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Abstract

In this report we consider with particular emphasis to error and execution time
the implementation of a version of the fast multipole method for scattering by large
objects. In contrast to the traditional moment method, the fast multipole method
has O(N'®) CPU requirement per incidence angle. This substantially reduced CPU
time is achieved by subdividing the far zone elements into groups whose weighted
contribution is then interacted with the test element. The size of the groups and the
various approximations used in the interaction of the groups play an important role
on the solution accuracy, but so far no error analysis has been performed. In this
report we make a thorough study of the solution error as a function of all parameters
controlling the accuracy of the fast multipole method. Our study is carried out with
reference to a version of the FMM referred to as the Fast Far Field Approximation.



1 Introduction

Integral equation methods and in particular the moment method were introduced first in
the 1960s [1]. In the ensuing years the moment method achieved spectacular success and
was applied to model a wide variety of complicated electromagnetic phenomena. Among
its chief attractions were the exactness of the solution technique and the ability to model
complicated geometries with ease. However, these advantages come at a price. The price to
be paid for the exactness of the solution was the full matrix systems, a necessary part of the
technique. Since full matrices need a storage of O(N?), the MoM suffers severe problems
of scalability, especially for 3D and for large 2D problems. Recently, researchers have been
trying to develop IE techniques which make the matrix system sparse by using special basis
functions [2] or by making use of filtering techniques to isolate the dominant elements of the
moment-method matrix [3]. Another technique relies on clumping the matrix elements in
the far-field [4],[5]. The technique which we have adopted is based on the latter principle
and was introduced in [6]. This technique reduces the operation count in the iterative
solution of moment method problems from O(N?) to O(N'*%) and is based on computing the
interactions between different elements using different schemes depending on the electrical
distance between the elements. For small interaction distances, the exact kernel is employed
while for large distances an approximate kernel is used. The memory requirement, with the
preclusion of matrix factorization, is reduced to O(N), thus enabling the solution of larger
problems.

2 Formulation

The computation of the scattered field from two-dimensional structures is traditionally ac-
complished via a direct numerical solution of the appropriate integral equations. For two-
dimensional resistive and metallic structures, the appropriate integral equations are the
electric field integral equation (EFIE) and the magnetic field integral equation (MFIE).

2.1 TM incidence

For TM incidence, the EFIE is given by (e™™* convention)
ko
4 Je

with the geometry as depicted in Figure 1. A pulse-basis point-matching discretization of
this integral equation results in an impedance matrix whose elements are given by

L) HS (kolp = 77]) dl' + R()J.(1) = YoE2(1) (1)

Zii = RH—X][g+i(lnf+0.02879837)}, i=j (2)

- g/sj Hé”(kolp—j—md(%), i (3)

The latter integral is evaluated using 3-point Simpson’s rule,
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Figure 1: General two-dimensional scatterer configuration and associated notation

or 5-point Simpson’s rule
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[ fa)de = 2701 +321(12) + 127(2) +32/(23) + 7/(3) 5
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for the elements adjacent to the self cell. The quantity ¢; is the cell length, é; = b; — a;, and
the argument 1,2,3 of the f function designate the start, center and the end points on the
cell respectively. In (5) 12 and 23 represent points halfway between 1 and 2, and 2 and 3,
respectively.

In a typical MoM code, all the matrix elements would be computed using (2) and (3).
However in the Fast Far Field Algorithm (FAFFA) a different procedure is adopted. In the
first step, the N unknowns are divided into groups comprised of adjacent elements, and with
the premise that the number of unknowns in each group are roughly the same. The grouping
process is depicted in Fig 2. If each group has M unknowns, the number of groups would thus
be % Depending on the distance between the groups, they can be classified as being near
or far from each other. If two groups are in the near field of each other, their interaction is
calculated exactly by using (2) and (3). In the limiting case of very large bodies, the number
of near field groups for each test group is much less than the total number of groups and
thus the near field operation count for the matrix-vector product is of O(NM). The near field
matrix elements are stored in compact form in the row-indexed sparse storage mode [7]. For
far field groups, the Hankel function in the kernel is approximated as

2 eikopji ‘
H(()l)(kopji) ~ \/; kopji >1 (6)

Jopsi.

where pj; = [p; — p;]. We also observe that the distance vector can be written as

pii = Pov + I+ P (7)
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Figure 2: The process of grouping unknowns - two groups are in the near field of each other
if the distance between their centers py; is less than d;p,

where pjr is the distance vector from the jth source element contained in the I'th group to
the center of the group, i is the distance vector from the center of the I'th group to the
center of the Ith group and pj; is the distance vector from the center of the Ith group to
the ith test element. For far field groups, since |pp| > |pr| and [pr7| > |pil, pji can be
approximated as

pji ~ pri + pi - P+ pn - P (8)
On substituting this into (6) we get

ikopy
(1) ikopyryPu 2 oo ikopyryPjir (
Hy ' (kopji) ~ e — el (9)
71‘1\/]90,01/1

The decoupling of test-source element interactions in the kernel as in (9) enables the com-
putation of the matrix-vector product for far-field groups with a reduced operation count as
detailed in the following sequence.

1. For each test group, the aggregation of source elements in a single source group involves
M operations, corresponding to the number of elements in the source group. The
aggregation operation corresponds to

M
bl’l — Z Jjeikopflz.w (10)

i=1

2. Since the above aggregation operation needs to be done for all source groups the
operation count becomes O(4+M) ~ O(N), where £ represents the total number of
groups. Also this operation, being dependent only on the test group rather than the
test element, needs to be repeated for % test groups leading to a total operation count

of O(%) for aggregation.



3. The next step would be a translation operation corresponding to

2 eikopm ;
an = \| = —===bn 11
14/ kOpl’l ( )

Since this needs to be done only at the group level, it involves O L operations for all
g M

possible test and source group combinations and is the least computationally intensive

step.

4. The final step in the sequence would be the process of disaggregation corresponding to

the operation
N/M

I = Z cl:leik°p;’l'm (12)
I'=1
Conceptually, this process is the converse of aggregation. Since this operation involves
only the source group instead of the source element it needs to be done for each source
group thus implying an O(%) operation to generate a single row of the matrix-vector
product. To generate M rows corresponding to a test group the operation count would
be O(N). With % test groups, the operation count would be of 0(—]]\(72)

5. The near field operation count being of O(NM) and the far field being O(%ﬁ) gives a

total operation count of
N2
Op.count ~ CyNM + Cy— m (13)

Typically, we can set the elements in each group, M = v/N and as a result the total
operation count is O~ N,

2.2 TE incidence
For TE incidence, the MFIE is given by

YoEi(1) = R(1)Ji(1) + lim 19 / J(1) (ﬁ/- (P = _)) HY (ko[p—p|)dl (19)
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Again a pulse-basis point matching discretization of this integral equation results in an
impedance matrix whose elements are given by
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As before, the integral in (15) is evaluated using (4) and (5) for the near group elements.
When [p; — 7i| > 6, the far zone approximation (6) of AV is introduced and

21 ethorst
H (kopjs) ~ \ﬁ— kopji > 1 (16)
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The implementation of the FAFFA for H-pol parallels that for the E-pol, with the only
difference that the element normals in (15) are replaced by the group normals.

3 Results

3.1 Geometry and objective for error analysis

The objective of this work is to implement the FAFFA and study the parameters effecting
the CPU performance and accuracy. Specifically, we examined the issues and accuracy on
the basis of

e the near-group radius,dn
e the sampling rate

e group size, and

e memory requirements

Our benchmark for accuracy was the RMS error given by

ERRORpus = J L SN RCSpx(i) - ROSee(i) (17)

M “

where RC'Sgx denotes the exact radar cross sections as computed by the standard moment
method approach without grouping and RCSpr is the RCS calculated using the FAFFA; M
being the number of points at which the RCS is computed. We note that this error formula
is among several that have been considered, but has been found to represent a reasonable
measure of the accuracy. It has been employed by Schuh and Woo [8] for a study on the
accuracy of RCS computations by various codes. In the following we will show error curves
as a function of the aforementioned parameters for two cylinders. One is a PEC isosceles
triangle having a base 2.5\ in length and a height of 17.95A. The other is a rectangular
PEC cylinder 25X x 4 in size. These geometries (see Figure 3) are analyzed at grazing (0
degrees) incidence since this excitation is most stressing for RCS calculations, particularly
so for the triangular cylinder. In fact, the two geometries were selected to have different
characteristics in the backscatter region.
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Figure 3: (a) An isosceles triangular metallic cylinder - 17.95X high with a 2.5\ base (b) A
rectangular metallic cylinder - 25X x 4

3.2 RMS Error vs. near-group separation distance and sampling rate

First we look at the RMS error of the bistatic RCS pattern as a function of the near-group
radius, dp;n. Such error curves are shown in Figures 4 and 5 for the isosceles and rectangular
cylinders, respectively. Each of these figures depicts several curves, each corresponding to
a different sampling rate (A/10, A/15, A/20, A/30 or A/40 as designated in the figure).
Surprisingly, the error curves for each geometry give rise to the same conclusion. Basically,
Figures 4 and 5 demonstrate that the sampling rate has a profound effect on the accuracy of
the solution and the value of the error is strongly dependent on the near-group radius. For
example, if d,,;,, 1s set to 1.7, a tessellation rate of 10 segments per wavelength yields an RMS
error of 4.79 dB whereas a tessellation rate of 30 segments per wavelength leads to an RMS
error down to 1.19 dB. As expected, a higher sampling rate leads to smaller errors. However,
these errors are different and much larger than those resulting from a standard moment
method implementation. Specifically, a tessellation rate of 10 segments per wavelength
yields an RMS error of 0.1615 dB when employing the standard unreduced moment method
solution but increases to 4.79 dB when FAFFA is employed with d,,;, = 1.7X. As depicted
in Figures 4 and 5, the values of d;, plays an equally important role in achieving a given
RMS error. For example, when the segment length is A/10, the error is over 4 dB when
dmin = 2A but the error decreases to less than 2 dB when d,,;, reaches 3\ for the triangular
cylinder and 5\ for the rectangular cylinder. This trend is, of course, logical since for larger
values of d,,;, the FAFFA implementation resembles more and more the unreduced moment
method.

Having found such a strong dependence of the RMS error on the tessellation rate and
the near-group distance, to proceed further with our study, it is essential to look at what
may be an acceptable RMS error. This error value can then be used to determine acceptable
relationships between sampling rates and dp;, on the basis of a certain RMS error. We



therefore refer to Figure 6 which shows the bistatic RCS pattern of the isosceles triangle
as computed using FAFFA for different sampling rates. The shown (exact) pattern has a
dynamic range of 30 dB and we observe that an RMS error over 4 dB is associated with
large and unacceptable RCS deviations (over 10 dB) from the reference RCS values. However,
when the RMS error is about 1 dB or so, it is clear that the FAFFA results have only small
deviations from the exact curve which is actually tracked very well by the FAFFA results
even in low RCS regions. Consequently, we may select the RMS error value of 1 dB as
the threshold level in determining whether a given choice of FAFFA parameters lead to
acceptable accuracy or not.
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Figure 4: Error curves for the FAFFA for a isosceles triangular metallic cylinder - 17.95\
high with a 2.5\ base
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Figure 5: Error curves for the FAFFA for a rectangular pec cylinder - 25A x 4\
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Figure 6: Comparison of bistatic patterns of an isosceles triangular pec cylinder - 17.95X
high with a 2.5A base computed using the FAFFA at different sampling rates

3.3 CPU requirements

Returning now to Figures 4 and 5, we observe that an RMS error of 1 dB or less is obtained
for the triangular cylinder if dpi, > 4\ when the sampling rate is 10 segments per wave-
length, but d;, must be at least 7A for the rectangular cylinder with the same sampling
rate. Unfortunately, these values for d,,;, are much larger than 1A which is the value often
suggested by other users of the fast multipole method and its variations. It is of course
important to keep the near-group radius as small as possible for CPU and memory reduc-
tion. However, the sampling rate must be increased to 30 segments per wavelength (for
the isosceles triangle) if we are to reduce dpi, to 2A, but clearly the increased sampling is
counter to the benefits from a smaller near-group distance. Thus in Figures 7 and 8, we
show curves of the CPU time as a function of the near-group distance for different sampling
rates. Figure 7 refers to the triangular cylinder whereas Figure 8 corresponds to the rect-
angular cylinder, and both show a similar dependence on d;, and the sampling rate. For
both cylinders the CPU time increases almost linearly with d,;, and is, of course, higher
for denser tessellations. These curves can be used in conjunction with those in Figures 4
and 5 to obtain the CPU time to determine d,;, for a given RMS error and sampling rate.
Alternatively, Figures 4 and 5 can be consolidated with the data in Figures 7 and 8 to ob-
tain a new set of curves which explicitly give the CPU time as a function of a desired/given
RMS error for the selected sampling rate. These CPU curves as a function of a specified
RMS error are shown in Figures 9 and 10, corresponding to the triangular and rectangular
cylinders, respectively. The trends in each of these Figures are identical, demonstrating that
the dependence between CPU time, sampling, near group-distance and RMS error are likely



the same regardless of geometry considerations.

Basically, Figures 9 and 10 show that the CPU time increases quadratically with sampling
rate. Clearly, a lower sampling rate is more attractive in terms of CPU time since it leads to
smaller systems and therefore faster convergence rate. That is, it is better to use a larger dix,
with lower sampling rates rather than a higher sampling rate with a lower near-group window
radius. For example, to achieve an RMS error of 1 dB for the triangular cylinder, the CPU
time is about 10 sec when using tessellation of 10 segments per wavelength and from Figure
4 the corresponding d;, 1s 3.75). However, to achieve the same error using a tessellation
of 30 segments per wavelength, the corresponding CPU time is more than five times higher
but the required near-group window radius is less than 2.5 wavelengths. It may seem that
the higher number of degrees of freedom associated with higher segmentation rates leads to
unequivocally higher memory requirements as well. However, this is not always the case with
the FAFFA implementation because the value of d,,;, plays a major role on the bandwidth of
the dense section of the matrix. For example, in the case of the rectangular cylinder, sampling
at A/10 would imply 580 unknowns while sampling at A/30 would imply 1740 unknowns. To
achieve a RMS error of 3.75 dB, it would require a near group window of 3.5) for sampling
at A/10 and a window of 1\ for sampling at A/30. Execution time considerations are of the
order of 20 seconds for the first case and 75 seconds for the latter case. An examination
of the grouping of the unknowns would reveal that the memory requirement for the latter
case is smaller. Sampling at A/30 and employing a near group radius of 1A would mean
a storage requirement of ~ 42 elements per row. Sampling at A/10 and employing a near
group radius of 3.5\ would mean a storage requirement of ~ 72 elements per row, which
is higher than the previous case. Consequently, although Figures 9 and 10 suggest that a
lower sampling rate has the least CPU requirements in satisfying a given error criterion,
the memory requirements will be higher when compared to those associated with a higher
sampling error and the same error criterion. Memory considerations will of course be an
issue for very large simulations and the choice of using a high sampling or not will depend
on the available computing resources.
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4 Conclusion

In this report we looked at the CPU requirements of the FAFFA as a function of the different
parameters affecting its performance, including the near-group window radius, sampling rate
and error. We presented curves which show the required sampling rates, near-group window
radius and CPU time as a function of a given error criterion. Based on these curves, one
concludes that

e The error is strongly dependent on d,i, and the sampling rate. This error dependence
on the sampling is particularly inherent to the FAFFA solution method and should
not be confused with similar errors associated with the unreduced moment method
implementations. With higher sampling, the spatial extent of each group reduces and
thus the process of aggregation and disaggregation of group elements into group centers
induces less error.

o In lieu of CPU time efficiency, it is best to employ lower sampling and larger near-group
window radius.

e Stringent memory requirements behooves the adoption of high sampling and small near
group radius but at the expense of high execution time.
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