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Abstract

In this paper, we present the formulation of a finite element/boundary integral method for the
analysis of three-dimensional doubly periodic structures based on arbitrary non-orthogonal
lattice configurations. The method starts from a functional description of the field problem
where only a single unit cell of the array is considered. This unit cell is meshed with trian-
gular prismatic volume elements and the electric field intensity is discretized with edge-based
expansion functions. On the side walls of the unit cell, phase boundary conditions are em-
ployed to relate the fields on opposing walls of the unit cell. On the top and/or bottom
unit-cell planar surfaces, the mesh is terminated using a mixed potential integral equation.
The required space-domain periodic Green’s function is calculated after applying the Ewald
transformation to convert the slowly converging series representation into two quickly con-

verging series. The method is validated for simple slot and strip frequency selective surfaces



as well as microstrip dipole arrays. More complex geometries being investigated are slot—
coupled microstrip patches, photonic bandgap materials, and the so—called “artificial puck

plate” frequency selective surface bandpass structure.

1 Introduction

By applying appropriate periodicity conditions, the computational domain of infinite periodic
structures can be reduced down to a single unit cell. Previous analyses have mainly been
restricted to the application of Floquet’s theorem to construct periodic Green’s functions in
the context of integral equation formulations. An overview of techniques for the analysis of
single-layer frequency selective surfaces (FSSs) based on spectral domain integral equation
formulations is given in [1], together with a discussion of cascading approaches for multilay-
ered structures. Further examples of spectral-domain formulations involving the analysis of
multilayered planar structures like aperture coupled microstrip patches are described in [2, 3.
A difficulty with spectral-domain formulations of periodic Green’s functions is the slow con-
vergence of the Floquet-mode series. Therefore, acceleration techniques like the method of
Singh as applied in [4] or Shanks transformation [5] must be used in conjunction with mixed
potential integral equation (MPIE) formulations. An overview of acceleration techniques is
given in [6]. Optimum convergence behavior can be obtained by applying the so—called Ewald
transformation, which was suggested by P. P. Ewald in his thesis [7] and later extended to
deal with skewed angled three-dimensional crystal lattices [8]. A numerical implementation of
the Ewald transformation for two-dimensional lattices was described in [9]. In [10], the Ewald
transformation was used to speed-up the analysis of doubly periodic arrays of rectangular

apertures in metallic screens. In [11] a volume integral equation formulation for the analysis



of three-dimensional periodic structures embedded in multilayered media is described. How-
ever, this approach has difficulties in dealing with metallic structures. Also, the computational
complexity can be large unless advantage is taken of the Toeplitz properties of the coupling
matrices resulting from regular discretizations.

Fully three-dimensional modeling capabilities can be achieved by using hybrid finite element
(FE) / boundary integral (BI) methods. For example, a two—-dimensional FE/BI approach
was suggested [12] for the analysis of plane-wave diffraction by arbitrary cross section gratings.
Three-dimensional approaches for the analysis of doubly periodic structures are presented in
(13, 14, 15]. Both of these methods are based on FE modeling employing tetrahedral meshes
and spectral domain Floquet mode expansions of the BI fields.

In this paper, we propose a hybrid FE/BI method employing distorted triangular prismatic
elements for volume tessellation and a MPIE formulation in the spatial domain for mesh
truncation. The triangular prismatic elements provide full geometrical adaptability in the
plane of the triangles and structured meshing along the depth of the cell. Because structured
gridding is used for volume meshing, simple automatic mesh generation can be employed for
the analysis of multilayered FSS structures. Thus, prismatic elements can allow for design
studies since geometry meshing is accomplished by varying a few external parameters without
a need to manually re-grid the geometry at each design iteration. Another important aspect
of this paper is the use of the Ewald acceleration technique for evaluating the periodic Green’s
function.

In Section 2 the formulation of the method is given starting from a functional description of
the field problem. The majority of this section is devoted to the FE implementation involving
the phase boundary conditions as well as the BI formulation with the Ewald transformation.

Section 3 shows results for a variety of periodic structures, including antenna arrays and



artificial dielectrics.

2 Formulation

2.1 Weak Formulation of the Field Problem

We consider the periodic structure illustrated in Fig. 1 for time harmonic electromagnetic
fields (an e/“* time factor is assumed and suppressed throughout). The array is assumed to
be periodic in the zy-plane and the (m,n) cell of the array is obtained by shifting the (0,0)

cell through the relation

pmn:mpa+npb' (1)

Here, p,,p; are the lattice vectors parallel to the zy-plane. For periodic excitation of the

array with a linear phase factor, the fields in the array obey the periodicity conditions

E(r) e_jktool(mpa+npb) ,

E(r +mp, +np,)

H(r+mp, +npy) H (r) e~ koo (mpatnpy) @)

with
ko = kzoo & + kyOO 4 = +(ko sindg cos g & + ko sindg singg G) - (3)

In (3) kg is the wavenumber of free space and 9y, g are the spherical coordinates corresponding
to the scan angles of a phased array (positive sign) or the arrival angles of an incident plane

wave (negative sign). The pertinent finite element functional is
1 .
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where E,q is the solution of the adjoint field problem, J™ denotes an excitation current
within the FE domain, S represents the bounding surface of the FE domain, n is the unit
surface normal directed out of the FE domain, and Zj is the wave impedance of free-space.
It is well known that H x 7 in the surface integral of (4) must be replaced by an expression
in terms of E. This is the process of mesh truncation and as noted earlier the BI will be
employed for this purpose. Restricting ourselves to planar surfaces (as is the case with most

practical problems), the appropriate BI relation in MPIE form is given by

——23 [//Grrs ) (E x n) ds-l—kQV//Grrs (Exn)ds

where G(r,7s) = exp(—jko|r — rs|)/(47|r — 74|) is the scalar free-space Green’s function and

+H™, (5)

H™ is an incident wave in the presence of a metallic interface in S. Substituting (5) into (4)

and invoking the divergence theorem results in

F(EadyE) = /// [%(Vand)(VXE)—k(%EadE+]kOZOEadJZnt} dv
T
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which is the exact functional description of the periodic field problem. Based on the periodicity
condition (2), the solution domain can be restricted to a single unit cell of the periodic array.
However, by this procedure additional (vertical) boundaries of the solution domain are created.
The phase boundary conditions (PBCs), (2), must be employed on these to obtain the unique
solution of the field problem. Moreover, the free-space Green’s function G(r,r;) must be
replaced by the appropriate Green’s function G,(r, ;) for a periodic array of d—sources in free

space.



2.2 Finite Elements

For the discretization of the volume integrals in (6) we employ edge-based basis functions on
triangular prismatic elements as described in [16]. The resulting meshes give full modeling
flexibility in the transverse direction but are structured in the direction normal to the trian-
gular cross sections. Therefore, mesh generation with triangular prisms is much simpler in
comparison to tetrahedral meshes and well-suited for designing layered periodic structures.
As an example, a simplified FE mesh with triangular prisms for a unit cell of the infinite
periodic array is illustrated in Fig. 2. The four vertical walls of the FE mesh are designated
as e, T'ri, Typ, ['yp, where I'je and Iy, are assumed to be the sidewalls opposite to I'y; and
I'yp, respectively. A possible imposition of the PBCs on the vertical walls of the FE mesh was
discussed in detail in [14] and [15]. The basic observation in this context is that the fields on
a vertical boundary of the FE mesh are related to the fields on the opposite boundary by (2)
through a phase relation. If e, is the unknown field at an edge on one of the vertical walls,

the value e, of the field at the corresponding edge on the opposite sidewall is given by

€n = €m e IkuwoAr ) (7)

where Ar(= p, or p) is the vector joining the two edges. This relation requires that the
surface meshes of the opposite vertical walls be identical and this is easily satisfied using
prismatic meshes but not so easily using tetrahedral meshes. In our implementation, we
eliminate the unknowns on the surfaces I'y; and Ty, by relating them to those on I';, and I'j,
using (7). For example, in Fig. 2 the unknown field at edge n,, is replaced by the unknown
field at edge ny,. Similarly, the unknown field at edge m,; is replaced by the unknown field at
edge my.. For the construction of the FE system matrix, this means that the corresponding

matrix elements are modified and condensed according to (7) as described in [14, 15]. However,



in our implementation, matrix condensation is performed during the generation of the matrix

and not as a second step. This allows for the most efficient sparse matrix storage.

2.3 Boundary Integral

The edge-based basis functions for triangular prisms reduce to Rao-Wilton-Glisson basis func-
tions [17] on the top and bottom triangular surface meshes of the periodic unit cell. Therefore,
these basis functions are used to represent the field in the boundary integral in (6). In the

spatial domain, the periodic Green’s function G,(r,75) has the form

00 00 " e—jkoRmn
Gy(r,rs) = ', g~ /Ft00Pma , 8
where
Rmn = "I‘ —Ts— pmn' . (9)
In the spectral domain, G,(r,7;) becomes
Ly 5 L ibimnlompgshemsle=
Gp(r,rs) = — , g IBtmn\P=Ps) g Ramn |2 Zs] (10)
A M=—00 N=—00 2]kzmn
where A = |p, x p,| is the cross sectional area of the unit cell,
r = p+z z , (11)
2m . N
kimn = koo + T [m(2 x pg) +n(py X 2)] (12)
is the so-called reciprocal lattice vector, and
kzmn = \/]‘702 - ktmn ' ktmn ) (13)

where Re(k;mn) > 0,Im(k,mpn) < 0. In many cases, the spectral domain representation (10)
has satisfactory convergence behavior if applied in a spectral-domain formulation of the in-

tegral equation. However, for arbitrary array configurations analyzed in the space domain,



having strongly as well as weakly coupled array elements, it is necessary to have a repre-
sentation that converges faster than either (8) or (10). This can be achieved by employing
the so—called Ewald transformation originally proposed by Ewald for modeling optical and
electrostatic potentials in three-dimensional ion lattices [8]. An application of the Ewald
transformation for time harmonic fields of two-dimensional lattices was presented in [9]. The
formulation in [9] is restricted to rectangular lattices, but Ewald’s transformation is also ap-
plicable to skewed lattices by employing the reciprocal lattice representation used here. The
Ewald transformation starts from the spatial domain representation of the periodic Green’s

function (8) and makes use of the identity

e-jkORmn / -—Rl 2
—_— ds, (14)
Rmn \/—
where s is a complex variable. In order that the integrand remain bounded as s — 0 and
s — 00, it is sufficient to choose the path such that arg(s) = 7 at the endpoints. Next, (14) is

substituted into (8) and the parameter E is introduced to split the integral into two terms, as

Gp(ra"'s) = Gpl(rv'rs) + Gp?(rv"'s) (15)
where
1 00 o) ) 92 E R $2 k2
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Using the identity [18] (Eq. 7.4.34)
\/_/ ds = 2Rmn[ erfc { Ry E °F
k
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where erfc is the complementary error function, Gpa(r, ) can be written as

o o e“jktOO'Pmn . jk
Gpo(r,rs) = —JkoRmn>f( n —-—)
pa(r,Ts) m:Z_oo 2 TBrRm [e erfe { fmn = 58
+ e]koRmn erfc (RmnE + ;—E )} y (19)

which is a “modified” spatial domain portion of the periodic Green’s function. Making use
of the Poisson transformation, or alternatively following the procedure in [8, 9] employing a
transformation formula for the series expansion of the J-function, (16) finally is transformed

to

I & & 1

Gpl(r7rs) = Z Z Z

m=—0o0 nNn=—00

e—jktmn' (P - p.u)

4jkzmn
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| ik,
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which can be identified as a “modified” spectral domain portion of the periodic Green’s func-

tion. For planar BI surfaces, we can select z = z; = 0, giving the simplified form

1 & & 1

Gp(r,rs) = A Z Z

m=—0o0 n=-—0o0

ST~ e Iktmn- (P = Ps) orfe (%) ) (21)
The two expressions (19) and (20) or (21) both converge exponentially (Gaussian convergence)
and their computation is therefore very efficient requiring only a few terms of the series.
The parameter E controls the convergence rate. As E becomes larger, the spatial series
(19) converges faster, while the spectral series (20) or (21) converges slower. The optimum
parameter is that which makes the two series converge at the same rate, so that equal numbers
of terms are required in the calculation of both series (assuming that the calculation time for

each term in the two series is the same). By analysis of the asymptotic behavior of the series

terms, the optimum parameter E,p; is found to be [9]

o= [T -



Choosing this value for £ and adjusting the summation limits so that the most dominant
terms are kept, in almost all practical cases it is sufficient to include only 9 summation terms
in (19) and (20) or (21) (i.e., the summation limits are from -1 to +1), in which case the error
level usually is less than 0.1%.

For the implementation of the BI portion of the method, we apply the same phase transfor-
mations to the matrix elements associated with edges on I'; and I'yp (see Fig. 2) as done in
the FE portion of the implementation (see subsection 2.2). This is in contrast to the con-
cept of “overlapping elements” described in [12, 14, 15]. However, it is advantageous for our
spatial-domain MPIE formulation for treating the singularities of the Green’s function. For
our approach, source and test triangles are always inside the unit cell and it is therefore guar-
anteed that the singularities of the neighboring array cells are never inside the test triangle.
Nevertheless, it is still necessary to carefully deal with the singularities of the neighboring
array elements that are close to the test triangles, as illustrated in Fig. 3. The singularities,

especially those of the self-cell elements, can be integrated using the formulas given in [19, 20].

3 Results

For the validation of the method, we first analyzed the two simple FSS structures illustrated
in Figs. 4 and 5. These were originally considered in [1]. The example in Fig. 4 is a slot FSS
on a dielectric slab where the BI on the top surface is restricted to the slot aperture. In the
diagram, we give the computed power reflection coefficient of the infinite slot array for an
incident TM plane wave. A method of moments (MoM) formulation employing a multilayered
Green’s function was also developed during this study and is used to compare results for this

and several other cases presented here. The FE/BI results were obtained using 4 subdivisions
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along the width of the slot and 15 subdivisions along the length of the slot. As seen, the
results in Fig. 4 agree almost exactly with the MoM data. Compared to the results presented
in [1], both curves are slightly shifted to higher frequencies. The structure illustrated in Fig. 5
is a strip dipole FSS embedded in a dielectric layer. Again, our FE/BI results for the power
reflection coefficient are compared to the corresponding results based on the MoM code for
planar structures. In this case, the incident plane wave was TE polarized, parallel to the
orientation of the strip dipoles. In contrast to the case of the slot array, the two resonance
curves for the strip dipole array show a slight frequency shift of about 1%. We note that
the FE/BI results were obtained using 16 subdivisons along the length and 8 subdivisions
along the width of the strip dipole. Further increases in the sampling rate showed that the
results were converged. In Fig. 6 the active reflection coeffecient for a microstrip dipole array
is depicted to demonstrate the antenna and scan modeling capabilities of our FE/BI method.
The results compare very well to our own MoM results and those of [22].

A more complex FSS structure consisting of two slot coupled microstrip patches [2] is given
in Fig. 7. The modeling of this structure using MoM-based integral equation analysis is chal-
lenging, involving electric and magnetic surface current densities in layered media. However,
modeling of the cell in Fig. 7 is a routine task in the FE/BI implementation. First, the geomet-
ric dimensions of the structure in Fig. 7 were designed to get a transmission coefficient curve
with two separated resonance peaks as shown in Fig. 8. In [2], MoM results were compared
to measurements; however, the measured resonance curves were obtained for a slot length of
12 mm whereas in the simulation a slot length of 11.2 mm was used to match the results. In
our FE/BI simulations we found a good match of the resonance curves using the original slot
length of 12 mm. However, discrepancies between the two curves are obvious in the range

between the two resonances. For the results shown in Fig. 9, the geometric dimensions were
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selected to obtain bandpass behavior of the transmission coefficient curve. Again, our FE/BI
results are compared to MoM calculations as well as to measurements published in [2]. The
FE/BI calculations were performed for a slot length of 9 mm in contrast to 8 mm used to
obtain the computed and measured results in [2]. ;From the curves it can be seen that the
FE/BI results give smaller values for the transmission coefficient in the passband region of the
filter. On the other side the MoM values in this range are a little bit too large compared to
the measured results but overall they fit better than the FE/BI results.

As another example we consider the dielectric slab in Fig. 10 with embedded periodic mate-
rial blocks. These lattices are often referred to as photonic bandgap materials. The diagram
in Fig. 10 shows the reflection coefficient of plane waves incident on the slab with different
incidence angles. The reflection coefficient curves exhibit the typical resonances of photonic
bandgap materials. Compared to calculations obtained by a volume integral equation method
[11], the first resonance is slightly shifted to a lower frequency whereas the frequency shift for
the second resonance is larger. For TM-waves with oblique incidence, the resonances shift to
higher frequencies and this is in agreement with [11].

As a final example, Fig. 11 shows the unit cell for a so—called “artificial puck plate” FSS screen
which was presented in [23] and analyzed in [13]. The basic FSS element is a dielectric-filled
cylindrical waveguide with metallic walls and circular metallic irises in its apertures. On the
top and bottom of the metallic plate, dielectric layers are placed for the optimization of the
frequency behavior of the bandpass structure. The surface mesh used to grow the prismatic
volume mesh of the unit cell is shown in Fig. 12. Our calculations are given in Fig. 13 and
are compared to MoM data and FE/BI results based on a tetrahedral mesh published in [13].
As can be seen, our FE/BI curves are closer to the MoM curves than the FE/BI results from

[13]. This is likely due to our higher sampling rate.
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4 Conclusion

In this paper, we presented a hybrid FE/BI method for the analysis of 3D doubly periodic
structures. The method can handle non-orthogonal lattices as well as arbitrary scan directions.
The FE portion of the approach utilizes triangular prismatic volume meshes with edge-based
basis functions for the electric field intensity. This meshing strategy provides for geometrical
flexibility and ease of mesh generation for layered structures. On the top and/or bottom
boundary planes of the unit cell, the mesh was truncated by a boundary integral and a periodic
phase boundary condition was employed on the side walls of the unit cell mesh. The BI was
implemented in MPIE formulation with the periodic Green’s function in the space domain
being computed using the Ewald acceleration technique, resulting in very fast convergence of
the series representation. The method was validated for simple slot and strip FSS as well as
for microstrip dipole antenna arrays. Further results were shown for slot-coupled microstrip
patches, photonic bandgap arrays, and a bandpass FSS based on a circular hollow waveguide

with dielectric cover layers.
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Figure 1: Infinite periodic structure
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Figure 3: Periodic image sources in triangular BI mesh
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Figure 4: Power reflection from a 1-layer slot array for a plane wave (TM, d = 0.1°, 9 = 0°)
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Jo = O-IO»WO = 00)
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Figure 7: FSS unit cell of aperture coupled microstrip patches as suggested in [2], &, = 2.2,

d = 1.6 mm, a = 36.07 mm, b = 34.04 mm.

23



1.0

0.8} .
=
& i .
=
2 06} )
=
T | )
02
2 041} |
£
2 i ]
8
=~ 0.2F = Pous, et al. 1991 .

-0 FE/BI
0.0 a _
2.5 3.0 3.5 4.0

Frequency (GHz)

Figure 8: Transmission coeflicient for the F'SS structure in Fig. 7 compared to reference values

from (2], Ly = 12 mm, W, = 2 mm, W), = 28 mm, L, = 18 mm, (TM, ¥y = 0.1°, ¢y = 0°).
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Figure 9: Transmission coefficient for the FSS structure in Fig. 7 compared to reference
values from (2], Ly = 9 mm: FE/BI (Ly; = 8 mm: Reference), W, = 2 mm, W, = 28 mm,

Lp =28 mi, (TM, 190 = 0.10, Yo = 00).
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Figure 10: Plane wave reflection from a dielectric slab (¢, = 4) with planarly embedded
periodic material blocks (¢, = 10) compared to reference values from [11], Slab height: 0.2 cm,

period: 2Xx2 cm, block side length: 1x1 cm (TM, ¥y = 0.1°,¢p = 0°)
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Figure 11: Unit cell of “artificial puck plate” FSS as presented in [13].
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Figure 12: Triangular surface mesh for the structure in Fig. 11
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Figure 13: Reflection and transmission coefficients for bandpass structure in Fig. 11 compared

to reference values from [13], (TE, dyp = 0.1%, ¢y = 0°).

29



