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1 Background and Objectives

Accurate estimation of gross forest parameters such as total vegetation biomass, total leaf area
index, and tree height on a regional to global scale has long been an important goal within
the remote sensing community. Over the past two decades much effort has been devoted to the
development of scattering models [1, 2, 3] for understanding of the interaction of electromagnetic
waves with vegetation, and to the construction and development of advanced imaging radars
for acquiring test data and examining the feasibility of the remote sensing problem [4]. In
most practical situations the number of vegetation parameters influencing the radar response
usually exceeds the number of radar observation parameters. For this reason the application of
multi-frequency and multi-polarization radar systems was proposed and such a system was flown
aboard the Shuttle Endeavor in April and October 1994 [4]. Preliminary results indicate that the
classification and retrieval of vegetation biophysical parameters indeed require many simultaneous
radar channels, however, free-flight of such systems is not practical due to the exorbitant power
requirements.

Characterization of the spatial organization of particles in a vegetation canopy is of great
importance for determining many ecosystem processes including energy and chemical exchanges.
Traditional remote sensing instruments provide two-dimensional spatial information of the target
which may contain, depending on the instrument, some information on the vertical particle
arrangement in a convoluted fashion. Recent advancements in the field of radar interferometry
have opened a new door on radar remote sensing of vegetation. In addition to the backscattering
coefficient of a distributed target, radar interferometers provide two additional parameters that
contain information about the target. These parameters are the correlation coefficient and the
interferogram phase [5, 6]. To interpret these parameters and to characterize their dependence
on the physical parameters of the target, a thorough understanding of the coherent interaction of
electromagnetic waves with vegetation particles is required. The premise of this investigation with
regard to retrieving vegetation parameters from INSAR is that the location of the scattering phase
center of a target is a strong function of the target structure. For example the scattering phase
centers of non-vegetated terrain are located at or slightly below the surface depending upon the
wavelength and the dielectric properties of the surface media. Whereas for vegetated terrain, these
scattering phase centers lie at or above the surface depending upon the wavelength of the SAR
and the vegetation attributes. Another important feature of interferometric SARs with regard to
estimation of forest parameters is its sensitivity to biomass. Radar backscattering coefficients are
found to increase with increasing biomass until saturation at biomass values that depend on the
radar frequency. For example, at L-band the backscattering coefficients reach a saturation level for
above-ground biomass values around 100-150 tons/ha. Our preliminary investigations show that
the scattering phase center height reaches a saturation level at biomass levels significantly higher
than biomass values at which the backscattering coefficients reach their saturation levels. It also
must be recognized that the vegetation cover in many interferometric SAR applications where
the vegetation itself is not the primary target, such as geological field mapping or surface change
monitoring, acts as interference. In these cases it is also important to identify and characterize
the effect of vegetation on the topographic information obtained from the interferometric SAR.
In order to utilize the information gathered by INSARs, forward and inverse models have to be
developed and their accuracies be examined. Extensive modeling efforts were devoted to achieve
reliable models. Using these models in conjunction with careful experimentations we were able



to demonstrate the applicability and importance of INSAR data in retrieval of tree parameters.
This report gives a brief summary of our activities. The appendices are also provided here to give
the detailed description of methodologies procedures for the interested readers.

2  Summary of Accomplished Results

In March, 1995, the University of Michigan, in collaboration with the Radar Science Group of
Jet Propulsion Laboratory, was awarded a three-year grant by the Terrestrial Ecology Program at
NASA Headquarters to characterize and quantify the role of vegetation attributes in determining
the scattering phase centers as observed by interferometric SARs. The objectives of the study
were to:

1. Quantify the role of vegetation attributes in determining the location of the scattering phase
centers as measured by SAR interferometry using a coherent electromagnetic scattering
model for vegetation.

2. Map vegetation height through the combined use of SAR interferometry in conjunction
with available standard digital elevation data (derived largely from optical techniques).

3. Correct SAR interferometry for vegetation effects through use of an inversion algorithm
based upon vegetation type and biomass. The end product is surface elevation.

4. Estimate crown layer vegetation attributes (such as thickness) using multifrequency SAR
interferometry.

5. Integrate the products derived from SAR interferometry into ecophysiological classifications
and forest biophysical parameter estimations.

For this purpose analytical, numerical, and experimental aspects of electromagnetic scattering
from forest canopies have been under investigation. A summary of accomplishments realized to
date is given next. The details are provided in the attached appendices.

2.1 Theoretical Model Development
2.1.1 Ak Radar Equivalence of an INSAR

A fundamental relationship between INSAR and Ak radar is established. This relationship is
the cornerstone of analytical and numerical analysis of the problem at hand. Understanding
the relationship between the tree height and the corresponding location of the scattering phase
centers requires numerical simulations (Monte Carlo simulation of a fractal generated forest
stand) or controlled experiments using scatterometers. The scattering phase center of a target
can also be obtained using a Ak-radar assuming that the incidence angle is known. Evaluation
of the scattering phase centers using frequency shift can easily be accomplished in a numerical
sithulation or in a controlled experiment using a wideband scatterometer. Basically, by requiring
that the backscatter phase differences, one obtained from a small change in the aspect angle and



the other one obtained from a small change in the frequency of operation, be identical for both
approaches we established that

Af = fogsin(() — ag) (1)

where A f is the frequency shift of the equivalent Ak radar, f; is the operating frequency, B and
aq are, respectively, the baseline distance and angle, r is the slant range, and 6 is the look angle.
It is mathematically proven that this equivalence relationship is valid for multiple scattering among
particles and the scattering interaction between particles and the ground plane. The details are
reported in Appendix | [7].

2.1.2 Statistical Analysis

In estimating the height of the scattering phase center of a distributed target, random fluctuations
of the calculated/measured phase due to fading was investigated. An analytical form for the p.d.f.
of the interferogram phase was obtained in terms of two independent parameters: (1){: mean
phase and (2)a: degree of correlation, which is given by
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uncertainty with which ( can be estimated. It is shown that « is directly related to the frequency
correlation function (FCF) of the distributed target given by
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Using this pdf the uncertainty in estimation of (, or equivalently the mean height, from a single
pixel can be evaluated. Figure 1 shows the phase uncertainty range for 80% and 90% confidence
criteria [7]. Statistical analysis shows that the uncertainty in the height estimation of a distributed
target is a function of the equivalent frequency decorrelation bandwidth and is independent of
the baseline distance.

2.1.3 Vegetation Model

Theoretical vegetation models capable of predicting backscattering coefficients and location of
scattering phase center for simple canopy structures (homogeneous particle distribution) were
developed [7, 8]. It is also shown that for a uniform closed canopy the extinction and the physical
height of the canopy top can be estimated provided that the correlation coefficient () can
be measured very accurately. For example for a dense canopy it is found that the extinction
coefficient can be directly obtained from a. Also the location of the scattering phase center
(from the canopy top) is given by the following simple relationship:

cos 0

Ad= . (4)
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Figure 1: The interferogram phase uncertainty for 80% and 90% error probability criteria as a
function of the Degree of Correlations, . A high degree of correlation, near 1, gives a small error
in the interferometric phase.

However, for finite canopies, estimation of extinction and scattering phase center is not straight-
forward.

Using the model developed in [8], the estimation of tree height and surface topography was
attempted. It was shown that measurements of interferometric phase and amplitude were not
enough to estimate the three relevant parameters, which are the tree height, ground-surface alti-
tude, and extinction coefficient, if only volume scattering (from the leaf-branch-trunk canopy) is
considered. The first demonstration was therefore supplemented with in situ extinction coefficient
measurements and the dual-baseline estimates were based on INSAR data alone [11].

2.2 Development of a Monte Carlo Coherent Scattering Model for Tree
Canopies Based on Fractal Theory

Although there are a number of EM scattering models for vegetation canopies [1, 2], they are
of little use with regard to INSAR applications due to the their inability to predict the absolute
phase of the scattered field. The absolute phase of the scattered field is the fundamental quantity
from which the interferogram images are constructed. As mentioned earlier in order to simulate
the response of an INSAR system a coherent scattering model capable of preserving the absolute
phase of the scattered field is needed. Traditional scattering models for forest canopy such as
radiative transfer and the distorted Born approximation are incapable of providing the phase of
the backscatter and do not preserve the effect of coherence caused by the relative position of
scatterers within a tree.

We have completed the task of [9, 10]. The details of these models can be obtained in
Appendices |l and [ll. In this model random generation of tree architectures is implemented by
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Figure 2: The generated fractal tree (b), based on forest Stand 31 (a), and the calculated
extinction profile (c).

employing the Lindenmayer systems (L-systems). An L-system is a convenient tool for creating
fractal patterns of botanical structures. After generating a tree structure, the electromagnetic
scattering problem is then solved by invoking the single scattering theory. In this solution scat-
tering from individual tree components when illuminated by the mean field is computed and then
added coherently. This model was examined thoroughly and its validity was tested using SIR-C
data. We used our test site (Hiawatha National Forest) in Michigan’s Upper peninsula for which
we collected extensive ground-truth data during the SIR-C overflight. Figure 2 shows a photo of
a red maple stand, computer simulated tree structure of the same stand, and the exact extinction
profile derived from the Monte Carlo simulation. Figures 3a and 3b show the comparison be-
tween the model prediction and SIR-C polarimetric backscattering coefficients at L- and C-band
respectively. The three angular measurement points correspond to three different orbits of the
October 94 mission. To our knowledge this model is the most accurate and sophisticated scat-
tering model for forest canopies to date. The model preserves the exact structure of the trees,
it can simulate a forest over a hilly terrain, it can simulate both coniferous and deciduous trees,
it can also incorporate a radially inhomogeneous dielectric profile for the branches and the tree
trunk. The details of this model and all related references are reported in [10].

We have also used the Monte Carlo coherent model in simulating the location of the scattering
phase center of different forest stands [12]. As mentioned in the summary of the theoretical
activities, the equivalence relationship can be invoked to find the location of the scattering phase
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Figure 3: Comparison between the model predictions (lines) and SIR-C data (symbols) at (a)
L-band and (b) C-band.

center of a tree. This is basically done by evaluating the backscatter from a forest stand at
two slightly different frequencies and calculating the phase difference (for details see Appendix
IV). The difference in frequency is directly proportional to the base-line distance and is also a
function of the center frequency and the incidence angle. In April 1995 JPL TOPSAR flew over
one of our test sites in the Michigan's Upper peninsula. For this site extensive ground truth
data for vegetation including tree heights, type, number density, dielectric constant and for the
ground surface including soil moisture and surface elevation were collected. Starting from a
relatively poor TOPSAR data we were able to compare the result of our model with the actual
measurement of TOPSAR at C-band after a calibration process (see the measurement section
for more details). Figure 4 shows a photo of a red pine stand, and a computer generated red
pine. Figures 5 and 6 respectively show the TOPSAR image of the test stand and the measured
(at two incidence angles) and estimated height of the scattering phase centers of this stand.
Finally Fig. 7 shows the measured and calculated backscattering coefficients. In Figs. 6 and 7
excellent agreements between the measured and calculated results are shown. The details of this
simulation and some sensitivity analysis can be found in [12]. Figure 6 shows the measured (at
two incidence angles) and estimated height of the scattering phase centers of this stand. Figure
6 show excellent agreement between the measured and calculated results. This shows that we
can reliably estimate the height of a tree stand whose class we know using a simple model of the
phase center height variation with local incidence angle. The estimated tree height is within 1

meter of the known 9 meter height. The details of this simulation and some sensitivity analysis
can be found in [12].



(a) Stand 22 (b) Fractal Tree

Figure 4: The red pine forest stand (a), the generated fractal tree (b).

Stand 22

Figure 5: C-band image (¢?,) of Stand 22 in Raco, Michigan.
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Figure 6: The estimated height of scattering phase center of Stand 22, compared with the
interferometric data from JPL TOPSAR.
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Figure 7: The simulated backscattering coefficient of Stand 22, compared with the measured
data from JPL TOPSAR.

2.3 INSAR Response to Short vegetation

Classification of SAR images using C-band and higher frequency SAR faces a difficulty in sepa-
rating short vegetation from tall trees. However, using INSAR the location of scattering phase
center and correlation coefficient (coherence) can be used. We have conducted experiments with
TOPSAR and the polarimetric wideband scatterometers at KBS site. We have also developed a
very sophisticated and comprehensive scattering model for short vegetation [13]. This is the first
complete second order scattering model for vegetation that accounts for multiple scattering in
dense vegetation media. The result of this model was verified experimentally using polarimetric
scatterometers and the JPL AIRSAR. This model was also successfully used to retrieve parameters
of soybean fields. The details on this model can be found in Appendix V.

2.4 INSAR Response to Trees

Because the radar backscatter is well-known to saturate in response to high-biomass forests there
is some concern that INSAR will suffer from the same trouble. Consequently, we performed
simulations with the Monte-Carlo model for an increasingly taller red pine forest as shown in Fig.
8(a). The biomasses far exceeded those that saturate the radar power responses (which is about
200 tons/ha), yet the interferometric phase continued to track the increase in height. Figure 8(b)
and (c) shows the simulated scattering coefficients and scattering phase center (SPC) at L band
as a function of dry biomass and tree height, respectively. It is obvious that there is no saturation
problem when using the interferometric phase even for relatively large values of biomass (600
tons/ha), and so this technique could be applied to old-growth forests, such as in the Amazon
and other areas around the world.

The L-band interferometric phase is also sensitive to the tree density. In Figure 8 for a 12
meter red pine stand, the estimated phase center height is shown with increasing tree density.
As expected, the denser the forest, the higher the phase center height, due to the progressively
increasing importance of the branch scattering over the ground-trunk scattering.
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Figure 8: L-band SAR/INSAR simulation of red pine as a function of biomass. The progression
of fractal trees used is shown in (a). The saturation of the backscattered powers is demonstrated
in (b). The scattering phase center is shown in (c) where the HH-polarized term is still showing
sensitivity out to about 500 tons/ha. The plot in (d) shows the difference in the scattering phase
center between the hv-polarized and hh-polarized responses. The striking linearity of the response
extends up to at least 25-meter-tall trees.

2.5 Inversion Algorithm Based on Multi-incidence Angle and/or Multi-
frequency SAR/INSAR

An obtain canopy parameters from an available set of SAR and INSAR data, a robust and
comprehensive inversion algorithm is needed so that any combination of multi-frequency, multi-
incidence angle, and/or multi-polarization SAR and/or INSAR data set can be used as the input
to the algorithm. A sensitivity analysis was carried out for determining the most influential canopy
parameters on the SAR/INSAR responses using the Monte Carlo coherent model. The result of
this analysis was used to identify the most sensitive SAR/INSAR channels to the changes in
the canopy parameters. Since the Monte Carlo coherent model is computationally intensive, its
direct application would cause the inversion process to be significantly slower. To rectify this
deficiency while maintaining the high fidelity of the model, simple empirical models based on the
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Figure 9: A comparison between an empirical scattering model and the Coherent Monte Carlo
model for a red pine stand.

Monte Carlo model for different tree types was developed first. Since the quantities of interest are
ensemble average quantities, such as backscattering coefficients and the location of the scattering
phase center, it is expected that the dependence of these quantiles on the canopy parameters be
very gentle. Therefore it is possible to obtain simple algebraic expressions for these quantities in
terms of canopy parameters. For example for a given frequency and polarization, a Taylor series
expansion can be used to relate radar measured quantities to the canopy parameters at a specific
incidence angle. Then by repeating this process for many incidence angles, the Taylor expansion
coefficients can be fit to an algebraic equation in terms of incidence angle.

This process was demonstrated successfully [20] and the details are provided in Appendix VI.
For a red pine stand Figure 9 shows a comparison between the empirical model and the Monte
Carlo model at C-band over a wide range of parameters including the incidence angle range
25° — 70°, and 40% variation on trunk diameter (dbh), tree height, tree density, branch angle,
branch moisture, and soil moisture. The top three graphs show the height of the scattering phase
center at the three principal polarizations and the lower three graphs show the backscattering
coefficients.

Once a comprehensive (multi-frequency and multi-polarization) easily-calculable scattering
and interferometric models for all tree types of interest are developed, inversion for any available
combination of INSAR and/or SAR data can be attempted by searching for an optimum set

11



of canopy parameters which would minimize the difference between the model prediction and
measured quantities. It is expected that the objective function will be highly non-linear and
complex containing many local minima. In these situations traditional gradient-based (TGB)
optimization methods usually converge to a weak local minimum. Stochastic algorithms such as
simulated annealing [17] and genetic algorithms [18, 19] offer an alternative for the traditional
gradient-based optimization methods where the dimension of the parameter space is large and/or
the objective function is non-differentiable. Applying this algorithm the parameters of Stand 22
was obtained from the JPL TOPSAR.

2.6 Experimental Activities

Our experimental activities were focused over two well-characterized sites: 1) Hiawatha National
Forest (HNF) in Michigan's Upper peninsula, and 2) the Kellogg Biological Station (KBS) near
Kalamazoo, Michigan. Nearly 25 different forest stands were chosen in the NHF test site which
included varieties of tree types, tree height and density, and surface topography. For these stands,
extensive ground truth data were collected. The ground truth for vegetation includes tree heights,
type and structure, number density, and dielectric constant and for the ground surface includes soil
moisture and surface elevation (see Appendix VIII for detailed experimental procedures and the
data). In April 1995 JPL TOPSAR flew over this site and interferometric images were collected
at two incidence angles. Figure 10 shows the map of HNF site and the location of some of the
forest test stands. The grey level indicates the surface elevation as measured by TOPSAR at
incidence angle 31°. An important and most difficult-to-characterized ground truth parameter
was the forest floor surface elevation data which is required to extract the scattering phase center
height from INSAR images. To accomplish this, differential GPS was used to characterize the
elevation map of the forest floor of each stand with a vertical resolution of the order of +5 cm
(see Appendix VIII). Figure 11 shows a typical surface elevation map of a stand generated from
the differential GPS measurements.

In using TOPSAR data we noticed problems in quality of the DEM data. After comparing
sets of DEM obtained from the same area with USGS DEM, height discrepancies as high as 50
m were observed. Then we developed a correction model to correct for the aircraft residual roll
angle error and multipath. The details of this procedure is given in Appendix VII.

We also conducted an experiment at the KBS site mainly to characterize the role of short
vegetation on the phase and amplitude of interferograms. TOPSAR and polarimetric L- and C-
band AIRSAR data were collected for this site. Different test fields with different vegetation type
including wheat, alfalfa, corn, and native grass were considered. Ground truth data for each test
field were also collected. We have also conducted an extensive polarimetric wideband backscatter
measurements of these fields using The University of Michigan L- and C-band scatterometers. We
used the KBS data to verify our short vegetation model and to demonstrate vegetation parameter
estimation.

3 Graduate Students

This NASA contract supported the following Ph.D. and M.S. students.
Ph.D. Students:
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4 Publications

A significant number of scientific papers were produced during the course of this project. The
articles are grouped into reviewed articles which appeared in scientific journal and conference
papers.
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2. Stiles, J.M., and K. Sarabandi, “A scattering model for thin dielectric cylinders of arbitrary
cross-section and electrical length,” IEEE Trans. Antennas Propagat., vol. 44, no.2,260-
266, Feb. 1996.

3. R.N. Treuhaft, J. J. van Zyl, and K. Sarabandi, " Extracting Vegetation and Surface Charac-

teristics from Multibaseline Interferometric SAR,” EQS Transactions, American Geophysical
Union, 76, November 1995.

4. Sarabandi,K., “Ak-Radar equivalent of Interferometric SARs: A Theoretical Study for

determination of vegetation height,” IEEE Trans. Geosci. Remote Sensing., vol. 35, no. 5,
Sept. 1997.
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Lin, Y.C., and K. Sarabandi, “A Monte Carlo Coherent Scattering Model For Forest
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Lin, Y.C., and K. Sarabandi, “'Retrieval of forest parameters using a fractal-based coherent
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In this paper the theoretical aspects of estimating vegetation parameters from SAR
interferometry is presented. In conventional applications of interferometric SAR
(INSAR), the phase of the interferogram is used to retrieve the location of the scat-
tering phase center of the target. Although the location of scattering phase center
for point targets can be determined very accurately, for a distributed target such
as a forest canopy this is not the case. For distributed targets the phase of the
interferogram is a random variable which in general is a function of the system and
target attributes. To relate the statistics of the interferogram phase to the target
attributes, first an equivalence relationship between the two-antenna interferometer
system and an equivalent Ak radar system is established. This equivalence rela-
tionship provides a general tool to related the frequency correlation function (FCF)
of distributed targets, which can conveniently be obtained experimentally, analyti-
cally, or numerically, to the phase statistics of the interferogram. An analytical form
for the p.d.f. of the interferogram phase is obtained in terms of two independent
parameters: (1)(: mean phase and (2)a: degree of correlation. ¢ is proportional to
the scattering phase center and « is inversely proportional to the uncertainty with
which { can be estimated. It is shown that « is directly related to the FCF of the
distributed target which in turn is a function of scattering mechanisms and system
parameters. It is also shown that for a uniform closed canopy the extinction and the
physical height of the canopy top can be estimated very accurately. Some analytical
and numerical simulations are demonstrated.

1 Introduction

Vegetation cover on the earth’s surface is an important factor in the study of global
changes. The total vegetation biomass is the most influential input to models for
terrestrial ecosystems and atmospheric chemistry. Monitoring parameters such as



the total vegetation biomass, total leaf area index, and rate of deforestation is vital
to keep our planet capable of supporting life. Microwave remote sensing techniques
offer a unique opportunity to probe vegetation canopies at different depths. Since a
forest stand is a very complicated random medium with many attributes that influ-
ence the forest radar response, accurate estimation of the forest physical parameters
requires a large number of independent radar observations (multi-frequency and
multi-polarization backscatter) in conjunction with some a priori information about
the forest stand [1, 2, 3, 4]. The use of polarimetric synthetic aperture radars as
active sensors to survey forested areas has reached a level of maturity. Despite con-
siderable advancement in retrieving the canopy parameters from multi-polarization
and multi-frequency backscatter data, an unsupervised reliable inversion algorithm
has not yet been developed. With the recent advances in the development of inter-
ferometric SARs [5]-[10], another set of independent radar observation has become
available for the estimation of vegetation biophysical parameters.

The interferometric technique relies on a coherent imaging process to find the
range or distance to the scattering phase center of the scatterers in the radar im-
age. Based on this principle, there are two standard approaches for extracting
topographical information using synthetic aperture radars. In one approach, SAR
systems equipped with two separate antennas mounted on the SAR platform are
used to generate two complex co-registered images from two slightly different aspect
angles. The phase difference calculated from the cross product of the two complex
images, referred to as an interferogram [6], is processed to estimate the height in-
formation. In the second approach the interferogram is formed using two successive
images taken by a single SAR with almost the same viewing geometry [7, 8]. It is
shown that the phase of the interferogram is proportional to the wavelength, slant
range, look angle, distance between the antennas (baseline distance), orientation of
the antennas with respect to each other, and the height of the scattering phase center
above a reference line [5, 9]. For non-vegetated terrain, the scattering phase centers
are located at or slightly below the surface depending upon the wavelength of the
SAR and the dielectric properties of the surface media. Whereas for vegetated ter-
rain, these phase centers lie at or above the surface depending upon the wavelength
of the SAR and the vegetation attributes. Although it is expected that for vegetated
surfaces the temporal decorrelation would hamper repeat-pass interferometry from
producing the location of scattering phase center, experimental investigations has
shown that even after 18 days the correlation associated with forested area can be
as high as 0.5 [11, 12].

The significant vegetation attributes are: (1) the type of vegetation, (2) the
quantity or biomass of the vegetation and (3) the dielectric properties of the veg-
etation. As pertains to SAR interferometry, the type of vegetation refers to the
structural attributes of vegetation elements and includes the shapes and sizes of
foliage and woody stems relative to wavelength and their three-dimensional orga-
nizational structure. The biomass refers to attributes such as the height of the



vegetation, the thickness and density of the crown layer that contains foliage and
stems, and the number of plants per unit area. The dielectric properties of the vege-
tation elements determine scattering and propagation through the media; these may
vary with time due to seasonal changes in plant physiology and the phase of water
(liquid or frozen) or due to the presence of water films resulting from intercepted
precipitation or dew.

The main objective of this paper is to establish a thorough understanding of
the relationship between the INSAR parameters and the vegetation attributes and
the accuracy with which the vegetation scattering phase center can be measured.
To accomplish these goals an equivalence between INSAR and Ak-radar techniques
is established which facilitates numerical simulations and controlled experiments
using scatterometers. Monte Carlo simulation of a forest canopy which preserves the
absolute phase of the radar backscatter allows for quantifying the role of vegetation
attributes in determining the location of the scattering phase centers as measured
by SAR interferometry.

2 Ak-Radar Equivalent of an INSAR

In this section an equivalence relationship between an interferometric SAR and a
Ak-radar is obtained. As will be shown later the statistics of the phase of the
interferogram or equivalently the location of the scattering phase center and its
statistics is a very strong function of the location and number density of the forest
constituent particles and their dielectric and scattering properties. Understanding
the relationship between the tree height and the corresponding location of the scat-
tering phase centers requires numerical simulations (Monte Carlo simulation of a
fractal generated forest stand) or controlled experiments using scatterometers. The
scattering phase center of a target can also be obtained using a Ak-radar assum-
ing that the incidence angle is known. Evaluation of the scattering phase centers
using frequency shift can easily be accomplished in a numerical simulation or in a
controlled experiment using a wideband scatterometer.

To demonstrate the equivalence between an INSAR and a Ak-radar consider a
two-antenna interferometer as shown in Fig. 1. In this scheme one of the antennas
is used as the transmitter and receiver and the other one is used only as the receiver,
the phase of the interferogram (¢) is related to the difference in path lengths from
the antennas to the scattering phase center (6) by

- /\0
5= 5% 1)

where Ao = ¢/ fo is the wavelength (in repeat-pass interferometry the 27 factor in
(1) must be replaced by 47). Having calculated é from (1) and knowing the baseline



distance B and baseline angle a, the look angle 6 can be computed from

sin(6—0) ~ 2 2

Referring to Fig. 1 it can easily be shown that the height of the scattering phase
center, with respect to an arbitrary reference level, is given by

h = H — r[cos(a) cos(§ — a) — sin(a)sin(d — a)]. (3)

The accuracy in height estimation using this method is directly proportional to the
accuracy in the measurement of the interferogram phase. The uncertainty in phase
measurements is caused by two factors: (1) systematic errors, and (2) indeterministic
errors. The sources of systematic errors are image misregisteration and lack of
maintaining the geometry of the interferometer. The source of indeterministic error
is fading. Basically the backscatter signal from a distributed target including many
scatterers decorrelates as the incidence angle changes.

Now let us consider a radar capable of measuring the backscatter at two slightly
different frequencies fi = fo and f, = fo + Af. Denoting the phase difference
between the two backscatter measurements by @, it can be shown that

¢ =20kr =4nAf r/c (4)

where ¢ is the speed of light and r is the radar distance to the target scattering
phase center. Comparing (4) with (1) and (2) the desired relationship between the
Ak-radar and INSAR can be obtained. Basically by requiring the backscatter phase
differences, once obtained from a small change in the aspect angle and the other one
obtained from a small change in the frequency of operation, be identical for both
approaches we have

Af = fog sin( — a) (5)

Noting that r = H/cos(8), it can easily be shown that Af is rather insensitive
to variations in incidence angle over the angular range 30° — 60°. For example, a
C-band (5.3 GHz) interferometer with a horizontal baseline distance 2.4 m at an
altitude 6 Km is equivalent to a C-band Ak-radar with A f = 530KHz.

The equivalence relation given by (5) is derived based on a single target. In
regard to this relationship there are two subtle issues that require clarification. In
almost all practical situations the scatterers are located above a ground plane which
give rise to three significant scattering terms besides the direct backscatter. These
include the bistatic scattering from the target reflected from the ground plane, the
bistatic scattering from the target when illuminated by the reflected wave, and the
backscatter reflected by the ground plane when the target is illuminated by the
reflected wave. The last term can be regarded as the direct backscatter of the
incident wave from the image target and therefore the equivalent Ak-radar can
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accurately predict the interferometric phase associated with this term. However, for
the other two scattering terms (single-bounce terms), the validity of the equivalence
relationship is not obvious. Suppose a two-antenna interferometer, as shown in Fig.
2. is illuminating a target at point C above the ground plane. For the equivalent
Ak-radar located at A, the interferometric phases of the two single-bounce terms
(op) are identical and are given by:

& = Ak(A, By + BiC + CAy) = 2AkA,0 . (6)

Equation (6) indicates that the location of the scattering phase center for the ground-
bounce terms appears at the ground interface for the Ak-radar. The interferometric
phase of the two single-bounce terms for the two-antenna system can be obtained
from:

¢§, — /2 K(41C+CB1+B1AY) _ (et’k(AIC+C’Bg+BzA2) + eik(AlBl+Blc+CA2))

Noting that B,C = B,C’, B;C = B;(’, and after some simple algebraic manipula-
tion, it can be shown that

d’;; = g[(AIC + A,C") = (A:C + A, ().

Referring to Fig.2, it can easily be shown that C'C" = 200’ and therefore A,C +
A,C'" = 2A20. Similarly, it can be shown that (A;C + A;C’) = 24,0, thus

& = k(A0 — 4;0).

which indicates that the location of scattering phase center for the two single-bounce
terms is at 0. Therefore the equivalence relation (5) guarantees that ¢, = &;.

The second issue pertains to the validity of the equivalence relation in regard
to multiple scattering terms. As mentioned earlier the equivalence relationship is
derived based on a single target and therefore it would be valid for a random medium,
if the overall backscatter is dominated by the first-order scattering mechanisms. To
demonstrate that the equivalent Ak-radar provides the location of the scattering
phase center accurately even in the presence of multiple scattering, consider two
scatterers located at two arbitrary points C and D within a resolution cell. For an
INSAR whose antennas are at points A; and A,, the interferometric phase associated
with the second order scattering terms is calculated from:

¢(I'-;\),SAR = [2iHAICHCD+DAL) _ /(oiHA1C+CD+DA2) 4 (ik(AD+CD+CAa))
In derivation of the above equation, the reciprocity theorem is used which indicates
that the second-order scattering amplitude obtained from the interaction between

particle C' and particle D is equal to that obtained from the interaction between
particle C and particle D. As before it can easily be shown that

k
) sAR = 5[(1410 + A1 D) — (A:C + A;D))



Let us define M as point in the middle of C'D line. Since the distance between the
antennas and the scatterers are much larger than the distance between the scatterers,
we have

Onsar = k(AIM — A M)

which indicates that the phase center of the second order term apperas at the mid-
point between the two scatterers. For a Ak-radar at A, the same second order phase
term is given by:

#2) = Ak(A;C + CD + DAy)

Noting that A,C + A;D ~ AiM and CD < A; M, the above expression reduces to
o) = 2Ak AM (7)

Equation (7) shows that the location of scattering phase center measured by a A-k
radar is at M as well.

What remains to be shown is the algorithm by which the target height can be
extracted from an equivalent Ak-radar. Let us consider a random collection of
scatterers within a range and azimuth resolution cell illuminated by a plane wave
as shown in Fig. 3. The height of the scattering phase center for this collection can
be considered to be the algebraic sum of the physical height of the pixel center and
a residual apparent height of the scatterers which is a complex function of particles
and radar attributes. Suppose there are M scatterers within a resolution cell. Let
s, denote the scattering amplitude of the nth scattering component of the ensemble
which can represent the direct backscattering from a particle, a multiple scattering
term between a number of the scatterers in the ensemble, or a bistatic scattering
term reflected from the ground plane. Without loss of generality let us assume that
the phase reference is on the reference plane just below the pixel center (see Fig. 3).
The total backscattered field is the coherent sum of all the scattering components
which can be obtained from:

eikor N .
E® = Z sne—tZkor" (8)

r

n=1

where r is the distance from the origin to the observation point, r, is the total round
trip path length difference between a ray traveled to the origin and the ray corre-
sponding to the nth scattering component. Note that a time convention of e has
been assumed and suppressed. The equivalent problem is to replace the collection of
the random particles and the underlying ground plane with an equivalent scatterer
placed at the scattering phase center whose backscattering amplitude is denoted by
S. = |S.| exp(1®.). In this case the backscattered field is given by
eikor )
E* = ___Sce-mkohcos(e)
r



Computing the phase of the backscattered field () from (8) and noting that the
phase calculation is modulo 27, the height of the scattering phase center can be
obtained from

—2koh cos(8) + @, = 2mm + &° (9)

However, in computation of A from (9) two important parameters, namely m and
®. are missing. This problem could be rectified, if a radar measurement from the
same collection of particles and the same viewing angle but at a slightly different
frequency were available. Suppose the change in frequency is small enough so that
the change in the phase of the scattering amplitudes is negligible. In this case the
change in the phase of the scattered field (¢ = ®} — ®}) due to the change in the
wavenumber (Ak = k; — k;) is basically dominated by the path length differences
and it can easily be shown that

_ 1o
" 2cos() Ak

h (10)

Equation (10) is the fundamental basis for extraction of height information from a
two-frequency radar. It should be emphasized that in this process the incidence angle
must be known which is the case in a numerical simulation or in a measurement
using a narrow beam scatterometer system. Since the shift in frequency is very
small (less than 0.1% of center frequency), the scattering amplitude terms s, do not
change when the frequency is changed from f; to f, and therefore they need not
be computed twice in a numerical simulation. However, the phase terms associated
with the path length differences must be modified by replacing ko with ko + Ak.

Expressing the measured phase in degrees, the difference in slant range (Ar =
hcos(6)) in meters, and the difference in frequency (A f) in MHz, (8) can be rewrit-
ten as

¢ =24ArAf . (11)

Therefore if the uncertainty in the phase calculation/measurement is 1° and a dis-
tance resolution of 1m is required, a minimum frequency shift of 416.66 KHz is
needed assuming that the uncertainty in phase calculation/measurement is inde-
pendent of frequency shift (a wrong assumption). Using this frequency shift the
unambiguous range of 360m can be achieved noting that the phase is measured
modulo 360°. The uncertainties in height estimation using a Ak-radar can easily be
obtained as the relationship between h and 6 is explicitly expressed by (10). It can
easily be shown that the uncertainty in height due to the lack of accuracy in the
knowledge of the incidence angle is given by:

6h = htan(8)660

For uncertainties in incidence angle as high as 3°, the error in height is 5% of A at
0 = 45°.



Through the combination of two or more frequency shifts, an unambiguous height
profile with fine resolution can be achieved. The resolution in height estimation using
Ak-radar is characterized by the frequency correlation function of the target as will
be discussed next. Equation (10) indicates that accuracy in the height measurement
increases as the frequency shift increases. On the other hand as the frequency shift
(baseline distance) increases the phase shift caused by the path length differences
will change in a nonlinear and random fashion which causes an uncertainty in the
measurement of distance (height). Hence there may exist a critical frequency shift
for which the finest height resolution for a given distributed target can be achieved.
This critical frequency shift is the counterpart of a critical baseline distance in an
interferometer for which the finest height resolution for the same distributed target
is achievable.

3 Statistical Analysis

In estimating the height of the scattering phase center of a distributed target us-
ing (11), random fluctuations of the calculated/measured phase as a function of
frequency due to fading must be considered. In this section the effect of random
position of the scatterers on the height estimation is studied. Also a procedure for
calculation of the critical frequency shift (baseline distance) in terms the statisti-
cal properties of the distributed target is outlined. Phase statistics of polarimetric
backscatter response of distributed targets for single- and multi-look can be found
in literature [14, 15, 16]. The statistical analysis of interferometric phase given here
parallels the method given in [14]. For a random collection of particles the scattered
field given by (8) is a complex random variable. Since the location of the scatterers
in the illuminated volume is random, the process describing the scattered field is a
Wiener process [13]. If the number of scattering components M is large, the central
limit theorem mandates that the process is Gaussian. Let us denote the scattered
field at f, and f; by Ef = X; +1X; and Ej = X3 +1X,, respectively, where X; de-
notes the real or imaginary part of the scattered fields. These quantities are jointly
Gaussian and can be represented by a four-component random vector X. The joint
probability density function (pdf) of the random vector can be fully characterized
from a 4 x 4 symmetric positive definite matrix known as the covariance matrix A
whose entries are given by

/\,'j =/\J‘,' =< X,’XJ' > i,jE{l,---,4}

It has been shown that the entries of the covariance matrix for the Wiener process
satisfy the following conditions [14]:

A=A =< X2>=< X7 > (12)

Az =< XiX;>=0 (13)



/\33 = /\44 =< 4¥32 >=< .\'3 > ( )

Aag =< X3Xy>=0 | (15)

A3 = Ay =< X1X3 >=< XXy > (16)

/\14 = —/\23 =< X1X4 >= =< X24X3 > ( )

In the same paper [14] it is also shown that the pdf for the difference between phases

of E3 and E} (for a single-look case) is related to the elements of the covariance
matrix and is given by:

1 —a?
fo(¢) = 27 [1 — a? cos?(¢ — ()]
. acos(¢ — () T -1 acos(¢ — ()
b \/1 — a?cos?(¢ — () [2 *tan \/1 —a? cos?(¢ — O}} ,
(18)
where

a = ’A%3+A%4’ C=tan—lﬁ
’\11/\33 /\13

The parameter o is known as the degree of correlation and can vary from 0 to 1.
When the scattered fields are completely correlated « = 1 and the pdf of ¢ is a
delta function. In this case the calculation of the height from (10) has no error in
principle when the effect of thermal noise is ignored. The parameter ( is known as
the coherent phase difference and can vary from —= to 7. For ¢ = ( the pdf assumes
its maximum and this point corresponds to the average height of the scattering phase
center for a uniform distributed target over a flat ground plane.

In this analysis the objective is to establish a relationship between a desired
height resolution and the corresponding required frequency shift for a given er-
ror probability criterion. The Wiener processes considered in this problem satisfy
one more condition beyond those given by (12)-(17). This condition can be de-
rived by noting that the required frequency shift for the height estimation is much
smaller than the operating center frequency of the radar, therefore it is expected
that backscattered power carried by the two processes be equal. This requirement
renders the following condition:

A =Aa (19)
Let us define the normalized correlation function of the process by
| < ElE; > |
Af)= ———— 20
RS = S (20

which is also known as the frequency correlation function [17]. Using (16), (17), and
(19), it can easily be shown that

RAf)=a . (21)
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It is interesting to note that the maximum of the normalized frequency correlation
function occurs at Af =0 (%}h;:o = 0), hence a =1 to the first order in Af. In
other words for small variation of frequency the pdf of the phase difference is very
narrow which ensures accurate estimation of the height. As expected, when Af
increases, a = R(Af) approaches zero which corresponds to a uniform distribution
for the phase difference. In this case the probability of error in the height estimation
is close to unity.

To quantify the accuracy of the height estimation for a given distributed target,
let us assume that the normalized frequency correlation function of the target is
known. In this case only the coherent phase difference (() is missing to fully char-
acterize the pdf of the phase difference. The objective is to estimate ¢ from which
the mean height can be obtained from

—¢

h= 2.4Af cos(6) -

(22)
However, the difficulty in calculation of 4 is that only one measurement of the phase

for each pixel is available. Suppose é¢ = ¢ — ( represents the deviation in the phase
measurement which corresponds to an error in height measurement given by

b¢

bh= ————
2.4Af cosd

(23)
where 8h is in meters, é¢ is in degrees, and Af is in MHz. The uncertainty in the
estimation of height can be quantified according to a prescribed error probability
criterion. For example, ¢ can be chosen such that the probability of measuring the
phase within the §¢ neighborhood of the coherent phase difference to be 90%, that
18

P(¢ € [C—6¢,(+6¢]) =09 .

Hence, using this criterion the estimate of the height is
h=h+t6h

with a probability of 0.9.

The uncertainty in the height measurement defined by this criterion is a complex
function of Af noting that ¢ is a function of a which is related to Af through
the correlation function. Referring to (23), it seems that the height uncertainty
decreases when Af is increased; however, it should also be noted that é¢ increases
when Af is increased. This behavior suggests that there may exist a frequency
shift Af for which 8h is minimized. This particular frequency shift will be referred
to as the critical frequency shift. In order to investigate the possibility of finding
the critical frequency shift, the relationship between the height uncertainty and
the frequency shift must be obtained. The relationship between é¢ and a can be
directly obtained from the cumulative distribution function (cdf) of A¢p = ¢ — (.

10



Unfortunately, a close form for the cdf of A¢ does not exist and the relationship
between 6¢ and o must be obtained numerically. Figure 4 shows the cdf of A¢
for different values of o and the corresponding 66 for the 90% probability criterion.
Note that for most practical cases a > 0.95 (baseline distance or equivalently the
frequency shift is rather small). The relationship between §¢ and e is shown in Fig.
5 for the 80% and 90% probability criteria.

Assuming a Gaussian form for the normalized frequency correlation function
the uncertainty in height estimation can easily be related to the frequency shift.
Suppose the normalized frequency decorrelation function is given by

R(Af) = e~ (8f/Fa)?

where Fj is the decorrelation bandwidth defined as the frequency shift for which
R(Af) = e7!. Using (21) the frequency shift can be related to the degree of corre-
lation through

For values of a close to unity the right-hand side of the above equation is approxi-
mately equal to /1 — a. Referring to Fig. 5, it can also be observed that

bp=~CVl-a

where C is a constant proportional to the probability criterion. Therefore d¢is
linearly proportional to Af where upon substituting in (23) it can be shown that
the height uncertainty is independent of the frequency shift and the critical frequency
shift is not well defined. This result may be generalized to all frequency correlation
functions because for small values frequency shift, the frequency correlation function
of all targets can be approximated by

R(AS) ~ 1 - (Af/Fa)? (24)

where Fy is a free parameter equal to the frequency decorrelation bandwidth of
an equivalent Gaussian correlation function. Figure 6 shows the product of the
height uncertainty and the equivalent decorrelation bandwidth versus frequency
shift normalized to the decorrelation bandwidth for both the 80% and 90% criteria.
Thus the uncertainty in height measurement for a distributed target with known
equivalent decorrelation bandwidth is independent of frequency shift or equivalently
the baseline distance. In other words, the frequency decorrelation bandwidth of the
target is the determining factor in the height measurement error.

4 Frequency Correlation Function of Distributed
Targets

As was shown in the previous section the frequency correlation function of a dis-
tributed target is the most important parameter in estimating its scattering phase
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center height. The literature concerning the frequency correlation function of dis-
tributed targets is rather scarce. Analytical expressions for the frequency correlation
function of simple targets such as uniform independent scatterers and rough surfaces
using Kirchhoff approximation have been obtained for simple uniform plane wave
illuminations [18. 19]. For the uniform distribution of scatterers illuminated by a
uniform plane wave the frequency correlation function is given by

sin(mp, A f/150)
TprAf/150

R(Af) =

where p, is the slant range in meters and Af is in MHz. The corresponding Gaus-
sian equivalent decorrelation bandwidth for this function is Fy = 117/p, MHz. Since
product of 6k and Fj is independent of A f/F;, the uncertainty in height measure-
ment can be improved by decreasing the slant range resolution.

In a recent study [17] it was shown that the frequency correlation function, in
general, depends on two sets of parameters: (1) radar parameters such as incidence
angle, frequency, polarization, and footprint size, and (2) target parameters such
as penetration depth and albedo. It is also shown that when the scattering is
localized, that is, the field correlation distance in the random media is relatively
small, the frequency correlation function can be expressed in terms of product of
two expressions, one depending only on the radar parameters and the second one
depending only on the target attributes. For example an expression for the frequency
cross correlation of backscatter from a homogeneous layer of random particles such
as leaves and stems above a smooth ground plane is found to be [17]

Enl f2)Egpl(f2) >= [ ] Earea |Gz, y)Pdady| - {4d| Ry [P Wi, €20k eI sectld

b 4,2(iAk cos0~r secf)d 1= 62('A“C°'9""‘"9)d
+WPPPP(1 + |R7’| ) 2(ksec0—1Ak cosf)

(25)
where 0 is the incident angle, d is the layer thickness, and R, is the Fresnel reflection
coefficient for p-polarized incident wave (p € v,h). The first term in (25) is the
system dependent component in which G is the antenna gain or the SAR point-
target response (ambiguity function), r is the radar distance, and the limits of the
integrals represents the antenna footprint or the pixel area. The curly bracket in
equation (25) represents the target dependent component in which x denotes the
layer extinction and Wb , and W, are the copolarized components of the phase
matrix in the backscatter and specular (with respect to the vertical axis) directions
which are defined by

< (ASE2)(ASE) >

b, _ .
W = Jim, AV , PEVA

where AS,, represents a scattering matrix element of a small volume AV of the ran-
dom medium. In the expression given by (25) the reference phase plane is assumed
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to be at the top of the layer, i.e., the ground plane is assumed to be at = = —d as
shown in Fig. 7.

The decorrelation caused by the system dependent component for an imaging
radar is directly proportional to the system slant range resolution. Also for con-
ventional radars the decorrelation caused by the system component is inversely pro-
portional to antenna beamwidth and directly proportional to range and incidence
angle. In most existing INSAR systems the measured decorrelation is dominated
by the system component. As discussed before the uncertainty in height estima-
tion increases as the correlation bandwidth increases. Fortunately the decorrelation
caused by the system parameters can be calibrated out since its effect appears as a
simple multiplicative factor. If the system ambiguity function or the antenna pat-
tern is known, the system component of frequency correlation function can easily
be computed and removed from the measured data. In cases where the ambiguity
function or the antenna pattern is not well characterized the correlation over a rough
surface (a distributed target with no vertical extent) approximately represents the
system component of the decorrelation and can be used for calibration. Once the
target dependent component of the correlation function is obtained, the equivalent
frequency decorrelation bandwidth can be computed from which the uncertainty in
height estimation can be evaluated. As shown in the simple model described by (25)
the target decorrelation contains information about its physical parameters.

Figure 8 shows the frequency correlation function of a uniform random layer
of flat leaves with average area 50cm?, thickness 1.3 mm, and dielectric constant
€, = 19 4+ 16.3 above a ground plane with dielectric constant ¢, = 15 + 52.0 at 5.3
GHz and incidence angle 8 = 30°. In this simulation the layer thickness was chosen
to be d = 2 m and leaf number density Ny was varied as a parameter. It is shown
that as the leaf number density, and as a direct result the extinction, increases
the frequency decorrelation bandwidth increases. Scattering contributions from the
ground bounce mechanisms are manifested in terms of oscillations on the frequency
correlation function due to constructive and destructive interferences among the
different scattering mechanisms. Existence of contribution from ground bounce
scattering mechanisms significantly reduce the frequency decorrelation bandwidth.
For interferometric SARs the equivalent frequency shift is rather small (< 1 MHz)
and the approximate form of the frequency correlation function given by (24) seems
to be adequate for all cases. Figure 9 shows F; of the layer as a function of depth
for different values of particle number density. As the vegetation depth decreases
F; should approach infinity and when the vegetation depth increases F; reaches its
asymptotic value for the corresponding to a semi-infinite medium.

The theoretical expression for the frequency cross correlation function given by
(25) can be used to calculate the height of the scattering phase center above the
ground plane. Substituting the phase of the target dependent term of (25) in (22),
the mean height of the scattering phase center of the medium can be computed.
Figures 10a and 10b show the height of the scattering phase center of the uniform
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medium as a function of layer thickness and extinction for 30° and 60° incidence an-
gles respectively. It is shown that depending on the layer thickness. extinction, and
incidence angle the scattering phase center may appear below or above the ground
plane. but always below the canopy top. Note that when the double-bounce scat-
tering mechanism (ground-target-ground) is dominant, the scattering phase center
appears below the ground plane. Other numerical simulations showed that parti-
cle orientation distribution can significantly influence the location of the scattering
phase center as well. This is due to the fact that the relative contribution of the
direct backscatter mechanism with respect to that of the double-bounce scattering
mechanism is a function of particle orientation distribution.

To illustrate the ability of INSAR in retrieving vegetation parameters, let us
consider a simple case of semi-infinite uniform medium. Vegetation canopy can be
regarded as a semi-infinite medium, when canopy transmissivity is below 0.1. In
this case an analytical expression for frequency correlation function and the phase
of the frequency cross correlation (mean phase) can be obtained directly from (25)
by setting ksec(f) = oco. The expression for the frequency correlation function and
the mean phase are, respectively, given by

B 1 mAfcos?d ,
R(Af)—\/m“‘l_( ek )’ (26)
2 2
¢ = tan-! Ak cos* 8 ~ Ak Zos 9. (@7)
K

Using (26) the extinction coefficient of a thick vegetation layer can be obtained as
follows. For a system with a known baseline distance the equivalent A f can be cal-
culated from (5) which together with the measured decorrelation can be substituted
in (26) to calculate k. Having found «, (27) can be substituted in (22) to calculate
the location of the scattering phase center from the canopy top Ad which is given
by
Ad= =0 (28)
2K
It should be noted that for forest stands where particle size orientation and
distribution are highly non-uniform the simple uniform and homogeneous model
described above may not provide satisfactory results. More accurate models that
preserve the effect of tree structure are needed for this purpose. A coherent scat-
tering model based on Monte Carlo simulation of fractal generated trees is under
development which allows efficient and accurate computation of frequency cross

correlation statistics.

5 Conclusions

In this paper theoretical and statistical relationships between the measured pa-
rameters obtained from an interferometric SAR, namely the phase and correlation
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coefficient of interferogram. and target parameters are obtained. First an equivalent
relationship between an INSAR and a Ak radar is established. It is shown that the
knowledge of the frequency correlation behavior of radar backscatter is sufficient
to derive the desired statistics of height estimation using an interferometric SAR.
The equivalence relationship allows for conducting controlled experiments, using a
scatterometer. to characterize the response of a distributed target when imaged by
an INSAR. Similarly efficient numerical codes can be developed to simulate the re-
sults. Statistical analysis shows that the uncertainty in the height estimation of a
distributed target is a function of equivalent frequency decorrelation bandwidth and
is independent of the baseline distance. It was also shown that how the INSAR
measured parameters can be used to evaluate the extinction, the physical height,
and the height of the scattering phase center of a closed and uniform semi-infinite
canopy.
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Figure 2: Ray path configuration of the single-bounce ground-target scattering
mechanism for a two-antenna interferometer.
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Figure 3: A random collection of M scatterers above a ground plane and its equiv-
alent scatterer.
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Figure 5: The phase uncertainty for 80% and 90% percent error probability criteria
as a function of a.
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ABSTRACT

An efficient and realistic electromagnetic scattering model for a tree trunk
above a ground plane is presented in this paper. The trunk is modeled as a
finite-length stratified dielectric cylinder with a corrugated bark layer. The
ground is considered to be a smooth homogeneous dielectric with an arbi-
trary slope. The bistatic scattering response of the cylinder is obtained by
invoking two approximations. In the microwave region, the height of the tree
trunks are usually much larger than the wavelength. Therefore the interior
fields in a finite length cylinder representing a tree trunk can be approximated
with those of an infinite cylinder with the same physical and electrical radial
characteristics. Also an approximate image theory is used to account for the
presence of the dielectric ground plane which simply introduces an image ex-
citation wave and an image scattered field. An asymptotic solution based on
the physical optics approximation is derived which provides a fast algorithm
with excellent accuracy when the radii of the tree trunks are large compared to
the wavelength. The effect of a bark layer is also taken into account by simply
replacing the bark layer with an anisotropic layer. It is shown that the corru-
gated layer acts as an impedance transformer which may significantly decrease
the backscattering radar cross section depending on the corrugation parame-
ters. It is also shown that for a tilted ground plane a significant cross-polarized
backscattered signal is generated while the co-polarized backscattered signal
is reduced.



1 Introduction

Because of the important role of the earth’s vegetation cover on climatic
changes, characterization of physical parameters of the vegetation cover re-
motely and globally is of great importance. In recent years, considerable effort
has been devoted to the development of electromagnetic scattering models for
forest canopy [1-3]. In these models the forest canopy is considered to be
composed of simple geometrical particles having different sizes, shapes, and
dielectric constants. Using vector radiative transfer theory, it has been shown
that the backscattering from a typical forest stand can be decomposed into
four scattering components : (1) direct backscattering from the crown layer,
(2) bistatic scattering from the crown layer reflected from the ground plane, (3)
bistatic scattering from the trunk layer reflected from the ground plane , (4)
direct backscattering from the ground plane [1]. In lower microwave frequency
and/or when the crown layer is tenuous the backscattering is dominated by
the ground-trunk interaction. Therefore the accuracy of the scattering model
in such cases is directly proportional to the accuracy of the scattering model
for tree trunks above a ground plane.

In the mentioned models of forest stands, a tree trunk is simply modeled
by a vertical, homogeneous, finite-length dielectric cylinder. The scattering so-
lutions for a finite-length cylinder, reported in the literature, are either based
on the eigen-function expansion solution for an infinite cylinder [1-5], or low
frequency approximation where all dimensions of the cylinder are small com-
pared to the wavelength [6]. When the cylinder radius is large compared to
the wavelength the eigen-function solution becomes, numerically, inefficient
due to the poor rate of convergence of the series involved in the solution. This
is the case in microwave region where the radius of tree trunks in a forest
stand can be significantly larger than the wavelength. An inefficient solution
for the calculation of scattering properties of a canopy constituent particles
makes the canopy model numerically intractable because the scattering solu-
tion for individual particles must be evaluated many times to account for the
particle variability in size and orientation. Moreover, in modeling a tree trunk
with a dielectric cylinder, an important feature of the tree trunk , the bark
layer, has been overlooked. For many trees the bark layer is rough and can
be represented by longitudinal grooves on the surface of a dielectric cylinder
having possibly a different dielectric constant. The effect of the bark layer on
the RCS of a tree trunk was demonstrated recently by representing the bark



layer with a corrugated dielectric laver [7]. Using a hybrid scattering model
based on the method of moments and physical optics it was shown that the
RCS of a tree trunk is significantly reduced when the effect of the bark laver
1s taken into account. However this model is not numerically efficient enough
to be used in conjunction with the scattering model for a forest canopy.

In this paper a realistic and efficient scattering model for a tree trunk above
a ground plane is developed. In this model the effect of the radial inhomogene-
ity as well as the rough bark layer are taken into consideration. Relying on
the fact that the dielectric constants of tree trunks are highly lossy, the phys-
ical optics (PO) approximation is used at high frequencies where the radius
of curvature is large compared to the wavelength. For finite-length cylinders
having radii comparable to the wavelength , the eigen-function expansion in
conjunction with the field equivalence principle is used. The bark layer is
represented by a periodic corrugated layer and equivalently replaced by an
anisotropic layer as suggested in [9]. The ground plane is considered to be a
homogeneous medium having a smooth interface and both the cylinder and
the ground plane are allowed to have arbitrary orientation with respect to the
global coordinate system. Numerical simulations are demonstrated in section
7 where the region of validity of the PO approximation and the effect of a bark
layer and a tilted ground plane are investigated.

2 Global Coordinate System

In this paper, the problem of scattering from a cylinder above a ground plane in
most general configuration is considered as shown in Fig.1. A global coordinate
system (X,Y, Z) is constructed to describe the directional vector 4,

u(d,¢) = Xsinﬂcos¢+f’sin03in¢+Zcosﬂ (1)

representing the unit vector along the incidence direction ic,'(ﬂi, #:), the scat-
tering direction k,(0;, ¢,), the orientation direction of the cylinder (4., ¢.), or
the unit normal to the ground plane 7,(6,, ;). In this coordinate system ,
the horizontal and vertical polarization of the incident and the scattered waves
are defined by

x kp/|Z x k| (2)

hy X K, (3)



where subscript p can be i or s. In this paper, the forward scatter alignment
convention [6] will be used. The components of the scattered field ES and the
incident field E! in the global coordinate system can be related to each other
by the scattering matrix S, i.e.,

E:\ _ e* (S Su\(E n
Ei ) — v \ Sk Sw E; |-

The ground is assumed to be smooth having an arbitrary slope in the global
coordinate system. It can be shown [8] that when the observation point is away
from the ground plane interface and in the far field region of the scatterer, the
effect of the ground plane on scattering can simply be taken into account by
including the mirror image contributions. Hence the scattering matrix consists
only of four components,

S = St+Sgt+ Stg + Sgig ()
where
St = SOk, k) (6)
Sgt = €™ T(ky, g, kag) - S¥(hs, ;) (7)
Stg = eiT‘SO(IA‘?s,I;gi)'F(’A"gi’ﬁgvi"‘i) ®)
Sgtg = €I (kyy g, hg) - SO (kg ki) - Ty, 1y, ). (9)

In the above expressions, the optical lengths 7; and 7, account for the extra
path lengths of the image excitation and the image scattered waves respec-
tively. SO (ks, k; ) is the scattering matrix of the isolated target in free space,
and T'(k,, 7 fig, ki) is the reflection matrix which accounts for the specular reflec-
tion and polarization transformation due to the tilted ground plane. In order
to provide a physical insight for each term in (6)-(9), subscripts ¢ and g are
added to represent the scattering from the trunk and the reflection from the
ground plane respectively. The order of the subscripts indicates the sequence
of scattering in the first order solution. The unit vectors indicating the di-
rection of incident, scattered, and reflected waves, as shown in Fig.1, are also
expressed in the arguments of S® and T in the same order. In most cases the
total backscattered signal is dominated by the specular terms Sgt and Sgg.

In the following sections, a general reflection matrix I for a tilted ground
plane with arbitrary slope is first obtained, and then the bistatic expressions
for the scattering matrix SO of a stratified finite cylinder in free space based
on the eigen-function expansion and the PO approximation are derived.
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3 Reflection Coefficient Matrix For A Tilted
Ground Plane

The existing models for forest stands assume a flat horizontal ground plane
with no local slope. In this configuration the tree trunks are positioned normal
to the ground plane with possibly a narrow angular distribution around the
normal direction. In reality the ground plane may not be horizontal while the
tree trunks are still vertically oriented such as forest stands in mountainous
areas. The local slope has two significant effects on the backscatterer : (1)
depending on the slope angle and the trunk height, the ground-trunk term
in the backscattering direction reduces, and (2) a significant cross-polarized
component is generated through the reflection from the slanted ground plane
which enhances the cross-polarized backscattering coefficient.

Using a simple coordinate transformation the reflection coefficient matrix
of the ground plane can be easily computed. Consider a smooth ground plane
with a unit normal 7,4(6,, ¢,) that is illuminated by a plane wave propagating
in k; direction. The direction of the reflected wave is given by

ke = ki —20,(hy - ki) (10)

which is normal to E” having E] and FE} as its vertical and horizontal com-
ponents in the global coordinate system. Defining the reflection coefficient
matrix I' by

E' = TU(k,n, k) E! (11)

the objective is to express the elements of I' in terms of the Fresnel reflection
coeflicients of the ground plane. In the local coordinate of the ground plane,
the vertical and horizontal polarization of a wave are defined by

h

v

p = Mg X kp/lfg X ky| (12)
p = h,xk (13)
where the subscript p can be ¢ or r. By representing both the incident and

reflected field vectors in the local coordinate system (4., . k,) and noting that

PP

E;I _ Fvl O E:}I
(E;,)‘(o rh,)(E;;,) (14)



the elements of the reflection coefficient matrix can be obtained from
Tpg = (Br- 0,)Tw(8; - G:) + (Br - hy)Twi(hi - &) (15)

where p and ¢ can be v or h, and T,y and Ty are, respectively, the vertical
and horizontal Fresnel reflection coefficients of the ground plane. The inner
products in the above expression in terms of the global coordinate parameters
are given by

NN L fig-Z—(k,-Z)(Rg-k;)
;0. = h;-h = X Y f)\ng Ry
7 7 | Xk, ||1Z xk,|

N ~ 2 N n iz

v‘.h, — _h‘.v_ — —9 2

7 I |fig X k; |

where 7 can be 7 or .

4 A Semi-Exact Solution

Scattered fields of an infinite stratified cylinder can be obtained by the stan-
dard eigen-function expansion method [10]. However, for finite-length cylin-
ders, no exact solution exists. In the microwave region where the length of a
tree trunk is much larger than the wavelength and the dielectric constant has
a significant imaginary part, the effect of the longitudinal traveling waves on a
finite cylinder can be ignored. Therefore, the internal fields of a finite cylinder
may be approximated by those of an infinite cylinder having the same radial
characteristics. In this paper the scattered fields of a finite cylinder is obtained
by invoking the field equivalence principle. That is the dielectric cylinder is
replaced by fictitious electric and magnetic surface currents J and M given by

J = nxH (16)

M = -axE (17)

where H and E are the total (incident plus scattered) magnetic and electric
fields on the surface of the cylinder, and 7 is the unit vector outward normal
to the cylinder surface. These fields are approximated by those of the infinite

cylinder, and their tangential components on the surface of the cylinder are
given by

Ez(p/ =a, ¢,7 2,) = ZEznei(ki.ZA’z’+n¢,) (18)
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ZOH:(pI =a, él' ZI)

It

S Hope s/ (19)
Eolp =a,6,5) = 3 Eeue ™41 (20)
ZoHo(p' = 0,6,2') = Y Hne ™40 (21)

where Z; is the intrinsic impedance of the free space and E,,, H,,, Ey,, and
H,, are the Fourier components of electric and magnetic field which can be
found in a recursive fashion for a stratified cylinder as shown in [11]. In (18)-
(21), (p', ¢',2') define a local coordinate system in which the cylinder axis 7,
is along Z' and §' = (k X Z )/|k x Z'|. Using the fictitious current sources, the
electric and magnetic Hertz vector potentials can be evaluated from :

B 120 gikoT  rb/2  r2m s,

He - 20 / / J I, 1\ —tkoks T d ld I 29
N ZYE) tkor b/2 27r / —zkok, -

L) = e/, / adg'ds.  (23)

where b is the height of the cylinder. The scattered field in the radiation zone
(far field region) of the cylinder can be obtained from

E*° = —k2[ks x (ks x IL) + ks x (ZoIL,)]. (24)

After some algebraic manipulation as shown in [13], the elements of the scat-
tering matrix for the finite-length cylinder in free space are found to be

1ab sinV

= B A1)+ (e DRG] (29

S =~ G, ) + (e DK (26)

= o B 16 - G K@) @)

R = o e IR - 6o DG (28)
where

= Z{H¢nu1n+kBél(sinqumu%—coquHznuln) (29)



sin ¢ cos @

- B Eznu3n - _B_EanZn}
K = - Z{E¢nuln + séz (Sin QEEan% — COs éEznu&l) (30)
sinq~5 cos ¢
—THanSn - _B?HanZn}
with
kob »  ~ &
Vo= %(k, — k) 2 (31)

Uy, = 27r(—i)"Jn(y0)ei"‘Z’
Uge = 2m(—i)"{icos ¢J.(yo) + sin quiJn(yo)}ei"‘Z’
0

us, = 2m(—1)"{isin ¢J.(yo) — cos &yﬁJn(yo)}emg’
0

B = (k-2 +(k-yy
. ky -y
¢ = tan”! Y )

Yo = koaB.

Here J, and J, are, respectively, the Bessel function of first kind and its
derivative. It should be noted that I and K as given by (6) and (7) are
functions of the polarization of the incident wave.

5 Physical Optics Approximation

The semi-exact solution described in the previous section becomes inefficient
at high frequencies where the radius of the cylinder is large compared to the
wavelength and fails when the cross section of the cylinder is not circular.
These deficiencies can be removed at high frequencies by employing the PO
approximation. This approximation is valid when the radius of curvature of
the cylinder is large compared to the wavelength and the permittivity of the
cylinder has a relatively large imaginary part so that the effect of the glory rays
and the creeping waves could be ignored. As before, the cylinder is replaced
by fictitious electric and magnetic currents, however in this case, the currents
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are approximated by those of the local tangential plane which are proportional
to the sum of the incident and reflected waves.

To simplify the integration of the currents over the lit surface. the sta-
tionary phase (SP) approximation may be used. This approximation is valid
so long as the stationary point falls over the lit region. For convenience, a
local coordinate (#,7,1) is established at the SP point. The local tangential
directions are defined by

>

— n X k:

i/

~) >
3>

>
N

X
X

3>

where 71 is a unit vector normal to the cylinder surface at the SP point. For the
general case of an anisotropic medium (the bark layer may exhibit anisotropic
properties) a dyadic reflection coefficient R is introduced to relate the polar-
ization coupling between the incident and reflected waves, i.e.

E, = R -E; (34)

Combining the incident and reflected fields, the total fields E(= E* + E') and
H(= H" + H') on the surface of the cylinder can be obtained from

E'\ _ (1+Rw Ru E|
(2) - (" m)(E) o
H\ _ (1-Rw Rpn Hi
(i) = U f) () o

Applying the stationary phase approximation, it can be shown that the Hertz
vector potentials are given by

and

iZo eikor
m = = J
@ (37)
ZYE) eikor
o, = — .
M (38)

where J and M are the ﬁctitious currents evaluated from the total fields E
and H at the SP point (¢’ = ¢), and
ik [b/2

/2 DT g iy A
Q — i s /‘W/z 6—1k0chos(¢ -—¢>)ezko(k.—k3)'zz add)'dz'. (39)
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koBa © -
Vg (Ggte)+

B = {l(h - k)P +[(k - k) 97"}
tan"l(M)

(ks — k;) - &

_tbsinV g [koa
v © \oB {F

with

1/2

-2
I

and F'(-) is the Fresnel Integral. This approximation is valid provided koa B >>
1 and ¢ is away from the shadow boundary.

Using a similar procedure as in the previous section, the scattering matrix
elements are found to be

SO = Q[ 9)Z0Ji + (£ 85)Z0Jsw + (I- h) My + (£ - hy) My, (40a)
% = QUI-0)Zodwn + (- 65)ZoJen + (I hs)Mi + (i - hs) Mia] (40b)
SO = Q- he)ZoJ + (- hy)ZoJu, — (I-9,) My, — (£ 6,) M) (40¢)
SO = QU hy)Zodin + (£ hy) Zodun — (I+6,) My — (£ - 55)My) (40d)

where Jp,, and M, are the currents along p direction induced by a ¢ polarized
incident wave (p can be t or [ and ¢ can be v or k). The inner products of
the vectors in the above expressions can easily be calculated in terms of the
global coordinates.

The above results fail in the case of forward scattering for which B = 0.
However, in directions close to the forward direction, an alternative approxi-
mation for the scattered field is possible and is given by [13]

sinV sin W etkor

—2iab » )
v W r

s — ki'A,
E )\0( T

E' (41)
where W = koa(k, - 3') and V is given in (31).

6 Modeling of A Corrugated Bark Layer

For some tree species, the bark layer is corrugated with grooves along the
longitudinal direction. In this paper, the bark is simply modeled as a periodic
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corrugated layer with period L and width d as shown in Fig.2a. It is shown
in [9] that ,when L < Xg/2 (single Bragg mode). the corrugated layer can
be equivalently replaced by an anisotropic layer (see Fig.2b) with the same
thickness whose permittivity tensor is given by

€11 0 0
€ = 0 €2 0 |. (42)
0 0 €33

The entries of the tensor in terms of the permittivity, period, and width of the
corrugated layer , when L < 0.2}, are approximated by

U= T aD Tl (43)

€9 = €33 = 1+ (6,- - 1)d/L (44)

Assuming that the radius of the cylinder is much larger than the wavelength,
the permittivity of the bark layer can be represented by €(¢@, z,n) where €44 =
€11 and €,; = €, = €29.

To employ the PO approximation, a coordinate transformation from the
local (¢,z,n) to (t,l,n) at SP point is needed. The resultant permittivity
tensor in coordinate (¢,1,n) is

€. 8in% @, + €44 052 ¢, (€4 — €22)sing,cos, 0

€ = | (€sp — €:2)5iN¢,c080, €,,08% P, + €ppsin’¢, 0 (45)
0 0 €nn
where
»
b = cos” () (46)
1 —(n-k)?

The reflected fields from a stratified anisotropic dielectric half space is com-
puted using the method described in [12].

7 Numerical Results

In this section a number of numerical examples for the scattering from a finite
cylinder above a ground plane are presented. In all the considered examples
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the normalized RCS, defined by

_ 47T|Spq|2
T T Thoab?

are displayed for a two-layered cylinder with height b, exterior radius a; and
interior radius az. The permittivity of the exterior and interior layers are
chosen to be : ¢ = 4 + i1 and €; = 10 + ¢5 respectively. Also the cylinder is
positioned vertically (6. = 0) on a tilted ground with permittivity e, = 10+5.

First, the validity region of the PO approximation in backscatter direction
is examined. Figure 3 compares ,, and o4, using the PO and semi-exact solu-
tions. It is found that the PO solution agrees well with the semi-exact solution
when koa > 10. For small values of kga the resonance behavior of backscat-
ter is shown by the semi-exact solution. Figures 4-6 show the monostatic and
bistatic scattering patterns which are simulated for a two-layered cylinder with
and without a corrugation. The thickness of the corrugated layer and its fill-
ing factor are respectively chosen to be t = 0.1Xg and d/L = 0.7 (see Fig.2).
Figure 4 shows the backscattering pattern as a function of incidence angle.
At small angles of incidence, the PO approximation differs slightly from the
semi-exact solution because the radial component of the propagation constant
(k, = kosin6) is small in this region and the condition k,a > 10 is not satis-
fied. The vv-polarized backscattering RCS has two minima corresponding to
the two Brewster angles one occurring on the surface of the cylinder (4 ~ 25°)
and the other occurring on the ground plane (§ ~ 75°). The backscattering
RCS vanishes at § = 0° and 90° since the four components contributing to the
backscattering RCS interfere destructively. The ripples on the curves are due
to the components S¢ and Sgtg (see equation (1)), which become significant
for angles of incidence close to 90°; and the oscillation rate is proportional to
the cylinder length. This figure also shows the effect of the bark layer on the
backscattering RCS. Depending on the incidence angle the RCS of the cylinder
may be reduced as high as 10 dB. The reduction in the RCS is a function of
the cylinder length and the corrugation parameters. Basically the corrugated
layer behaves as an impedance transformer between the air and the vegeta-
tion material. Figure 5 shows the bistatic scattering pattern as a function of
elevation angle when 0; = 120°, ¢; = 180° and the observation point is moving
in the X Z-plane. Figure 6 shows the bistatic scattering pattern as a function
of azimuth angle (¢,) with 6; = 120°, ¢; = 180°, and 6, = 60°. The discon-

tinuities found on the PO solution near the forward directions are because of

(47)
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switching the expression for scattering from (9) to (10).

Figures 7-9 show the effect of the tilted ground plane on the backscatter-
ing RCS. All the parameters in Fig.7 are the same as those given in Fig.4
except for the tilt angle of the ground ,6, = 20° and ¢, = 90°. Comparing
Fig.4 with Fig.7, it can be seen that a significant cross-polarized backscattered
signal is generated due to the slope of the ground plane. Figure 8 shows the
variation of backscattering RCS as a function of the ground azimuth angle ¢,
where 0; = 135°, ¢; = 180° and 6, = 20°. One can observe that the peak
of the backscattering RCS occurs at ¢, = 70°(= = — 6,). Figure 9 shows
the backscattering RCS as a function of the ground elevation angle 6, where
0; = 135°, ¢; = 180° and ¢, = 0° and 180°. The regions in the positive and the
negative §, represent the ascending and the descending sides of a mountain
respectively. In this case no cross-polarized signal is generated because the
cylinder is in the principal plane (X-Z plane). Note that there are two max-
ima occuring at 8, = 0° and 6, = —22.5°. The first maximum corresponds to
the dihedral-like ground -trunk interaction. The second maximum corresponds
to a reflection from the ground plane which illuminates the cylinder at normal
incidence. The backscatter from the cylinder bounce off from the ground plane
and returns toward the radar (see Fig.10). This strong backscatter component
can be observed where lAci, ng and ZC are in the same plane and 6; = 26, + 7 /2.

8 Conclusions

An efficient and realistic electromagnetic scattering model for a tree trunk
above a ground plane is presented in this paper. The trunk is modeled as a
finite-length stratified dielectric cylinder with a corrugated bark layer. The
ground is considered to be a smooth homogeneous dielectric with an arbitrary
slope. An asymptotic solution based on the PO approximation for high fre-
quencies is derived. This solution provides a fast algorithm with excellent
accuracy when the radii of tree trunks are large compared to the wavelength.
The effect of the bark layer is also taken into account by simply replacing the
bark layer with an anisotropic layer. It is shown that the corrugated layer acts
as an impedance transformer which may significantly decrease the backscatter-
ing RCS. The RCS reduction depends on the corrugation parameters. It is also
shown that for a tilted ground plane a significant cross-polarized backscattered
signal is generated while the co-polarized backscattered signal is reduced.
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Figure 1: Global coordinate system
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Figure 2: A corrugated layer and its equivalent anisotropic layer.
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Figure 3: Comparison of the PO approximation with the semi-exact solution.
The ratio of the interior radius a; and the exterior radius a;(= a) is kept
constant (az/a; = 0.9). Other parameters are : b = 20\, ¢6; = 4 + il,¢e; =
€g =10 +15,0; = 120°, ¢; = 180°,0, = 60°, ¢, = 0°,6, = 6, = 0°.
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Figure 4: The normalized backscattering RCS as a function of the incidence
angle § = 7 — 0; for a two layered cylinder with and without the corrugation.
Other parameters are : b = 20)\g,a; = 2Xg,a; = 1.8\t = 0.1, d/L =

0.7, ¢; = 180°, ¢, = 0°,0, = 0, = (°.
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Figure 5: The normalized bistatic o,, (a) and ok, (b) as a function of the
scattering elevation angle 65 in XZ-plane (6, > 0 when ¢, = 0°;0, < 0 when
¢s = 180°). The backscattered and the specular directions are shown at 8, =
60° and 6, = —60° respectively. Other parameters are : 6; = 120°,¢; =
180°,8, = 6. = 0°,b = 10Xg, a; = 2Xg, a2 = 1.8,.
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Figure 7: The normalized backscattering RCS as a function of the incidence
angle 7 — 6; for a two layered cylinder above a tilted ground plane. Other
parameters are : 8, = 20°, ¢, = 90°,0,. = 0°,¢; = 180°, ¢, = 0°,0, = 71— 0;,b =
20/\0,&1 = 2)\0,(12 = 18/\0
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Figure 8: The normalized backscattering RCS as a function of the ground
azimuth angle ¢,. Other parameters are : 0, = 20°,0, = 0°,0; = 135°,¢; =
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Figure 9: The normalized backscattering RCS as a function of the ground
elevation angle 6, (6, > 0 when ¢, = 0%6, < 0 when ¢, = 180°). Other
parameters are : 6; = 135°,¢; = 180°,0, = 45°,¢, = 0°,b = 10Xg,a; =
2/\0,(12 = 18/\0
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Figure 10: The geometry of the scattering configurations for a cylinder over a
tilted ground where a strong backscatter can be observed.

27



Appendix ||

A Monte Carlo Coherent Scattering Model For Forest
Canopies Using Fractal-Generated Trees

21



A Monte Carlo Coherent Scattering Model For
Forest Canopies Using Fractal-Generated Trees
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Radiation Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

ABSTRACT

A coherent scattering model for tree canopies based on a Monte Carlo simulation
of scattering from fractal-generated trees is developed and verified in this paper. In
contrast to incoherent models, the present model calculates the coherent backscatter
from forest canopies composed of realistic tree structures where the relative phase
information from individual scatterers is preserved. Computer generation of tree
architectures faithful to the real stand is achieved by employing fractal concepts
and Lindenmayer systems as well as incorporating the in-situ measured data. The
electromagnetic scattering problem is treated by considering the tree structure as a
cluster of scatterers composed of cylinders (trunks and branches) and disks (leaves)
above an arbitrary tilted plane (ground). Using the single scattering approximation,
the total scattered field is obtained from the coherent addition of the individual
scattering from each scatterer illuminated by a mean field. Foldy’s approximation is
invoked to calculate the mean field within the forest canopy which is modeled as a
multi-layer inhomogeneous medium. Backscatter statistics are acquired via a Monte
Carlo simulation over a large number of realizations. The accuracy of the model is
verified using the measured data acquired by a multi-frequency and multi-polarization
SAR (SIR-C) from a maple stand at many incidence angles. A sensitivity analysis
shows that the ground tilt angle and the tree structure may significantly affect the
polarimetric radar response, especially at lower frequencies.



1 Introduction

Microwave radar remote sensing has been accepted as a viable instrument for mon-
itoring and assessing significant parameters of forest ecosystems such as LAI and
vegetation biomass [1]. Over the past decade much effort has been devoted to the
development of scattering models for vegetation canopies as a step towards retrieving
the forest biophysical parameters from a set of radar measurements [2].

Radiative transfer (RT) theory [3] is the most widely used model for character-
ization of scattering from a forest canopy [4]. When the medium consists of sparse
scatterers that are small compared to the field correlation length within the random
medium, RT theory can accurately predict the second moments of the radar backscat-
ter statistics. However, no information regarding the absolute phase, an important
quantity required for investigating the response of a forest to an interferometric SAR,
can be extracted from a RT model. The other shortcoming of RT theory is its inabil-
ity to account for the coherent effects that may exist between different scatterers or
scattering mechanisms. Recent investigations on scattering behavior of tree canopies
have shown that both backscattering and attenuation are significantly influenced by
tree architecture [5]. Therefore, development of a coherent scattering model that ac-
counts for tree architecture is crucial for the accurate estimation of radar behavior of
forest canopies.

Modeling vegetation using coherent approaches has attained prominence over the
past decades. The distorted Born approximation has been known as one of the
basic approaches used for coherent modeling of vegetation [6], where each scatterer
is illuminated by a mean field and the backscattered fields are added coherently. For
short vegetation Yueh et al. [7] considered the effect of the soybean plant structure
on radar backscatter using a two-scale branching model. Similarly, a coherent model
for cultural grass canopies, where the dimensions of the vegetation particles such as
grass blades and stems are comparable to the medium height dimension, has also been
developed [8]. It was shown that at low microwave frequencies the relative positions
of scatterers and plants with respect to each other affect the polarimetric backscatter
response of vegetation canopies. In these models the structure of the vegetation is
considered from a statistical point of view and therefore only the second moments of
the scattered fields are provided, that is, the absolute phase information is lost.

Further investigations have explored the coherent scattering from a 3-D tree struc-
ture. In [9] the radar backscatter was simulated for various deciduous tree types using
fractal theory [10] for the tree structure. In a more recent paper [11] Lindenmayer Sys-
tems (L-systems) [12], useful tools for implementation of fractal patterns or structures,
were employed to develop simple 3-D tree structures of the order of few wavelengths
to examine the importance of coherent and multiple scattering. A straightforward
approach in constructing the tree structure was carried out in [13] where an accurate
description of particle positions was characterized for a red pine tree using surveying
tools. In this model the tree structure is divided into cylinders whose backscattered
fields are added coherently via the distorted Born approximation.

The purpose of this paper is to develop and validate a comprehensive coherent
scattering model for forest canopies, which can account for the coherent effect due to



the tree structure and provide information about the absolute phase of the backscat-
tered field. The proposed model is comprised of three major components: (1) accu-
rate generation of tree structures based on few physical parameters, (2) evaluation
of scattered fields, and (3) Monte Carlo simulation. In the tree structure modeling,
fractal-based L-systems are employed to construct a realistic tree structure incorpo-
rating the ground truth data of the desired stand. As will be shown, the spatial and
angular distribution of branches strongly influences the behavior of radar backscatter,
indicating the importance of the tree-generating code in constructing the fine features
of tree structures. In the scattering model, individual tree components located above
a tilted dielectric plane are illuminated by the mean field, and the scattered fields are
computed and then added coherently. The branches and tree trunks are modeled by
stratified dielectric cylinders and leaves are modeled by dielectric disks and needles
of arbitrary cross sections. The mean field at a given point within the tree structure,
which accounts for the phase change and the attenuation due to the scattering and
absorption losses of vegetation particles, is calculated using Foldy’s approximation [3].
Finally, a Monte Carlo simulation is performed on a large number of fractal generated
trees to characterize the statistics of the backscattered signals. Another feature of the
proposed coherent model is its capability in accounting for the effect of a nonuniform
extinction profile within a forest canopy. The accuracy of the model is compared
with the backscatter measurements acquired by SIR-C from a forest test site in Raco,
Michigan.

In what follows, we first describe the procedure for generation of tree structures
using stochastic L-systems. Next the construction of the coherent scattering model
and the Monte Carlo simulation is explained. Then, the validity of the model is exam-
ined against L- and C-band backscatter measurements of a well characterized forest
stand. A sensitivity study is also carried out to examine the degree of dependency of
polarimetric backscatter on forest parameters.

2 Fractal Model for Generation of Tree Structures

2.1 Fractal Theory and Lindenmayer Systems

Tree structures in nature are complex and their mathematical description seems to re-
quire a large number of independent parameters. Contrary to this observation, it has
been shown that geometrical features of most botanical structures can be explained
using fractal theory where only a few parameters are required to specify the vegetation
structure. The mathematical concept of fractals was originated by Mandelbrot [10] in
the early seventies. Currently fractal theory is the most popular mathematical model
used for relating natural structures to abstract geometries. Mandelbrot defined a
fractal as a set whose Hausdorff-Besicovitch dimension strictly exceeded the topo-
logical dimension. In other words, the notion of fractal is defined only in the limit.
However, in order to apply the fractal concept to practical problems, a finite curve is
usually considered as an approximation of an infinite fractal so long as the significant
properties of both are closely related. A distinctive feature of a finite fractal is the



self-similarity which is kept through the derivation process.

To implement fractal theory. L-svstems have been well-known tools for the con-
struction of fractal patterns or structures where the self-similarityis preserved through
a so-called rewriting process [12]. L-systems were originally proposed by Linden-
mayer [14], who applied it to the development of lower forms of plant life, such as
red algae. L-systems, also called developmental systems, have since been applied in
many fields, including formal language theory and biomathematics. The features of
L-systems consist of the structural grammar rules and recursive processes which can
easily be implemented by modern computers.

In L-systems, a tree structure G is specified by three components: (1) a set of edge
labels V, (2) an initiator w, called aziom, with labels from V', and (3) a set of tree
growth productions P. In compact notation this tree-growing process is symbolized
by G =< V,w, P >. Given a tree structure G, a tree T, is directly derived from a
tree T (Ty = T3) if T, is obtained from T; by simultaneously replacing each edge in
T; by its successor according to the production set P. A tree T is generated by G
in a derivation of length n if there exists a sequence of trees Ty, Ty, ..., T,, such that
To=w,and To = Ty = ... = T, = T. Figure 1 shows an example of a simple two-
dimensional fractal tree of length 4, where the self-similarity can be easily observed
through each successive process.

2.2 Botanical Modeling

In order to simulate realistic tree structures, botanical properties must be incorpo-
rated into the tree generation. In this section, several botanical features such as
branch dimension rules, leaf attachment, and tree type development are described.

The cross section and the length of younger branches decrease as the branching
process progresses. At a node where a branch splits into two or more branches, a
common practice for determining the relationship between the radius of the originat-
ing branch (r,) and the radius of the younger branches (r, and r.) is the application
of the conservation law of the cross sectional area, given by:

e = Tyt (1)

The relationship between the radius of the new branches (i.e. r, and r.) is specific to
the tree type, and should be specified according to the ground truth measurements.
Another parameter to be specified is the relationship between the length of the new
and old branches ([, and [;, respectively). Defining g as the growth rate parameter,
we have

lb = la/g- (2)

For a three-dimensional branching structure, two branching angles, the tilt angle ¢
and rotation angle ¢, must be specified to characterize the relationship between the
orientation of the new and the old branches.

Most leaves are attached to the end of the final branches noting that the term leaf
here refers to a general composite leaf which may be comprised of many leaflets. The
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number of leaves surrounding a branch is a function of many factors including the
tree species, tree density, and the local environment. The tree generation algorithm
developed in this paper allows the user to specify the number of leaves per final
branch as well as a local orientation distribution for the leaves. The orientation of
a leaf, defined by the unit normal to the leaf surface, is mostly characterized by
the associated position and orientation of the end branch with respect to the global
coordinate system. However some relatively narrow distribution function is added to
allow for natural variations of leaf orientations.

Based on the architectural characteristics, tree structures can be categorized into
three primary classes: columnar, decurrent, and excurrent, which may be represented
by coconut, maple, and pine trees respectively [15]. In the majority of deciduous
trees, the lateral branches grow as fast as, or faster than, the terminal shoot, giving
rise to the deliquescent growth habit where the central stem eventually disappears
from repeated forking to form a large spreading crown. This branching pattern is
termed decurrent. On the other hand, most coniferous species belong to the excurrent
class, where the main stem outgrows the lateral branches giving rise to cone-shaped
crowns and a clearly defined bole. In this study, a library of typical tree structures is
constructed that can easily be fine-tuned to simulate the desired tree stands. Figure
2 shows two fractal trees of decurrent and excurrent types generated by the developed
tree-generating algorithms of this study.

2.3 Computer Implementation

The computer work in the development of the tree structure consists of three main
components: the encoding, decoding, and visualization. In L-systems, the encoding
is accomplished by iterating the labels with prescribed productions and length. A
long label string, like DNA in biology, is obtained at the end of the processes, holding
embedded information about the tree structure. Then this long label string is decoded
(or translated) into a tree structure through a so called turtle graph interpreter [12].
Numerical calculation is performed in this stage to quantify the geometries of the
entire tree structure.

Once the fractal tree is created, the tree data file usually contains a large number
of tree components and it is difficult to examine the accuracy by manual inspection of
the numerical data. Visual inspection of the tree image is a better way at this point.
In addition, real-time visualization of the tree structure during the developing stage
can also assist the user in learning the sensitivity of the fractal parameters to the tree
structure. In this study, a visualization program is developed using the PostScript
language where real-time display and printout can be easily performed without any
extra software. This program is capable of projecting a 3-D fractal tree structure into
a 2-D image with the functions of arbitrary scaling and perspective view. The red
pine shown in Figure 2(b) is viewed at 20° measured from the horizontal plane.



3 Coherent Scattering from Forest Canopies

In this section, a coherent scattering model is developed to calculate the polarimetric
radar response of the fractal-generated trees. Once a tree is created. it is treated as a
cluster of scatterers composed of cylinders (trunks and branches) and disks (leaves)
with specific position, orientation, and geometric shape and size, as shown in Figure
3. It is assumed that the entire tree is illuminated by a plane wave, whose direction
of propagation is denoted by a unit vector £; and is given by

E'(r) = Ei¢itk, (3)

The scattered field in the far zone is next calculated for individual trees. Since the
uncertainty in the relative position of trees with respect to each other is usually of
the order of many wavelengths, the total scattered power can simply be determined
by the incoherent addition of scattered power from individual trees. To the first order
of approximation, the scattering from a tree is approximated by the superposition of
the scattered field from each scatterer within the tree structure. Hence, neglecting
the effect of multiple scattering among the scatterers, the total scattered field from a
single tree can be evaluated from

ikt N '
> €S, Ei, (4)

r n=1

E’ =

where N is the total number of the scatterers within a tree structure, S, is the
scattering matrix of the n-th scatterer above a dielectric plane and ¢, is a phase
compensation term accounting for the shift of the phase reference from the local
coordinate system of the n-th scatterer to the global coordinate phase reference.
Denoting the position of the n-th scatterer in the global coordinate system by ry, ¢,
is given by o

¢n = (ki — ks) - ra, (5)
where k, is the unit vector representing the propagation direction of the scattered
field.

In order to compute the local scattering matrix S, let us consider a single scatterer
above a dielectric plane, as shown in Figure 4. Neglecting the multiple scattering
between the scatterer and its mirror image, each scatterer mainly contributes four
scattering components, denoted by: (1) direct scattering denoted by S¢, (2) ground-
scatterer scattering denoted by S!¥, (3) scatterer-ground scattering denoted by S¢!,
and (4) ground-scatterer-ground scattering denoted by S9%, as shown in Figure 4.

n I
The scattering matrix S, in terms of its components can be written as

Sn =S + 82 + 8! + 89, (6)
where
St = 8%k, k), (7)
ng = eiTsR ];737];93) ) Sg('\gs’]‘;')’ (8)
S:Lg = eiTng(’;:s, I}gi) . R(]%gj, I;?,'), (9)
S-Ztg = ei(T‘+T’)R(1}s, i;?gs) . Sg(l;gs’ ];gi) : R(]}gia ];i)a (10)



and

i = k=20, (R - ki), (11)
hgs = ky —20,(Ry - k), (12)
n o= —Qko(rn-fzg)(“g-ic,-). (13)
75 = 2ko(rn - ng)(ftg - ks). (14)

In the expressions given by (7)-(10), S is the bistatic scattering matrix of the n-th
scatterer in free space. The direction of incidence and scattering are denoted by unit
vectors in the argument of S%. In the above expressions, 7, is the unit vector normal
to the tilted ground surface. The phase terms 7; and 7, account for the extra path
lengths of the image excitation and the image scattered waves respectively. R is the
reflection matrix of the dielectric plane whose elements are derived in terms of the
Fresnel reflection coefficients and the polarization transformation due to the ground
tilt angle. The explicit expressions of the reflection matrix of a tilted dielectric plane
(R) with an arbitrary slope and the expressions for the bistatic scattering matrices
(S%) of large scatterers like trunks and primary branches are given in [16], where
the semi-exact solution together with the physical optics approximation are derived
for the calculation of scattering from a stratified dielectric cylinder above a tilted
dielectric plane. The formulae for the scattering matrices of small scatterers like
twigs and leaves are constructed based on the expressions given in [17,18].

The above analysis is not quite complete since in the calculation of scattering from
the n-th scatterer the other scatterers are assumed to be transparent. The second
or higher-order analysis, which takes into account the multiple scattering among the
tree structures, is fairly complicated and is beyond the scope of this paper. However,
the effect of attenuation and phase change of the coherent wave propagating in the
random media can be readily modeled by calculating the mean field within the random
medium.

Consider a coherent radar wave propagating in a statistically uniform random
medium. Based on Foldy’s approximation (3], the variation of the mean field E with
respect to the distance s along the direction k is generally governed by

dE
o =1K-E, (15)
where
_ kO + Mvv Muh
K= My, ko4 My (16)
and 5
My = =1 < 83y, ) > (17)

Here k, is the wave number of free space; no is the volume density of the scatterer;
and < S'gq(k, k) > is the ensemble average of the forward scattering matrix, (p and ¢
can be v or h). Using the standard eigen-analysis, the differential equation (15) can
easily be solved and the solution is given by

E(s) = e*°T(s,k) - E°, (18)
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where E° is the field at s = 0 and T is the transmissivity matrix accounting for the
extinction due to scattering and absorption. In most natural structures. azimuthal
symmetry can be assumed where M,;, = M,, = 0 and the transmissivity matrix is

reduced to "
61.' vvS 0
T= l: 0 eiMh;,s jl : (19)

Note that the transmissivity matrix defined in (18) excludes the phase terms due
to free space path lengths, and merely accounts for the perturbation in propagation
caused by the vegetation.

To include the effect of wave extinction in the scattering model, consider a situa-
tion when the entire tree structure is embedded in an effective medium with an effec-
tive propagation constant given by (16). Under the aforementioned approximations
the expressions for the components of the n-th scattering matrix in the backscatter
direction should be modified as follows:

S, = T, -S0(—ki k)T, (20)
S#' = €™T-R-T. - SO(—h, ki) T¢, (21)
SY = &™T,-S)(~k,k) T, -R-T, (22)
S¢'s = 2nTH.R.T7-S(=k, k) -T" -R- T, (23)
with
iﬁr = I;i—Qﬁg(ﬁg'ici)v (24)
T = 2ho(ra - ig)(ig - ) (25)

where T%, T, and T! are the transmissivity matrices, respectively, for the direct,
reflected, and total traveling path as shown in Figure 5. In the derivation of (20)- (23)
the reciprocal property of wave propagation, is employed, i.e., T(s, k) T(s, —k),
which results in the expected reciprocal scattering relation Sﬁt = (St8)~'. Here the
superscript (-)~* denotes the operation of matrix transposition followed by negation of
the cross-polarized elements in order to be consistent with the the forward scattering
alignment convention [1].

Distributions of vegetation particle type and size is non-uniform along the verti-
cal extent of most forest stands unlike what has been assumed in the aforementioned
existing scattering models mostly for the lack of knowledge of such distributions. In
the proposed model where the exact description of particle distributions are avail-
able, propagation and scattering of the mean field within the forest medium can be
characterized rather accurately. To account for the vertical inhomogeneity, consider
an M-layered random media above a tilted ground surface illuminated by a plane
wave. Each layer, with thickness d,(m = 1,2,..., M), is assumed to be parallel to
the ground surface. It is also assumed that the boundaries between the layers are
diffuse where no reflection or refraction can take place. Suppose the n-th scatterer is
located in the m-th layer, then the objective is to calculate the transmissivity matrices

T, T, and T



In the backscatter case, only the incident directions i/l‘,— and the reflected direc-
tions j:ic, are of interest. Therefore for each scatterer the forward scattering matrix
should be calculated for both k; and &, directions. Then for each layer (say the m-th
layer), the layered transmissivity matrix is computed by

0 Mol mLm 0 |
T/ (L) = l: 0 ew;,ﬁ,'_mLm ] (26)
where L., = dy /(R - k.) is the path length, and
ilr 271'Dt am
Mn/z = l»()d ZS 1/ra 1/r (2()

is the effective propagation constant for the m-th layer. In the above expression D,
is the tree density (number/m?) and N, is the number of particles of a single tree in
the m-th layer. The final expressions for the transmissivity matrices can be written
as

T' = T5(La)Ty(La). Tyl L), (28)
T = T (L) T (L) Tis(Line), (29)
T, = T(Ln)Thi(Lno1)--Ti(L1), (30)

where L and LT  are the path length from the n-th scatter to the top and bottom
of the m- th layer boundary along the k; and k, directions, respectively, as shown in
Figure 5. These distances are given by L' = (Hp — Iy - #,)/ (g - k) and L7, =
(rn -1y — Hpoy)/(7g - k,) where H, = Z}C’;l dy represents the height of the upper
interface of the m-th layer.

For distributed targets, the radar backscattering coefficients and phase difference
statistics, instead of the scattering matrix, are usually the quantities of interest. These
quantities can be derived from the second moments of the backscattered field compo-
nents [19]. The statistics of the scattered field are approximated from a Monte Carlo
simulation where a large number of tree structures are generated using stochastic
L-systems and then the scattering matrix of all generated trees are computed. Com-
putation of the scattering matrices is accomplished in the following manner. First
the canopy height is discretized into M layers and the extinction coefficient of each
layer and the integrated transmissivity matrices are computed as outlined previously.
Then these quantities are used in (20)-(23) for calculating the scattering matrix of
individual trees.

The computation involved in the calculation of the scattering matrices of indi-
vidual leaves for many trees is too excessive to be carried out even with the fastest
available computers. To solve this problem, the 47 solid angle covering the entire
vector space representing the orientation direction of a leaf is discretized into a finite
number and a look-up table for scattering matrices of a leaf oriented along all the
discrete directions is generated for the three principal backscattering (S2(- ki, k,) and
SO(—k,,k,)) , forward scattering (S(k;,k;) and S°(k,,k,)), and bistatic scattering
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(SS(—IACT.IA;{) and Sg(—ic,'.ic,)) directions. The number of discrete orientation direc-
tions is determined from the ratio of a typical leaf dimension to the wavelength (a /).
According to this scheme the number of the discrete points should increase with in-
creasing a/A. A similar scheme may be used for branches, however, we found that
this may unnecessarily increase the CPU time due to a large variability in diameter
and length of the branches.

In order to calculate the desired backscatter statistics, the differential covari-
ance matrix of the backscattered field must be evaluated. As described earlier, the
backscattered fields of adjacent trees in a forest are uncorrelated at microwave fre-
quencies and above. Therefore the backscattered power from individual trees can be
added and the covariance matrix elements are proportional to the tree density D, and
are given by

‘l/O

pgst — D, < SpqS;t >, (31)
where p,q,s,t € {v,h}. According to this definition for the differential covariance
matrix, the backscattering coefficient can be obtained from

op, = 4TW) (32)

Pqpq’

4 Model Verification

In this section, the accuracy and validity of the developed model is examined using a
set of measured data acquired by the Space-shuttle Imaging Radar-C/X-Band Syn-
thetic Aperture Radar (SIR-C/X-SAR). The collected ground truth and the radar
parameters, such as frequency and incidence angle, are used as model input. In
this section we also present some examples to demonstrate the sensitivity of radar
backscatter to some important forest parameters.

4.1 SIR-C/X-SAR

The SIR-C/X-SAR radar system [22] was flown aboard the shuttle Endeavor in the
spring (SRL-1) and fall (SRL-2) of 1994. This mission was the first of its kind where a
beam-steerable, multi-frequency, and multi-polarization space-borne synthetic aper-
ture radar was deployed. The SIR-C/X-SAR system operated at L- (1.25 GHz), C-
(5.3 GHz), and X-band (9.6 GHz). The L- and C-band SARs were configured to
collect polarimetric data whereas the X-band SAR was a single channel radar and
collected the backscatter data at vv polarization. The look angle of the system was
varied from 15° to 60°. In this study, the polarimetric SIR-C data (L- and C-band)
during the SRL-2 is selected for comparison with the results predicted by the model
developed in this paper.

4.2 Ground Truth

Raco, located in the eastern part of Michigan’s Upper Peninsula, was designated by
NASA as a calibration and ecological Supersite and has been a test site for our radar
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Tree Density : 1700/Hectare

Tree Height : 16.8 m
Trunk Diameter (DBH) : 14 em
Leaf Density : 382 #/m?
Leaf Area : 50 cm?/#
Leaf Thickness : 0.2 mm
Leaf Moisture (my) : 0.51
Wood Moisture (m,) : 0.60

Soil Moisture (m,,) : 0.18

Table 1: Ground Truth of Stand 31

L-band C-band

Leaf 17.9 4 6.0 | 14.7 + 4.7
Wood | 32.1 + ¢10.0 | 27.7 + 84
Soil 9.7 4+ 1:1.6 | 9.4+ 1.5

Table 2: Dielectric properties of Stand 31

remote sensing activities since 1991 [20,21]. Great efforts have been devoted towards
characterizing ground inventories and the site has been imaged by ERS-1, JERS-
1, SIR-C/X-SAR, and JPL AIRSAR. The main research objective at this site has
been relating the measured SAR backscatter data to the forest ecological/biophysical
parameters, which are essential input parameters for the ecological models used for
the study of land and atmosphere processes.

The Raco Supersite contains most boreal forest species and many of the temperate
species. The SIR-C/X-SAR overflight occurred in the fall, a time of some seasonal
change where trees begin to dry and the deciduous leaves begin to undergo their
fall color change. During the SIR-C overflight (October 1994), the leaves were still
predominantly green. Color change happened towards the end of the mission.

In this study, a deciduous forest stand, denoted in the existing report [20] as Stand
31, is selected as a test stand. This stand consists of a large number of red maple as
well as a few sugar maple, uniformly covering an area about 300 m by 300 m on flat
terrain. The ground truth of this stand has been collected since 1991, and a summary
of its pertinent parameters is reported in Table 1. The vegetation and soil dielectric
constants during the SIR-C overflights are reported in Table 2, and are derived from
the measured moisture values using the empirical models described in [23,24].

4.3 Simulation Results

The first step in obtaining the model prediction is to generate fractal trees faith-
ful to the real tree structure of the desired forest stand. There are two phases for
determining the input parameters for the tree generating code. The first phase is
to characterize the coarse parameters such as the branching nature of the trees, the
growth factors, and the finite fractal order. In the second phase, some of the fine input
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parameters. such as the branch tilt angle and its distribution, are slightly tuned in
order to minimize the difference between the simulated and measured backscattering
coefficients ¢°. In general accomplishing the second phase is much more difficult than
the first phase because there is no apparent rule for adjusting the parameters. To
establish a set of rules of thumb for fine-tuning the parameters of tree structures,
we performed a sensitivity analysis. The gradient of the desired radar backscatter
parameters with respect to the desired tree structure parameters was determined and
used for determining the fine tuning procedure. In this procedure, we allowed the fine
tree parameters to be adjusted to within 10% of the measured ground truth param-
eter to account for the uncertainty in the ground truth measurements. It is assumed
that the model (including tree generation and coherent scattering) is verified if the
simulation results can simultaneously match the polarimetric SIR-C data for both
frequencies and different incidence angles.

Figure 6 shows a photo of Stand 31 (taken in April, 1994), the fractal tree structure
generated by the model, and its corresponding extinction coefficient (imaginary part
of M, in (17)) profile. It is noted that the wave attenuation at C-band is much greater
than L-band, and the extinction coefficient for vertical polarization is slightly greater
than that for horizontal polarization at both frequencies. This extinction coefficient
profile is shaped according to the tree architecture and composition, which plays an
important role in radar backscatter parameters including the position of the scattering
phase center [25]. In this example, the entire tree canopy is divided into eleven layers,
and the extinction coefficient is calculated as described in the previous section. It
should be pointed out that the number of layers can be determined by imposing a
step discontinuity threshold. Basically the algorithm starts with a moderate number
of layers, calculates the extinction coefficient for each layer, and examines the step
discontinuity. If the discontinuity between any two layers is larger than the prescribed
threshold, these layers are divided into finer layers.

In performing Monte Carlo simulations, one should be careful of the convergence
properties of the simulation. In all simulation results reported in this paper conver-
gence was achieved to within +0.5 dB of the estimated mean values for less than 100
tree realizations. Figures 7(a) and 7(b) show, respectively, the convergence behavior
of the backscattering coefficients at L- and C-band for forest Stand 31.

Figure 8 shows the comparison between the model prediction and the measured
backscattering coefficients for three consecutive SIR-C overflights as a function of
incidence angle at L- and C-band respectively. It is shown that an excellent agreement
is achieved for all incidence angles and polarizations except for the C-band cross-
polarized backscattering coefficient. The lack of accuracy for this polarization can be
attributed to the effect of multiple scattering between branches or branches and leaves
in the canopy crown. It shows that the measured C-band data is consistently higher
than the simulated results by 1.3 dB which can be attributed to the overestimation
of radiometric calibration constants. The computation time for each incidence angle
point is about 35 minutes at L-band and 65 minutes at C-band on a Sun Sparc 20
workstation.

As mentioned in section 3, the total backscatter is comprised of different scat-
tering components. Simulation results show that in all cases except for L-band hh
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polarization the backscattering coefficients are dominated by the direct backscatter
component (¢?). The hh-polarized backscattering coefficient o7, at L-band, depend-
ing on the incidence angle, is mostly dominated by the direct backscatter or the
ground bounce term (oy,). The double ground bounce component (oy,,) is negligi-
ble for all cases because of the low transmissivity for this canopy (see Figure 12 for
LAI=12). Figure 9 shows the scattering components of ¢f, as a function of incidence
angle. The analysis for characterizing the contribution of each scattering component
is essential in determining the position of the scattering phase center of the forest.

It is also important to examine the effect of the inhomogeneity of the extinction
profile (see Figure 6(d) on the backscattering coefficient. Figure 10 compares the
co-polarized backscattering coefficients of Stand 31 where the forest is both modeled
by a 2-layer medium and by an 11-layer medium. In the 2-layer model the tree
canopy is composed of a trunk layer extending from 0-3 m and a crown layer which
extends from 5-17 m. It can be observed that the 2-layer model overestimates the
backscatter at lower incidence angles and underestimates at higher incidence angles.
The discrepancy in this example is as high as 2.5 dB, and can be even higher for
stands with higher leaf density. It is also found that the discrepancy increases with
increasing frequency. For example, the discrepancy at L-band is only less than 0.3
dB. It should be mentioned that the CPU time for calculation of the backscattering
coefficient for a 2-layer and an 11-layer forest is almost the same, because the mean
field profile of the canopy is calculated before the Monte Carlo simulation is carried
out.

The statistical behavior of the backscatter can also be obtained from the present
model. Through the Monte Carlo simulations the desired histograms can be con-
structed by recording the backscatter results for each realization. Figure 11 shows
the estimated probability density function (pdf) of backscattering coefficients in dB
at incidence angle 43.6°. The pdf can provide additional information about the dis-
tributed target if the backscatter statistics are non-Gaussian. For instance, although
the mean values of o}, and ¢?, at L-band are nearly identical, their pdfs are somewhat
different from each other.

The transmissivity is another quantity with which to characterize a stand. Based
on the extinction profile of the forest canopies, the transmissivity can be computed
by integrating the attenuation of each layer. In Figure 12, the one-way transmissivity
(from top to bottom) is calculated as a function of leaf area index (LAI), defined as
the total leaf area (single side) per unit area of forest. It is shown that the horizontally
polarized wave can more easily penetrate the canopies than the vertically polarized
wave. This phenomenon results from the fact that the tree trunk and branches are
oriented mostly along the vertical direction.

To demonstrate the effect of tree structures on the radar backscatter, two examples
are considered in this study. In the first ex