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1 INTRODUCTION

The goal of the SERAT project at the University of Michigan (with subcontract to Univ.
Of Houston) is to develop a suite of software for the analysis of strip and slot dipoles on
multilayered substrates backed by a frequency selective surface. The dipoles are equipped
with photonic switches permitting variable electrical dipole lengths for broadband perfor-
mance and the FSS is suitably designed to simulate a variable substrate thickness for optimal
operation. A general view of the geometry is given in Figure 1.

The UM/UH team proposed to construct a code which combines various computational
modules interfaced with appropriate pre-processors and post-processors. The computational
modules include: Stand-alone moment method simulation of the FSS with up to 10 layers
with commensurate and non-commensurate periodicities. Simple moment method simula-
tion of the antenna elements on the FSS panels Hybrid FEM simulation modules for small
arrays, planar periodic arrays and curved arrays on FSS panels. Various options for model-
ing the FSS and for mesh truncation were proposed to provide a compromise between speed
and accuracy. These are outlined in the proposal and summarized in the attached milestone
chart (repeated from the proposal) .

2 MEETINGS

As noted above, the UM/UH SERAT activity began earnestly in October 1996 when the
UM and Sanders contract was formally signed. Therefore, this is our first quarterly report
covering the period from 1 October to 31 December 1996. The UH subcontract was initiated
immediately afterwards and was formally in place by early November.

The kickoff meeting took place on September 20, 1996 and was attended by Roland
Gilbert (Sanders), Henry Karwacki (Sanders), J. Volakis (UM), J. Gong (UM), S. Bindi-
ganavale (UM), D. Wilton (UH) and D. Jackson (UH). At the meeting, Dr. Gilbert pre-
sented an overview of the SERAT program and UM/UH presented the code development
plan and related R&D effort at some detail. Follow-up discussions between the Sanders and
UM/UH centered on the various parts of the codes, their feasibility and the capabilities of
the Green’s function for non-commensurate periodicities.

UM gave a follow-up review of the SERAT analysis software at the Nov 15, 1996 review
meeting of the SERAT program held at Nashua.

3 HIGHLIGHTS OF THE 1ST QUARTERLY ACTIV-
ITY

3.1 Code Development and Integration Plan

Before beginning with the implementation of the tasks outlined in the proposal (attached in
section 4 of this report) and summarized in the milestone chart, it was necessary to designate
a careful code development plan. This was done by Dr. Gong who is in charge of the overall
code development plan. An overview of the proposed code integration plan is depicted in
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Figure 2. Basically, the analysis engine (FEM, hybrid and moment method modules) will
require a single geometrical interface, and the pre-processors will be used to translate and/or
reformat data as needed for the various computational modules. The post-processors will
include the necessary data interfaces for graphical display and parameter extraction. We
investigated a number of Unix platform plotting and visualization packages in October and
we selected two freeware packages. One of the them is the xmgr plotting package with ease to
use graphical interface allowing for plotting and data display with X windows. This package
reads in spreadsheet output datafile which can be also ported on personal computer (PC and
Macs) for plotting and display. A second package was also investigated for less interactive
capability but easy to integrate with our developed code and to be called directly from
inside the code. The output will be high quality postscript format which can be displayed
and printed on any platform.

In addition to the above, a rather major effort during this quarter was devoted to the
investigation of fast solver for sparse FEM system. Specifically, we investigated the conver-
gence of new BCG, QMR and GMRES algorithms and concluded that BCQG is still the most
attractive of all these algorithms. However, a new fast solver was recently introduced for
inverting sparse systems. This solver, referred to as CVSS, was developed by NASA funding
and is available to U.S. companies, agencies and institutions. CVSS is an LU type solver
specialized to sparse systems but because of its efficient memory use, speed and limited need
for interface with user, it was shown to be competitive with the iterative methods. At this
stage, we will continue the investigation of these solvers and we will report on them after
their use in a specific SERAT analysis module.

In accordance with the schedule shown in the milestone chart, two major activities were
carried out in parallel:

3.2 FSS and Simple Moment Method Code Development

This subproject is carried out at the Univ of Houston(UH) by Profs. Wilton and Jackson.
As stated in the proposal, these moment method codes will serve for the evaluation of the
multilayered FSS and simple antenna(strip and slots) element analysis in the presence of
the FSS. A first version of the code(s) will be completed by the end of the 2nd quarter for
commensurate periods with the more general code versions for non-commensurate periods
to be available at the end of the first year. UH is on schedule for the delivery of these codes.
At the start of the contract, UH had two codes available for target scattering and antenna
radiation in the presence of multilayered media (See Figure 3). One of them was capable
of modeling periodic FSS-type structures but was not equipped with the ease to use I/O
interfaces. Moreover, the employed periodic Green’s function was not optimized for fast
convergence. The second code (referred to as EIGER) is equipped with a much improved
I/0 interface and its implementation is based on the more attractive and rigorous mixed
potential integral equation(MPIE) formulation. However, the code is not specialized to
periodic structures. The latter implies a necessary replacement of the Green’s function and
since neither code employed a fast convergent Green’s function, UH decided to employ the
EIGER code as the basis for the development of the new moment method SERAT code.

4
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Milestone Chart for EM Model Development (Tasks 1 and 2)

Quarterly Progress

Task

Ist
Q.

2nd
Q.

3rd
Q.

4th | 5th
Q. |0Q

6th
Q.

7th

FSS Green s function and Code
(U of Houston)

-

Mesh Generator for Antenna
Elements

Mesh generator for FSS elements

Single Element and Small Array

Planar and Curved-IBC

Planar-FEM/Moment Method

Curved-FEM for antenna and
FSS

Planar Periodic Array

FEM with IBCs

Simple Moment Method code 1

FEM and Moment Method for
FSS

FEM for antenna and FSS

Curved Array

Cylindrical

Approximate Doubly Curved

Doubly Curved with fast
integral algorithms for mesh
truncations

Software Integration and 1/0
Displays

Validation

Software Support

| v
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In addition to upgrading EIGER, during the past three months, UH emphasized the
development and implementation of acceleration techniques for a fast implementation of
the periodic multilayered Green’s function. This is the crux of the moment method code
implementation and its efficiency is therefore essential in delivering a useful stand-alone and
hybrid FEM code. Instead of using the Singh et.al. approach, UH employed an acceleration
technique introduce by Ewald. This technique replaces the periodic (Floquet expansion)
Green’s function (a sum of spectral integrals) by sums of sampled values of the spectra on
a reciprocal lattice. Basically, the summations of the Floquet expansion are replaced by a
fast converging semi-definite integrals which can be cast in terms of complimentary error
functions. Using these replacements, the resulting Floquet sums are rapidly converging.
Initial results based on the free standing periodic structure show that speed-ups on the
order of 50 to 100 can be achieved using the Ewald approach. Actual series convergence
curves are given in Figures 4 and 5 for the two sums (spectral and spatial) of the Floquet
representation. It is seen that the new series converges using 2 to 3 terms, whereas the older
approach (based on Singh’s method) requires 50 to 200 terms to achieve convergence using
the same error criterion.

A short description of UH’s acceleration technique and MPIE formulation is given in
the attached section to this quarterly report. More details on the technical aspects of the
implementation will be given after code completion.

In the next quarter, UH plans to implement the new acceleration technique for the
multilayered periodic media and to complete the moment method code for commensurate
periods. The code will then be delivered to UM for incorporation into the FEM hybrid code
and for stand-alone analysis.

3.3 Small Array hybrid FEM code

UM began the development of this module in early November 1996. According to our
schedule, the plan is to complete a first version of the small array and planar periodic codes
by the end of 4th quarter. Over the past two months, we developed the formulation of
the FEM code using second order prismatic elements. Instead of proceeding to modify one
of our existing FEM codes, we opted to develop a totally new code to accommodate the
planned mesh truncation options, IBC simulations of the FSS and specialization to the FSS
configurations. Developing a new code from scratch is certainly a more time consuming
task but will result in a better overall code. Moreover, this approach will avoid potential
difficulties typically associated with older codes written for different applications.

A key feature of the code under development is the use of higher order prismatic elements
which will permit a straightforward application of the code to doubly curved arrays and FSS
panels. We anticipate that the testing of the code will begin toward the end of January. At
that time we will also test the use of higher order IBCs for modeling FSS panels.

Attached to this quarterly report in the Appendices are the Code Development Flow
Chart, the feature descriptions of the chosen FEM elements, and the post processing package.
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A ANTICIPATED TASKS AND SCHEDULE

The following anticipated ‘ready-for-delivery’ time is referred with respect to the project
starting time from October 1996.
Single Element or Small Array Code:

¢ Scheduled Ready-for-Delivery Time: sixth months

o Purpose: to model elementary parts of the SERAT panel and acts as an FEM kernel

o Features:

— Modular (FE-BI, FE-PML, FE-IBC, etc.);

— Capable for fast solutions;

— Capable of modeling antenna/FSS elementary coupling;

— Simplified feed models;

— Rendering reconfigurable design of SERAT platform (thickness)

¢ Challenging Efforts:

— Development of a high-order p-type element FEM code

— Fast solution scheme (robust iterative/direct solvers)

— Mesh automation/semi-automation (triangularization)

— Speed-up PML convergence; improve BI efficiency (whenever used)

— User-friendly environment design

Periodic Array Code:

Scheduled Ready-for-Delivery Time: one year

Purpose: to model the periodic infinite SERAT panel

Features:

— Able to model infinitely large SERAT panel (in contrast to MoM)
— Capable of incorporating inhomogeneity, feedlines, etc.

— Fast and efficient

— Appropriate for reconfigurable design

Challenging Efforts:
— Period FEM development (periodic BC’s)

— Periodic BI development

— Periodic IBC development
— Combination with BI/IBC

11



— Feed model incorporation
— Fast solver testing
— User interface design

— Reconfigurable design ability
Full Hybrid FEM Code
e Scheduled Ready-for-Delivery Time: 16-18th months
e Purpose: to accurately model the entire non-commensurate SERAT
o Features:

— Considers the entire couplings of FSS-FSS, antenna-antenna, FSS-antenna, feed-
line, etc.

— Considers the finite sized platform (edge effects, etc.)

— Considers the curved platform
e Challenging Efforts:

— Mesh generation
— User-friendly interface design
— Curved platform incorporation

— Speed-up solution time as much as possible!!!
Package Integration and Validation
o Universal file format design/modification
o Modular environment design and integration
e Software validation

o Software documentation

12
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B ATTRIBUTES OF PRISMATIC ELEMENTS

e Suited for multi-layered structures

¢ With minimum number of unknowns for large thickness-
slot-ratio

¢ Good system condition

e More accurate with higher order version of basis
functions

¢ Meshing needed only on a surface

¢ Extendable to doubly-curved structures

14



C POST PROCESSING PACKAGES

A FEW ATTRIBUTES OF XMGR PLOTTING PACKAGE

e User defined scaling, tick marks, labels, symbols, line styles,
colors.

¢ Batch mode for unattended plotting.
¢ Read and write parameters used during a session.

¢ Polynomial regression, splines, running averages, DFT/FFT,
cross/auto-correlation.

¢ Hardcopy support for PostScript, HP-GL, and FrameMaker
.mif format.

Figure 6 is the sample layout by the XMGR package.

ABOUT PGPLOT PLOTTING PACKAGE

PGPLOT is a Fortran subroutine package for drawing scientific graphs
on various graphics display devices. It is intended for the Fortran pro-
grammer who wishes to write a program generating graphical output.
For most applications, the program can be device-independent, and the

output can be directed to the appropriate device at run time.

Figure 7 shows the graphic sample plots using the PGPLOT
package.

15
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Figure 7: Sample Graphic Plots Using PGPLOT Package



D Field Representations for Multi-Layered Periodic

Media

The electric field due to equivalent electric and magnetic currents is written in the mixed

potential integral equation (MPIE) representation as
: 1
E(r) = —jwA-V®—--VxF,
€
with the corresponding magnetic field expressed as

1
H'(r) = —jwF-VU+-VxA.
7]

The magnetic vector potential is defined as
/ GA(r,r') - J(r')dS’
while the electric vector potential is
/ GF(r,7')- M(2')dS".
The electric scalar potential is

o(r) = ka A(r)

- —/V-QA (r,7") - J(+") dS"

- /V’ ) K (r,7') dS'-I—/z J(r")P,(r,r")dS’,

wher the last equality follows from using the relation

k
18
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followed by an integration by parts. Michalski shows that such a splitting of the scalar
potential is always possible and permits the order of the singularity in the scalar potential
kernel to be reduced by transferring a derivative from the kernel onto the current.

The corresponding magnetic scalar potential is

U(r) = %V - F(r)

_ ]_w .oF n. ! !
= k'Q/sV G (r,r")- M(r')dS

- / V.- M(F)KY(r,v")dS" + / 3. M(#)Q,(r, ') dS", (7)
S S
which can be written as

Jk_fv-gF(r,r') = —V'KY(r, )+ 2Q.(r, 7). 8)

The vector potential dyadic Green’s function G* is not unique, but the most convenient form
for numerical work has the form

GA (r,7') 0 0
gir,r) = 0 G (r,7") 0
Gop(r, ') Gi(r,7) Gi(r,7)

1 ad . A N —i A(D—D'
= -A— Z Z gpq(z’ VA ) e ]kpq (p p )’ (9)
= g=-00

p=—00

where G;q constitutes a set of sampled values of the spectral representation of the magnetic
vector potential for a point source in a layered medium. The sampled values are on the
reciprocal lattice of the wavenumber domain and correspond to the grating lobe wavenumbers
of the periodic structure. The series may be said to be a Floquet modal or grating lobe series
representation for the magnetic vector potential. The elements of the dyad, in turn, may be

19



written as

[ Lyh(z, ) 0 0
Jw !
é:q(z, z') = 0 j—wV,h(z, Z,) 0
hapg 1 on / e N FRypg [ / e / H e /
: [; (zvz)_]i(zv ) : I (sz)"[z(zvz) T"—,[v(zvz)v
L ]k‘gpq [ :l ]k:?)pq [ ] Jwe
(10)

where, for example, V:*(z,2') is the voltage at z due to a unit current source at z’ on the
cascaded transmission lines representing the layered media for TE, (h-) polarized fields with
transverse wavenumbers ky,,. Similarly, I¢(z,2') is the current at z due to a unit voltage
source at z' for the corresponding TM, (e-) polarized fields, and so on. The corresponding
scalar potential grating lobe series representations are

K®(r,7) = L Z Z K} (z,2)e ~ikpe-(P=P"), (11)

where
e ! Vih Z,Z Z Vie Z,Z’
I&;I;(z,z) = ( )k2 ( ), (12)
PP
and
1 & o ) ,
Pirr) = 22 ¥ B, (z, ') e"ikre (P=P), (13)
p=—00 g=—00
where

Paa(er?) = 2o [z, ) — V(2,2 (14)

20




The electric vector potential is completely dual to the magnetic vector potential above
and is given by

Gh(re) 0 0
g'(r,r') = 0 GE(rr) 0
GE(r,r) GE(r,v) GL(r,7')
1 & — AF n —ik. . (p-p'
= 72 2 Guln)e ke (P, (15)
p=—00 g=—00
where
1 !
—I3(z,%) 0 0
jw 1
Cpolz.2) = 0 j—wlg(z,z') 0
€k:cpq ! h ’ kypq h , € b
e [V (52) = Wiz 2) Vi) = V= 2)| =V,
7 | | | 7
(16)

Similarly, the corresponding scalar potentials dual to those above are given as follows:

K¥(r,r) = li ﬁjh (2,2) e"ikre (P=P"), (17)
where

KY(z,7) = Ig(z’zl)kgpqlﬁ(z’zl) (18)
and

Q.(r, % iooq_ij:oon”q 2,2 )e —ikpa- (p- P (19)
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where

Qumnlz,?) = T [(z2) = 11(z,2)]. (20)

PPe

Various derivatives of the potentials are needed to complete the field descriptions. In
particular, the curl of the magnetic vector potential is

V x Ar / V x GA(r,r') - J(r')dS’ (21)
dy dy 0z Jdy
A A A A
V x GA(r,#) = 0G;,  0Gy, _5Gzy _0Gy, (22)
0z Oz Oz Oz
0G4 oGy, 0
L Oy Oz

1 o0 o< . . ) ,
= 1—4— Z z qu X g:q(z’ Z/) e—]kPq'(p_p )’

where the spectral form of the nabla operator is defined as

V, = —]ktpq-l—za = —]ka,pqa:—jkypqy—kz&.

Thus, we have

shghan [} If] (I} If] 4 I} 2R
~ ~ A rPq
Vi X Gpy(2,%) = [Ih If) — pl? —wm“’“z bupa[fh _ Je] e
ky_m_vh _Mv,h 0

w

22



where the transmission line equations are used to replace any z—derivatives with voltage or
current quantities again.

Similarly, the gradients of the electric scalar potential functions are defined as

- ! 1 & — o e n —ik. . (p-p'
VIXCI)(T,T ) = Z Z Z qu[\g;(za z ) e I p-p )7 (24)
p=—00 g=—00
where
. _ Vh — Ve 7k k Wi
\v/ I,<I> . ! — _ k 1 1 2 zpq zpq [e Ih 25
Pq ‘pq(zr Z) [ JRtpq ( kgpq ) +z kgpq ( we kzpq p ):l ) ( )
and
1 (o] ] . . ) ,
VP(rt) = 2 X Y ViPulz?) e~iks (P-P"). (26)
p=—00 g=—00
where
6 P (Z Z/) — I:kt _"_uil(vh _ Ve) + 2woulkzm (w:u [h _ kzpqle)] (27)
pq+ zpg\~» - pq v v v v
kopq kopg  \Kang we

By duality, we obtain the curl of the electric vector potential,

V x F(r) = /S V x GF(r,r') - M(r')dS, (28)
where
G, dGE aGE\  aGF.
dy dy 0z dy
oGE  0GE oGE oGE.
v F ’ N ez Y _Obyy _0G,,
xg (r,r) ( 0z Jdz ) dz Oz (29)
9GE, aGF, .
dy Ox

23



1 &2 X2 . F . ,
- A Z Z Vg Xgpq(Z,Z')e_JkW(p—P),

p:—OCl q:—()o

and where

— hepgkupayre _y/h) _%[VG —VF +eve _ thypa /b

F k2pa v v kopg LV v Vo wu! T

v ¢ N = Ekggg e h e ekspgkypq [1/e h tkzpg Y/ h

Vg X Gpo(2,7) g2V - V- el LR A B

Em[;f _Em[;’ 0
w w
(30)

Similarly, the gradients of the scalar potentials are given by

rq

VE'(re) = Y Y v, KY (2, ') e ikee (PP, (31)

where
.. 1 & & -1t 7k k we
V. Ki(z,7) = — [—jkt (—— ”)+z P (ﬂw-—vjﬂ
e Ap;oo q=2—:oo " kgpq kgpq wp kzl’q
(32)
and
1] X © b i
VO.(r,r) = 5 X Y ViQu(z ) e PP, (33)
where
. we' we'k we k
v oa(2, I} — k el Ie_Ih A z2pg CR 4 'h )
PQQ PQ( Z) thkgpq( ? 2 ) +Z kgpq (kzpq‘/l w'u ‘/z )l (34)
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E Extraction of Asymptotic Forms of Series

When z and z' are well-separated, the convergence of the grating lobe series is, in principal,
exponential. When z or 2’ are in the same or in adjacent layers, however, we attempt to
enhance the convergence of the grating lobe series representations. The procedure for doing
this may be summarized as follows:

o The asymptotic forms of the transmission line quantities are determined for large

spectral values. These forms contain terms of the form g%ﬂ and e—]kzl(z2;7€)—(d—z L
which may be identified as so-called direct and quasi-static imzage terms, respecztively.
They appear to arise as a direct or homogeneous medium contribution from the actual
source located at z = 2’ or from its image at z = 2d — 2z’. The direct contribution
is exact; the image contribution is only asymptotically correct, but becomes exact as

w — 0. Hence it is often said to be a the quasi-static image.

e Terms from the asymptotic series series are removed from the grating lobe series (Kum-
mer’s transformation) to enhance its convergence.

o The contributions from terms removed from the series must be replaced. It may be
shown, however, that they constitute contributions from an array of phased point
sources (spatial representation), and may be obtained by using Poisson’s transforma-
tion on the removed series. We thus obtain a hybrid spectral representation in which
most of the layered media effects are in the spectral (grating lobe) series, while effects
of the direct and first-bounce images of the source in adjacent layers are primarily
contained in the form of spatial series.

o The spatial series summations may be accelerated using Singh’s method, Ewald’s
method, or other acceleration methods (discussed later).

By standard transmission line theory, the asymptotic forms of the transmission line
voltages and currents are obtained as follows:
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and z is in layer m, 2’ is in layer m’. The spectrally asymptotic values of the layer interface
reflection coefficients are given by

e €m' — €m'+1
O —

€m! + Em/+1

and

;/h _ Hm'+1 — Km!
OO Hm'+1 + Hm?

Using these asymptotic expressions, one determines the following asymptotic forms for
the potential quantities:

Go, 0 0
~A ~ A0 ~
Gpo(2:2) ~ Gy = | 0 G, 0

5 A0 5 A0 5 A0
gzwpq gzypq gzzm

(39)
where

/

gfﬁpq = ggﬁqu = 2‘]-/]:727)(] [(5m,m’ + 5m,m'+1(1 + F;:) + 5m,m’—1(1 + F;:)) e_jkqulz_le

- —
h " ho o .
‘I‘ 6m’ml (F;O e szquZ'{"Z 2bm'-{»ll + F(;o e ]kzpq|2+2 2bm’|)]

(40)
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Similar asymptotic forms exist and may be obtained for the potentials P, and @), as
well as for all the derivatives of the potentials, but this task has not yet been completed.
Instead, focus has been on the acceleration of the spatial domain representations which arise
from applying the Poisson transformation to these terms. A summary of two-dimensional
Fourier transform definitions and properties, as well as a brief derivation of the Poisson
transformation for periodic structures on skewed lattices is contained in the appendix J to
this report.
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F Code Validation

The preceding formulas have been validated by the following tests:

o A Fortan 90 code has been developed which handles the multilayered medium problem,
but which does not yet handle periodicity. This code is being modified to handle the
periodic problem using the acceleration procedures outlined. Its principal differences
are 1) the grating lobe sums are actually integrals over the spectral variables, and 2)
the direct and image contributions are not an array of contributions, but single point
source contributions. Using this code, the following items have been validated:

— Electric fields and associated potential representations, all associated transmission
line calculations, and incident field expressions for multi-layered media by solving

for currents on conductors in multi-layered media using the electric field integral
equation (EFIE).

— Correctness of direct and quasi-static image extraction terms from boundaries
both above and below the source point.

— Correctness of magnetic field and associated potential representations by obtain-
ing electric currents on conductors by duality.

o A separate FORTRAN 77 code exists which implements the formulation presented here
for conductors in multi-layered material only. This code does not have the more ad-
vanced acceleration procedures begin developed here, nor the ability to handle magnetic
currents or fields. Furthermore the associated code is less flexible and maintainable
than the Fortran 90 code. Nevertheless, it serves as a benchmark for validating many
of the new code’s capabilities.
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G Acceleration of the Free-space Periodic Green’s Func-
tion by the Method of Singh

The free-space periodic Green’s function has the spatial representation

0 00 —jkRmn

G(’I‘,’P,) _ Z Z g~ Imksga g —inkygb z_ﬂ.r’ (51)

m=-—00 n=—00

where

Ron = \/(:v —z' —ma)? +(y—y —nb)? + (z — /)%

The wavenumbers ko and k,o are given by ko = kcos¢gsinfy and kyo = ksin ¢gsin by,
where (o, o) either specify the angles to which the array is scanned or the direction of
propagation of a plane wave exciting the array.

An alternative, spectral-domain representation of the periodic free-space Green’s function
18

1 00 00 1 . ) N s -
Grr)=g L 2 g e (52)

where
p=ct+yy, p=2'¢+y79,

2 . 2 . . .

and the wavenumbers k,__ are given by

Zmn

B = K2 — k2, — K2,

where Re(k,,,,) >0, Im(k,,,.) <0.

33



In the method of Singh, acceleration of the spectral form is achieved by adding and
subtracting the periodic Green’s function for a medium with an imaginary wavenumber
k = —ju (which will be called the “modified Green’s function”). The spectral form of the
modified Green’s function is subtracted from the spectral form of the free-space Green’s
function, and then the spatial form of the modified Green’s function is added back on. This
results in a hybrid spectral/spatial form of the free-space Green’s function, given as

G / ] X o) " (P-p') e—jkz,,m|z—z’| e—jnmn|z—z’|
T —INtmn* - —_
(r,7) ab m;oo ng_:ooe 27k, 27Kmn
(o] o0 —URmn

+ 2 Z e-—jmkzoae—jnkyobe (53)

m=—00 N=—00 47TRmn

where k. in the medium with the imaginary wavenumber has been denoted as £y, given

by

fmn = -2 — k2 — K2, (54)

where Re(kmn) > 0, Im(km,) < 0. The free-space periodic Green’s function is now
given as the sum of two series, one denoted as a “spectral” series (the first one) and one
denoted as a “spatial” series (the second one). (Of course, these series are different than the
spectral and spatial series defined previously, which are alternative representations of the
total Green’s function.) The variable u is called a “smoothing” or “acceleration” parameter.
As u is increased the spatial series converges faster, while the spectral series converges slower.
Ideally, u should be chosen to obtain an optimum balance for the convergence rates of the
two series, to obtain an accurate calculation with the fewest total terms. The optimum
value of u will depend on the error criterion specified for convergence - the smaller the error
criterion, the smaller the value of u becomes. This is because the spatial series converges
exponentially, while the spectral series converges algebraically.

An alternative acceleration method, which is also a hybrid method, is the Ewald method.
This method results in two series that each have exponential (gaussian) type of convergence.
This method is discussed next.
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H Acceleration of the Free-Space Periodic Green’s Func-
tion by the Ewald Method

We begin with the spatial domain form of the Green’s function,

oC o0 k e“jk'Rmn
Glrr') = 3 3 e twbem o (55)
and make use of the identity
—ijmn o0 2
iy A (56)
mn ™Jo

where s is a complex variable and the path is chosen such that the integrand remains bounded
as s — 0,

3
arg(s) € |arg(k)+ 7, arglk) + | (57)
(58)
and decays as s — 00,
T
arg(s) € ["Z’ Z] (59)
(60)

Observing that —% < arg(k) < 0, it is convenient to restrict s to the intersection of these
two regions, i.e. the angular sector

arg(s) € [arg(k) + %, Z] . (61)

Next (56) is substituted into (55), and the parameter F is introduced to split the integral
into two terms, as

G(r,7") = Gi(r,7")+ Gy(r,r') (63)
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where

00 00 ) E
Gire) = 3 % e"Jktoo‘pmn\j_ [ e i3 s,
0

— = T
m=-—00 Nn=—00

o.¢] o0 2

Gy(r,7") = m;m n:z—:oo e=Kwo Prun NG

2 2, K
/ e~ fmn" 457 s,
E

Using the identity

2 K2 1 : k
= / I ds, = o [e—ﬂkRmn erfc (RmnE . E)
| k
+ *Fmn erfc (RmnE + iz )]

Ga(r,7') can be written as

o0 o] - 'kt P
N eIt Prn kR jk‘
Go(r,?') = > > T [e erfc (RmnE ¥ )

M=—00 N=—00

+ eFBmn erfc (RmnE + ﬁ)} ,

Poisson transformation of (55) (c.f. Appendix) now yields

1 o0

i 1 k ]
G ! - _.7 tmn” (p~p )
1 (”.7 r ) A m=§ —:oo n—z—:oo 4] kzmn
y ! .kzmn
X [e—]kzmnlz_z lerfe (la—E—— — |z — z'|E>

) ! .k'zmn
+e.7kzmn|z—2|erfc (JQE? +|Z_ZIIE)] .
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Each of the new series Gy(r,7’) and Gy(r, ') generally converge at a much faster rate than
the original series G(7,7’). The series G(r,7’) is a modified spatial series, and is therefore
denoted as the “spatial” part of the Ewald representation, while G(r,r’) is denoted as the
“spectral” part.
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H.1 Choice of the optimum E parameter

The two series Gy and Gy both converge exponentially. The parameter E controls the
convergence rate. As E becomes larger the the “spatial” series GG, will converge faster, while
the “spectral” series Gy will converge slower. The optimum parameter is that which makes
the two series converge at the same rate, so that equal number of terms are required in the
calculation of both series (this assumes that the calculation time for each term in the two
series is the same). To prove this assertion, assume that the Ewald parameter has first been
chosen so that both series converge at the same rate (£ = FE,,), so that each of the series
are summed from —N to +N. The total computation time due to the summation of both
series is

Tyt = CN* 4+ CN? = 2CN? (70)

where C' is some constant. Now assume that a different Ewald parameter has been chosen,
and denote r = E/F,,. In order to obtain the same accuracy in each summation, the
summation limits must be changed. The limit for the spatial sum is inversely proportional
to £, while the limit for the spectral sum is proportional to E. Hence the new computation
time is

1
T = CN? (7«2 + ;5> . (71)

The ratio of computation time to that with the optimum Ewald parameter, in order to obtain
the same accuracy in the summations, is is

1
T/Topt = 7'2 + ;5 (72)

The minimum value of the above function occurs at » = 1. Hence, the selection of the
optimum Ewald parameter will yield the least number of total terms in the two series, for a
given accuracy criterion.

To derive a simple formula for the optimum Ewald parameter E,,;, we enforce the con-
dition that the asymptotic rate of convergence is the same for the series G; and G,. For
simplicity, the optimum Ewald parameter is derived here only for the case z = z’. However,
the value of z — 2’ does not affect the asymptotic rate of convergence of the series.
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The two series are written in the form

Gi= Y, A, (73)

m=-—00

Gy= > AR (74)

m=—>2>

We then enforce the condition that
A ~ AR (75)

as m,n — oo. Note that the m and n indices are switched in the subscripts of the two series
in the above equations. This is is because the indices m and n are multiplied by the lengths
a and b to construct R,,, in the spatial sum G3, whereas they are divided by these lengths
to construct the wavenumber term k,,,,, in the spectral sum G;. The asymptotic form of the
summands is calculated by using the asymptotic form of the complimentary error function,

erfc(z) ~ f/?z' (76)
Equation (75) then yields
_(%)2 e_RszEQ
(77)

€
4ab\/7? (%%—") Qmn - 8”\/E(anE) an’

where

The exponentials in this equation will converge at the same rate provided

a
" = RumE.
5 (79)
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Hence,

(0]
mn . 80
R (80)

=
Il

This yields

2 271/4
(=) +(7)} . (81)

Multiplying and dividing by v/ab yields the result

E= \/g (82)

The above choice of £ makes the exponential terms in the two series converge at the
same rate. It is not completely clear yet if two series will converge at exactly the same rate
however, due to the presence of the other terms in Eq. (77). Using Eq. (80), the ratio R of
the LHS to the RHS terms in this equation is

TE*R?

> :
aZ ab

R = (83)

In view of Eqs. (80) and (82), it follows that R = 1. Hence, the optimum Ewald parameter
18

s

E, i =+/—.
Pt ab

(84)
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I Results Comparing Acceleration Methods

During the first quarter of this contract, the Ewald method has been extensively tested
and compared with a previous acceleration scheme, the method of Singh et al. The Ewald
method has been tested for a wide variety of lattice parameters, including lattice spacing,
interelement phase shift, and location of the observation point. Only a few sample results
will be presented here. The conclusion is that the Ewald method is a very robust method,
requiring only a few terms in each series to obtain very accurate results. The convergence
rate is almost always significantly better than that of the Singh method, at least for the case
z = 2', which is of most interest since this is when the original series converge the slowest.
The results presented here are for a typical case with ¢ = b = 0.5)g, z = y = 0.25)¢, and
keo = kyo = 0.

Figure 8 shows the convergence rate of the Singh method, using the Singh acceleration
parameter u = 1.0 (which is a typical value). The spatial and spectral curves denote the
alternative spatial and spectral forms of the periodic Green’s function, with no acceleration.
The hybrid curve is the combined spatial /spectral representation used in the Singh method.
The integer N is the summation limit in the double sums. As can be seen, the Singh method
provides significantly better convergence than using no acceleration at all. However, Fig. 9,
which shows the same result on a different scale, shows that N must typically be 10 or more
before a small error is obtained.

Figure 10 shows the percent error in the spatial and spectral parts of the Singh (hybrid)
method as a function of N (In the Singh method, the final result is the sum of these two
parts - the designation “spatial” and “spectral” therefore has a different meaning in this
figure than in the previous figures). In order to obtain very small errors, on the order of

10=%, N needs to be on the order of 30.

Figure 11 shows the same type of error plot as Fig. 10, but with the Ewald method,
using the optimum acceleration parameter E,,. The curves labeled “spatial” and “spectral”
now denote the series (G and (G; (which are in essence spatial and spectral series modified by
the complimentary error function terms). It is quite remarkable that fairly accurate results
(less than 0.1% error) are obtained with only N = 1. And exztremely accurate results (percent
error less than 1077) are obtained using N = 2.

Many results similar to Fig. 11 have been generated to examine the convergence rate of
the Ewald method as the various parameters of the lattice are changed. In all of the cases
where the lattice is square (@ = b), the conclusion has been the same as for the sample case
shown in Fig. 11. With an oblong lattice (a # b), the convergence may be slower. This
aspect is still under investigation. Also, when z # 2/, faster convergence may be obtained by
using an Ewald parameter that is slightly greater than that given by the E,,; formula. This
1s also under investigation at the present time.
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Figure 8: Comparison of convergence rates for the spatial form of the periodic Green’s
function, the spectral form, and the hybrid form (Singh’s method). The convergence is
shown for the real part of the Green’s function. a =
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J Two-Dimensional Fourier Transform Properties for
Periodic Structure Applications

This appendix collects a number of two-dimensional Fourier transform relations useful in
periodic structure analysis. Though most of these relations are well known, they are some-
what scattered throughout the literature and often notationally inconsistent. Furthermore,
they are often specialized to rectangular lattices, or have other limitations. For reference,
therefore, we collect here the most basic definitions and provide simple proofs for the most
useful of these formulas. Use of vector notation throughout not only results in more compact
expressions, but also emphasizes the coordinate-free nature of the results.

J.1 The Two-Dimensional Fourier Transform

The two-dimensional Fourier transform of a function f(p) = f(z,y) is defined as

Fk) = [~ [ sy ekPdzay (85)

and the inverse transform as

_ 1 00 o0 . —jk-
o) = G / - / " Flk) e RP b, d, (86)
We use the notation
flp) <= F(k) (87)

to denote the correspondence between f(p) and its transform F'(k).

The exponential factor k - p is often written as
k-p = ko+ky (88)

and this form is more convenient when one-dimensional transforms, whose familiarity is as-
sumed, are applied in succession to obtain properties of two-dimensional transforms. How-
ever, not only is this form less compact, but it is usually less convenient for analyzing skewed
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lattices, where lattice points in the spectral and spatial domains (k and p domains, respec-

tively) do not necessarily fall on lines of constant coordinates.

Using the Fourier transform definition (85), it is easily proved that

/ / p)ei®Pdrdy = F(—k)
and

I [ ke - Fon

where the asterisk denotes complex conjugate. These results are summarized as

= F(—k)
= F"(-k).
J.2 Transform of the Two-Dimensional Delta-Function

The two-dimensional delta function may be defined as
S(p=p) = d(z—2")o(y-y),

and hence its Fourier transform is given by

/ / (p—p) ’kpdxdy 1

Fourier inverse transforming yields the useful identity

TR PP g dk, = S(p-p).
Thus,

S(p—p) = ek-p.
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J.3 The Two-Dimensional Shift and Multiplication Theorems

Consider the Fourier transform of the “shifted” function f(p — p’):

/ / flp—p) Jkpda:dy = /oo /OO f(P”)ejk'p”ejk'p'dx”dy”

= P P (k), (97)

where the substitution p” = p — p’ is used.

Thus, the shift theorem states that shifting in the spatial domain is equivalent to mul-
tiplying by a linearly varying exponential in the spectral domain. When the shift is in the
spectral domain, the exponential multiplier appears in the spatial domain, a result which is
often called the multiplication theorem:

Flk—KYe kP gk dk, = P f(p). (98)

These results are summarized as

flo-p) = *P Ek) (99)
kP fp) = Flk—FK). (100)

J.4 The Two-Dimensional Derivative Theorems

Define
0 J
V = 2—+y—
& + yay (101)
and
~ .0 d
= wakx (102)
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Then

Vi) = g | [ (iR FR) RO i, (103
so that
Vilp) < (~ik) F(k) (104

The rate of change of a function f(p) along the direction of the unit vector I %ZL), 1s given
by

e _ b.vsp) (105)
and hence

d_{z(eﬂ = 2-Vf(p) < (-jk-2)F(k). (106)
Similarly,

pflp) = —jVFE(k) (107)
and

(p-2) f(p) = —j‘%ﬁ = —jt-VF(k). (108)

J.5 Two-Dimensional Convolution Theorems

The two-dimensional convolution between two functions f(p) and g(p) is defined as

/_o:o /_O; f(p)glp—p')de' dy'. (109)
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With the substitution p” = p — p’ and subsequent replacement of the dummy coordinate p”

by p’, one finds that

[ shato-prictay = [ [ o) flo - p) i dy.

or using the symbol ‘*’ to denote convolution,

fp)xg(p) = glp)* f(p).

The Fourier transform of the convolution integral is

I

M.
=z
=

evaluated with the aid of the shift theorem. Thus we have

fp)xg(p) = F(k)G(k).

In a similar manner, it is shown that

(k)P gk dk, = (27)f(p)g(p)

or, equivalently,

(110)

(111)

(112)

(113)

(114)

(115)

(116)

A number of alternative forms of the convolution theorem may be obtained by combining

(115) or (116) with (89) and (90).
50



J.6 The Power Theorems

The power density at a point p is often proportional to the quantity f(p)g*(p), and hence
the total power crossing the transform plane is given by

/ / p) de dy
/ / J’“%d;,‘k_o

- (2) F(K) « G (~K)

k =0
k) dk, dk,,

—00

where (115) has been used.

This result,

//f p)dedy =

is known as the power theorem. If both f(p) and g(p) are real, the conjugation symbol on
the left hand side may be removed, resulting in a form often called Parseval’s theorem:

k) dk, dk,, (117)

/ / f(p)g(p)dzdy = (2r)? / / k)dk, dk,, (f,g real).

(118)
Combining this with (89) and (90), we have alternatively
//f p)dedy = Qﬂ // k)Gi(k) dk, dk,, (f,g real).
(119)
When f(p) = g(p), the power theorem becomes Rayleigh’s theorem:
/ / p)Pdzdy = k)|? dk, dk, . (120)




J.7 The Two-Dimensional Sampling Function

The one-dimensional sampling or replicating function comb (z) is a periodic train of delta
functions defined as

comb(z) = i §(z—n) (121)

n=—oo

and which has the Fourier transform

/Oo comb(z)e™dz = Y " = hm Z elkn

- n=-00 ® pn=-N
_ sin(2N + 1)% 0, k#2mnm
B ]\;1_120(2]\[ + 1)(QN +1)sin % ~ | oo, k=2mm.

(122)

These properties suggest that the transform is also a periodic train of delta functions located
at k = 2mm for m an integer. To determine the magnitude of each delta function, we calculate
the area under each as follows:

(2m+1)7
/( (hm Z e]k") dk = 2m, (123)

2m-1)7w N—'OOn__N

where the orthogonal properties of the exponential functions are invoked. Thus, we assert

/oo comb(z)e* de = 2r i O(k—2mm) = i §(£ —m)

—00 m=—oo m=-—00

= comb (%) (124)

so that the comb function is found to be its own Fourier transform. Comparing (122) and
(124), we also establish the important identity

comb(—k—) = i ek, (125)

2 s
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Now consider the two-dimensional version of the sampling or function

(o) o0

> 2 8P = Pun); (126)

m=—00 N=—00

where p,. . = ms; + ns; and sy, s, are the lattice vectors of a skewed cell of a periodic
structure. Eq. (126) represents, for example, an array of point sources corresponding to the
scalar Green’s function of a periodic structure. The Fourier transform of (126) is

> dp- pmn>ejk”dxdy

5

_ Z Z o IR (m81+4n8;)

m=—o0 n=-—

o0 o

_ Z Z ejmk:.slejnk.s2

= comb(k )comb(k—wl),
(127)

where (125) is used. The product of the two comb functions on the left hand side of (127)
forms another sampling or replicating function on the so-called reciprocal lattice in the trans-
form domain. The principal planes of the reciprocal lattice are perpendicular to s; and s,
and spaced a distance of |2”| and l~25 T respectively. Hence if the spatial domain lattice is
skewed, so is the reciprocal lattice. The reciprocal lattice vectors are easily found to be

27'['(32 X 2)

klz

k, — 2m(2 X 81)

(128)

where A = |s; X 83| is the area of a unit cell in the spatial lattice, and the lattice vectors
satisfy the biorthogonality conditions

k,"Sj = 271'(5”, (129)
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where §;; is the Kronecker delta.

Eq. (127) implies that the transform of the two-dimensional sampling function is also a
sampling function with two-dimensional delta functions located at the lattice plane intersec-
tions where neither comb function in (127) vanishes. However, the amplitude of each of these
delta functions depends on the lattice skewness, and it may be determined by integrating
over a unit cell in the reciprocal lattice plane. For this purpose, we introduce the normalized
unit cell coordinates

k"Sl
61 - 271_,
k"SQ
= . 1
b o= = (130)

Since this transformation of coordinates from (k;, k,) to (&1, &) is linear, the Jacobian of the

transformation is constant and is easily found to be @—zﬁ merely by equating areas of the
reciprocal lattice unit cell computed both in lattice and normalized coordinates:

/unit dk,dk, = (ky xky) -2 = 2m(sg X 2) y 2m(2 x 81)

cell A 1
2m)* . 21)?
R

_ @/01 /01 dé, dé. (131)

Thus since
/unit comb ("’Q—fl) comb (%l) dk, dk, (132)
cell
(2m)? 1o 2m)?
= S5 [ [ comb () comb (e2)dsdes = - (1)

each two-dimensional delta function of (127) has amplitude P—Zﬁ and therefore the sampling
function and its transform are related as

i i 6(p = Pmn) = (22)2 i f} 5(k — kypy), (134)

m=—00 N=—00 P=—00 @q=—00

where k,, = pk, + qk,.



A similar relationship useful in periodic structure analysis is obtained using (134) with
the shift theorem:

S R - = VD VR 1T

M=—00 N=—00 p=—00 g=—00

where now k,, = koo + pk1 + gks.

J.8 The Poisson Transformation

Choosing g(p) to be the two-dimensional sampling function with linear progressive phase
shift, (135), in the power theorem yields the so-called Poisson transformation:

[ S )( > ¥ 5(P—pmn)e~jk°°'p'"")* dw dy (136)

m=-00 Nn=—00

m=—00 Nn=-00

o0 oo

= (;)2 /_: /_o:o F(k) ((2;;)2 T % 5(k—kpq)) dk, dk,

P=—00 g=—00

= 2 i S Flky,). (137)

P=—00 g=—00

The resulting transformation,

>0 o0 1 (o) o0

> Y Sop)eete = 2SS Fiky) (133)

m=—00 N=—00 pP=—00 g=—00

converts a spatial summation into a spectral sum, often with improved convergence proper-
ties.



