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Abstract

In this paper, we apply a version of the Fast Multipole Method
(FMM) to reduce the storage and computational requirement of the
boundary integral in the finite element-boundary integral method. By
virtue of its 0(N1) operation count, the application of the single-
stage FMM, results in substantial speed-up of the boundary integral
portion of the code, independent of the shape of the BI contour. We
will discuss the efficiency of the method and present the application of
this technique to the computation of electromagnetic scattering from
large grooves recessed in a ground plane.

1 Introduction

Over the past few years different hybrid versions of the finite element method
have been explored for application to scattering by composite structures.
Among them, the finite element-boundary integral equation (FE-BI) and the
finite element-absorber boundary condition (FE-ABC) methods have been
quite popular and extensively applied to many applications. The FE-BI
method [1],[2] employs the exact boundary integral equation which provides
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an independent relation between the tangential E and H fields on the mesh
outer boundary and is therefore an exact method. This is in contrast to
the FE-ABC method [3] which employs an approximate truncation operator
but leads to fully sparse systems. On the other hand, the FE-BI method,
although “exact”, leads to a partly full and partly sparse system (see figure
1) and is thus more computationally intensive. For special cases, where
the boundary is rectangular or circular, the FFT can be used [4] to reduce
the memory and CPU requirements to Nlog N. However, in general, the
boundary integral is not convolutional and in that case the CPU requirements
will be of O(NV?) where Ny, denotes the unknowns on the boundary.

In this paper, we apply a version of the Fast Multipole Method (FMM) to
reduce the storage and computational requirement of the boundary integral
when the size of the contour is large. By virtue of its 0(N'*®) operation
count, the application of the FMM, results in substantial speed-up of the
boundary integral portion of the code, independent of the shape of the BI
contour. We consider the application of this technique (referred to hereon
as the FEM-FMM method) to scattering from a material-filled groove in a
conducting plane. The FEM is employed to formulate the fields within the
cavity and establish a relationship with those at the aperture. The fields
external to the groove are expressed as an integral over the aperture and a
system of integral equations is then obtained by enforcing field continuity
across the aperture. To reduce the storage requirement and speed up the
computation of the boundary integral, an approximate version of the fast
multipole method [5] is employed.

2 Formulation

Consider a filled PEC groove of width w and depth d in an otherwise uniform
ground plane as shown in figure 2(a). The material filling the groove has a
permittivity €, and permeability u,. The free space region exterior to the
groove is denoted as region I while the groove itself is denoted as region II
(see figure 2). The fields in the two regions are decoupled by closing the
aperture with a perfect conductor and introducing an equivalent magnetic
current based on the equivalence principle

M1:E1X:l) (1)



where E; is the electric field at the aperture. The ground plane can be
removed by application of image theory and hence the field in region I can
be expressed as the radiation caused by M; and the external sources (J*, M*).
The coupling of the fields in each region is achieved by requiring continuity
of the tangential magnetic field across the aperture

Htlanlyzo = H?{(JInI?J:O (2)

The magnetic field, H'! inside the groove is formulated via the finite element
method which has the inherent geometrical and material adaptability and
low O(N) storage requirement. This procedure and the coupling in (2) is
described in detail in [1]. HI is expressed as an integral of M; using the
free space Green’s function. To this integral equation we apply a version of
the fast multipole method [5] to reduce the operation count from O(N?) to
O(N}®) where Ny is the number of unknowns on the boundary; the next
section describes this procedure for TE incidence.

2.1 Boundary integral for TE case
The groove is illuminated by the plane wave

Hi — éejko(zsin¢o+ycos¢o) (3)
where ko = 27 /) is the free space wavenumber and ¢, is the angle of inci-
dence. With a z-directed impressed magnetic field H', the scattered magnetic

field will also be z-directed, and consequently the equivalent magnetic current

M, may be written as
M1 = éMl(CE) (4)

From figure 2(b), the magnetic field in region I due to M is given by
Hi(r) = H(z,y)+ H ' (2,y)
= kYo [ Mi(@')Golp, )do (5)
1
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is the free space Green’s function. Applying Galerkin’s technique to (5) yields
the matrix equation

[CHe} = {6}~ [PH¥} (7)

where {¢} is the column vector with N, + 1 elements representing the nodal
magnetic field on €, and Nj is the number of segments employed for the
discretization of Cy. {1} is the column vector with N, elements representing
the magnetic current on the boundary. The column vector {¢"} has N,
elements given by

¢inc — (H;n0($m70)+H;eﬂ($m’0)> Aicm, m = 1727"'aNb (8)

m

with Az,, being the segment length of the mth segment on C; and z,, being
its midpoint. The product [C]{#} in (7) is of not much concern since [C]
is a sparse matrix assembled from the interaction of the magnetic field and
current on the boundary segments. The product [P]{t} is of concern because

of the 0(N?) storage required by the full matrix [P] whose elements are given
by

P, = %J{Hg”(kolxm—xnpmmmn} m#n (9)

To employ the approximate version of the FMM in solving (7), the unknowns
on the boundary are divided into groups with M, unknowns in each group and
thus the number of groups will then be %‘l . For large source to observation
distances, the kernel in (9) is approximated by using the large argument
expansion as [5]

. 2j e'-jko-’l,‘lll .
HY (L o —x,|) ~ eikomim [T o =ikomny 10
Ptalen ) ormy [ BE L (1)

where z; is the distance between the center of the test group [ and the center
of the source group !'; z,p is the distance between the nth source element and
its group center and z, is the distance between the mth test element and
its group center. The decoupling of test-source element interactions in the
kernel as in (10) enables the computation of the matrix-vector product for
far-field groups with a reduced operation count as detailed in the following
sequence.



1. For each test group, the aggregation of source elements in a single
source group involves M, operations, corresponding to the number of
elements in the source group. The aggregation operation corresponds
to

My )
bl’l = ZMje—Jkol‘nlt (11)

i=1

2. Since the above aggregation operation needs to be done for all source
groups the operation count becomes O(%Mb) ~ O(Ny), where %‘:
represents the total number of groups. Also this operation, being de-

pendent only on the test group rather than the test element, needs to
N,

be repeated for 3 test groups leading to a total operation count of
N2 :
O(3£) for aggregation.

3. The next step would be a translation operation corresponding to

2j e_jkoilf'lll
Cip =\ — bm 12
h \/;V kOfCl’l ( )

Since this needs to be done only at the group level, it involves O(A—]\%)

operations for all possible test and source group combinations and is
the least computationally intensive step.

4. The final step in the sequence would be the process of disaggregation
corresponding to the operation

Ny/My )
L= Y. cpeiFomm (13)
I'=1

Conceptually, this process is the converse of aggregation. Since this
operation involves only the source group instead of the source element
it needs to be done for each source group thus implying an O(]T]\};)
operation to generate a single row of the matrix-vector product. To
generate M, rows corresponding to a test group the operation count
would be O(N,;). With %’; test groups, the operation count would be

of O(32).



5. The near field operation count being of O(N;M,) and the far field being

2
0(%}:) gives a total operation count of

N2
Op.count ~ CyNyM, + C'gﬁb— (14)
b

Typically, we can set the elements in each group, M, = /N, and as a
1.5

result the total operation count is O~ N,
Once the currents are computed in this manner, the far-fields are com-
puted in th usual manner. Thus the maximum computational requirement
in this hybrid algorithm is O(N'*) unlike the usual FE-BI which results in
O(N?) if the boundary has N unknowns.

3 Results

A computer code based on the above formulation was implemented and exe-
cuted on a HP 9000/750 workstation with a peak flop rate of 23.7 MFLOPS.
The geometry considered was the rectangular groove shown in figure 1. Fig-
ure 3 shows the bistatic RCS at normal incidence for a groove 20\ wide and
0.25X deep with a material filling of €, = 4 and g, = 1. The discretization of
this geometry results in 2106 unknowns with a boundary integral of 300 un-
knowns. To obtain a measure of the speed-up realized by the application of
the FEM-FMM to this problem, we refer to the CPU time comparisons also
shown in figure 3. The compiled data on the FE-BI and FEM-FMM methods
include the CPU time, storage requirement and average error. Data are also
give for the FE-BI implementation using the special CG-FFT solver but it
should be noted that the application of the CG-FFT is only suited for planar
apertures. Clearly, the compiled run data show that the FEM-FMM is about
three times faster than the traditional FE-BI implementation and requires
only one sixth of the memory. However, the FEM-FMM has some deteriora-
tion in accuracy (average error of 2 dB for this example [6]) and this should
be considered depending on the application and usage of the results. Similar
data shown in figure 4 for plane wave incidence at an off-normal incidence
angle (45%) seem to verify the previous conclusions. The groove analyzed in
figure 4 is 30\ wide and is 0.15A deep with a material filling of ¢, = 6 and
pr = 1. The discretization of this geometry results in 1803 unknowns with a
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boundary integral of 450 unknowns. The error in the FEM-FMM solution is
lower but this could be attributed to the use of a larger near-group window
(4.3 instead of 2.45X) which results in an increase in storage and execution
time of the boundary integral. Clearly the CG-FFT solver is substantially
faster and arguably uncontested by the FEM-FMM method. This simply
gives credence to modifications of the boundary integral surface so that the
CG-FFT can be applied whenever possible even though the boundary surface
may not be completely planar.
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Figure 1: The FE-BI system matrix arising from the scattering/radiation

problem of a groove in a ground plane. Unknowns 88-105 are the boundary
integral unknowns.
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Figure 2: (a) Geometry of the groove recessed in a ground plane (b) Equiv-
alent problem for region 1, and (c) region 2
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Figure 3: Bistatic scattering from a rectangular groove 20\ wide and 0.35\
deep at normal incidence
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Figure 4: Bistatic scattering from a rectangular groove 30X wide and 0.15A
deep at 45° incidence
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