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Forward

This document represents our first quarterly report on this project. The report is rather
extensive (over 40 pages) and covers all aspects relating to the theory and performance of
the perfectly matched absorbers (PML) for mesh truncation. It contains data and research
background on the PML when used in conjunction with the finite element method. During
this quarter we considered the implementation of the PML for truncating microwave
structures and Figures 16, 17, 19 and 20 are examples of such applications. The
optimization of the PML (i.e. maximum performance for minimum thickness) is a
continuation of work which began before the start of this contract. This study is very
significant since we concluded that a simple formula can be used for obtaining such
information. Furthermore, we were able to confidently conclude that although the PML is
highly effective as an absorber, its improved performance came at price. The convergence
of the FEM system deteriorated and the higher sampling is need within the PML region
because of the fields rapidly decaying behavior.

The issues of convergence and increased sampling requirements were of primary concern
to. us over the past month. It is important that the convergence be improved and the PML is
implemented using minimal resources. At this point we are investigating two possible
approaches to address these issues. Our next report will address these issues and related
progress in some detail.
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Abstract

The recently introduced perfectly matched uniaxial absorber layer (PML )for
frequency domain finite element simulations has several advantages. In this re-
port we present the application of PML for microwave circuit simulations along
with design guidelines to obtain a desired level of absorption. In addition to
providing accuracy control and conformality, the PML absorbers are also easy
to implement and result in codes with no parallelization bottlenecks. Several
example applications to three dimensional structures are included to demon-

strate their performance.
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1 Introduction

One of the most important aspects of finite difference and finite element implemen-
tations is the truncation of the computational domain. An ideal truncation scheme
must ensure that outgoing waves are not reflected backwards at the mesh termination
surface, i.e. the mesh truncation scheme must simulate a surface which actually does
not exist. To date, a variety of non- reflecting or absorbing boundary conditions
(ABCs) have been employed for truncating the computational volume at some dis-
tance from the radiating or scattering surface, and applications to microwave circuits
and devices have also been reported. The ABCs are typically second or higher order
boundary conditions and are applied at the mesh termination surface to truncate the
computational volume as required by any PDE solution. Among them, a class of
ABCs is based on the one-way wave equation method [1, 2] and another is derived
starting with the Wilcox Expansion [4, 5]. Also, higher order ABCs using Higdon’s
[6, 9]formulation and problem specific numerical ABCs have been successfully used,
particularly for truncating meshes in guided structures [14]. There are several diffi-
culties with traditional ABCs. Among them is accuracy control, conformality, ease of
parallelization and implementation difficulties when dealing with higher order ABCs.
Also, the applications of ABCs in microwave circuit modeling requires a priori knowl-
edge of the propagation constants which are typically not available for high density
packages.

An alternative to traditional ABCs is to employ an artificial absorber for mesh
truncation. Basically, instead of an ABC, a thin layer of absorbing material is used
to truncate the mesh, and the performance for a variety of such uniform isotropic ab-
sorbers has already been considered [13] and [19]. Nevertheless, these lossy artificial

absorbers (homogeneous or inhomogeneous) still exhibit a non-zero reflection at inci-



dence angles away from normal. Recently. Berenger [16] introduced a new approach
for modeling an artificial absorber that is reflectionless at its interface for all incidence
angles. In two dimensions, his approach requires the splitting of the field components
involving normal (to the boundary) derivatives and assigning to each component a
different conductivity. In this manner an additional degree of freedom is introduced
that is chosen to simulate a reflectionless medium for all incidence angles. Provided
the medium is lossy, this property is maintained for a finite thickness layer. Berenger
refers to the latter as a perfectly matched layer (PML) and generalizations of his idea
to three dimensions have already been considered [17] and [18]. Implementations of
the absorber for truncating finite difference-time domain(FDTD) solutions have so
far been found highly successful. Nevertheless, it should be noted that Berenger’s
PML does not satisfy Maxwell’s equations and cannot be easily implemented in finite
element (FEM) solution.

In this report we examine a new uniaxial anisotropic artificial absorber [15] for
trunéating FEM meshes. This artificial absorber is also reflectionless at all incidence
angles. Basically, by making appropriate choices for the constitutive parameter ten-
sors, the medium impedance can be made independent of frequency, polarization,
and wave incidence angle. A PML layer can then be constructed by introducing suf-
ficient loss in the material properties. The implementation of this artificial absorber
for truncating finite element meshes is straightforward and, moreover, the absorber
is Maxwellian. Below, we begin with a brief presentation of the proposed artificial
absorber, and this is followed by an examination of the absorber’s performance in ter-
minating guided structures and open domain volume meshes. Results are presented
which show the absorber’s performance as a function of thickness/frequency and for

different loss factors.



2 Formulation

Consider the waveguide, shielded microstrip line and scatterer shown in Figures 2
and 3. We are interested in modeling the wave propagation in these structures using
the finite element method. For a general anisotropic medium. the functional to be

minimized is
1 _ i
]-‘:5/ VxE (B! VxE)-k% E-EdV
|4

-/ Ex (7' VxE)- dS, (1)
an+soul

in which fz, and €, denote the permeability and permittivity tensors whereas E is the
total electric field in the medium. The surface integrals over S;, and S,,; must be
evaluated by introducing an independent boundary condition and the ABC serves this
purpose. Alternatively, an absorbing layer may be used. In this study we consider
the performance of a thin uniaxial layer for terminating the FE mesh in a rectangular
waveguide, a microstrip line and for open domain scattering problems. Such a uniaxial
- layer was proposed by Sacks et.al. [15] who considered the plane wave reflection from
an anisotropic interface (see Figure 1 ). If &, and & are the relative constitutive

parameter tensors of the form
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the TE and TM reflection coefficients at the interface (assuming free space as the

background material) are
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By choosing a; = b; and ¢; = é it follows that RTE = RTM = ( for all incidence
angles, implying a perfectly matched material interface. If we set a, = a — jJ. the

reflected field for such a metal-backed uniaxial layer is
IR(Bt)I — e—?ﬁktcos&. (4)

where t is the thickness of the layer and 6; is the plane wave incidence angle. The
parameter ak is simply the wavenumber in the absorber. Basically, the proposed
metal backed uniaxial layer has a reflectivity of -30 dB if Stcosf; = 0.275\ or -55dB if
Btcosh; = 0.5\, where ) is' the wavelength of the background material. The reflection
coefficient (4) can be reduced further by backing the layer with an ABC rather than
a PEC. However, the PEC backing is more attractive because it eliminates altogether
the integrals over the surfaces. Clearly, although the interface is reflectionless, the
finite thickness layer is not and this is also true for Barenger’s PML absorber.
Below we present a number of results which show the performance of the proposed
uniaxial absorbing layer as a function of the parameter 3, the layer thickness ¢ and
frequency for the guided and scattering structures shown in Figures 2 and 3. We
remark that for the microstrip line example it is necessary to let a; = €.4(c — j3) for
the permittivity tensor and a; = p.s(a — jB) for the permeability tensor, where ¢,;
and p.; are the relative constitutive parameters of the background material (i.e. the

substrate).

3 Optimization Study

As implied from the previous section, we can use different types of layers for mesh
terminations, namely, the isotropic , the anisotropic backed with PEC and that backed
with ABC. For these three types of layer the theoretical behavior of |R| is relatively

simple. In the case of the isotropic material, an increase in 3 and/or ¢ decreases
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|R(0)]. The uniaxial material has this behavior for all real angles of incidence. and
while o plays little or no role, large values of a do produce higher absorption for
complex angles. It follows that for a uniaxial layer of given thickness t. a and 3 can
be chosen sufficiently large to produce high absorption over a broad angular spectrum
with angles near ¢ = m/2 (see Figure 4) providing the only exception.
Unfortunately, the analytical results do not immediately translate into numerical
performance. Because of the discretization inherent in an FEM implementation, the
fields inside the layer are reproduced only approximately, and this is particularly
true for a rapidly decaying field, (see Figure 11). To design a good absorber it is
necessary to understand the impact of the sampling rate on the choice of @, § and ¢,
and 'our objective is to find the minimum number of sampling elements (or discrete
layers) to achieve a specified |R|. It is anticipated that the errors introduced by the
discretization will have a number of consequences. In particular, for a given number
N of discrete layers and given t, increasing § will ultimately lead to an increase in |R|
 because of the inability to model the increasing attenuation. An increase in a will
likely produce a similar effect. To obtain some insight into the roles played by N, e,

(3 and t, we now consider a simple FEM model of the layers.

3.1 Numerical Model

A one-dimensional FEM code was used to examine the numerical performance of
the absorbing layers. The computational domain was limited to the discretized layer
structure shown in Figure 4, with the appropriate boundary conditions applied at the
interface z = 0 and the PEC backing z = ¢.

We consider first a homogeneous isotropic layer at normal incidence for which
the theoretical reflection coefficients are given in (4). In spite of the fact that the

magnitudes are the same for both polarizations, a polarization dependence shows



up in the FEM implementation. This is illustrated in 5. and we note that as .V
increases. the FEM values of |R(0)| converge to the common theoretical value for

both polarizations.

3.2 Dependence on o and 3

For a layer of constant thickness the theoretical value of |R(0)| is independent of a
and polarization, but in the numerical implementation the behavior is much more
complicated. Figure 7 shows |R(0)| plotted versus a and J for a layer of thickness
t = 0.25Ao made up of 5 (=N) elements, where the darker tones indicate lower values.
For small 3 the results are in close agreement with theory. As evident from the level
lines, |R(0)| is almost independeﬁt of a and decreases exponentially with 3, leading
to a linear decrease on a dB scale. For large 3, however, the behavior is quite dif-
ferent, and the most striking feature is the series of deep minima whose spacing in
a increases with increasing a and decreasing 3. These are numerical artifacts which
are common to both polarizations and may depend on the particular numerical code
employed. The minima for the two po]arizatibn are interlaced, and for H polarization
the first minimum occurs at @ = 0, 8 = 1.6. Their locations also depend on ¢ and
N. If N is fixed, the spatial sampling is inversely proportional to t. Decreasing ¢
results in better sampling, pushing the minima to higher values of 3 and producing
agreement with the theoretical values for larger 3 than before. Increasing ¢ has the
opposite effect. On the other hand, if ¢ is fixed, increasing N improves the accuracy,
and shifts the minima to higher 3. Apart from the minima, the reflection coefficients
for fixed 3 increase slightly with increasing a, and it is therefore sufficient to confine

attention to the lower values of a.

In Figure 6 the reflection coefficients are plotted as functions of 3 for the same



layer with o = 0 and o = 0.75. The curves correspond to vertical cuts through the
patterns in figure 4, and we also show the theoretical value obtained from (4). We
observe that as 3 increases the reflection coefficients decrease initially at almost the
same rate implied by (4), but beyond a certain point they begin to increase. The deep
minimum at « = 0 and 3 = 1.6 in Figure 7 is clearly seen, but for design purposes
it is logical to focus on the worst case, i.e. the polarization for which the reflection
coefficient is larger. The upper curves in Figure 6 are almost identical and constitute
this case. Since they correspond to two different values of a, either of them would-

suffice, but for reasons that will become evident later, we choose a = 0.

3.3. Dependence on 3, N and t

We now seek a connection between the values of 8, N and ¢ for which |R(0)| is min-
imized. To this end, we first examine |R(0)| as a function of 3 and N for constant
t, and the resulting plot is shown in Figure 8 for E polarization with ¢ = 0.25) and
a = 0 as before. For fixed 0 the reflection coefficient tends to its exact values as N
increases. This is evident from the level curves and, as expected, the convergence
is better for the smaller 3. Consider now the behavior of |R(0)| for fixed N. As 3
increases from zero, the reflection coefficient decreases to a minimum and then in-
creases. The location of the minima is indicated by the solid line. This is consistent
with. the behavior shown in Figure 9 and the upper curve is, in fact, just a vertical
cut through Figure 9 at N = 5. The solid line in Figure 9 therefore gives the value

of 3 at which |R(0)| is a minimum as a function of the number of elements.

If the process is repeated for other layer thicknesses, it is found that for minimum
|R(0)| the curve of Bt/Xo versus N is virtually the same for all thin layers. The ob-

servation that Bt/)o is a scalable parameter is an important conclusion of our study,



and by choosing a constant layer thickness we can produce a universal curve for the
optimal choice of N and 3 in FEM simulations. Such a curve is shown in Figure 8
and can be interpreted as giving the value of 3¢/, for a specified .V to minimize the
reflection coefficient |R(0)]. For example, if t = 0.2Ag and N = 3, then 3 = 2.13. If
a smaller value of 3 is chosen, |R(0)| will be larger (see Figure 5), and this can be
attributed to the fact that the field reflected from the metal backing has not been
attenuated sufficiently. If 3 is set to a value larger than 2.13, |R(0)| will still be larger

because the chosen N is too small to reproduce the rapid field decay within the layer.

So far we have considered only normal incidence, but for the anisotropic layer it
is a simple matter to extend the results to all real angles of incidence ¢ < 90°. As
evident from the exponent in (4), the absorption at normal incidence is reproduced
at any angle if the layer thickness is inversely proportional to cos¢. This can be
achieved by specifying the layer thickness ¢t as a fraction § of the wavelength A,
along the normal (or z axis) to the material interface. Since t = d)g/cos¢d = §A,,
t/); is now independent of ¢ and the scalable parameter 5t/Ao (at normal incidence)
becomes (t/);. For the anisotropic layer, all the results obtained at normal incidence
are made applicable for arbitrary ¢ by substituting A; for Ag. For example, plotting
the optimum [t/ as a function of N duplicates the curves shown in Figure 8. This
notion can also be used to account for problems where the outer medium is not free
space. In such cases, we have A\, = Ao/\/e; (at normal incidence) where ¢, is the
relative permittivity of the outer medium.

Although the scaling property of (3¢/A; has been established only for o = 0, it
holds to a reasonable degree for small a # 0, but as a increases, the 3t/); versus
N curves become increasingly dependent on a. The scalability also extends to the

associated values of |R(¢)|, and this enables us to provide a simple design prescription
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for an absorbing layer.

3.4 Design Curves

Since the quantities 3¢/, and |R(¢)| are the same for layer thicknesses up to about
0.5\ at least, design curves can be obtained by plotting |R(#)| and N versus 3t/A,

on the same figure as shown in Figure 10.

To see how to use the figure, suppose that the desired reflection coefficient at
normal incidence is -30 dB. At ¢ = 0 we now have A; = Xg. In Figure 10 we observe
that the |R(0)| curve intersects the -50 dB line at 3t/Aq =~ 0.58, and referring now to
the N curve, the number of elements required is N = 10. The value of § can then be
found by specifying either the element size or the layer thickness. Thus, for elements
0.025)¢ thick, we have t = 0.25A¢ and # = 2.32. By increasing N we can improve
the performance up to the limit provided by the theoretical value of |R(0)| which has
been included in Figure 10 . A good approximation to the short-dashed curves in

Figure 10 obtained by linear regression is

% = —0.0106|R| + 0.0433 (5)
N = 0.147exp[7.3530t/A;] (6)

where A, = Ao/ cos @, |R| is measured in dB and N is the smallest integer equal to or
exceeding the right hand side of (10). These equations hold for ¢, 0° < ¢ < 90°, for
the anisotropic layer, and ¢ = 0° for the isotropic one. The design criterion provided
above applies to specific angles of incidence. In the case where a specific absorption
level is required over a range of angles of incidence the layer must be designed for
the largest angle occurring. Doing so ensures that the absorption is superior at all

smaller angles.
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The performance can be improved by making the anisotropic material inhomoge-
neous, and to illustrate this we consider the case y(r) = —33(z/t)? for which the
theoretical reflection coeflicient is the same as before. The scalability is still pre-
served and the resulting curve is shown in Figure 10. The fact that the curve for
the quadratically tapered layer lies below that of the homogeneous material confirms
the improvement in performance, and we can now achieve a reflection coefficient of
-50 dB by choosing Bt/A; ~ 0.64 corresponding to N = 9. Approximations to the

long-dashed curves in Figure 10 are

t
f_ = —0.0119|R| + 0.0451 (M)
N = 0.298exp [5.2630t/),] (8)

where | R| and N are as before. Compared with the homogeneous material the decrease
in the number of elements required becomes more pronounced as |R| is reduced. As
previously mentioned, these equations hold for all real angles of incidence in the case

of the anisotropic layer and for normal incidence if the layer is isotropic.

4 Applications

As noted earlier, a PML is particularly attractive for terminating a finite element
mesh in the simulation of microwave circuits. For these applications a PML has an
advantage over a traditional ABC because it does not require a priori knowledge
of the guided wave propagation constant. To demonstrate the applicability of the
design equations in three dimensions, we consider a shielded microstrip line and a

rectangular waveguide as well as some other examples.
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4.1 Rectangular Waveguide

Let us first consider the rectangular waveguide shown in Figure 2. The guide’s cross-
section has dimensions 4.753 cm x 2.215 cm and is chosen to propagate only the T E1g
mode. It is excited by an electric probe at the left, and Figure 11 shows the mode
field strength inside the waveguide which has been terminated by a perfectly matched
uniaxial layer. As expected, the field decay inside the absorber is exponential and for
(3 values less than unity the wave does not have sufficient decay to suppress reflections
from the metal backing of this 5cm layer. Consequently, a VSWR of about 1.1 is ob-
served for 8 = 0.5. However, as 3 is increased to unity, the VSWR is nearly 1.0 and
the wave decay is precisely given by e=Pktcosé = emVercosbiP ' where t is the wave travel
distance measured from the absorber interface, P = 23t/), and here 6; = 44.5°. It
is noted that when ( is increased to larger values, the rapid decay is seen to cause
unacceptable VSWR’s . For optimum VSWR, 8 must be chosen (for a given absorber
thickness) to provide the slowest decay without causing reflections from the absorber
backing. That is, the lowest reflection may be achieved when the entire absorber

width is used to reduce the wave amplitude before it reaches the absorber’s backing.

Not surprisingly (see equation (4)), for this example, the value of a does not play
an important role in the performance of the absorber and this is demonstrated in
Figure 13. As seen, setting always a = [ gives the same performance as the case of
a =1 shown in Figure 12. Our tests also show that other choices of o give the similar

absorber performance.
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4.2 Microstrip line

The performance of the perfectly matched uniaxial layer in absorbing the shielded mi-
crostrip line mode is illustrated in Figure 14 where the reflection coefficient is plotted
as a function of 203t/A,, where A\, = Ao/ /€c;7 and €.y is the effective dielectric con-
stant. In this case, the microstrip line is terminated with a 1.87 cm thick, 5-layered
absorber and the line is extended up to 4 layers inside the absorber to avoid an elec-
tric contact with the metallic wall. Similarly to the waveguide, we again observe that
an optimum [ value exists and it was verified that in the absorber the wave exhibits
the same attenuation behavior as shown in Figure 11. The reflection coeflicient at
the optimum 3 = 1 is now —42dB and if better performance is required, a thicker
absorbing layer may be required. Again as in the case of the waveguide example, the
value of a plays little role in the performance of the absorber and this is illustrated
in Figure 15. However, of importance is the behavior of the reflection coefficient as
a function of 20t/),. For the waveguide and microstrip examples, we observe that
the absorption is maximized for approximately the same value of 23t/), (about 0.8).
Thus these curves can be used for other applications as well, although it should be
noted that the discretization rate plays an equally important role and this needs fur-

ther investigation.
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4.3 Band Eliminator

Another guided structure that was considered is the stripline band eliminator shown in
Figure 16. The band eliminator consists of a circular disk 1.64 cm in radius. placed on
a substrate having a relative dielectric constant of 2.4. The disk is directly coupled
to 50 Q striplines and to take advantage of symmetry, only half of the problem's
domain is used in the FEM computation. The thickness of the absorber used in this
calculation is 1.5cm, and in Figure 17 we show the insertion loss results as computed
by the FEM using a mesh density of about 10 edges per wavelength. The values
of a and B for the absorber were both 3 and, as seen, our calculations compare
very well with measured data [20], thus, demonstrating the accuracy of the absorber

termination.
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4.4 Sphere Scattering

As another example we consider the scattering by a metallic sphere illuminated by a
plane wave (see Figure 3). The unknown quantity in the FEM implementation was
the scattered electric field, and the excitation due to the incident plane wave was
incorporated by enforcing the boundary condition E{ = —Ei on the surface of the
sphere. The FEM mesh was terminated by cubical metal backed PML absorbers (with
a = 3 = 4.2) of thickness 0.1Ao and 0.2)q, corresponding to roughly 1 and 2 PML
layefs, respectively, whose interface was placed only 0.05) away from the sphere’s
surface. The numerical results for both 0.1Ag and 0.2X¢ thick PML absorbers are
presented in Figure 18 and we note that the sampling rate was approximately 14
elements per wavelength. As can be seen from Figure 18, the value of 5t/), closer
to 0.8 results in better accuracy. The computed data are within 1dB of the reference
curve and this difference may be due to several reasons including surface modeling

fidelity as well as mesh truncation accuracy.
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4.5 Meander Line

Another example is the meander line shown in Fig. 19. For the FEM simulation, the
structure was placed in a rectangular cavity of size 5.8mm x 18.0mm x 3.175mm.
The cavity was tessellated using 29 x 150 x 5 edges and only 150 edges were used
along the y-axis. The domain was terminated with a 10 layer PML, each layer being
of thickness t = 0.12mm. The Si; results are shown in Figure 20 and are in good

agreement with the measured data.
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5 Conclusions

A new method of mesh truncation based on an artificial absorbing layer with anisotropic
material properties was implemented for terminating the FEM mesh for propagation
and scattering examples. It was demonstrated that reasonable performance can be
achieved with relatively thin absorbing layers (a small fraction of a wavelength) placed
close to the computational domain. Also, because there is no surface integral or ABC
at the mesh truncation boundary, the method is easily implemented in FEM solutions

and is well suited for parallel computations.
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5.1 Appendix: FEM Formulation

To generate an appropriate linear system from equation (1). it is necessary to first
discretize the computational volume into smaller volume elements. The field in each
element can be approximated by introducing some linear or higher order expansion.
Subsequently, by using different testing or weighting functions W; ,(j = 1.2.3,.....N)
a linear set of equations can be generated for the solution of the field expansion
coefficients. The fields within each element are expressed as

E= g": EiWE (9)

i=1
where N, is the number of edges forming each element, W¢ is the element basis or
expansion functions. For our analysis, they have been chosen such that the expansion
coefficents Ef represent the value of the field component along the i** edge of the e'*

element when evaluated at the location of the same edge. For the brick element shown

in figure 21, it is convenient to first introduce the definitions.

{E:!} = {::j’ y]’d);J}
{eNg;, gz, 25 ) (10)

yj?

{Wi}

where j = 1,2,3,4. Thus, for example, Ef = ¢,3, EF = ¢3, W; = IN;,, W7 =

yNy3, etc. The field expansions can then be written as

4 4
=Y Ni(y,2) ¢  Ey= ZN" 2,2)¢5;  E.=); (11)
1=1 =

1=1
Ni(z,y) &5 (12)
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where

o b=y c=2") y'(c~
Ne. = Ne. =
\.“ be L be

e (e=NNa=2) .,  =la=
Ny = o : ‘/'\/y2 = —

., (a=2")b-y") ., Tb=y
NG = . Ny =Y

e
N =

(a —2')y

1!
y'z
Ne, = v :
) 2'r!
1’\;4 = Z: (13)
x/yl
p Ny =—+
@7 b

In these, (z',y’,2’) denote the local coordinates specifying a point within the eth

element and from an examination of the expansion functions we observe that ¢¢,

represents an average of the field component E; along the edge segment (1,2). Like-

wise, @2, is associated with the E; component along the edge (3,4) and so on. The

elements of the 12 x 12 [A®] matrix defined in (10) can now be readily evaluated in

a straightforward manner since N,; (p = z,y, z) are simple linear functions. To do

so, for notational and programming convenience, we shall denote these elements as

Appj)(gk)y Where p=2,y,2; ¢ =1,y,2;) = 1,2,3,4; and k = 1,2,3,4. We next define

the matrices

abc

[Ko] = %

4
2

1
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2
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2 1 =2 -]
, 12 -1 =9
[R2] =
-2 -1 2 1
-1 =2 1 2
r
2 1 =2 —11
) —2 -1 2 1
[Ka] =
1 2 -1 =2
-1 -2 1 2

where a, b and c are the side lengths of the brick as defined in Figure 21. On using

this notation we have

 [Ausr) Ausgt] [Augt]|
[A] = [ij,zk] [ij,yk] [ij,zk] (14)
| [Azjok] [Azjgr] [Asjize]

If we define the material uniaxial tensors as follows;

€zz 00
&E=| 0 €y O (15)
0 0 €2
and;
Prez 0 0
=] 0 iy O (16)
0 0 gz
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then. the element matrices will be on the form;

ac ... ab . .
R © Ky (A = - Rl
Arjyk] = — 3 Agrgzk] = — A
1Y 6“,—3: J G#ryy 3
c a
Aokl = - Ks)7, Ayl = = -
[Ay;zk] 6,uryy[ V3 [Ays.k] 6;1”:[1\3]
bC . ab , 2 .
b «
[Azjzk] = - [Ka],  [Asjwl =- (R3]
Hryy 6/*err

be ., be ) ) ,
[Azj,zk] = {6aﬂryy [Al] + 6(1#,-1-1- [A2] - ‘l"oerzz[[\o]}
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Figure 1: Plane wave incidence on an interface between two diagonally anisotropic

half-spaces.
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Figure 2: A rectangular waveguide (a) and a microstrip line (b) truncated using the

perfectly matched uniaxial absorbing layer.
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Figure 3: Geometry of sphere scattering example.
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Figure 4: Geometry of the metal-backed absorber layer (a) and its FEM implemen-

tation (b).
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Figure 5: Numerical results for a homogeneous isotropic layer with ¢ = 0.15Ao and
b = —j2.5. The top four curves are for E pol., the bottom four for H pol.: (—)
exact, (- - -) N=3, (- - =) N=6 and (— —) N=12.
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Figure 6: |R(0)| with ¢t = 0.25) and N = 5: (—) Exact, (— —) a = 0 E pol,,
(---)a=0Hpol, (---) @a=0.75 E pol. and (---) @ =0.75 H pol.
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Figure 7: Plot of |R(0)| in dB for (a) an H polarized and (b) an E polarized wave
incident on a homogeneous isotropic layer with ¢ = 0.25Ag and N = 5. The solid

curves are level lines.
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Figure 10: Absorber design curves. The straight lines give |R| in dB, and the curved

ones give N: (——) exact |R), (- - -) homogeneous case and (— —) inhomogeneous

case.
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Figure 11: Field values of the TE,o mode inside a waveguide terminated by a perfectly
matched uniaxial layer. The absorber is 10 elements thick and each element was 0.5

cm which translates to about 13 samples per wavelength at 4.5 GHz.
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Figure 12: Reflection coefficient vs 28t/A; (@ = 1) for the perfectly matched uniaxial

layer used to terminate the waveguide shown in Figure 2.
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Figure 13: Reflection coefficient vs 28t/),, with a = (3, for the perfectly matched

uniaxial layer used to terminate the waveguide shown in Figure 2.
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Figure 14: Reflection coeficient vs 28t/), with a=1, for the shielded microstrip line

terminated by the perfectly matched uniaxial layer.
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Figure 15: Reflection coefficient vs 23t/), with a = g, for the shielded microstrip

line terminated by the perfectly matched uniaxial layer.
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Figure 16: Geometry of a band eliminator.
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Figure 17: Insertion loss for the band eliminator shown in Figure 9.
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Figure 18: Bistatic scattering for a 0.4\ diameter sphere for different values of Bt/
The FEM mesh density was approximately 14 elements per A and was terminated by

a cubical thin absorber whose inner and out diameter was 0.5\ and 0.7A, respectively.
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Figure 19: Illustration of a meander line geometry used for comparison with mea-

surement.
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Figure 20: Comparison of calculated and measured results for the meander line shown

in Fig.19.
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Figure 21: Local Geometry of the Rectangular Brick.
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