvd)vz)
o= —/V'{VX —

/’1’7' (p’ ¢7 Z)
where M and J' are impressed currents within the cavity.
A domain decomposition is accomplished by substituting the total field

relationships (1) and (2) into (7) and after some manipulation we get the
FE-ABC equation

+ jkoZoJ (p, W)} - Wilp, 6, 2)pdpdo d8)

VxEL.VxW,

/ — R BT Wi| v +
v fir
il W . .
/ V x BTV x LR BT av +
V[!I 'ur
ko Zo

[ (X T B) W as = g+ 222 (5 x ) W ds -

TE

kf/w Li—er] EY W, dV - jk,Z, [;1—- i} /Smfz- [W X ﬁcy‘] ds
;d r r1 Hre i
‘ (9)

where S? denotes integration of the aperture associated with the i un-
known, S/¢ is associated with integration over the bounding surface of any
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dielectric elements in the exterior region. g,; is the relative permeability of
the elements interior to SI4 whereas .. is the permeability exterior to that
surface.

This set of FE-ABC equations may be written as a linear system of equa-

AL ),

{E;nt} {fiint}
where the FE matrix {AH—'*U] may be written as a sum of the FE matrix

used in the FE-BI formulation [1] and a second term attributed to the ABC
surface

tions

Agy] = [A+[a] (11)

The new FE-ABC equation (9) is comparable to (7) except that the lat-
ter utilizes a total field formulation throughout the computational domain.
However, previously we utilized an integral expression for the total magnetic
field across the aperture which resulted in the FE-BI equation used in [1].
Such an integral expression provides an exact relationship between the total
tangential electric and magnetic fields over the aperture surface which also
formed the computational domain boundary. Alternatively, we may employ
an approximate relationship between these two fields with the goal of re-
taining the sparsity of the resulting linear system. Additionally, as shown in
(9), this FE-ABC formulation may be used for coated as well as uncoated
geometries. In the next section, we will develop an approximate relationship
suitable for mesh closure.

3 Conformal ABCs

Traditional three-dimensional vector ABCs [3, 4] require a spherical outer
boundary which results in an excessive number of unknowns. New conformal
ABCs have recently been proposed by Chatterjee and Volakis [2] which have
an outer boundary that follows the contour of the enclosed geometry resulting
in a minimal number of unknowns. In this section, the specific expressions
required by this new ABC for a cylindrical-rectangular box boundary will be
derived. A definition of ABC order will be given and subsequently the first-
and second-order ABC expressions will be presented.
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For the purposes of discussion, we define a secondary field as the field
which is a consequence of equivalent currents that are supported by some pri-
mary source which is either external or internal to the computational domain.
Thus for scattering problems, the scattered field is the secondary field while
the incident and reflected fields are considered primary fields. Likewise. for a
radiation problem, the radiated field is the secondary field whereas the source
field due to an impressed current is the primary field. In (9), we recognize
that an ABC must supply a relationship between the tangential components
of magnetic and electric secondary fields on the absorbing boundary, S%*°.

The secondary field may be expressed as a Wilcox expansion
g=ikon . P E3(t,ta)

im
Am\fu P=co =5 b

E*(n,ty, 1) (12)
where u = VR Ry, R; = p; + n and p; is a principal radius of curvature.
In this form, the curvature of the non-spherical wavefront is explicitly used.
The point of observation is given in Dupin coordinates as

r = nﬁ—{—fo(tl,tz) (13)

where 7 is the unit normal and 7,(t;, ;) denotes the surface of the reference
phase front and *herefore, t; and ¢, denote tangential coordinates on that sur-
face. Absorbing boundary conditions annihilate outward propagating waves
up to a certain order. A zeroth-order (P = 0) ABC represents the usual
Sommerfeld radiation condition. A first-order ABC (P = 1) annihilates all
fields with up to a u~! dependency while all higher order fields are reflected
back into the computational domain. For a cylindrical surface, u = /p, thus
the zeroth-order ABC is simply the geometrical optics spread factor while
the first order ABC annihilates fields up to O(p~>°). Evidently, as the ABC
order increases, the reflected fields have an increasingly higher attenuation
factor and hence the boundary may be placed closer to the geometry without
inducing erroneous reflections.

We present the second order conformal ABCs attributed to Chatterjee
and Volakis[2]. In particular, the appropriate expressions for a cylindrical-
rectangular box boundary will be given.

Absorbing boundary conditions provide a local relationship between the
electric field and its curl which may be approximated as

AxVxE = & E+8 Vx[a(a-VxE)|+5 V. (r E)(14)
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where V', denotes the tangential surface gradient operator. Unfortunately,
use of (14) would result in an asymmetric system &A"U] due to the last
term which possesses only one differential operator. An asymmetric system
requires an iterative solver which utilizes two vector-matrix products such
as the conjugate gradient squared (CSG) solver such as the one presented
by [5]. A symmetric system requires only one matrix-vector product if the
BiCG solver is used. Additionally, for symmetric systems, only the upper or
lower triangle of the matrix need be computed and stored.
The gradient in (14) may be approximated by

Vi(V-E) = jkV, (a-E) +0(\77) (15)

With both a gradient and a divergence operator present, one operator can
be transferred to the test vector while the other may remain with the source
vector. Hence, the resulting matrix may be symmetric since both the test
and source fields are differentiated. With (15), (14) may be written

AxVxE = & E+8 V><[ﬁ(ﬁ-VxES)]+§-vt(v-E’;)(16)

For the basis vectors used in [1], V - Ef is always zero on S°° and hence
the third term of (16) will not contribute to this form of the ABC. For
surfaces with a common constant curvature for both tangential directions
on a surface, this new vector ABC (16) will lead to a symmetric FE system
[A"U}. However, if the principal curvatures on a surface are unequal, the

system will be asymmetric. For either (14) or (16), the three coefficient dyads
are given by

Qll
Il
[\/Jw

££ 2 . 2
1{m [4Km - KTg +D(]ko - Kl)'jrlii]}

t't‘
D - Ak — 2,

1{(0 Ai_ )[]k +3nm~a-zﬂ]££} (17)

where > Ky = K1k, Ak = Ky — k3 and D = jky + 5k, — —fn— In the case of
(16), ¥ must be divided by jk, due to (15).
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[t is advantageous to consider the second-order ABC for singly curved and
flat surfaces separately. For a singly curved surface, the unit normal direction
and curvature parameters are n = p, K} = —% and ko = 0 as before. After
some manipulation, we find that (17) becomes

2 2 . 1\] -- 2 1 i
d [-+D<Jko+;)]¢0+———"1—[—+.1koD}z:

ell
|

72kop+1 | p? J2k,p —3 | p?
= 2p 52 2p ra
TS LT
7 = [po+2 (18)

where D = jk, — %. Note that 3 is not symmetric unless p — oo

For the second-order ABC, it is advantageous to segment the matrix entry
[A“'U} into three parts. After some vector manipulation, these contributions
are given by

[(abe _ /prf/l [E.W]l ds

e - ]Sm [V x W] [3- v x (5 1;)] ds

- -

[@abe /S?bcw,»-ﬁ-vt (-] ds (19)

where 1()%% is only used for the original, asymmetric ABC (14). Closed form
expressions for these three integrals may be readily found by utilizing the vec-
tor basis functions given in [1]. As mentioned previously, since the principal
radii of curvature are not identical for a cylindrically curved surface, I(?)ab
will not be symmetric. However, these terms are asymptotically identical as
the radius of the ABC surface becomes large since the surface will then be
approximately planar. A symmetric ABC may be obtained by dividing both
the numerator and the denominator of 1(?* by the ABC radius, p, which
results in a symmetric operator.

4 Radiation Integral

Not surprisingly, since the FE-ABC method is being proposed for modelling
more complex geometries than the FE-BI method presented previously by the
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authors [1]. some support task such as computation of the far-zone radiated
fields must become necessarily more complex.

The radiation integral for computing the far-zone radiated fields previ-
ously was confined to the surface of the cylinder for uncoated antennas. This
field was solely due to radiating magnetic currents in the aperture of the
cavity due to the use of a second kind dyadic Green's function (see [1] for
details). However, when a overlay or a protruding element is present, the
radiation integral must contain such material. Thus, for this work, the ra-
diation integration surface is deformed to contain any material above the
cavity. To do so, both electric and magnetic currents over this blister must
be used along with both the first and second kind dyadic Green’s functions.

5 Results

The aforementioned FE-ABC has been implemented and in this section, it
will be used to examine the radiation and input impedance properties of con-
formal patch antennas with dielectric overlays. However, the formulation’s
accuracy must first be established via comparison with the FE-BI method
presented previously by the authors [1].

Consider a 2 cm x 3 cm patch antenna residing atop a 5 cm x 6 cm x
0.07478 cm dielectric filled cavity. This substrate has a dielectric constant
of 2.17 and the cylinder radius is 15.27887 cm. The patch antenna is fed as
to excite a pure axial mode (¢5 = 0%z, = —0.375 cm). Figure 2 compares
the FE-ABC and FE-BI formulations. In this, data was taken from 3.0 GHz
to 3.2 GHz every 5 MHz. The agreement is quite good and we find that the
resonant frequency is 3.11 GHz. At this frequency, the H-plane radiation
pattern is shown in figure 3.

The previous example involved a single antenna element placed within
a discrete cavity with a minimal ABC surface. Since no superstrate was
present, the exterior region of the computational domain was limited to the
immediate vicinity of the cavity. However, if a dielectric coating is used, a
continuous wraparound exterior region is desirable. In this way, the physics
involved in substrate mode guided waves is included explicitly in the finite
element analysis. The next example utilizes such a computational domain
where the exterior region extends a full 360° around the cylinder while its
axial length is limited. Furthermore, the discrete cavity which contains the
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antenna element 1s minimized.

To consider the effect of a dielectric overlay, Ke and Wong [6] examined
the antenna used by Dahele et. al. in [7] which is 3 cm x 4 cm and fed to
excite a pure axial mode (¢; = 0°,z; = 1.0 cm). The substrate is 0.0795 cm
thick with a dielectric constant of 2.32. Figure 4 compares the H-plane pat-
tern of this antenna for uncoated and with a 0.3975 cm dielectric cover which
is identical in material parameters with the substrate. In this, each antenna
was excited at their resonant frequencies, 3.0 GHz and 2.91 GHz, respectively.
Note that, as one might expect, there is no change between the antenna pat-
tern associated with the coated and uncoated antennas. The agreement with
the corresponding E-plane pattern is shown in figure 5. However, a slight
beam broadening is observed rather than narrowing as predicted by Ke and
Wong [6]. The differences may likely be due to the finite cavity aperture in
our calculations whereas in [6] the coating and substrate were assumed to
cover the entire cylinder. Further communication will be conducted with the
authors of [6] to clear up this area of disagreement.

In the previous example, the resonance frequency was seen to shift due
to the presence of the dielectric overlay. Such a shift is illustrated in figure
6 which shows the input resistance of a 2 cm x 3 cm patch antenna (see
figure 2) with different overlay thickness. In this example, the substrate and
superstrate are identical material (¢, = 2.17).

6 Comments

In this report, we have presented a new application for the FE-ABC method
which has been developed at the Radiation Laboratory: radiation analysis
of conformal antennas mounted on an infinite cylinder. We have sketched
the formulation and presented some initial validation results. Currently, this
new FE-ABC formulation has matched data generated by a FE-BI method
for uncoated patch antennas. We have presented some preliminary data for
patch antennas with dielectric overlays and are currently seeking appropriate
measured data. In this report, only axial polarization was considered. Cir-
cumferential polarization should also be studied with emphasis on dielectric
overlay effects.

Initial results are promising and correspond to expectation. It should be
stressed that this new FE-ABC approach is considerably more flexible than
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previously developed FE-BI methods since it permits material or protruding
elements in the exterior region of the cylinder. We will explore the utility
of this approach for inhomogeneous coatings, complex protruding antennas.
etc. in future reports.
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Figure 2: Input impedance for the axially polarized patch antenna which is
2cm x 3eminadcem x 6 cm x 0.07874 cm cavity. The frequency range is
3.0 to 3.2 GHz with data taken every 5 MHz.
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Figure 3: Radiation pattern for a patch antenna which is 2 cm x 3 cm in a
5 cm x 6 cm x 0.07874 cm cavity operated at 3.11 GHz.
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Figure 4: H-plane radiation pattern for a patch antenna which is 4 cm x 3
cmin a 8 cm X 6 cm X 0.0795 cm cavity with different overlay thickness.
The dielectric constant of the overlay and the substrate is 2.32 and the feed
point is (¢s = 0%, 2, = 1.0 cm).
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Figure 5: E-plane radiation pattern for a patch antenna which is 4 cm x 3
cmin a 8 cm X 6 cm x 0.0795 cm cavity with different overlay thickness.
The dielectric constant of the overlay and the substrate is 2.32 and the feed
point is (¢s = 0%, 2, = 1.0 cm).
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Figure 6: Input resistance for a patch antenna which is 2 cm x 3 c¢cm in
abcm X 6 cm x 0.07874 cm cavity with different overlay thickness. The
dielectric constant of the overlay and the substrate is 2.17 and the feed point

is (¢s = 0° 2z = —0.375 cm).
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Abstract

An efficient and accurate coax cable feed model is proposed for microstrip or cavity-
backed patch antennas in the context of a hybrid finite element method (FEM). A TEM
mode at the cavity-cable junction is assumed for the FEM truncation and system exci-
tation. Of importance in this implementation is that the cavity unknowns are related
to the model fields by enforcing an equi-potential condition rather than field continuity.
This scheme proved quite accurate and may be applied to other decomposed systems
as a connectivity constraint. Comparisons of our predictions with input impedance
measurements are presented and demonstrate the substantially improved accuracy of
the proposed model.

I. Introduction

The coax cable is widely used as a feeding structure for microstrip or cavity-backed patch
antennas because of its simplicity and low spurious radiation. Indeed, abundant literature
exists on the theoretical and experimental investigation of coax cable feeds [1]-[3]. Most of
these papers present integral equation techniques in conjunction with the pertinent Green’s
functions. However, the Green’s function is only available for a certain class of geometries,
and this limits the application of the integral techniques to those geometry designs. Also, the
formulation must be modified and recoded for different antenna configurations corresponding
to Green’s function variations. To avoid the complexity of the Green’s function, a hybrid
finite element - boundary integral approach [5] was recently proposed to simulate cavity-
backed antennas of arbitrary shapes. For antenna radiation it is observed that a simple

58



probe model with a constant current along the inner conductor linking the grounded base
to the antenna element is straightforward and efficient. But the probe feed is only valid for
thin substrates and this is consistent with the Moment Method (MM) results. To model
an electrically thick substrate, in this communication we propose a more sophisticated feed
modeling scheme in the context of the finite element method (FEM) using linear edge-based
tetrahedral elements. In the next section, the formulation of the entire hybrid numerical
system is first described for reference purposes. The proposed feed model is then presented
in section III on the basis of a TEM mode excitation. Model improvements are also discussed
for the case when the TEM assumption at the cavity-cable junction does not hold. Input
impedance comparisons between measurements and predictions based on this technique are
presented in section IV,

II. Hybrid FE-BI System

The functional pertinent to the radiation by a cavity-backed antenna with a coax cable feed
(as shown in figure 1) is given by

F(E) = %///V{(VxE)-i(VxE)—kée,E-E} dv

o2 //S(E X 3)- {//(E X 3 (I+ kzvv) Go(r,r’)dS’} dS
—jkOZo//C(E x H)- 2 dS, (1)

where V refers to the cavity volume and the surface S encompasses the cavity aperture
excluding the portion occupied by the metallic antenna elements; ¢, and y, denote, respec-
tively, the relative permittivity and permeability; ko is the free space wave number, Z; is
the free space intrinsic wave impedance, I is the unit dyad, and Go(r,r') is the free space
Green’s function with r and r’ denoting the observation and integration points; the surface
C is the cross section of the coax cable at the cavity-cable junction.

Following the standard discretization procedure [5], we obtain a system of equations of
the form

N. Nse Nce
=1{Ae {Ee}+ezs{[3 HES} + ;Mi}(—gmzo, 2)

where the explicit expressions for A4;; and B;; may be found in [5] and the functional term
Fc 1s the surface integral on Cin (1) . It is apparent that the system excitation is associated
with the functional Fio whose evaluation is the subject of this communication.

ITI. Coax Cable Feed Modeling

To proceed with the evaluation of

Fe = —jkoZo //C(E « H) - 2dS, (3)
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a boundary constraint relating E to H is needed. To this end, we assume a TEM mode on
(' and consequently the fields within the cavity may be expressed as (see Figure 2)

IOZO B [O 1

= 2(1-T)-0,
27 /€re '27r( )r(p (4)

E =

1
(L+T)-r. H
-

where ¢.. is the relative permittivity inside the coax cable; [ denotes the reflection coefficient
measured at = = 0 and /o is the given input current source at the same location. Also, (r,d, z)
are the polar coordinates of a point in the cable with the center at r = 0. To simplify the
analysis, we introduce the quantities

]()Zo _ [0
Hence,
E=2. H= %Q (6)
”

and from (5) it follows

=- € + —, (7)

which is the desired constraint at the cable junction in terms of the new quantities hy and
eo. Note that ey and hg are field coefficients as new unknowns in place of the fields E and
H, and it is therefore appropriate to rewrite F in terms of these new coefficients. To do so,
we substitute (5) and (7) into (3) and upon making use of the axisymmetric field property
we obtain

Fe = —27rjkoZoeoh3’°ln(g), (8)
where a and b are the radii of the inner and outer cable conductors. The superscript sre
stands to indicate that hg is treated as a source term in the extremization of the functional.

We choose the linear edge-based tetrahedral elements to discretize the cavity and the
corresponding mesh on the cross section C is shown in Figure 2(b). In this formulation, the
field across the p™ edge, p=1,2,..., N¢ (N¢ is the number of cavity mesh edges on C), is
set to a constant as dictated by the linear edge-based expansion function inside the cavity.
However, the cable TEM modal fields (4) behave as 1/r and this modeling inconsistency
makes it difficult to apply the tangential field continuity condition at the cable junction
( i.e. over the aperture C). To overcome these difficulties, we can relate the fields across
the cable junction by recognizing that the potential difference between the inner and outer
conductors must be the same as computed by the fields of the cavity or those in the cable
region. Specifically, if the N;h edge of the cavity region borders and is also across the coax
cable, from (4)~(6) it then follows that the appropriate equi-potential condition is

b . '
AV = Ei(b—a) = eln—, i=N,(p=1,2,...,Nc). (9)

a
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where AV denotes the potential difference between the inner and outer surface of the cable.
This condition simply provides a relation between the constant cavity edge field and the
coax cable modal field. When used into the functional Fg, it introduces the excitation into
the hybrid finite element system without a need to extend the mesh inside the cable or to
employ a fictitious current probe. It remains to rewrite F in terms of E;, i.e. the field value
of the edges bordering the cable and to do so we substitute (7) and (9) into (8). Then upon
taking into account all Ve cavity mesh edges on the cable junction, we obtain

- [ ,__Tc b _ src NC
FC = ——]koZO(b - a) —q - ¢ ba Ei z Ei‘ <10)
3 T 2o In? N,

In this expression, rather than representing the functional F¢ in terms of a single edge field.
we made use of the average field across the cable as computed by the totality of the equal
element fields on the cable’s aperture (because of the axisymmetric property, all elements
fields at the cable’s aperture are equal). The factor inside the curly brackets of (10), with the
superscript src, functions as a source in the extremization process. Hence, the extremization

of (10) yields

0Fc 1 . Iy \/E_mb—a
= —=mjkoZy(b— ——Y———F,
J0FE; 3" 020l a){n Zy Int E}
= UE -V, 1=N,(p=12,..N¢), (11)
where
1 (b—a)? ,
Ui = J§7T/€o 6,677%— (12)
1
Vi = ]§k020(b—a)10. (13)

We observe that the ‘constant cavity field’ along each mesh edge at the cable junction is
Just a fictitious field representation and its meaningful physical interpretation is governed by
the equi-potential constraint (9). To proceed, we assemble the FEM system together with
(11). Specifically, each U; is added to the N¢ diagonal entries of the finite element matrix
which is associated with the N¢ edges bordering the coax cable. Also, the excitation column
of the hybrid system is nullified everywhere except for the N¢ entries which are set to Vi.
Once the hybrid FE-BI system is solved [5], the input admittance at z=0 is calculated from

1
Yo = — ¢ H-7rd
v b rrdo
21, 1
= - —. 14
eoln(g) Zc (14)

where Z, is the characteristic impedance of the coax cable.
In the above feed model we assumed the presence of only the dominant(TEM) mode at
the cavity-cable junction, an assumption which may not be suitable for certain applications.
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To overcome this limitation, one approach is to extend the mesh (say, a distance d) into
the cable. The equi-potential condition will then be applied at z=-d, where all higher
order modes vanish. This scheme requires a more suitable expansion for the fields in the
—d < z < 0 section to avoid the complication of extending the tetrahedral mesh into the
cable and. thus, retain the efficiency of the equi-potential feed model. Since the antenna is.
in most cases. operated in the frequency range far below the cut-off of the first higher order
mode of the coax cable. the field distribution near the junction C will still be dominated by
the fundamental TEM mode. With this understanding, a possible suitable expansion for the
field in the coax cable (using shell elements rather than tetrahedrals) is

! N’r@)

E = Z Z E' (15)
where q=r, ¢ or z, i=1,2,3 or 4 and N;(r, ¢, z) is defined as

i €i

NG = Rong @~ 66— ¢ (16)

with ¢4, ¢5 and q. representing r,¢ and = in a cyclic rotation. Also, i denotes the edge
number along each coordinate, and Ag, is the width of the edge along the §, direction. The
correspondence between the edge numbers and the node pairs for each coordinate(r, ¢ or z)
is given in Table 1 along with the definition of the primed parameters and €; which carries
the sign of the vector basis.

TABLE1
coordinates node parameters .
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When an axisymmetric field property is assumed, the expansions reduce to

N = (z—2) N2 (z — 21— Az2)
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where (11, o1, =1) denote the coordinates of node 1. The accuracy of expansion (17) is demon-
strated in Figure 3. where we show that only 3 elements are needed along the radial direction
for the accurate prediction of the dominant field distribution. When compared to the con-
ventional linear tetrahedral elements, the efficiency of this expansion is apparent (i.e., many
more tetrahedrals are needed to model the same cable region).

IV. Results and Conclusion

To validate our proposed feed simulation, two circular patch antenna configurations were
used for calculation. One patch antenna was of radius 1.3 cm printed atop of a circular
cavity (radius=2.1 cm) filled with a dielectric (¢,=2.9) material 0.41 cm deep. For this
patch, the feed was placed 0.8 cm from the center and the input impedance was measured
over the band 2 - 5 GHz. In Figure 4 we compare the measured input impedance with data
computed on the basis of the proposed equi-potential feed model. Clearly, the results from
measurements and the equi-potential model are in excellent agreement whereas the probe
model yields substantially inaccurate results near resonance.

Figure 5 shows the comparison between measurements and calculations for another patch
antenna whose input impedance was measured by Aberle and Pozar [6]. This patch had a ra-
dius of 2.0 cm and the 0.218 cm thick substrate had €,=2.33 and a loss tangent tanéd=0.0012.
The feed was located 0.7 cm from the center, and for our FE-BI calculation the patch was
placed in a circular cavity of 2.44 cm in radius. As shown in Figure 5, the equi-potential
model is again in excellent agreement with measurements, as opposed to the results by the
probe model in [6] . '

In conclusion, the presented equi-potential feed model has been shown to be extremely
accurate in modeling coax feed structures. Moreover, its implementation in the context of a
finite element formulation is very simple and as easy to implement as the probe feed. It was
also demonstrated how the proposed feed model can be generalized to the case of asymmetric
feed structures where evanescent modes may be present.
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Figure 1: Illustration of a cavity-backed patch antenna with a coax cable feed.

cavity-cable junction
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Figure 2: (a) Side view of a cavity-backed antenna with a coax cable feed; (b) Illustration
of the FEM mesh at the cavity-cable junction.
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Figure 3: Field distribution in a shorted coax cable as computed by the finite element method
using the expansion (14). —: analytical; xxx: numerical. (a) Field coefficient e, along the
length of the cable (leftmost point is the location of the short); (b) Field along the radial
coordinate calculated at a distance A/4 from the shorted termination.
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Figure 4: Measured and calculated input impedance for a cavity-backed circular patch an-
tenna having the following specifications: patch radius r=13mm; cavity radius R=21.1mm;
substrate thickness t=4.1mm; €,=2.4; and feed location z;=0.8 cm distance from center.
Results based on the simple probe model are also shown for comparison. (a) Real part; (b)
Imaginary part.
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Figure 5: Measured and calculated input impedance for a circular patch antenna [6] having
the following specifications: patch radius r=2cm; substrate thickness d=0.21844cm; feed
location from center z;=0.7cm; €,=2.33; tané=0.0012. [6]. —: measurement; xxx: this
method; o0 0 0: probe model [6] (a) Real part; (b) Imaginary part.
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1 Introduction

The motivation for this work is the desire to characterize conformal antennas
mounted on doubly curved platforms which are often seen on the surfaces
of aircrafts and missiles. The suggested technique is to first discretize the
platform surface containing the antenna and then to grow the mesh up to the
termination boundary by use of appropriate volume finite elements. When
the surface mesh is created using triangular patches (which are very useful in
modeling arbitrarily shaped surface structures), the logical volume element
for growing the mesh is the triangular prism. The mesh is terminated using
ABCs or Artificial Absorbers.

Here, we report the progress to date on the development of triangular
elements and their testing for planar platforms. When the platform is planar,
the volume elements are right triangular prisms.

2 Right triangular prism and edge-based vec-
tor basis functions

Figure la shows a right triangular prism as an edge-based vector finite el-
ement. The top and the bottom surfaces are identical and parallel to each
other while the vertical arms are perpendicular to the base of the prism. The
vector electric field inside the element is an interpolation among the nine
vector unknowns each parallel to and constant along a particular edge of
the prism. Hence the term edge-based is used to describe the interpolation.
Mathematically speaking, the field inside the prism is the sum of nine scalar
unknowns (corresponding to the magnitudes of vector unknowns along the
edges of the prism) weighted by appropriate vector functions of position,
which we will henceforth refer to as basis functions.

The prism is specified by its height, the lengths of and the angle between
two sides of its triangular surface, namely, ¢, dy, d3 and a;, respectively. First,
we need to compute some scalar and vector quantities that will be used later
in our analysis. These are illustrated in Figure 1b and given by

d = \/d§ + d3 — 2dydscosa

70



—
N
K3T 3
K
c
Y
v d;: Side lengths
M;
(a) (b)

Figure 1: Triangular prism with edge-based unknowns; (a) perspective view;
(b) top view.

d? + d% - d3

-1

a; = cos 24 d; )

asg = cos™! ———-———d% + d% — d%
2d1d2

h1 = dg sin Q3

hy = dssino

hs = d; sinay

= —é

Uy = CosQs f —sinag 1)

U3 = cos Otzé +sinay 7

In developing the vector edge-based basis functions, we will make use of
the linear node-based scalar basis functions for the triangle given in Figure 1b
[1]. Based on the (£,7) coordinate system chosen for convenience, these basis
functions are given by

Lign) = 1€
31

71



Figure 2: Local indexing for the triangle; node based scalar and edge-based
vector basis functions

COS (Y SIN &
L&) = ——&= ==

COs sin &
L3(§7 T]) = h3 : 6 + h3 2 77‘

Figure 2 shows the local indexing of the edge unknowns. Satisfying both
the condition of divergenceless and the condition of the continuity of the
tangential fields across neighboring elements, the obvious choice for the vector
basis functions associated with the vertical arms of the prism is

Kl(éan) = Ll(é’n)
Ks(&m) = ZLa(& )
Ka(§,n) = ZLs(&n)
where 2 is the unit vector in the vertical direction.
The development of the basis functions for the horizontal edges of the
prism involve two steps. We first derive the edge-based vector basis functions

for the horizontal (triangular) surface of the prism by applying the Whitney
[2] method. For the top triangular face, they are given by

W1 = (11 ( LQVL3 — L3VL2)
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W2 = d2 ( L3VL1 - L1VL3)
W3 - d3 ( L1VL2 - L2VL1 )

which hold for the bottom triangular face as well. These functions have no
vertical components and are divergenceless. They also support the continuity
of the tangential fields across neighboring elements. Therefore, in reference to
Figure 2, the final vector basis functions can be obtained from them without
violating the divergenceless condition by simply multiplying those for the top
surface by z/c and those for the bottom surface by 1 — z/c, i.e.,

N, = W, (z/¢)
N, W, (z/c)
N3 W (2/c)
M, = W;(1-=z2/¢)
M, = W, (1-2z/c)
M; = W3 (1-:/¢)

The vector basis functions in their final forms are given by

N, = dl(L2;t—3-LSEE)(Z/C)
i3 ho
’[Ll lALg
= dy (L2t [, =
N2 2(L3]7,1 L1 h3) (Z/C)
_ Uy Wy
N3 = (13(L1h2 Lzhl)(~/6)
u u
M, = dl(Lgl—B—L3—2)(1—~/c)
13 ]1,2
_ R R
M, = dz(Lshl L1h3)(1 ~/C)
0 .
M; = dy(Li-2 — Lot ) (1 - z/c)
ho hy
K] == 7:'L1
K2 = 2[/2
K3 e .‘:’Lg
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3 Element Matrices

In the assembly of the finite element equations, the relevant quantities and
their values are

ENNCy = / / / (V x N;) o (V x Np)dV
_ fl__c_lﬁ (cosﬁ;m - +cosﬁ]~m ) _cosﬁkm | _cosﬂjn
¢ hekn T Tk T Thehn M Thyh,
2 C2h]d1
3 hihihyhy,

Xkm +
sin Bk $1nPmn )

ENMCy = /// (V x N;) o (V x My)dV

didy  cos Bin cos Bjm 08 Bim cos fBjn
= T, N T Thy, e T ot T, X
1 2/11(11

— ;. Sin
3 hjhihyhy, Bik sinBmn )

ENKCy = /// (V x Ny) o (V x K)dV

hidy , cosBje  cos Pre

= d; -
6 ( h'h/j hkh/g

EMMCiy = / / (V x Mi) o (V x M)dV
‘/
— ENNCu

EMKCy = / / (7% M) o (V x Ko)aV
— _ENKCy

EKKCy = / / (V x K)o (V x K;)dV
‘/

hydy cos i
2 /?,l‘/l[

ENND, = / / / N, e N,dV
‘/
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where V' is the volume of the prism and
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Figure 3: Discretization of the rectangular cavity using triangular prisms
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4 Testing of the right triangular prism

The new finite elements have been put to test in a variety of configurations
involving eigenvalue computation, scattering and radiation problems. In the
following four sections, we illustrate the performance of the new elements in
dealing with four selective problems.

4.1 Eigen modes of a rectangular cavity

As a first test, we have computed the eigenvalues of the rectangular cavity
shown in Figure 3. The cavity was first discretized using bricks. Then, the
bricks were sliced diagonally to obtain two triangular prisms. Note that, the
bricks at two corners were sliced along different diagonals from the bricks at
the other two corners.

Finite element equations have been constructed by employing Galerkin’s
testing to obtain the generalized eigenvalue problem given by

AX = k*BX (1)
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where both A and B are positive definite symmetric matrices, X is a col-
umn vector of edge unknowns, and k is the wave number of any eigenmode
supported by the cavity. There are widely available software packages for
solving for k in (1). Using one of these solvers, we computed the wave num-
bers for the first eight modes. Table 1 shows the percent error for triangular
prisms along with the results for bricks and tetrahedrals [3]. The number of
segments along the z,y, and z directed edges are 7, 4, and 5, respectively,
for both the triangular prism and the brick discretizations resulting in 382
edge unknowns in the triangular prism case and 270 edge unknowns in the
brick case. Tetrahedral discretization, on the other hand, resulted in 260
unknowns. As one can see, the performance of the triangular prisms is com-
parable to the performances of bricks and tetrahedrals.

Mode | Exact | Triangular Prism Brick | Tetrahedra
(k,em™") (% Error) (% Error) | (% Error)

T Eio 5.236 -0.99 -1.36 0.44

T Mo 7.025 -4.44 -2.23 0.70

T Eon 7.531 0.07 -2.58 1.00

T F201 7.531 -0.25 -3.13 -0.56

TMyp, | 8179 -0.31 -2.09 2.29

TFEin 8.179 -3.72 -2.09 0.70

TMyo | 8.886 -6.55 -2.98 3.53

TEy | 8.947 -T.47 -5.38 1.70

Table 1: Accuracy of triangular prisms in calculating the eigenvalues of a
rectangular cavity of dimensions lem x 0.5¢m x 0.75¢m in comparison to
bricks and tetrahedras.

4.2 Eigenmodes of a cylindrical-circular cavity

As a second test. we have discretized a cylindrical-circular cavity with metal
walls as shown in Figure 4 using right triangular prisms and computed its
eigenvalues. Table 2 shows the percentage error in calculation of the first five
eigenvalues. The result is remarkable given the fact that the discretization
resulted in only four edges along the radius as well as axis of the cylinder.
This example shows the advantage of the triangular elements over rectangu-
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Figure 4: Cylindrical-circular cavity discretized using triangular prisms

lar ones in being able to model cavities with arbitrary cross section.

Mode | Exact | Triangular Prism
(k,em™) (% Error)

T Moo 2.405 1.25

TFEimn 3.640 2.20

TMyo | 3.830 2.96

TMoy | 3.955 0.76

T Egi 4.380 -9.02

Table 2: Accuracy of triangular prisms in calculating the eigenvalues of a
cylindrical-circular cavity of 1em radius and height.
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Figure 5: Problem geometry for radiation from a current flament; (a) finite
element volume mesh surrounding the current flament; (b) a typical surface
element on vertical faces of the finite element mesh.

4.3 Radiation from a small current filament in free-
space

As a third test for the new elements, we have looked at the radiation from
a small electric current filament in free-space. Figure 5a shows the problem
geometry where a A,/20 long current filament in free space is situated at
the center of a finite element mesh truncated a fraction of a wave length
away from the filament forming a rectangular box. The mesh is made up
of triangular prisms and is terminated using the second order symmetric
absorbing boundary condition (ABC) given by [4]

nxH=-Y,E, + %V x [(V x E),] + %vt(v o E) (2)
where n, Y,, and k, are the outward normal to the termination boundary, the
free space wave admittance and the free space wave number, respectively.

In the assembly of finite element equations, in addition to the quantities
given in Section 3 representing edge interactions within the mesh volume
only, there are also quantities describing interactions among elements on the
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termination boundaries. These involve both the triangular and rectangu-
lar faces of the triangular prisms making up the termination boundary. The
quantities associated with the bottom triangular faces of the prisms are iden-
tical to those associated with the top triangular faces of the prisms. As a
result, it suffices to present the quantities in two groups, the ones associated
with the triangular faces and the ones associated with the rectangular faces.
For the calculations, only the surface variations of the basis functions are rel-
evant. The quantities associated with the triangular faces are (see Figures 1b

and 2)
EC;‘[’ = //(V Xwi)O(VXWi)dS
J Js

sin 3, sin 3
- thdldid/j Sl

hihi  hhy,
ED; = //W,;OWUZS
S

COs ﬁk“n ; Cos ﬂjm COs /3km Cos /Hjn]

b ok " ke ok,

J

= did(‘[_\'jm

where y;; and the relationship of j, k,m,n to 2 and j are given on page 7.
As for the rectangular faces (see Figure 5b), we first write the edge-based
vector basis functions given by

W, = (1-2):
a
W'Z - ’l—f
a
W; = Z3i
C
W, = (1-9)z
C

Then the relevant quantities are
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Figure 6: Top surface of the finite element mesh. Solid circles mark the locations of
computation of the data presented in Figures 6a and b. Arrows indicate the direction of
increase for the index number making up the horizontal axis in Figures 6a and b.
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The solid lines in Figures Ta and b show the percentage error in the com-
puted magnitude and phase, respectively, of the z component of the electric
field at points on the top surface of the finite element mesh (see Figure 6)
located 0.25), above the radiator. Dotted lines, on the other hand, show
the same data observed at the same locations with the ABC surface pushed
out in all directions to a distance of 0.45A, from the radiator displaying
a significant improvement in the accuracy of the field computations. This
is a testimony to the consistency of the new finite elements as well as the
approximate termination method employed.
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Figure 7: Error in computation of the z-component of the electric field

due to a z-directed small electric current element (twentieth of a wave length
long); (a) Percentage error in magnitude; (b) Error in phase. Computations
are carried out at the top surface of the finite element mesh located a quarter
of a wave length above the radiator. The computation points remain the same
when the mesh termination boundary is pushed to 0.45 A . Exact locations
of computation are shown in Figure 5.

4.4 Radiation and scattering from cavity backed struc-
tures

As the last test, we have looked at radiation and scattering from current
elements inside three-dimensional cavities in an infinite ground plane and
the scattering from such cavities. The general set up geometry is shown in
Figure 8. As it is seen, a three dimensional cavity is discretized using the
triangular prisms. The finite element mesh is extended outside the cavity in
all directions about a fraction of the wave length and truncated using the
same ABC used in the free-space radiation problem that has been described
in the previous section.

We have first looked at the radiation from a pair of current elements
residing inside the cavity; one horizontally and one vertically oriented as
shown in Figure 9. Radiation pattern is shown in Figures 10a and b. The
solid and dotted line esults were obtained using brick elements and closing
the finite element domain at the aperture of the cavity via boundary integral
(BI) method, which is an exact formulation and is explained in [5]. The
triangular prism results were obtained in conjunction with the absorbing
boundary condition (ABC) to truncate the mesh 0.3\, away from the cavity
aperture in all directions. As the plots clearly demonstrate, the triangular
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Figure 8: The geometrical set up for finite element-ABC formulation of radiation and
scattering from cavities in infinite ground planes.

prisms together with the ABC perform well.

Next, we have looked at the plane wave scattering from a larger cavity
whose dimensions in z,v, and 2z directions are 1.2X,, 0.75A,, and 0.3A,, re-
spectively. The geometrical set up for the finite element-ABC formulation
is the same as in the previous radiation problem which is illustrated in Fig-
ure 8. Figures 11 and 12 show bistatic and backscattering radar cross sections
(RCS), respectively, of the cavity. It is seen that the FEM-ABC method us-
ing triangular prism elements exhibit sufficient accuracy in computing plane
wave scattering from cavities in a ground plane.

5 Conclusions and future work

All results presented so far testify to the fact that the right triangular prism
mesh, when used together with the second order ABC, yields good results for
characterization of the radiation and scattering from cavity-backed antennas.
The next step is the development and testing of the triangular prism for mod-
eling antennas on doubly curved platforms. This element will have vertical
arms not parallel to each other, and the associated edge-based vector basis
functions will not therefore, be divergenceless. However, results presented so
far are quite promising with regard to such elements [6].
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Figure 9: Locations of current elements with respect to the gridding inside the cavity
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Figure 10: Radiation pattern of two current elements located inside the cavity;
(a) 6=45% (b) 6=45°

84



6/A% (dB)

6/2% (dB)

(a) (b)
10 T T
ok — S0 000
—r N ._.“
X
‘10f S .
\‘\‘ m
~ A 2 ] |
20 « S 20 )
R = < ————  Brick-BI (¢-pol)
== Brick-BI (¢-pol) \» ° Brick-BI ¢ b
- - L = — Brick-BI (¢-pol o
-30 ~— — Brick-BI (s-pol) N -30
\ . Triangular prism-ABC (¢-pol)
. Triangle prism-ABC (¢-pol) A}
40 F gl prism ABC (o pe) \ -40 s Triangular prism-ABC (e-pol) -1
L] riangle prism-, ¢-po. \
-50 1 1 . 50 1 L
0 30 60 90 30 60 90

Observation angle o (deg)

Figure 11: Bistatic RCS of a cavity of dimensions 1.2
a plane wave with its electric field vector making an angle of 45 witf? the unit
vector in 0 direction incident on the cavity aperutre at
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Figure 12: Backscatter RCS of a cavity of dimensions 1.245 x 0.75 Ao x 0.3&,
for an incident plane wave with its electric field vector making an angle of 30°
with the unit vector in 8 direction; (a) $=300; (b) 6=60°.
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