035675-2-T

J. L. Volakis
K. Sertel
M. A. Carr

Users Manual,

Test Case Manual,

and

Mathematical Background for
Single Level SWITCH-FMM

Version 1

April 2000

35675-2-T = RL-2497



Users Manual for SWITCH-FMM Version 1.0

John L. Volakis, Kubilay Sertel, and Michael A. Carr
Radiation Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2212, USA

April 5, 2000



Contents
1 Introduction

2 Input and Output Files
21 Dimension File .. ... ... ... ... ... ... ......
22 Geometry Files . . ... ... ... ... ... .. .. .. ...
2.2.1 PATRAN Geometry Output . . . ... .........
2.2.2 SWITCH Geometry Output . . . ... .........
23 ImputFile . . ... .. .
24 Output Files. . . . .. .. ... .. ... ... ... ...
2.4.1 Farfield Radar-Cross-Section (RCS) Data . . . . .. ..
2.4.2 Induced Surface Currents . . ... ...........
2.4.3  Solution Coefficients . . . ... .............

3 Executing the Solver

4 Data Visualization

5 Quick Reference
5.1 Compilation of the Solver . .. .. ... ............
5.2 Executing the Solver . . . .. ... ... ... ... ......
5.3 Checking the Qutput . . . .. ... ... ... ... ......
5.4 Visualizing the Outputs . . .. ... ... ... ... .....



1 Introduction

This document is intended to describe the compilation and execution of the
code SWITCH-FMM developed at the Radiation Laboratory of the Univer-
sity of Michigan Electrical Engineering and Computer Science Department.

SWITCH-FMM is a Method of Moments (MoM) based Computational
Electromagnetics (CEM) tool to simulate electromagnetic (EM) scattering
scenerios involving arbitrarily curved perfect electric conductor (PEC) tar-
gets. It is implemented in Fortran 77. The MoM formulation used in
the implementation of the code is based on the Electric-Field-Integral-
Equation (EFIE), the Magnetic-Field-Integral-Equation (MFIE), and the
Combined-Field-Integral-Equation (CFIE) formulations of EM scattering
from PEC targets. To overcome the computation time length and memory
requirements of the convensional MoM implementations (O(N?) and O(N?)
respectively), the Fast Multipole Method (FMM) is implemented. The FMM
reduces the computation complexity to O(N'**) per iteration (in iterative so-
lution of the resulting linear system) and the memory to O(N'®). The reader
is referred to the references [1, 2, 3] for further information on the formula-
tions used in the implementation of the code.

The target geometry is represented in the code using curved quadrilateral
surface patches which are defined by 9 points in space located on a topologi-
cally rectangular 3x 3 grid [1]. The generation of target geometry is discussed
in Section 2.2.

The input parameters related to the simulation should be given in the
input file as outlined in Section 2.3.

Section 2.4 describes the output files generated by the code. RCS and
induced surface current density data produced at the output can be visu-
alized using the MATLAB and PATRAN visualization files as described in
Section 4.

There are two versions of the code. The “non-symmetric” version located
in SWITCH/Non_Symmetric/ uses the whole target geometry, whereas
the “symmetric” version in SWITCH /Symmetric/ makes use of symmetry
to model half of the target. This manual is based on the “non-symmetric”
version. The difference between the two versions are mensioned whenever
necessary.



2 Input and Output Files

The following subsections outline the I/O and visualization files used by the

solver SWITCH-FMM.

2.1 Dimension File

Before compiling the solver, the dimensions of the data arrays used in the
code must be approximately specified in the dimension file main.dim lo-
cated in SWITCH /Non_Symmetric/src directory. The structure of the
file is

parameter (

& NNodes = 5600,

& Nntri = 3600,

& Nunknowns = 4500,

& Ncluster = 60,

& NL = 15,

& Nnzbimat = 1500000

&

&)

C NNodes : Number of NODES in target geometry

C Nntri : Number of ELEMENTS in target geometry

C Nunknowns : Number of UNKNOWNS in target geometry
C Ncluster : Number of CLUSTERS in target geometry
C (Ncluster=sqrt(Nunknowns))

C NL : Number of MULTIPOLES in target geometry

C Nnzbimat : Number of NONZEROES+1 in the near-field matrix

The number of NODES and ELEMENTS can be found in the first few lines
of the geometry files. Number of UNKNOWNS is equal to the number of
edges shared by two quad elements. It is equal to twice the number of EL-
EMENTS for a closed geometry. Number of CLUSTERS should be set to
be Ncluster=sqrt(Nunknowns). Number of MULTIPOLES is computed by
the code and it varies between 6 and 20. Number of NONZEROES in the



near-field matrix is also problem dependent and an estimate to this number
can be found as Nnzbimat=(10 to 20)*Ncluster*Nunknowns.

The whole code needs to be recompiled whenever this file is modified. The
compilation is machine dependent and must be done using proper “make-
files”.

The dimension file for the “symmetric” version is located in SWITCH /-
Symmetric/src and has the same structure as that of the “non-symmetric”
version as explained above.

2.2 Geometry Files

The geometry files used in the code are the neutral PATRAN output files
and the original SWITCH geometry files. Two seperate geometry files are
required. One file contains the coordinates of the nodes of the quad ele-
ments forming the mesh, and the other contains the nodes of the elements.
The geometry file containing the quad element nodes must be placed in the
directory SWITCH/Non_Symmetric /geom/elements and the other
geometry file must be placed in the directory SWITCH /Non_Symmetric
/geom/nodes. These two geometry files must have the same name. It is
crucial that the element normals be pointing outward (necessary when the
MFIE or CFIE option is used). This can easily be checked in commercial
mesh generation packages such as PATRAN. Example element and node files
for PATRAN and IDEAS outputs are given below for the “non-symmetric”
version.

For the “symmetric” version, the same structure is used. However, the
geometry files contain only half of the symmetric geometry. The symmetry
plane is specified in the input file. The assumption used is that the symmetric
geometry lies on one side of the symmetry plane. The latter is assumed to
be on one of the principle planes in cartesian coordinate system.

2.2.1 PATRAN Geometry Output

After the target mesh is generated using PATRAN; it is then exported in
Neutral File format to two seperate files (one for nodes and the other for

node connectivity as noted above). The format of the output node file from
PATRAN is like the one below.



2500100000

P3/PATRAN Neutral File from: /tmp/PATRAN/dart2.db
26 00189506000 -1

05-Mar-99 16:01:00 3.0

110200000

-1.000000000E+0 -7.814555225E-9 3.184821606E-1
1G 6 0 0 000000

120200000

-1.000000000E+0 5.538074672E-2 3.129804432E-1
1G 6 0 0 000000

130200000

-1.000000477E+0 1.105192080E-1 3.056425154E-1
1G 6 0 0 000000

18060200000

-4.162685776E+1 -5.847183704E+0 1.057478547E+0
1G 6 0 0 000000

900100000

Not all of the lines above are needed by the SWITCH-FMM code. Clearly
the line including the 3 decimal numbers refer to the node coordinates. The
actual node number is given as the second number in the line above the coor-
dinates. The format of the element connectivity file exported from PATRAN
is

2500100000

P3/PATRAN Neutral File from: /tmp/PATRAN/dart2.db
26 0 0 1 8906 2226 0 0 -1

05-Mar-99 16:01:12 3.0

214200000

9000 .000000000E+00 .000000000E+00 .000000000E+00
219 216 185 189 217 218 188 221 220
224200000

9000 .000000000E+00 .000000000E+00 .000000000E+00
178 184 189 185 182 187 188 183 186



222264200000

9000 .000000000E+00 .000000000E+00 .000000000E+00
1710 6229 6231 1712 6221 6230 6223 1711 6222
900100000

Again, not all the lines are used by FMM-SWICTH. Here, the lines contain-
ing the 9 integers gives the node numbers of the element. As noted above,
the node file should be placed in the directory SWITCH /Non_Symmetric
/geom /nodes and the element file should be placed in the directory SWI-
TCH/Non_Symmetric/geom/elements with the same name for proper
operation of the code. Also the geometry type in the main input file should be
specified as “patran”. This file should be placed in the directory SWITCH
/Non_Symmetric/input. For the “symmetric” version, the node file should
be placed in the directory SWITCH /Symmetric /geom/nodes and the
element file should be placed in the directory SWITCH/Symmetric/ge-
om/elements with the same name. Also the geometry type in the input
file in SWITCH /Symmetric/input directory should be specified as “PA-
TRAN".

2.2.2 SWITCH Geometry Output

The geometry files that are in the format of the original Northrop SWITCH
code can also be read into the SWITCH-FMM solver. In this caes, the node
file should have the format

962

1 0.4999994E+01 0.2838807E-13 -0.6494433E-06
2 0.1192099E-05 0.9999973E+00 0.0000000E+00
3 0.4566187E+01 0.1716829E+00 0.0000000E+00

962 -0.3427966E+01 -0.2119954E+00 -0.4965332E+00

Clearly, the first column in the above listing is the node number followed
by its coordinates. The first line gives the total number of nodes (962 here).
The element file should have the format

P3/PATRAN Neutral File /ogive480.db small 240 quad EMCC test



case, 11/24/97
240 0 240 240 0 0
0 480 480

00

00

1970

3 72 27 45 118 71 1 70 26
001203400000
2970

4 74 28 46 119 73 3 72 27
002506700000

240970
754 783 755 932 962 931 870 892 871
0 0 -440 -386 0 480 47900000

The node file should be placed in the directory SWITCH /Non_Symmetric
/geom/nodes and the element file should be placed in the directory SWI-
TCH/Non_Symmetric/geom/elements with the same name for proper
operation of the code. Also the geometry type in the input file in SWITCH
/Non_Symmetric/input directory should be specified as “switch”.

For the “symmetric” version, the node file should be placed in the di-
rectory SWITCH /Symmetric /geom/nodes and the element file should
be placed in the directory SWITCH/Symmetric/geom/elements with
the same name. Also the geometry type in the input file to be placed in the
directory SWITCH /Symmetric/input should be specified as “switch”.

2.3 Input File

The parameters (frequency, pattern cuts, etc) related to the specific simula-
tion runs must be specified in filename.input. As noted earlier, this should
be placed in SWITCH /Non_Symmetric/input. The file structure is

"switch"
"inches"
5.91

1.0



"bistatic"

2

90.0 90.0 0.0
0.0 180.0 0.5
0.001

500

The first line in this file specifies the format of the geometry file. Valid
options are “switch” and “PATRAN”. Others can be added in the future.

The second line gives the units of the geometry. Valid options are “inches”
and “meters”. When the unit is specified as “inches” the solver automatically
scales the frequency so that the read geometry data are treated in units of
“meters”. The RCS results are unaffected.

The solution frequency is entered in GHz and is specified in the third line.
This version of the solver only works at a single frequency.

The o parameter of the CFIE is specified in the fourth line as a real num-
ber. Valid values are 0.0 < a < 1.0 for closed targets. For open structures «
must be set to 1.0.

The RCS pattern type is specified in line 5. Valid entries are “bistatic”
and “monostatic”.

The polarization of the incident plane electromagnetic wave is specified in
line 6. Valid entries are 1 and 2 (1 for vertical polarization, 2 for horizontal
polarization).

Line 7 specifies the range of observation angle § measured from the verti-
cal axis. The first value is the beginning value and the second is the ending
value; the third value is the angle increment.

Line 8 specifies the range of observation angles ¢ with reference to the
x-axis. Again, the first value is the beginning value and the second is the
ending value; the third value is the angle increment.

Line 9 specifies the convergence tolerance for the iterative solver. The
Conjugate Gradient Squared (CGS) is implemented this time but others can
be used.

Line 10 specifies the maximum number of iterations prior to terminating
th eiterative solver. If the solver does not converge in the specified number
of iterations, it will stop. Output data will be generated, but depending on
the error in the last step it may or may not reflect a correct solution.

For the “symmetric” version, the input file must contain the symmetry
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plane information, so its structure is slightly different from the above. It
should be placed in the directory SWITCH/Symmetric/input and has
the structure

"PATRAN"

le_z"

"inches"

5.91

1.0

"bistatic"

2

90.0 90.0 0.0

0.0 180.0 0.5

0.001

500

The symmetry-plane is specified in the second line, the other informa-
tion is the same as in the “non-symmetric” version. Valid entries for the
symmetry—plane specification are
"x_y"
||y_x"
llx_zll
||z_x||
lly_z”

”Z_y"

2.4 Output Files

The output files for the “symmetric” and “non-symmetric” versions are the
same. The following output files are generated.

2.4.1 Farfield Radar-Cross-Section (RCS) Data

After solving the problem, the code computes the scattered field by the tar-
get and generates the RCS data in the following format

90.00000 0.00000 -52.49841 120.04202 -65.76239 108.26443
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90.00000 0.50000 -52.52096 119.97476 -65.92950 108.37727
90.00000 1.00000 -52.56872 119.91295 -66.09913 108.49729
90.00000 1.50000 -52.64211 119.85621 -66.27121 108.62270

90.00000 179.50000 -19.82681 -30.93680 -63.67008 84.47012
90.00000 180.00000 -19.82989 -30.90826 -63.61202 83.64088

This is the specific output for the ogive480 geometry for VV pol. The
first column gives the f-angle value (in deg.) and the second column gives
the ¢-angle value (in deg.) corresponding to the computed RCS values given
in the remaining colmuns to the right. The third and fifth colums give the
RCS results for vertical and horizontal field components in dBs. The forth
and sixth colums are the corresponding phases of the vertical and horizontal
field components in degrees.

2.4.2 Induced Surface Currents

For visualization purposes, the values of the induced surface current are also
output. The file structure is

bistatic

111009622401 000

bistatic

1 0.00000 0.000000 9621111000000

bistatic

11
6.0863093E-072.7060833E-035.1328743E-016.0863093E-07 ..
21
9.7520167E-035.8606099E-101.1953557E-019.7520167E-03 ...

962 1

1.4312185E+009.0374618E-023.6556860E-011.4312185E+00 .

This is an auxiliary file to be used as an input to the converter restxt.
The file contains the magnitudes of the induced surface current on the target

at each node of the mesh. It can be converted into binary format using an
auxiliary PATRAN file restxt. It can then be imported into PATRAN to
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visualize the surface currents induced on the target. This will be adressed in
Section 4.

2.4.3 Solution Coefficients

This file is generated for completeness. It contains the solution vector (the
unknown coefficient in the basis function expansion of the induced surface
current) for the problem being analyzed. The structure is

1 1.58523E-03 5.14229E-04
2 1.55354E-02 5.81232E-02
3 -0.257247 -0.200015

4 5.44715E-02 0.349153

479 -0.523232 -0.763163
480 -0.623706 0.479390

The values in the first column are the associated unknown-number of the
basis functions used (here they refer to the edges shared by two quad ele-
ments in the mesh). Second and the third columns are the real and imaginary
parts of the coefficient. It should be noted that the basis functions are not
numbered as they appear in the element file.

2.4.4 Clustering Information

To check the quality of the clustering for FMM implementation, the file ccen-
ters.xyz.filename is output after clustering is done. The file structure is

1.874762 0.318430 0.675829 0.800198

3.048203 -0.124327 0.438653 0.733757
0.400361 0.680715 0.552857 0.829164

-0.462368 -0.557853 -0.695336 0.794405
-2.523491 -0.546767 -0.092770 0.851855

Each line refers to one of the clusters. The first column is the values of
the maximum radii of the cluster; the second, third and forth columns are
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simply the x, y, and z coordinates of the cluster centers.

3 Executing the Solver

The following directories must be available/created prior to compiling the
code

SWITCH /Non_Symmetric/geom/nodes

SWITCH /Non_Symmetric/geom/elements

SWITCH /Non_Symmetric/input

SWITCH /Non_Symmetric/src

SWITCH /Non_Symmetric/workspace

SWITCH /Non_Symmetric/bin

SWITCH /Non_Symmetric/datavis

SWITCH /Non_Symmetric/output

The explanation to execute the solver given below is based on the “non-
symmetric” version of the code. The same instructions also apply to the
“symmetric” version if the steps are carried out in the directory of the “sym-
metric” version (SWITCH /Symmetric/).

Once the geometry and input files are ready for the simulation, they must
be put in the proper directories. The source files are located in the directory
SWITCH /Non_Symmetric/src. After the dimension file main.dim is
designed for the specific problem, the user can proceed with its compila-
tion. The code is compiled using the make utility with a proper makefile
depending on the machine being used. After compilation the executable
is automatically placed in the directory SWITCH/Non_Symmetric/bin.
This directory must therefore be available prior to compilation.

To run the code, the user must be in the directory SWITCH /Non_Sym-
metric. Executing the available batch file

runsw filename

will execute the solver.

If the dimensions in the file main.dim are less than needed, the code will
prompt the information and stop. The dimensions should be fixed, the code
should be recompiled and rerun. The sparse solver library file need not be
recompiled unless the operating platform is changed.
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The code uses the directory SWITCH/Non_Symmetric/workspace
to write auxiliary files while it is running. The output files are written

in this directory, and after the run is complete those files are moved to
SWITCH/Non_Symmetric/output.

4 Data Visualization

The output files can be imported in e.g. Matlab for visualization. The fol-
lowing subsections outline the visualization tools for Matlab and PATRAN.

4.0.5 RCS Data Visualization

The Matlab file fiphi.m can be used to generate RCS plots on constant 6
cuts using the data in the RCS output file generated and similarly fiftheta.m
can be used to generate RCS plots on constant ¢ cuts. Both files are located
in the directory SWITCH/Non_Symmetric/datavis. The RCS data file
should be copied in SWITCH /Non_Symmetric/datavis under the name
farfield.output.

4.0.6 Surface Currents Visualization

The output file current.txt.filename can be converted into PATRAN bi-
nary results file using an auxiliary PATRAN file PATRAN /bin/restxt.
Extensive information about the auxiliary files of PATRAN can be found
in PATRAN’s Users Manual. The output file can then be imported into
PATRAN and the magnitude of the induced surface currents can be plot-
ted in PATRAN. To do so, the output file, e.g. current.txt.dart2 should
first be copied into current.txt. When the auxiliary file restxt is executed,
1t prompts for the type of conversion. The “txt-to-res” conversion option
should be selected and the name of the file should be input as current (i.e.
without the .txt extension). The output will create the file curent.res. In
the PATRAN Analysis menu, this file should be read into PATRAN. In the
Results menu in PATRAN the surface currents can then be plotted.
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4.0.7 Cluster Visualization

The quality of clustering can be checked using the Matlab file plentr.m
located in SWITCH/Non_Symmetric/datavis. The clustering file (e.g.
ccenters.ogive) should be copied in SWITCH/Non_Symmetric/datavis
with the name ccenters.xyz. The Matlab script plentr.m can be used to
plot the circles representing the clusters. This version only plots 2-D circles
representing the clusters.
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5 Quick Reference

This section is a step-by-step reference to execute the code SWITCH-FMM.
[t is assumed that the directory structure of the code is already created on
user’s account. To use the “symmetric” version of the solver, users should ex-
ecute the steps below in the directory SWITCH/Symmetric/ as opposed
to executing them in SWITCH /Non_Symmetric/. It sould be kept in
mind that the geometry and input files of the “symmetric” version are dif-
ferent than those of the “non-symmetric” version.

5.1 Compilation of the Solver
¢ Go to directory SWITCH/Non_Symmetric/src
o Design the parameter file main.dim subject to the geometry size.
o Type touch*.fso that each file includes the updated main.dim

e Compile the code by executing make makefile. XXX using the proper
makefile_ XXX where “XXX” refers to the machine type such as “sun”,
“hp”, or “Sgi”.

o Now the executable sw is generated and moved in the directory

SWITCH/Non_Symmetric/bin

5.2 Executing the Solver

e Put the geometry files in SWITCH/Non_Symmetric/geom. See
the Users Manual for more information.

o Select the run parameters and put the input file in
SWITCH/Non_Symmetric/input

e Go to directory SWITCH/Non_Symmetric

o Execute the solver by typing runsw filename(type runsw filename to
run the symmetric version in the directory SWITCH/Symmetric).
The name of the geometry files and the input file should all be the
same.
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5.3

5.4

Checking the Output
Go to directory SWITCH/Non_Symmetric/output

Check that all four output files are generated after the simulation is
completed. These are

1. ccenters.filename
2. coeff.filename

3. current.txt.filename

4. farfield.filename

Visualizing the Outputs

Copy farfield.filename to SWITCH/Non_Symmetric
/datavis/farfield.output.

Copy ccenters.filename to SWITCH/Non_Symmetric
/datavis/ccenters.xyz.

Copy current.txt.filename to SWITCH/Non_Symmetric
/datavis/current.txt.

Go to SWITCH/Non_Symmetric/datavis//.
Start up Matlab by typing matlab.

In Matlab run the RCS visualization files to plot the RCS data. See
the Users Manual for more information.

In Matlab run the clustering visualization files to plot the clustering
data. See the Users Manual for more information.

Convert the file current.txt into current.res using restxt uitlity of
PATRAN. See the Users Manual for more information.

Start up PATRAN by typing PATRAN.

Import the geometry files into PATRAN.
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¢ Import current.res into PATRAN using the Analysis menu.

o Choose the PATRAN “Results” menu to display the surface currents.
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1 Example Runs

This section is intended to demonstrate typical runs and outputs of the solver

SWITCH-FMM.

1.1 The Ogive

In this example a PEC ogive is analyzed at 5.91 GHz. The geometry is the
same as that used in the original SWITCH manual. The two geometry files
are located in the directory SWITCH/Non_Symmetric/geom with the
name ogive480. The dimension file for this problem given in main.dim is

parameter (

& NNodes = 962,

& Nntri = 240,

& Nunknowns = 480,
& Ncluster = 21,

& NL = 8,

& Nnzbimat = 113923
&
&

The input file for the ogive depicted in Fig 1 is

"switch"
"inches"

5.91

0.5
"bistatic"

2

90.0 90.0 0.0
0.0 180.0 0.5
0.001

500
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Figure 1: The Ogive Mesh

Fig 2 depicts the RCS result for the ogive480 geometry.

1.2 Sphere

In this example a PEC sphere of radius 1m. is analyzed at 0.3 GHz. The ge-
ometry is generated in PATRAN. The two geometry files are located in the
directory SWITCH /Non_Symmetric/geom with the name sphere05.
The dimension file for this problem given in main.dim is

parameter (

& NNodes = 5494,

& Nntri = 1373,

& Nunknowns = 2746,
& Ncluster = 52,

& NL = 7,

& Nnzbimat = 2448423
&

& )
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T T T T T T

Bistatic RCS (dBSM)
.
5 8
, .

!
g

!
3

0k

L L L L L 5 L L
0 20 40 60 80 100 120 140 160 180
¢ (Degrees)

Figure 2: The RCS of the ogive at 5.91 GHz

The input file of the sphere depicted in Fig 3 is

"PATRAN"
"meters"

0.3

0.5
"bistatic"

2

90.0 90.0 0.0
0.0 180.0 0.5
0.001

500

Fig 4 depicts the RCS result for the sphere05 geometry and Fig 5 depicts
the magnitude plot of the induced surface currents.



Figure 3: The Sphere Mesh

Sphere03 analyzed at 0.3 GHz. CFIE Soln. witha = 0.5, HH pol.
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Figure 4: Bistatic RCS of the sphere at 0.3 GHz



MSC/PATRAN Version 7.0A 19-Mar-39 12:25:51
IFRINGE: bistatic, MAX DEFLECTION =  .00E +00: DISPLACEMENT, TRANSLATION (VEC-MAG) -P

Figure 5: Induced surface currents on the sphere at 0.3 GHz

1.3 Dart

In this example the PEC dart is analyzed at 2 GHz. The geometry is gen-
erated using PATRAN. The two geometry files are located in the directory
geom with the name dart2. The dimension file for this problem is given in
main.dim. The input file of the dart depicted in Fig 6 is

parameter (

& NNodes = 8906,

& Nntri = 2226,

& Nunknowns = 4452,
& Ncluster = 66,

& NL = 11,

& Nnzbimat = 4248015
&

&)

The input file of the dart depicted in Fig 6 is



Figure 6: The Dart Mesh

"PATRAN"
"inches"

2.0

0.5
"bistatic"

2

90.0 90.0 0.0
0.0 180.0 0.5
0.001

500

Fig 7 depicts the RCS result for the dart2 and Fig 8 depicts the magnitude
plot of the induced surface currents.



Dart2 analyzed at 2.0 GHz, VWV pol., CFIE with a=0.5
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Figure 7: Bistatic RCS of the dart at 2.0 GHz
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Figure 8: Induced surface currents the dart at 2.0 GHz, VV pol.



2 Example: Sphere

Given in this section is an example run to demonstrate the usage of the code.
The sphere geometry is generated using PATRAN. The radius of the sphere
is Im. Two files are generated one of which containes the element nodes
and the other contains the node coordinates. The file containing the element
nodes reads as follows:

2500100000

P3/PATRAN Neutral File from: /tmp/PATRAN/sphere.db
26 0 0 1 5494 1373 0 0 -1

18-Mar-99 20:05:39 3.0

214200000

9000 .000000000E+00 .000000000E+00 .000000000E+00
3 63 62 1 443 442 441 380 1105

224200000

9000 .000000000E+00 .000000000E+00 .000000000E+00
4 64 63 3 445 444 443 381 1106

213734200000

9000 .000000000E+00 .000000000E+00 .000000000E+00
4478 4477 4508 4479 5077 5155 5154 5079 5494
8900100000

This file is copied to SWITCH/Non_Symmetric/geom/elements/.

The file containing the node coordinates reads as follows:

25600100000

P3/PATRAN Neutral File from: /tmp/PATRAN/sphere.db
26 0015494 000 -1

18-Mar-99 20:05:25 3.0

110200000

-1.000000000E+0-3.797475040E-20 8.687610093E-13

1G 6 0 0 000000

120200000

9.999999404E-1 -8.741933044E-8 0.000000000E+0
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1G 6 0 0 000000

15494 0200000

-5.068947077E-1 7.210024595E-1 -4.724544585E-1
1G 6 0 0 000000

9900100000

This file is copied to SWITCH/Non_Symmetric/geom/nodes/. For
this problem the bistatic RCS of the sphere is computed at 0.3 GHz. for VV
polarization. So the input file is as follows:

"PATRAN"

"meters"

0.3

0.5

"bistatic"

1

90.0 90.0 0.0

0.0 180.0 0.5

0.001

500

This file is copied to SWITCH/Non_Symmetric/input/. The dimension
file main.dim in SWITCH/Non_Symmetric/src/ reads as:

parameter (

& NNodes = 5494,

& Nntri = 1373,

& Nunknowns = 2746,
& Ncluster = 52,

& NL =7,

& Nnzbimat = 2448423
&

& )

C NNodes : Number of NODES in target geometry
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C Nntri : Number of ELEMENTS in target geometry

C Nunknowns : Number of UNKNOWNS in target geometry

C Ncluster : Number of CLUSTERS in target geometry

C (Ncluster=sqrt(Nunknowns))

C NL : Number of MULTIPOLES in target geometry

C Nnzbimat : Number of NONZEROES in the near-field matrix

The solver is then compiled in SWITCH /Non_Symmetric/src/ using
make f makefile_sun

Now the solver is ready to run. User must be in SWITCH/Non_Sym-
metric/. Type

runsw sphere05

to execute the solver. The following is output on the screen on a single
processor SUN Ultra:

wavelength= 1.0000000000000 m.
nnode,nquad= 5494 , 1373

Geometry file read in = 0.710684
Elements paired in = 3.40323
nbasis= 2746

nclus= 52

Clusters formed in = 0.183546
Clusters paired in = 5.19966E-02
Translations computed in = 2.04550
Aggregations computed in = 39.1651
alpha= 0.50000000000000

Sparse matrix structure formed in = 0.493427
107% done.

20% done.

30% done.

407, done.

50% done.

60% done.
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Sphere03 analyzed at 0.3 GHz. CFIE Soln. witha. = 0.5, HH pol.
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Figure 9: Bistatic RCS of the sphere at 0.3 GHz

70% done.

80% done.

90% done.

100% done.

Near-field matrix filled in = 1318.00
Non-zeros in preconditioner= 80354
Near-field matrix factored in = 204.301
1 of 1 is being processed.

ITER= 1 ERROR= 0.29340707366055

ITER= 2 ERROR= 8.9859981758242D-02
ITER= 3 ERROR= 8.4873548373478D-02
ITER= 4 ERROR= 5.5020817083269D-03
ITER= 5 ERROR= 3.2430174817679D-04
ITER= 5 ERROR= 3.2430174817679D-04
Solution computed in = 15.1542

Time per Iteration = 3.03085

After a successfull run, the output files are moved in the directory SWITCH/Non_Sym-

metric/output. Fig 9 is generated using the visualizetion tool fiphi.m in
SWITCH/Non_Symmetric/datavis/.
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3

Quick Reference

This section is a step-by-step reference to execute the code SWITCH-FMM.
It is assumed that the directory structure of the code is already created on
user’s account. To use the “symmetric” version of the solver, users should ex-
ecute the steps below in the directory SWITCH/Symmetric/ as opposed
to executing them in SWITCH/Non_Symmetric/. It sould be kept in
mind that the geometry and input files of the “symmetric” version are dif-
ferent than those of the “non—symmetric” version.

3.1

3.2

Compilation of the Solver

Design the parameter file main.dim subject to the geometry size.
Type touch*.f so that each file includes the updated main.dim

Compile the code by executing make makefile_ XXX using the proper
makefile_ XXX where “XXX” refers to the machine type such as “sun”,
“hp”’ or “Sgi”.

Now the executable sw is generated and moved in the directory

SWITCH /Non_Symmetric/bin

Executing the Solver

Put the geometry files in SWITCH/Non_Symmetric/geom. See
the User’s Manual for more information.

Select the run parameters and put the input file in

SWITCH/Non_Symmetric/input
Go to directory SWITCH /Non_Symmetric

Execute the solver by typing runsw filename. The name of the geometry
files and the input file should all be the same.

14



3.3 Checking the Output
e Go to directory SWITCH/Non_Symmetric/output

o Check that all four output files are generated after the simulation is
completed. These are

1. ccenters.filename
2. coeff.filename

3. current.txt.filename

4. farfield.filename

3.4 Visualizing the Outputs

¢ Copy farfield.filename to SWITCH /Non_Symmetric
/datavis/farfield.output.

o Copy ccenters.filename to SWITCH/Non_Symmetric
/datavis/ccenters.xyz.

¢ Copy current.txt.filename to SWITCH/Non_Symmetric
/datavis/current.txt.

¢ Go to SWITCH /Non_Symmetric/datavis/.
o Start up Matlab by typing matlab.

o In Matlab run the RCS visualization files to plot the RCS data. See
the User’s Manual for more information.

o In Matlab run the clustering visualization files to plot the clustering
data. See the User’s Manual for more information.

e Convert the file current.txt into current.res using restxt uitlity of
PATRAN. See the User’s Manual for more information.

o Start up PATRAN by typing PATRAN.

o Import the geometry files into PATRAN.

15



e Import current.res into PATRAN using the Analysis menu.

o Choose the PATRAN “Results” menu to display the surface currents.
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1 Introduction

SWITCH-FMM is a Method of Moments (MoM) based Computational Elec-
tromagnetics (CEM) tool to simulate electromagnetic (EM) scattering scene-
rios involving arbitrarily curved perfect electric conductor (PEC) targets.
The MoM formulation used in the implementation of the code is based on
the Electric-Field-Integral-Equation (EFIE), the Magnetic-Field-Integral-
Equation (MFIE), and the Combined-Field-Integral-Equation (CFIE) for-
mulations of EM scattering from PEC targets. To overcome the computation
time length and memory requirements of the convensional MoM implemen-
tations (O(N?3) and O(N?) respectively), the Fast Multipole Method (FMM)
is implemented. The FMM reduces the computation complexity to O(N'5)
per iteration (in iterative solution of the resulting linear system) and the
memory to O(N'9).

The target geometry is represented in the code using curved quadrilateral
surface patches which are defined by 9 points in space located on a topolog-
ically rectangular 3 x 3 grid [1].

2 Geometry Modeling and Basis Functions

SWITCH-FMM uses curved quadrilateral biquadratic surface elements to
model the PEC target geometry under investigation. Surface modeling us-
ing curved surface elements has the advantage of decreasing the geometry
modeling error substantially [4]. The implementation in SWITCH-FMM can
easily be generalized for higher order surface representations.

A biquadratic surface patch is defined by 9 points in space (on a topo-
logically rectangular 3 x 3 grid) as depicted in Fig 1. The mathematical
representation in terms of two parameters (v and v) of the patch is given by

r(u,v) =Y. Y agmuo™ (1)

n=0m=0

with the restriction 0 < v < 1 and 0 < v < 1. In (1), &, are constant vector
coefficients related to the nine r,,, points defining the curved element.

The basis functions approximating the unknown surface current density
induced on the PEC surface by the incident EM field needs to be defined on
these quarilateral elements, conformal to the surface model. Hence, they are
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defined in terms of the surface tangent vectors on the quadrilateral element.
Each element pair supports a curved rooftop basis function, and each edge of
a patch may support one half of the basis function. Four half rooftop basis
functions are used to represent the current density on a single surface patch.
These are

YU N el ) PO NP | R Gl )1
(2)

N A Vil e

in which ¢ is the determinant of the metric tensor of the parametric trans-
formation given in (1) and t, and t, are the two principle surface tangent
vectors

or or

51;3 tu - 5; (3)
on the curved element. Note that in each of the above expansion compo-
nents (2), g serves as a normalization factor so that current continuity across
neighboring patches is ensured.

t, =

Figure 1: Geometrical construction of the surface elements.



3 Integral Equation Formulation and Method
of Moments

For conducting objects, the EFIE is given by

ikR

i /[ ——V’ 36)V| ds' = 2

47y i

B (@

where

R=|r-r|. (5)

Equation (4) is the statement of the boundary condition on the tangential
component of the electric field on a conducting surface. The vector denoted
by t is any unit tangent vector on the surface s of the scatterer, and Ei(r) is
an impressed field which excites the system.

The EFIE for the unknown electric current density J(r) on the conducting
surface induced by an incident wave is discretized using the MoM technique.
The induced surface current is approximated by a sum of N known basis
functions {j,(r)} as

N
)~ Zanjn(r). (6)
n=1
The EFIE thus becomes

Zan /[ +k2v’ Ja(r )v] e?ds —%t Er)~0 (7)

Using standart MoM procedure with Galerkin’s testing, the system of
equations obtained is,

N
ZZmnananu m:172a"'aN7 (8)
n=1
where iR
1o €
zZ . /dst / [ o(r )+k2V “Jn(r)V = (9)
and
F, 4m/dst (10)



Direct application of the MoM requires the computation of N? double
surface integrals appearing in Eq. (9) as the elements of the resulting MoM
matrix. Solution of this system of equations by Gaussian elimination requires
O(N?) operations. Iterative solvers require O(/N?) operations per iteration.
The memory requirement of the MoM is also O(N?). This large order for
storage limits the size of the problem that can be solved on a given hardware,
and the high operation cost poses a limit to the size of problems that can
be solved in a practically acceptable period of time. For these reasons, the
FMM is proposed [3, 2], which requires less memory and CPU time for the
solution of large problems.

4 Fast Multipole Method

Spherical (multipole) wave expansion of the free-space Green’s function ap-
pearing in the MoM formulation of the electric/magnetic field integral equa-
tion (E/MFIE) forms the basis of the FMM algorithm. This enables the
modified representation of the MoM matrix elements (for EFIE) as 3]

Zis % / PRV fi(k) - T (ks e+ P )V (), (11)
where
Vowi(k) = [ ds'eom [T kE] -3(x,),
Vimih) = /S dse™*m [T k] - ti(r) (12)
and .
To(kr,k-7) = S a1+ DAY (kr) Pi(k - 7). (13)
=0

The translation operator, being only dependent on the prechosen vector
T between the points m and m’, is key element to reducing the O(N?)
complexity of the MoM matrix-vector product in the iterative solution of the
resulting matrix equations. By grouping the basis functions into a prespec-
ified number of clusters and by reusing the translation operator to compute
the interactions of the basis and testing functions in far clusters, the O(N?)

complexity of MoM can be reduced down to O(N'-%). This is the conventional
FMM algorithm [3].



For clustering the k-means algorithm [6] is implemented to form the clus-
ters. This algorithm aims to minimize a defined error function for the purpose
of achieving a fairly uniform set of groups. The specific error function used
by the k-means algorithm minimizes the sum of the distances between the
cluster centers and the centers of the basis functions in each cluster.

5 Iterative Solver and Preconditioning

FMM achieves its speed-up by using an indirect fast computation of the
matrix vector product in the context of an iterative solution of the MoM ma-
trix. Various iterative solvers [7] are available including the conjugate gradi-
ent (CG), biconjugate gradient (BiCG), conjugate gradient squared (CGS),
quasi-minimal residual (QMR), and generalized minimal residual (GMRES).
The convergence of all these iterative solvers is, of course, dictated by the
matrix condition which typically deteriorates as the matrix size increases.
Therefore, iterative solutions of such large, fully populated matrix systems
inevitably require some kind of preconditioning. Otherwise, propagation of
numerical errors during the execution of the iterative solution may lead to
convergence failures.

Various preconditioning techniques for improving the condition of the
system can be found in [7]. Diagonal and block diagonal preconditioners for
multilevel FMM implementations were reported in [5].

Among other solvers and preconditioners implemented, the CGS solver
and the ILU preconditioner have provided the best performance, for all EFIE,
MFIE, and CFIE formulations. By its nature, the ILU preconditioner is
constructed using the near-field FMM matrix and significantly reduces the
number of iterations required for convergence [8].
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On the Selection of FMM Parameters
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Abstract

This paper investigates the effects of the fast multipole method
(FMM) parameters on the radar cross section (RCS) computations of
different target geometries. In our formulation, the integral equation
is solved for perfect electric conductor targets using biquadratic para-
metric surface modeling and curved rooftop basis functions to mini-
mize the geometry modeling error induced on the solution. Guidelines
for the selection of FMM parameters are revisited and numerical ex-
amples are provided to demonstrate the dependence of RCS error on
FMM parameters.

1 Introduction

The fast multipole method (FMM) [1, 2] and other fast algorithms such
as the adaptive integral method (AIM) [3, 4, 5, 6, 7] has been successfully
applied to speed-up moment method (MoM) solutions of scattering and ra-
diation problems. Fast algorithms have also been incorporated within the
context of hybrid finite element-boundary integral formulations for solving
complex electromagnetic media problems [6, 7, 8,9, 10]. In the case of FMM

*K. Sertel was funded by NPACI. The computer code used for this work, FMM-
SWITCH, was based on the SWITCH code originally developed at Northrop Grumann
Corp.



a number of variations have been reported including the fast far field approx-
imation (FAFFA), windowed FMM, and multilevel FMM [2, 5, 11, 12, 13,
14, 15, 16]. Standard FMM reduces the computation and memory costs of
conventional MoM from O(N?) to O(N'*®) per iteration and as a result large
scale problems have been carried out involving over a million unknowns.

The FMM implementation attains its speed-up through a number of ap-
proximations. However these approximations lead to errors which must be
understood and controlled for its reliable utilization. Previous studies as-
sessed FMM errors by examining the approximation of the pertinent Green’s
function used for evaluating the MoM matrix elements. Practice, however,
dictates that the error between FMM-MoM and uncompressed MoM solu-
tions also depends on the excitation, the specific structure under analysis,
and the quantity of interest.

In this paper, we consider the effect of FMM parameters on RCS compu-
tations for various targets. Namely, our study focuses on the computation of
the observable parameter (the RCS for our case) and not just on the matrix
elements. Choices relating to the number of multipoles used in the expan-
sion of the Green’s function and the near-field threshold parameter are both
examined to obtain an integrated measure of the error in FMM reflected on
RCS computations. To minimize the geometry modeling error, which can be
significant for doubly curved complex target geometries, biquadratic para-
metric surface patches are used [17, 18]. The paper concludes with specific
recommendations for optimum values of the FMM parameters for minimizing

RCS error.

2 FMM Formulation and Parameters

This section outlines the MoM and FMM formulations on the basis of bi-
quadratic surface patch models of PEC scatterers. The FMM parameters
under investigation are also defined in this section.

2.1 Moment Method for Curvilinear Elements

Since our goal is to evaluate errors associated with the FMM formulation, a
key decision in our modeling approach was to reduce error associated with
geometry modeling. By using 2" order curvilinear quadrilateral elements [18]



for surface modeling instead of the usual triangular facets [19], we can better
suppress errors associated with geometry modeling. More specifically, the
FMM implementation used herewith was built upon that in [18] and, as such,
linear basis functions were employed to approximate the current density on
each of the quadrilateral patches forming the geometry (see Fig. 1 for a view
of the quad-tessellated geometries to be considered).

Briefly, for the electric field integral equation (EFIE) the resulting linear
system after Galerkin’s testing is of the form

iv:Zmnansz, m=12,...,N (1)
n=1
where
Do = / dsfi(x) - / ds’ [fn(r’)+%V’-fn(r')V %IE ()
and
V, = %’ [ dstatr) B ). (3)

An e=** time convention has been assumed and suppressed and {a, } refers to
the column containing unknown coefficients of the surface current expansion

J(r)~ Z—:anjn(r). (4)

In the above expressions r and r’ denote the usual observation and source
point locations, E(r) is the incident excitation plane wave at r, { is the vector
tangent to the surface at r, n = 1207 denotes the free space impedance, and
k = 2x /) is the free space wavenumber.

The linear expansion functions f,(r) must be defined on the quadrilateral
elements. Other than being defined on a curved surface, they are very similar
to the roof-top basis functions traditionally used for representing currents on
a rectangular or square flat patch. In fact, their representation is best done
by first introducing the biquadratic parametric representation (see Fig. 1)

2 2

r(u,v) =Y > ayufv? (5)

p=0¢=0
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where a,, are the transformation coefficients determined from the original
9-points used to specify the quad in the (x,y,z) coordinate-space. In this
expansion 0 < v < 1 and 0 < v < 1 with (u=0,v=0) corresponding to the
left bottom corner of the patch.

Based on (5), the surface tangent vectors at any point on the biquadratic
patch are given by (these are not normalized)
X =T )
ou v
and to ensure continuity of the currents across the patches, we introduce the
following representation

t, =

f.(u,v) = Zfi(u,v) (7)

P k) P T B I O Gl N

V9 ] Y] VI T
in which g is the determinant of the metric tensor of the parametric trans-
formation given in (5). Note that in each of the above expansion compo-
nents (8), g serves as a normalization factor so that the functions are unity
or zero at the appropriate boundary edge of the patch. Thus, they ensure
current continuity across neighboring patches.

We can define each of (8) using the generic form

) I
Ju = —=Wty, (9)

el

to obtain the generic form for the matrix entries as,

eikR(u,v)

R(u,v)’

Zn = /dudmbtw / du'dv' [ﬁ)'t; - %V' 'tV
5 ’ (10)
Note that for the matrix elements in (10) /g is not present due to its cancella-
tion by the Jacobian of the parametric transformation (since ds = , /gdudv).
The general rule of thumb for RCS computation is to discretize the scat-
terer surface using an average edge length of about A/10. This rule is not
violated in this study. Basically, great care was used to ensure excellent ge-
ometrical fidelity so that error in the solution can be primarily attributed to
the numerical FMM solution.



2.2 FMM Implementation

The key aspects of the FMM implementation are
o Iterative solution of the MoM system of equations [Z]{a} = {V'}
e Fast evaluation of the matrix vector product [Z]{a}.

Fast evaluation of the matrix vector product (using O(N'*) or less resources,
instead of O(N?)) is attained by introducing the approximation [1]

ik|r+dl P ‘
3 /d ke ATy (ke k- 7), (11)
where
L ~
k) = S04 DR (k) Pk - 7) (12)
=0

which is referred to as the translation operator. To take advantage of this
expansion, the quadrilateral elements are clustered into M groups where r
refers to the center-to-center distances and d = r,, + r,,, is the sum of the
distances between the centers of the mth/nth observation/integration points.
Because of the grouping, T (kr,k - 7) is an expansion independent of the
specific observation/integration point. It only depends on the inter-distances
between the a priori chosen groups and is precomputed prior to the iterative
solver execution. Also, d is relatively small and thus the integral in (11) can
be numerically evaluated quickly using small number of integration points.
It can be shown [1] that if the number of element clusters is chosen as M =
VN, then the CPU time per iteration/matrix vector product is O(N'%)
instead of O(N?). Multilevel FMM can further reduce the CPU time down
to O(Nlog N).

The above CPU estimates are asymptotic in the sense that they represent
values which are approached for very large N. The actual efficiency of the
implementation depends on the choice of various parameters as described
below. These choices control the constant in front of the asymptotic behavior
of the CPU requirements. However, choices of the FMM parameters for faster
implementation inevitably lead to less accurate answers. This is the subject
of the next section. At this point we will restrict ourselves to a qualitative
description of the parameters.



2.2.1 Multipole Sum Computation

A most important parameter in the FMM implementation is the number
of terms kept for the evaluation of T in (12). This parameter, commonly
denoted as L [1], is semi-empirically chosen as

L = kDpus + a1n(kDpas + 1) (13)

where Dy,, is the maximum diameter of the clusters and « is an accuracy
control parameter. For a = 5, the resulting value of L gives single (4-
digit precision) in evaluating Tp; for « = 10, double precision is obtained
in evaluating T7. Typically, however, it has been reported [12] that setting
a =1 gives acceptable accuracy.

Clearly, keeping L as small as possible reduces the CPU time but not
the order C N'*® for the matrix vector product computation (C' = constant).
Small L simply leads to smaller value for C' and consequently, the CPU time
crossover point between standard LU and FMM implementations occurs for
lower values of N.

2.2.2 Aggregation/Disaggregation integrals

The spectral integral in (11) is discretized using L points over the  angular
sector (Gaussian integration) and 2L points in the ¢ sector (trapezoidal rule
of integration). These choices of integration points and associated rules will
be maintained throughout our study.

2.2.3 Clustering

Another key aspect of the FMM is element grouping. The associated element
groups groups are called clusters and a grouping algorithm must be used.
Here, we used the k-means algorithm [20] to form the clusters. This algorithm
aims to minimize a defined error function for the purpose of achieving a
fairly uniform set of groups. The specific error function used by the k-means
algorithm minimizes the sum of the distances between the cluster centers and
the centers of the basis functions in each cluster.

If the resulting clustering is not uniform, the FMM implementation will
be inefficient due to the presence of very large or very small clusters. This
effects the accuracy of the spectral integral since the number of terms used
in the translation sum will depend on the size of the largest cluster.
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2.2.4 Near and Far Clusters

In the FMM implementation, the approximation (11) is only used for com-
puting the interactions of elements between clusters. Within a simple cluster,
the elements are interacted without the FMM approximation. For greater
accuracy, elements between adjacent or distant clusters can be computed
without approximation as well. Since our interest in this paper relates to the
FMM error evaluation, we introduce an additional parameter A for control-
ling the transition distance between the exact and the FMM approximation.
Specifically, if d;; is the distance between the ith and jth clusters, the FMM
approximation was involved only if

di]' > A(T‘i + Tj) and k‘dij > L (14)

where r; ; denote the radii of the ith and jth clusters. Clearly, if the quantity
A =1, then even neighboring clusters will be considered as far zone (and
thus FMM will be used for their interactions). For A = 1.5, the elements in
the neighboring (touching) clusters will be evaluated without approximation.
Basically, higher A implies that more interactions will be carried out without
approximation, thus increasing the near-field matrix size.

3 Error Study

Based on the above formulations and defined FMM parameters, in this sec-
tion we present error evaluation of the FMM implementation for a number
of geometries. We then summarize the results.

3.1 Target Geometries

Three representative geometries of different geometric and electromagnetic
properties were investigated for a more complete and unbiased study. The
first geometry, depicted in Fig. 2 (a) is a 1 m radius PEC sphere. The sphere
is a canonical geometry which has an analytical solution and is typically used
for code benchmarking. For our study the standard MoM solution is used to
benchmark the FMM-MoM approximation.

The second geometry considered is an ogive (see Fig. 2 (b)). Unlike the
sphere, it has two sharp tips that cause strong scattering contributions near



edge-on incidences. In contrast, a large sphere is dominated by specular
scattering.

The third geometry analyzed is an elongated strip. This strip is simply a
flat plate having an aspect ratio of 40/1 as depicted in Fig. 2 (c). This target
is chosen because it consists of a localized geometry and has sharp edges
which cause substantial diffraction. When discretized, the clusters are also
localized and are more non-uniformly distributed compared to the sphere or
the ogive.

3.2 Error Definition

For each of these three geometries tip-on incidence is assumed with horizontal
polarization (see Fig. 3). We choose this incidence because it is more stressing
case for scattering computations. The scattered far-field is sampled on 332
points on a half sphere covering the entire z < 0 space. As noted earlier,
the error curves were generated using the MoM solution as reference. The
error values were computed by the /., norm of the error vector at the sample
points on the half sphere, and are normalized to the maximum value of the
error vector to get the percent error.

3.3 [Iterative Solver and Preconditioning

The solution of the matrix system is carried out using a preconditioned con-
Jugate gradient squared (CGS) iterative solver is used. The CGS requires
2 matrix-vector products in each iteration, but usually converges twice as
fast as the conjugate gradient (CG) solver which requires one matrix-vector
product. A relative convergence criterion of 10~% was used for terminating
the CGS routine.

The FMM approximation deteriorates the matrix condition and precondi-
tioning was found essential, and resulted in significant reduction of the CPU
time to achieve convergence. The near field matrix (containing the interac-
tions computed without FMM approximation) itself is a good candidate for
the preconditioner. However, the necessity of inverting (or LU decompos-
ing) the near field matrix to obtain the preconditioner [9] using less than
O(N'%) prompted us to use a reduced version of the near field matrix. For
CFIE formulations we can obtain a reduced band matrix by filtering out the
elements which are smaller than 10 percent in magnitude than the largest



element (usually a diagonal element). This provides for a convergence rate
similar to that obtained when the entire near-field matrix is kept.

3.4 Number of Multipoles, L

Beginning with the first target geometry, Fig. 4 shows the FMM solution error
for a 1 m radius sphere at 0.3 GHz. The discretization employed biquadratic
surface patches which resulted in 2746 unknowns. We observe clearly that
the error decreases as more multipole terms are and this was to be expected.
Some oscillations are observed (i.e. convergence is not monotonic) and these
are likely to be due to the asymptotic nature of the multipole expansion. It
should be noted that the grouping and the discretization are fairly uniform
and thus these oscillations are not due to clustering variations. For this
example the near-field threshold was set to A = 1.5.

The FMM solution error curves for the ogive are given in Fig. 5 (edge-on
incidence). Its width was 2 m (1 wavelength), i.e. the frequency was 150
MHz. The discretization resulted in 480 unknowns. Similar to the sphere
results, the error is decreasing as a function of L and some oscillations in
the error curve are again observed. These oscillations are more pronounced
for the strip geometry for which the error curve is given in Fig. 6. The
frequency of the incident plane wave was 300 MHz, the strip was 20 m (20
wavelengths) long and 0.5 m (0.5 wavelengths) wide, and the discretization
resulted in 1795 unknowns. Clearly, the most pronounced difference among
the error curves in Figs. 4 - 6 is the error for the error for the strip. This is
possibly due to the stronger multiple diffraction mechanisms characterizing
its RCS at edge-on incidence.

Although the error analysis based on the matrix elements forms a basis
for the implementation of the FMM, the error in matrix entries affects the
convergence of the solver and causes unexpected error behavior in the final
solution as observed in these plots. The above error curves indicate that, care
should be taken when implementing and optimizing FMM to yield a faster
solution of MoM problems. The faster solution should also be an accurate
one especially for scatterers where multiple interactions or resonant behaviors
are present. Basically, the number of multipoles should be chosen judiciously
for each geometry prior to making design runs.



3.5 Near-field Threshold, A

Keeping L small is certainly advantageous to attain maximum speed-up by
using the least memory for the FMM implementation. However, speed and
accuracy are also dependent on the near-field threshold. Thus, it is essential
to look at the overall RCS accuracy when L and A are both varied.

Fig. 7 shows the effect of the near field threshold parameter A on the
accuracy of the computed bistatic RCS for a sphere. It is important to note
here that regardless of the choice of L, the curves nearly overlay for A > 3.5.
This important observation means that the RCS error is the same regardless
of the L parameter choice. This is also observed for the ogive geometry as
shown in Fig. 8. Again beyond A = 3.5, the error becomes independent of
L. The conclusion that can be drawn from these observations is one can use
a smaller number of multipoles and demand the same level of accuracy by
choosing the near field threshold larger. This is consistent with previous error
analysis based on isolated Green’s function errors [1] where it was noted that
fewer number of multipoles give accurate approximations for far clusters. A
key conclusion of our work is that choosing A = 3.5 gives an optimum choice
for the near field threshold parameter.

When the strip geometry is considered we could no longer observe a con-
sistent error behavior as a function of the near field threshold parameter for
edge on incidence (Fig. 9). This is due to the very low level of the RCS.
This observation is in contrast to earlier comments that the parameters can
be chosen regardless of geometry and RCS level to attain given error crite-
rion [1, 17]. When we consider broadside incidence for the strip the error
curves (see Fig. 10) are again consistent with those for the sphere and the
ogive.

3.6 General Observations

Numerical error results for bistatic RCS computations using the FMM for

three different representative geometries were presented. The effects of the

number of multipoles and the near-field threshold parameter were examined.

In contrast to earlier observations it was demonstrated that care should be

taken when choosing FMM parameters for fast MoM implementations and

that the parameter choices are geometry dependent for a given error criterion.
Our observations can be summarized as follows:

10



e Error of the FMM solution depends on the target geometry under in-
vestigation.

e Error also depends on the excitation (incidence direction and polariza-
tion).

o Overall RCS error behavior does not correlate with error analysis based
solely on the expansion of the Green’s function. In that case the geom-
etry and excitation do not enter into the analysis.

e For the three representative geometries examined, it was shown that
choosing the near-field threshold parameter as A = 3.5 produces opti-
mum error performance (almost independent of the number of multi-
poles used for L > kDpop+1n(kDpaz+7)). This increases the near field
computations, hence the optimization of the FMM algorithm should be
done accordingly.

The given error curves in Figs. 8 - 10 can be used to guide the implemen-
tation of the FMM algorithm. It should be emphasized that the near-field
parameter A does not affect the O(N'*) complexity of the FMM algorithm.
Thus, choosing a larger A for large scale simulation is advantageous since it
yields more accurate results with little compromise in speed.
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FIGURE CAPTIONS

1 Biquadratic quadrilateral surface element.
2 Test target geometries: (a) Sphere, (b) Ogive, and (c) Strip.
3 Test simulation setup, depicted for the ogive.

4 Error in the scattered field as a function of the number of multipoles
used for 1A radius sphere for A = 1.5 (2476 unknowns at 0.3 GHz).

5 Error in the scattered field as a function of the number of multipoles
used for 1) radius sphere for A = 1.5 (2476 unknowns at 0.3 GHz).

6 Error in the scattered field as a function of the number of multipoles
used for the 20 long, 0.5\ wide strip for A = 1.5 and A = 3.5 (1795
unknowns at 0.3 GHz).

7 Error in the scattered field as a function of the near-field threshold
for the sphere for two different values of L.

8 Error in the scattered field as a function of the near-field threshold
for the ogive for three different values of L.

9 Error in the scattered field as a function of the near-field threshold
for the strip for four different values of L.

10 Error in the scattered field as a function of the near-field threshold
for the strip geometry for broadside incidence and for L = 6.
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Figure 1: Biquadratic quadrilateral surface element.
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Figure 2: Test target geometries: (a) Sphere, (b) Ogive, and (c) Strip.
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Figure 3: Test simulation setup, depicted for the ogive.
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Figure 4: Error in the scattered field as a function of the number of multipoles
used for 1) radius sphere for A = 1.5 (2476 unknowns at 0.3 GHz).
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Figure 5: Error in the scattered field as a function of the number of multipoles
used for the 5A long, 1A wide ogive for A = 1.5 (480 unknowns at 0.15 GHz).
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Figure 6: Error in the scattered field as a function of the number of multipoles
used for the 20X long, 0.5% wide strip for A = 1.5 and A = 3.5 (1795
unknowns at 0.3 GHz).
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Figure 8: Error in the scattered field as a function of the near-field threshold
for the ogive for three different values of L.
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INTRODUCTION

The fast multipole method (FMM) [1] and the adaptive integral method (AIM) [2] has been successfully applied
to speed-up moment method (MoM) solutions of scattering and radiation problems. Both the FMM and the AIM
implementations attain their speed-up through a number of approximations. However these approximations lead
to errors which must be understood and controlled for its reliable utilization. Previous studies assessed FMM
errors by examining the approximation of the pertinent Green’s function used for evaluating the MoM matrix
elements. Practice, however, dictates that the error between FMM-MoM and uncompressed MoM solutions also
depends on the excitation, the specific structure under analysis, and the quantity of interest.

In this paper, we consider the effect of FMM and AIM parameters on RCS computations for various targets.
Namely, our study focuses on the computation of the observable parameter (the RCS for our case) and not just
on the matrix elements.

FMM PARAMETERS

This section outlines the key step in FMM formulations. The FMM parameters under investigation are also
defined in this section. The FMM implementation used herewith was built upon that in [3].

The CPU time per iteration/matrix vector product of FMM is O(CN!-%) instead of O(N?) [1]. However,
choices of the FMM parameters to achieve a faster implementation (i.e. a smaller C')) inevitably lead to less
accurate answers.

A most important parameter in the FMM implementation is the number of terms kept for the evaluation
of the translation operator T, commonly denoted as L [1]. Clearly, keeping L as small as possible reduces the
CPU time but not the order CN'-5 for the matrix vector product computation. Small L simply leads to smaller
value for C' and consequently, the CPU time crossover point between standard LU and FMM implementations
occurs for lower values of N.

Another key aspect of the FMM is element grouping. The associated element groups are called clusters
and a grouping algorithm must be used. Here, we used the k-means algorithm [4] to form the clusters. This
algorithm aims to minimize a defined error function for the purpose of achieving a fairly uniform set of groups.
The specific error function used by the k-means algorithm minimizes the sum of the distances between the
cluster centers and the centers of the basis functions in each cluster. If the resulting clustering is not uniform,
the FMM implementation will be inefficient due to the presence of very large or very small clusters. This effects
the accuracy of the spectral integral since the number of terms used in the translation sum will depend on the
size of the largest cluster.

In the FMM implementation, the indirect evaluation of the matrix-vector product is only used for computing
the interactions of elements between clusters. Within a simple cluster, the elements are interacted without the
FMM approximation. For greater accuracy, elements between adjacent or distant clusters can be computed
without approximation as well. Here, we introduce an additional parameter A for controlling the transition

*K. Sertel was funded by NPACIL. The computer code used for this work, FMM-SWITCH, was based on the SWITCH code
originally developed at Northrop Grumann Corp.



distance between the exact and the FMM approximation. Specifically, if d;; is the distance between the ith and
jth clusters, the FMM approximation was involved only if d;; > A(r; 4+ r;) and kd;; > L where r; ; denote the
radii of the ¢th and jth clusters.

AIM PARAMETERS

The Adaptive Integral Method (AIM) achieves memory and complexity of O(N log N) through the usage of the
FFT to accelerate the matrix vector product [2]. The AIM implementation used here is based on the MoM
formulation given in [5].

The impedance matrix terms are divided into Z,cq, and Z;,r matrices using a threshold parameter. For
each pair of edges, the distance between the midpoints of the edges is measured. If this distance is greater than
the threshold, the pair is included in Z;,, matrix. Otherwise, they are included in Z,.q,. In this paper, we
investigate the effects of the Z,.,, threshold upon the error in RCS for AIM computations.

In AIM, the original basis functions are remapped onto a regularly spaced grid. There is no requirement
that the grid must have the same spacing in the x-, y-, and z-direction, but it is normally taken to be the same,
and a nominal value for the grid spacing is 0.05).

ERROR STUDY

Three representative geometries of different geometric and electromagnetic properties were investigated for a
more complete and unbiased study. The first geometry, depicted in Fig. 1 (a) is a PEC sphere. For our study the
standard MoM solution is used to benchmark the FMM-MoM approximation. The second geometry considered
is an ogive (see Fig. 1 (b)). Unlike the sphere, it has two sharp tips that cause strong scattering contributions
near edge-on incidences. The third geometry analyzed is an elongated strip. This strip is simply a flat plate
having an aspect ratio of 40/1 as depicted in Fig. 1 (c). This target is chosen because it consists of a localized
geometry and has sharp edges which cause substantial diffraction.

(a) (b) ()
Figure 1: Test target geometries: (a) Sphere, (b) Ogive, and (c) Strip.

Error Definition

For each of these three geometries, tip-on incidence is assumed with horizontal polarization. We choose this
incidence because it is the more stressing case for scattering computations. The scattered far-field is sampled
on 332 points on a half sphere covering the entire z < 0 space. As noted earlier, the error curves were generated
using the MoM solution as reference. The error values were computed using the I, norm of the error vector at
the sample points on the half sphere, and are normalized to the maximum value of the reference solution vector
to get the percent error.

Number of Multipoles, L

Beginning with the first target geometry, Fig. 2 (a) shows the FMM solution error for a 1 m radius sphere
at 0.3 GHz. The discretization resulted in 2746 unknowns. We observe clearly that the error decreases as
more multipole terms are and this was to be expected. Some oscillations are observed (i.e. convergence is not
monotonic) and these are likely to be due to the asymptotic nature of the multipole expansion. It should be
noted that the grouping and the discretization are fairly uniform and thus these oscillations are not due to



clustering variations. For this example the near-field threshold was set to A = 1.5. The FMM solution error
curves for the ogive are given in Fig. 2 (b). Its width was 2 m (1 wavelength), i.e. the frequency was 150 MHz.
The discretization resulted in 480 unknowns. Similar to the sphere results, the error is decreasing as a function
of L and some oscillations in the error curve are again observed. These oscillations are more pronounced for the
strip geometry for which the error curve is given in Fig. 2 (c). The frequency of the incident plane wave was
300 MHz, the strip was 20 m (20 wavelengths) long and 0.5 m (0.5 wavelengths) wide, and the discretization
resulted in 1795 unknowns. Clearly, the most pronounced difference among the error curves in Figs. 2 (a) —(c)
is the error for the error for the strip. This is possibly due to the stronger multiple diffraction mechanisms
characterizing its RCS at edge-on incidence.
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Figure 2: Error in the scattered field as a function of the number of multipoles for: (a) Sphere (b) Ogive (c) Strip

Near-field Threshold, A

Keeping L small is certainly advantageous to attain maximum speed-up by using the least memory for the
FMM implementation. However, speed and accuracy are also dependent on the near-field threshold. Thus, it is
essential to look at the overall RCS accuracy when L and A are both varied.

Fig. 3 (a) shows the effect of the near field threshold parameter A on the accuracy of the computed bistatic
RCS for a sphere. It is important to note here that regardless of the choice of L, the curves nearly overlay
for A > 3.5. This is also observed for the ogive geometry as shown in Fig. 3 (b). When the strip geometry
is considered we could no longer observe a consistent error behavior as a function of the near field threshold
parameter for edge on incidence (Fig. 3 (c)). This is due to the very low level of the RCS and this observation
is in contrast to earlier comments that the parameters can be chosen regardless of geometry and RCS level to
attain given error criterion.
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Figure 3: Error in the scattered field as a function of the FMM near-field threshold for: (a) Sphere (b) Ogive
(¢) Strip

In Fig. 4 we plot the AIM error analysis results for the same strip geometry. The strip geometry, being planar,
is very well suited for AIM application. As observed, the error in RCS drops dramatically for a threshold greater
than 0.2). We note that this AIM error analysis may be highly dependent upon the geometry and the direction



of incidence and should not be generalized. Nonetheless, a threshold of 0.2 for near field AIM matrix is a good
starting point. We are currently investigating the error behavior for the other two geometries.
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Figure 4: Error in the scattered field as a function of the AIM near-field threshold parameter.

General Observations

In contrast to earlier observations it was demonstrated that care should be taken when choosing FMM parameters
for fast MoM implementations and that the parameter choices are geometry dependent for a given error criterion.
This is expected since the matrix condition is also geometry dependent. To summarize:

e Error of the FMM solution depends on the target geometry under investigation (equivalently on the matrix
condition).

e Error also depends on the excitation (incidence direction and polarization).

e Overall RCS error behavior does not correlate with error analysis based solely on the expansion of the
Green’s function. In that case the geometry and excitation do not enter into the analysis.

o For the examined three representative geometries, it was shown that choosing the near-field threshold pa-
rameter as A & 3.5 produces optimum error performance (almost independent of the number of multipoles
used for L > kDpag +1In(kDpmar +7)). This increases the near field computations, hence the optimization
of the FMM algorithm should be done accordingly.

o For the strip geometry, for which the FMM performs poorly, the AIM algorithm is easy to implement and
provides very small RCS error when the near field threshold is chosen to be > 0.2\
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1 Introduction

The Method of Moments (MoM) has been successfully applied for the solution of electromagnetic
scattering and radiation problems as the main full-wave analysis method. Due to the convolu-
tional nature of the Green’s functions governing these problems, conventional MoM requires the
solution of a fully populated interaction matrix. The resulting system needs to be solved by either
LU decomposition or with the aid of an iterative solution algorithm such as conjugate gradient
method (CG). This aspect limits the electrical size of the problems that can be solved on a given
computer with limited memory. Recently proposed fast methods such as the adaptive integral
method (AIM), fast multipole method (FMM), and its variations promise to provide the solution
of the problem using less computer memory and less computation time. In this paper, the FMM
has been analyzed on the basis of two selected PEC scatterers in terms of its parameters to be
mentioned below.

2 MoM and FMM Formulations for PEC Scattering Problems

The electric field integral equation (EFIE) for electromagnetic scattering problems involving open
or closed conducting surfaces is given by

e'kR T .
i-/JJ( )+ k2V' J(r ')V Tds = 4—t E’( ), (1)

kn
where €™ time convention is adopted and R =| r —r' |.

The EFIE for the unknown electric current density J(r) on the conducting surface induced by an
incident wave is discretized using the MoM technique. The induced surface current is approximated
by a sum of N known basis functions {j,(r)} and the EFIE is converted into a linear system of
equations in the unknown coefficients of the current expansion using Galerkin’s testing and the
resulting matrix elements and excitation vector elements are given by [1]
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The basis functions used in this work are the curved rooftop basis functions (CRT) defined on
the biquadratic surface elements forming the mesh of the scatterer are slightly different versions of
those presented in [1].

Direct application of the MoM requires the computation of N? double surface integrals appear-
ing in Eq. (2) as the elements of the resulting MoM matrix. Solution of this system of equations
by Gaussian elimination requires O(N?) operations. Iterative solvers require O(N?) operations per
iteration. The memory requirement of the MoM is also O(N?). This large order for storage limits
the size of the problem that can be solved on a given hardware, and the high operation cost poses
a limit to the size of problems that can be solved in a practically acceptable period of time. For
these reasons, the FMM is proposed [2, 3, 4], which requires less memory and CPU time for the
solution of large problems.

2.1 Fast Multipole Method

The fast multipole method (FMM) is based on a spherical multipole and subsequent plane wave
expansion of the free-space Green’s function appearing in Eq (2) as the kernel in the matrix elements
of the discretized EFIE. The resulting representation of the BI matrix elements can be written
as [3, 4, 5]
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It has been shown [3, 4, 5] that the computational complexity of the FMM matrix-vector
product is O(N M)+ O(N?/M) where M is the number of basis function clusters. This complexity
is minimized by choosing M = v/N resulting in O(N'®) complexity.

An important parameter which affects the accuracy of the FMM implementation is the number
of terms kept in the multipole expansion of the free-space Green’s function. A semi-empirical
formula to formula for the choice of L is given in [3]

L =kDpgy + alog(kDpmer + ) (7)

where k is the wavenumber and D,,,, is the maximum physical size of the clusters and « is a
parameter affecting the accuracy of the approximation. Since large values of L correspond to
large CPU requirements for the FMM, it is desirable to keep L as small as possible. Clearly for
small L the numerical errors in evaluating the translation operators between the clusters may be
unacceptable. The near-field matrix involves the interactions of elements within a single cluster
and additional element-to-element interactions which belong in different nearby clusters satisfying
the criteria
dij < 1.5(r; + r;) (8)
or
kdi]‘ <L (9)



where d;; is the separation between the clusters 7 and j and r;, r; denote the radii of the clus-
ters. It should be noted that although keeping L small decreases the FMM computations in the
matrix-vector product, this also results in increased near-field matrix computations and storage as
dictated by (9). Hence the designed FMM solver should be properly optimized to achieve minimum
computational complexity within tolerable solution accuracy.

3 Results and Comparisons

Two representative geometries are studied using the FMM code developed based on the given
formulation. The effect of the number of multipoles kept in the FMM expansion on the computed
RCS signatures of the scatterers is investigated based on these geometries. The scatterers are
iluminated by plane a wave and the bistatic and monostatic radar cross section (RCS) of the
scatterers are observed. The first geometry is a PEC sphere of radius 2. The effect of L on the
bistatic RCS of the sphere is plotted in Fig 1 (a). Choosing @ = 1.0, which in tern leads to an L = 8
provides a good agreement in the RCS data. Nevertheless this good agreement can not be used to
conclude that for RCS computations an a = 1.0 provides reasonable accuracy as demonstrated by
the next example.

The second geometry examined is the PEC ogive geometry depicted in Fig 1 (b). The ogive is
also illuminated by a plane wave incident on one of the tips. Due to its sharp tips, the biquadratic
surface mesh of the ogive is irregular around these tips. Since the current is most significant
around the tips, this fact leads to an ill conditioned system. Also the existance of traveling surface
waves around the ogive deteriorates the condition of the resulting matrix. The bistatic RCS of the
ogive is also plotted in Fig 1 (b). Clearly for a scatterer with strong scattering centers, the choice
a = 1.0 does not provide an accurate FMM solution. The parameter L should hence be chosen
to be larger than that value governed by Eq (7) for an accurate FMM solution. Fig 2 (a) depicts
the monostatic RCS of the ogive at 9.0GHz for different values of the parameter L. The problem
size for this geometry is 1776. The effect of numerical error in the multipole expansion is clearly
observed for low values of the RCS. This effect is more pronounced at lower frequencies as observed
in Fig 2 (b) which shows the monostatic RCS of the ogive at 5.9GHz. The resulting size of the
matrix is 480.

For scatterers with strong scattering centers like the tips of the ogive and scatterers represented
by ill-conditioned surface meshes, the resulting system is also ill-conditioned. In the iterative
solution of such systems preconditioning improves the convergence. A good preconditioner should
bear in it most of the information that the matrix itself carries. In FMM formulations the near-
field matrix provides an excellent preconditioner. In numerical practice using the near-field matrix
provided a speed-up in convergence larger than a factor of 10 in the iterative solution. To avoid the
memory requirement of the preconditioner, a less dense matrix formed by keeping only a percentage
of the elements of the near-field matrix that are large in absolute value can be used. This provides 5-
10 times less number of iterations in the matrix solution. It should also be noticed that the iterative
solution time is increased by the preconditioner solution step added to the solution algorithm hence
the number of non-zeros in the LU decomposed preconditioner affect the solution time. This is
observed in the timings below, the LU decomposition time providing an indicator to the number
of non-zeros in the LU decomposed preconditioner. In numerical practice the order of the LU
decomposition of the near-field matrix was observed to be less than O(N\5) where N,, is the
number of non-zeros in the preconditioner. Remembering that N,, = O(N'?®), the computational
complexity of the LU decomposition of the near-field matrix is less than O(N?%25), and since the
iterative solvers are of O(N), the total complexity of the FMM solution, which is O(N??), is not



increased by utilizing the near-field matrix as a preconditioner.
The timings for the 1776 unknown ogive problem the following data is recorded on a SUN-Ultra
workstation:

Matrix | Precond. | Number | Total Time
L Fill LU of Solution per
Time(s) | Time(s) | Iter. | Time(s) | Iteration(s)
Full 1258 510 24 29 1.18
10 462 591 34 81 2.37
8 485 473 25 36 1.42
7 401 522 19 30 1.57

Table 1: Timings obtained for the ogive geometry at 9.0GHz.

To conclude, in employing the FMM care should be taken for the choice of number of multipoles
in problems involving scatterer geometries with strong scattering centers. For such scatterers that
generate ill-conditioned systems of equations, preconditioning, using the near-field matrix or a part
of the near-field matrix, improves the solution time without sacrificing the O(N'**) complexity of
the FMM.
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Figure 1: Effect of number of multipoles on the bistatic RCS of (a) Sphere at 9.0 GHz, HH pol.,
(b) Ogive at 9.0 GHz, HH pol.
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Figure 2: Effect of number of multipoles on the monostatic RCS of the ogive, (a) HH polarization,
at 9.0 GHz, (b) VV polarization, at 5.9 GHz.
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Abstract

Incomplete LU (ILU) preconditioner using the near-field matrix of
the fast multipole method (FMM) is investigated to increase the effi-
ciency of the iterative conjugate gradient squared (CGS) solver. Unlike
the convensional LU, ILU requires no fill-ins hence no extra memory
and CPU time in computing the LU decomposed preconditioner. It is
shown that due to the nature of the near-field matrix, ILU precondi-
tioning decreases the number of iterations dramatically.

Introduction

The FMM has been proposed and successfully applied to increase the ef-
ficiency of the method of moments (MoM) solution of large scale electro-
magnetic scattering and radiation problems [1, 2, 4, 5, 6, 7, 8, 9, 10, 11].
The FMM is based on the iterative solution of the MoM matrix equation
using an indirect fast computation of the matrix vector product. The con-
vergence behavior is strongly dependent on the condition of the constructed
matrix as well as the type of the iterative solver used. Various options
to choose from exist for the iterative solver, such as the conjugate gradi-
ent (CG), bi-conjugate gradient (BiCG), conjugate gradient squared (CGS),
quasi minimal residual (QMR), and generalized minimal residual (GMRES).
First three belong to the family of conjugate gradient solvers and the last
two are in the minimal residual family of iterative solvers.

The convergence of all iterative solvers are dictated by the conditioning
of the matrix equation and the condition of the matrix deteriorates as the
matrix size increases. For large scale electromagnetics simulations the result-
ing matrix equation usually has a size larger than 100,000. Iterative solution
of such large, fully populated matrix systems inevitably requires some kind
of a preconditioning. Otherwise, propagation of the numerical error at each
iteration renders the convergence of the solver impossible.



Various preconditioning techniques to improve the condition of the sys-
tem can be found in [12]. Diagonal and block diagonal preconditioners for
multilevel FMM implementations were reported in [6]. An ILU precondi-
tioner for MoM and FMM implementations is presented for a CGS solver.
Due to its nature the ILU preconditioner constructed using the near-field
FMM matrix significantly reduces the number of iterations to get conver-
gence for a given tolerance.

Method of Moments and the Fast Multipole Method

The MoM formulation of electromagnetic scatterin problems using 2™ order
curvilinear quadrilateral elementsfor surface modeling is given in [13]. The
FMM implementation used herewith was built upon that in [13].

Briefly, for the electric field integral equation (EFIE) the resulting linear
system after Galerkin’s testing is of the form

N
ZZmnan:Vm, m=1,2,...,N (1)

where

and

_ im / ds (3)

An e time convention has been assumed and suppressed and {a,} refers
to the column containing unknown coefficients of the surface current expan-
sion

[\'j:z

njn(r (4)

n=1

In the above expressions r and r’ denote the usual observation and source
point locations, Ei(r) is the incident excitation plane wave at r, t is the vector
tangent to the surface at r, n = 1207 denotes the free space impedance, and
k =2 /) is the free space wavenumber.

The key aspects of the FMM implementation are



o Iterative solution of the MoM system of equations [Z]{a} = {V}
o Fast evaluation of the matrix vector product [Z]{a}.

Fast evaluation of the matrix vector product (using O(N!®) or less resources,
instead of O(N?)) is attained by introducing an approximation to the per-
tinent Green’s function [1]. It can be shown [1] that if that the CPU time
per iteration/matrix vector product for FMM is O(N!*®) instead of O(N?).

The above CPU estimates are asymptotic in the sense that they represent
values which are approached for very large N. The actual efficiency of the
implementation depends on the choice of various parameters. These choices
control the constant in front of the asymptotic behavior of the CPU require-
ments. However, choices of the FMM parameters for faster implementation
inevitably lead to error in the matrix vector product inducing erroneous
minima for the iterative solver. This aspect may lead to unacceptable error
since it may cause the solver to converge to one of these minimums, especially
when non-monotonic solvers (e.g. CG, BiCG, or CGS) are employed.

Along with the EFIE formulation, the same problem can also be formu-
lated in terms of the boundary condition on the magnetic field on the scat-
terer surface (i.e. MFIE formulation) for closed scatterers [10]. Yet another
formulation, the CFIE [10] has the advantage of eliminating the problems
due to the internal resonances of the scatterer, and producing much better
conditioned systems compared to EFIE or MFIE.

Necessity of Preconditioning

For large scale simulations and/or for geometries with small detailed regions
of interest (e.g. antenna arrays on aircraft), the density of the surface mesh
cannot be controlled to be a uniform mesh. A nonuniform mesh is well
known to produce an ill-conditioned MoM matrix equation. Also, different
formulations of the same electromagnetic problem results in different sys-
tems with different levels of condition, e.g. the CFIE formulation results in
much better conditioned systems that EFIE or MFIE. Also, as noted above,
using the FMM implementation for a faster solution may change the matrix
condition and introduce erroneous minima to the solution domain, that can
render a non-monotonic solver converge to a minimum far from the actual
global minimum. It becomes inevitable to improve the convergence behavior
of the solver by using a preconditioner.



Although it is very simple to apply the diagonal preconditioner, for sys-
tems that are not diagonally dominant diagonal preconditioner does not im-
prove the solution time. To use block diagonal preconditioner, the unknowns
need to be numbered such that the larger magnitude matrix elements (i.e.
interaction terms of physically close unknowns) are clustered around the di-
agonal. This can be easily applied to 2 dimensional problems, but finding
such a numbering for 3 dimensional problems is not possible for arbitary ge-
ometries. So, with an arbitrary numbering, block diagonal preconditioning
cannot guarantee a faster solution. On the other hand, due to the nature of
the Green’s function in MoM formulations, the near field matrix of FMM is
a very good candidate for a preconditioner. The MoM matrix elements with
larger magnitudes are kept in the near-field matrix, hence it has a signifi-
cant portion of the information in the full MoM matrix. The elements of the
MoM matrix that are not in the near-field matrix (hence computed using
FMM) are smaller in magnitude compared to the near-field matrix elements.
It can be conluded that the near-field matrix of FMM is a very attractive
preconditioner candidate.

The near-field matrix can directly be LU decomposed to be used as a
preconditioner. But, depending on the sparsity pattern of the near-field
matrix, this usually requires a significant amount of fill-ins (additions of more
elements in the LU decomposed matrix). For large scale simulations, these
fill-ins (hence the increase in memory used) becomes a bottleneck in memory
utilization. It is also worth noting here that the LU decomposed near-field
matrix is a preconditioner and is by no means the exact LU decomposition
of the original matrix.

The fill-in requirement of direct LU can be resolved by using the ILU
factorization. The ILU algorithm is the same as a direct LU algorithm
except it does not fill-in any elements in the decomposed LU matrices, this
also results in less CPU utilization.

ILU Preconditioner for FMM

The algorithm for the ILU can be found in [12]. The pseudocode is repeated
below for completeness:
for i = 2,...,n, do:
for k = 1,...,i-1 and for (i,k) in NZ(Z) do:
compute 2k = Zik/2kk



for j = k+1,...,n and for (i,j) in NZ(Z) do:
compute 2z;; = 2z;; — Zjk2k;
enddo
enddo
enddo

Here NZ(Z) is the sparsity pattern of the near-field matrix Z, and the
conventional LU decomposition algorithm is only applied to the non-zero
entries of the matrix, hence the memory used is not affected and the sparsity
pattern of the stored ILU matrix is the same as the original matrix which
further saves memory in the sparse store of the ILU matrix.

Performance of Preconditioned CGS Solver

The scattering from a perfectly electrically conducting (PEC) ogive geom-
etry (depicted in Fig. 1) is considered for the performance evalution of the
ILU preconditioner for EFIE, MFIE, and CFIE formulations. The FMM
near field matrix is used as the preconditioner. The solution is computed at
5.91 GHz (480 unknowns) for horizontal polarization using a CGS iterative
solver.

Fig. 2 shows the residual error as a function of iteration number for the
EFIE matrix. Due to the irregular mesh around the sharp tips of the ogive,
the CGS solver does not easily converge without preconditioning. Never-
theless, when the ILU preconditioner is used, it is observed to dramatically
reduce the number of iterations for convergence.

Non-preconditioned and preconditioned solution data for MFIE formu-
lation is given in Fig. 3. Since the MFIE formulation produces better con-
ditioned systems, the residual error behavior of MFIE is better than that of
EFIE, both with and without preconditioning, but dramatically improved
by the utilization of the preconditioner.

In Fig. 4, we present the corresponding results for the CFIE formualtion.
It is important to note the superior effect of the preconditioner in decrerasing
the number of iterations. Actually, the problem converged in 8 iterations
with a residual error less than 10713,

Table 1 summarizes the performance of ILU preconditioner for a larger
problem. The scatterer in this simulation has sharp edges and tips as well
as smooth sections. The mesh is quite distorted and non-uniform around



Figure 1: Ogive geometry and the
simulation setup
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the edges. Despite of these drawbacks, the performance of the ILU precon-

ditioner is quite impressive.

Number Matrix Precond. | Number | Residual Time
of Fill LU of Error per
Unknowns | Time(min) | Time(min) | Iter. Solution(min)
(8 proc.) | (1 proc.) (8 proc.)
53000 77 81 5 0.001 5

Table 1: Performance of ILU for a large-scale complex target with sharp
edges an tips on 8 processor SGI Origin 2000.

With the above performance evaluations, we conclude that the ILU pre-
conditioner can be used to improve the performance of iterative solvers in
FMM implementations without increasing the memory utilized for the pre-
conditioner matrix. Here, the near-field matrix inherent to FMM algorithm
is used as the preconditioner resulting in a much faster convergence.
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