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HF-UHF Propagation Prediction Over Rough Terrain

Abstract

In this final report a summary of our activities with regard to HF-UHF propagation pre-
diction over rough terrain is provided. Our research activities in the HF-UHF Propagation
Prediction can be categorized into three categories: (1) development of a theoretical method
to predict the field propagation from a small dipole over a half-space dielectric, (2) Numerical
Wavelet-based Method of Moments approach to predict the scattering from random rough
surfaces , and (3) Numerical Iterative Physical Optics technique to predict the scattering
from random rough surfaces that have low to moderate rms slopes.

The accurate prediction of radio wave coverage at HF-UHF frequencies over irregular
terrain features is of importance in the design and development of low-cost, low power
communications system. The terrain effects consist of multipath, diffraction, scattering
and depolarization of the electromagnetic wave. Current methods of prediction are overly
simplistic and tend to neglect phenomena which have a significant effect on radio wave
propagation modeling. We investigated a number of techniques in order to predict accurately
the propagation over rough terrain in the HF-UHF range.

1 Introduction

With the rapid expansion of technology for mobile and wireless systems an accurate
method for prediction of radio wave propagation in various environments has become essen-
tial in the design and development of efficient, low-cost, low-power communications systems
which can operate in these rapidly varying environments. A problem of particular interest is
the prediction of High Frequency, Ultra High Frequency (HF, UHF) radio wave propagation
over irregular terrain, where there may be no line of sight (LOS) path and the received signal
may consist of components of multipath, diffraction, scattering, and depolarization effects
from various, and usually numerous terrain features. Realistically all terrain effects cannot
be accounted for, either statistically or deterministically, with the current level of computer
technology, however assumptions can be made which produce a computational model of
realistic size while maintaining an acceptable degree of accuracy.

Several methods are currently used in propagation prediction over irregular terrain. These
consist of heuristic models, based on measurements, and electromagnetic models. The irreg-
ular terrain models can be broken down into two types, those that predict scattering from
small-scale roughness, i.e., surfaces whose irregularities are small compared to electrical
wavelength, and those that predict scattering and diffraction from large scale irregularities
such as mountains or hills. The heuristic models are limited to very specific physical condi-
tions at the time the measurement was made and the measurement system attributes such
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as frequency, bandwidth, and polarization. Moreover the cost and time to perform these
measurements is prohibitive. Current electromagnetic models assume the propagation be-
tween transmitter and receiver is limited to a very narrow Fresnel zone and the problem can
be reduced to a 2-D problem, in a plane between transmitter and receiver. of propagation
over intervening obstacles. Effects of surface roughness are handled in a strictly empirical
manner. One of the more widely used models, applied to large scale irregularities. assumes
all obstacles consist of knife edges, essentially a screen between transmitter and receiver and
Physical Optics (PO) diffraction methods are applied. [4] This method is referred to in the
literature as the knife edge diffraction model. While this method is simple to implement
and computationally fast, PO methods are accurate only at high frequencies, in the very far
zone of the obstacle, and are invalid in or near the shadow boundary and near the surface of
the obstacle which obviously does not reflect many realistic scenarios. Other high-frequency
techniques have also been applied such as Geometrical Theory of Diffraction (GTD) for
wedge diffraction, but these techniques tend to be cumbersome for many obstacles.

Due to the limitations of both heuristic and PO models more rigorous electromagnetic
models have been investigated in recent year. Several methods have been proposed for
modeling of large terrain features, including parabolic equation techniques which assume
cylindrical wave scattering [5], and integral equation (IE) techniques [6] [7]. IE techniques
have been an area of major research in electromagnetics in recent years. An integral equa-
tion is formulated by enforcing boundary conditions on the surface of the scattering object.
The unknown quantities in the IE are the surface currents. These are solved for either by
numerical or iterative techniques. This method accounts for all electromagnetic phenomena
and interactions and is accurate to the degree of accuracy of the solution technique. When
a numerical solution is sought, this technique is limited by the electrical size of the problem.
While advances in computer technology have made the solution of larger problems possible
when using this technique, the size of radio wave propagation problems is still prohibitive
if all electromagnetic interactions are to be accounted for. With this in mind, techniques
are sought using IE methods to reduce the size of the radio wave propagation problem to
a manageable size while maintaining an acceptable degree of accuracy. Two techniques to
achieve this for large scale irregularities are proposed, a numerical technique using a MoM
approach with wavelet basis functions, and an Iterative PO approach. In addition a theoreti-
cal technique is proposed, using a perturbation method, to predict scattering and diffraction
from a surface with small scale irregularities when both transmitter and receiver are near
the surface.

A widely used numerical technique to solve IE equations is the Method of Moments
(MoM) technique. This technique expands the unknown surface currents, the expansion
consisting of basis functions with unknown coefficients. The expansion can be over the entire
domain of the scattering object or discrete sub-domains, where the scatterer is subdivided.
These sub-domains are at most 1/10X in size to produced the required degree of accuracy,
where A is the wavelength. The most widely used is the sub-domain method. Weighting
functions are applied to reduce the average residual error. Direct application of MoM pro-
duces matrices of order N? and number of computations of order N3, where N is the number
of unknowns in the matrix formulation. Both the order of the matrix size and number of
computations are unacceptable for a problem the size of the radio wave propagation problem.
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Current research is directed towards reducing the problem size while maintaining accuracy
using both acceptable approximations and computational techniques.

Several methods have been proposed to achieve the goal of reducing the MoM problem
size in the area of radio wave propagation over hilly terrain. As stated previously most meth-
ods assume a 2-D problem, calculating propagation loss along a 2-D path. and all methods
cited assume this unless otherwise noted. Hviid et.al [6] proposes a method which is valid
for vertical polarization only. In this method the IE is formulated using the Magnetic Field
Integral Equation (MFIE) and solves for magnetic currents on the surface of the scatterer.
It assumes a smooth, perfectly reflecting smooth surface and to simplify the problem does
not account for backscatter. Brennan et.al, [7] extends this method by applying the Fast Far
Field Approximation (FAFFA), proposed by Chew et.al. [8] to reduce the computational
requirements of the problem. In this technique local groups are defined in the problem where
the near field interaction between sub-domains is significant and the IE is fully enforced. It
is then assumed that the distance between groups is far enough to assume plane wave inter-
action between them and the full IE need not be enforced thus reducing the computational
size of the problem. Both methods described have limitations, including smooth surface
assumptions and no backscatter in the first, and in the second the need to define near and
far zone. A method is sought to more fully account for the electromagnetic interactions
while maintaining accuracy and a computationally efficient problem. With this in mind two
techniques are proposed to solve the IE, a numerical method using wavelet basis functions
to reduce the problem size while maintaining the accuracy requirement and an iterative PO
technique, applied to the magnetic field integral equation, which also produces accurate re-
sults while significantly reducing run time. These techniques are valid when the fine details
of the terrain are not significant in the model as is the case at frequencies up to UHF.

The MoM techniques described previously use standard basis functions such as pulse basis
functions and point matching weighting which essentially enforces the MoM formulation
at the center of each sub-domain. Alternative basis functions have been investigated in
recent years which produce acceptable accuracy while significantly reducing the problem
size and runtime. Wavelets are an adaptive basis function which has seen wide application
in recent years in both communications and signal processing and electromagnetic modeling
applications. In recent years it has been shown that the orthogonal properties of the wavelet
basis functions in addition to having vanishing moments produce a sparse MoM matrix
which can be solved using iterative solver techniques such as Conjugate Gradient (CG), thus
creating a significant reduction in problem size and a significant speedup in the run time
of the problem. [9, 10, 11, 12] This method produces accurate results without the need to
define near and far-field domains and produces a full bistatic pattern, while maintaining the
accountability for all electromagnetic interactions inherent in MoM techniques. This method
has recently been applied to the problem of scattering from rough surfaces very successfully.

In the iterative PO technique the MFIE may be enforced repeatedly to obtain the so-
lution, with the previous solution substituted for each successive iteration. The number of
iterations is dependent on the accuracy desired. A significant advantage to the iterative PO
solution is the memory requirements are of order N as opposed to order N? for standard

MoM.
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2 SUMMARY OF ACCOMPLISHMENTS

Because no single method is comprehensive in its results (quick computations. exact. ac-
curate over all ranges of physical parameters. etc.) our techniques have focused on providing
a number of desired qualities including accuracy of results and computational speed. To this
end we have focused on three different techniques: (1) Theoretical results of scattering in
a dielectric medium, (2) semi-exact scattering results from random rough surfaces using a
wavelet-based technique, and (3) fast scattering results using an iterative Physical Optics
approach for random rough surfaces with low to moderate rms slopes. A summary of the
work accomplished in each area is given next.

2.1 Small Dipole Over a Random Rough Dielectric Surface

With recent progress in wireless technology and ever increasing demand for reliable low
power wireless systems, the need for predicting system performance has become an extremely
important step in the design of such systems. At HF through UHF, the channel characteris-
tics such as attenuation, and multipath fading statistics significantly affect the performance
of wireless systems. Prediction of the channel characteristics can be accomplished using
physics based propagation models. For this purpose precise diffraction models are developed
and incorporated with accurate terrain data base to construct a realistic propagation model.

In this study the problem of electromagnetic wave propagation, excited by a short dipole,
above a dielectric ground plane with an arbitrary dielectric profile and an irregular interface
is studied. This investigation is a natural extension of the classical Sommerfeld problem
with the exception of the random surface irregularities at the interface between the two
dielectric media. Assuming that the interface profile height variations are small compared to
the wavelength, the problem is formulated as follows. First, the bistatic scattering of a plane
wave illuminating the rough surface is solved using a perturbation solution of an integral
equation for the induced polarization current. Analytical expressions for the coherent field
(mean-field) and incoherent scattered power at an arbitrary observation point, including
points near the interface, are obtained. Then the solutions for the mean-field and incoherent
scattered power generated by a small dipole of arbitrary orientation and position are derived
by expanding the field of the dipole in terms of a continuous spectrum of plane waves and
using superposition. The effect of rough interface on the surface waves and the phenomenon
of depolarization caused by the rough interface are studied.

In reality, the interface between forest canopies and air is not flat, hence it is not clear
whether the lateral wave can be excited and if it can how the surface roughness affects it. In
this study, the effect of roughness of interface between canopy and air on the wave propaga-
tion in forested area is investigated. Also, an expression for the mean-field of an infinitesimal
dipole of arbitrary orientation is derived by obtaining a partial second order solution of the
Born approximation and a sensitivity analysis is carried out to demonstrate the variations of
the mean-field to physical parameters such as a effective permittivity, location of the dipole
and observation points, and surface roughness. More details may be found in Appendix A.
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2.2 Numerical Approaches 5

2.2 Numerical Approaches
2.2.1 Wavelet-Based Method of Moments Approach

The problem of electromagnetic scattering from rough surfaces has been the subject
of intensive investigation over the past several decades for its application in a number of
important remote sensing problems. Radar remote sensing of the oceans, soil moisture. and
mine detection using wideband radars are such examples. For these problems, where the
rough surface is either the primary target or the clutter, the understanding of interaction of
electromagnetic waves with the rough surface is essential for developing inversion or detection
algorithms. An exact analytical solution for random rough surfaces does not exist.

An alternative approach for evaluating of the scattered field and its statistics for rough
surfaces is Monte Carlo simulation. In order to use Monte Carlo simulation for evaluating
the scattering statistics of rough surfaces more routinely, computationally more efficient scat-
tering codes must be developed. In this paper the application of wavelets as a basis function
for the expansion of induced surface currents is considered. Traditional method of moments
(MoM) in conjunction with Galerkin's method would require matrix fill computation time
of the order of N and matrix inversion computation time of the order of N3 (using Gaus-
sian elimination). It is well known that the solution of linear system of equations can be
obtained far more efficiently using search routines, such as the Conjugate Gradient method,
if the matrix of the coefficients is a sparse matrix. In MoM, the application of conventional
pulse or rooftop basis and testing functions would usually produce full impedance matrices.
Although the diagonal elements are usually larger than the rest of the elements, the smaller
elements cannot be arbitrarily thresholded without drastically altering the resulting scatter-
ing pattern. The success of wavelet expansion function in generating sparse matrices have
been demonstrated for many circuits and antenna problems [9, 10, 11, 12]. In the Monte
Carlo simulation of scattering from rough surfaces the quantities of interest are the statistical
parameters, such as the mean and variance of the scattered field, and therefore it is expected
that the overall accuracy be less sensitive to the threshold level.

A comparative study is carried out to demonstrate the application of wavelets for im-
proving the computation time and reducing computational memory required for evaluating
the statistics of the scattered field from rough surfaces using the method of moments in
conjunction with a Monte Carlo simulation. In specific, Haar and the first-order B-spline
wavelet basis functions are applied to the MoM formulation of two-dimensional rough sur-
faces in order to compare the computation time and sparsity for wavelets in the same family
but of higher order. Since the scattering coefficient (the second moment of the backscatter
field per unit area) is a gentle function of the surface parameters and the radar attributes,
it is demonstrated that a relatively high thresholding level can be applied to the impedance
matrix which leads to a sparser impedance matrix and faster computation time. It is also
shown that applying a high threshold level the coefficients of the high order wavelets would
increase out of proportion, however the effect of these current components averages out when
computing the scattering coefficients.

The resulting sparse impedance matrices are solved efficiently using fast search routines
such as the conjugate gradient method. A systematic study is carried out to investigate the
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2.2 Numerical Approaches 6

effect of different threshold levels on the accuracy versus computing speed criterion. The
computed scattering coefficients are compared to previous results computed using a conven-
tional pulse basis function as well as the existing theoretical solutions for rough surfaces.
It is shown that wavelet basis functions provide substantial reductions in both memory
requirements and computation time. This procedure is further discussed in Appendix B.

2.2.2 Physical Optics Iterative Approach

Development of numerically efficient Monte Carlo-based models for simulations of elec-
tromagnetic scattering from random surfaces has attained significant prominence over the
past decade. A major stumbling block in this endeavor has been the large memory and com-
putation time requirement. This is because the size of the scatter is large compared to the
wavelength and the Monte Carlo simulations demand computation of the scattering problem
many times. Iterative methods offer an alternative approach when exact solutions are not
available and have been used in different electromagnetic problems. By construct evaluation
of iterative solutions are rather straight forward especially when the perturbation parame-
ter is relatively small. Physical Optics (PO) approximation is known to provide accurate
approximation for the induced surface currents provided that the local radii of curvature at
each point on the surface of scatterer is large and the surface is convex. For concave surfaces
and surfaces with many adjacent humps multiple scattering drastically alter the standard
PO current. However these surface current variations can be estimated through an iterative
process. Unlike Method of Moments (MoM) which requires matrices on the order of N? to
find the surface current of the sample surface with N elements, the iterative Physical Optics
method only requires memory size of the order N. Thus, substantial memory savings are
realized. Also, since no solver routine is necessary in order to solve for the surface currents,
as in the MoM, substantial time savings are realized as well.

Iterative methods, such as iterative PO offer an alternative approach when exact solutions
are not available. Evaluation of iterative solutions are rather straight forward especially
when the perturbation parameter is relatively small. PO approximation is known to provide
accurate approximation for the induced surface currents provided that the local radii of
curvature at each point on the surface of the scatter is large and the surface is convex.
For concave surfaces and irregular surfaces with many adjacent obstacles multiple scattering
drastically alter the standard PO current. These surface current variations can be estimated
through an iterative process producing a problem size of order N as previously stated. The
computation time of this problem then becomes of order N which is significantly less than
the MoM technique which is typically of order N2.

The application of iterative Physical Optics (PO) in conjunction with a Monte Carlo
simulation for characterizing the bistatic scattering coefficient of random rough surfaces
is examined. The iterative PO method offers decreased memory and computation time
restrictions compared to the standard numerical methods such as the Method of Moments
(MoM). Results from the iterative PO method are compared to the standard electric field
integral equation (EFIE), the magnetic field integral equation (MFIE) as well as the existing
theoretical solutions for rough surfaces. It is demonstrated that memory requirements and
computation time is significantly decreased, even compared to traditional MoM techniques
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while providing fairly accurate results for surfaces with moderate to low rms slope.

In addition, this technique is extended to the 3-D scattering problem. which is pro-
hibitively large for MoM techniques on all but the largest and most powerful computers.
Good agreement is found to occur between analytical methods and the 3-D iterative Physi-
cal Optics approach. Also, the iterative Physical Optics approach has been further simplified
by using a large argument approximation for the kernel. For these results. even more time
reduction is observed.

We investigated the use of the iterative Physical Optics method upon a variety of surfaces
in order to find the approximate region of validity for such a method. The results obtained
using the iterative PO method are also compared to the results found using the electric field
integral equation (EFIE) with tapered resistive sheets at the ends of the surface samples as
well as the magnetic field integral equation (MFIE) for a horizontally polarized wave. This
procedure is detailed in Appendix C.
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Abstract - The accurate prediction of radio wave coverage at HI-UHF frequencies over
irregular terrain features is of importance in the design and development of low-cost
and low power communications systems. In this paper the problem of electromagnetic
wave propagation, excited by a short dipole, above a dielectric ground plane with an
arbitrary dielectric profile and an irregular interface is studied. This investigation is a
natural extension of the classical Sommerfeld problem with the exception of the random
surface irregularities at the interface between the two dielectric media. Assuming that
the interface profile height variations are small compared to the wavelength, the problem
is formulated as follows. First, the bistatic scattering of a plane wave illuminating the
rough surface is solved using a perturbation solution of an integral equation for the
induced polarization current. Analytical expressions for the coherent field (mean-field)
and incoherent scattered power at an arbitrary observation point, including points near
the interface, are obtained. Then the solutions for the mean-field and incoherent scattered
power generated by a small dipole of arbitrary orientation and position are derived by
expanding the field of the dipole in terms of a continuous spectrum of plane waves
and using superposition. The effect of rough interface on the surface. waves_and the
phenomenon of depolarization caused by the rough interface are studied.



1 Introduction

With the rapid expansion of technology for mobile and wireless systems, an accu-
rate method for prediction of radio wave propagation has become essential in the design
and development of efficient, low-cost, low-power communications systems . In many
communication scenarios where both the transmitter and receiver are near the ground,
shadowing and multipath significantly affect the signal strength and the coherent band-
width at the receiver. This is specifically the case for the propagation over irregular
terrain. Terrain irregularity so far as propagation is concerned can be categorized into
two groups: 1) large-scale roughness, and 2) small-scale roughness. Large-scale terrain
irregularities are generally referred to terrain irregularities large compared to the wave-
length such as mountains and hills. Small-scale terrain irregularities, on the other hand,
refers to surface roughnesses where the rms height and slope are small compared to
the wavelength (at HF-UHF). These affect the wave propagation differently; for exam-
ple, while large-scale terrain irregularities are the sources of shadowing and multipath,
small-scale irregularities reduce the ground reflectivity and produces an incoherent field
component due to surfaces scattering. Small-scale irregularities also affect the surface
waves which are essential when both the transmit and receive antennas are close to the
air-ground interface.

Determination of field of a small dipole over a half-space dielectric is a classical prob-
lem with a well-known solution [1]. It is shown that when both the transmitter and
receiver are near the surface, the contribution from surface waves is dominant. In prac-
tice, the transmit and receive antennas of mobile units are usually very close (relative to
the wavelength) to the ground. Existence of surface roughness may alter the contribution
of surface waves drastically. In this case the azimuthal symmetry of the problem may
no longer be exploited, and the Sommerfeld solution must be modified significantly. The
surface roughness generates incoherent scattered field which is the source of depolariza-
tion.

In this paper, the effect of slightly rough surfaces on the radiation of a short dipole
is studied. In what follows, first, a solution for the scattered field (including the near
field) from a slightly rough surface illuminated by plane waves is formulated in Sections
2 and 3. To investigate the effect of small-scale surface roughness on surface waves,
ground reflectivity, and the significance of the incoherent scatter fields, an analytical
solution based on a perturbation theory is proposed. In this formulation the perturbation
theory is applied to a volumetric integral equation for the induced polarization current
in the top rough layer of the dielectric interface. The perturbation parameter is the
normalized rms height of the rough surface and an iterative solution starting from the
unperturbed problem (dielectric half-space with smooth interface) is obtained. Basically,
the formulation is similar to what has recently been applied to evaluate far-field scattering
from rough surfaces with inhomogeneous profile when illuminated by a plane wave [2].
In Section 4 the solution for dipole excitation is obtained by expanding the radiated



licld of the dipole i terms of a continons spectrum ol plane waves and adding the
solution Tor cach plane wave colicrentlv. Statistical analysis is carried ont analvtically for
characterizing the coherent (mean) and incoherent (lnctiuation) helds. The resnlts are

compared with the Sommerfeld solution and the depolarization eflects are investigated.

2 Polarization Current in a Slightly Rough Surface

As mentioned earlier the first step towards evaluating the ficld generated by an ar-
bitrary dipole above a ground planc with rough interface is to consider the plane wave
illumination. To obtain the scattered field, a perturbation solution to a volumetric inte-
gral equation for the induced polarization current over the top rough layer of the surface
is derived using a procedure similar to what is presented in [2]. Figure 1 shows the geom-
ctry of the scattering problein where a dielectric half-space with an arbitrary dielectric
profile and rough interface is illuminated by a plane wave from the upper medium. Sup-
pose the surface height variation is small compared to the wavelength (A) of the incident
wave. The incident wave with an arbitrary polarization Q can be written as

Ei(f) — Qex'ko£‘~r ,
where ko = Z* is the free space propagation constant, and i is the unit vector along the
direction of propagation, given by
k' = sin 6; cos $i% + sin 0; sin ¢;fj — cos ;3 = k', — 3k} .

To make the solution tractable, the permittivity of the top layer down to a depth of d
is considered to be uniform, where -d < min{surface profile}. Denote the surface height
profile by function z = A f(z,y), where f(z,y) is a zero-mean stationary random process
with a known autocorrelation function and variance 1, and A << X is a small constant
known as the perturbation parameter. In the following derivation, it is assumed that
the medium below the top layer is stratified, that is, the relative permittivity is only a

function of 2.
In the absence of the top homogeneous rough layer, the incident wave would be

reflected at the smooth interface between the free space and the stratified half space soil
medium. This reflected wave can be expressed by

E"(7) = E"(0) ¥ ™ |
where &7 is the direction of propagation of the reflected wave, given by
L T ER S El S

and E"(0) denotes the magnitude and polarization vector of the reflected wave, which

can be obtained from

E"(0) = |r.o,0 + rahhi] - Q



Here r, and r, are the Fresnel reflection coefficients, and the horizontal and vertical unit

vectors are given by

k* x 3
ks x 3|
where the subscript s can be ¢ or r for the incident and reflected waves, respectively.
In presence of the homogeneous rough layer, the incident and reflected waves induce a

polarization current within the top dielectric layer which is the source of the scattered
field. The polarization current in terms of the total field and the permittivity of the layer

1s

h = by = hy x k* (1)

J(r) = —tkoYo(e — 1)E* | (2)
where Y, = ZLO is the characteristic admittance of the free space, and
E'=E'+E +E°.
The scattered field E* can in turn be expressed in terms of the polarization current and

is given by

= 1koZo / G(r,r')- J(r') dv' | (3)
Vistab
where G(r,r’ ) is the dyadic Green’s function of the half-space stratified medium (in the
absence of the top rough layer), and is given by [3]
o(r—r')
kg

G(r,r') = — 5
( { [rhil(kz)e"kﬂ + iz(—kz)e"k”] h(=k,)
; etk (5-7") + [rd(k,)e™= + 0(—k; )e=*7] 13(—k2)}eik‘z', if z < 2
[P - S A
8T kz {h(kz) [Thh(—kz)e'k‘z + h(kz)e"k‘z]
+o(k) [rod(—k; )= + b(k,)e~*=*'] }e”“z, if z > 2/

(4)

In (4 = /k? — k2 = k2, ky = k3 +k,§, and h(%k,) and (+k,) can be obtained
from (1 ) w1th ky = (ko + kyy £ k.2)/ko.
Substituting (3) into (2), the following integral equation for the polarization current
can be obtained:
0o d+Af(z'y')

J( ) = —ikoYo(Ei + E') +k2// / &(r,r)- I d' . (5)




An approxunate solution for the integral equation can be obtained using a pertur-

bation technique. The total polarization current is expanded in terms of a perturbation
series given by
o &)
J(r)=) J.(r)a" (6)
n=0

with the expectation that lim J,(r) = 0. The most inner integral in (5) is expanded into

a power series in terms of A and then a recursive set of equations for J,, are obtained.
These currents are expressed in term of their two-dimensional Fourier transforms defined

by

Ja(r) = (2;)2/d2kl Ja(ky,z)e*+? (7)

After much algebraic manipulation, analytical solution for the induced polarization cur-
rent to any desired order is obtained [2]. The expression for Jo(k, z) is given by

Jo(ky,z) =(27)%6(k, — k') [Joh(z)iz,- + Joo(2)ti + Joz(z)é] ; (8)

L2 k' . A —iki
iy (1) Ok ) [0

2koki ki,
k' (eki + k3,)

. ok . o
e G G Py -

JOh(Z)

Jo(2) = Yo(e — 1) G (), 2) [Q- 3] 4,

JOZ(Z) =

The parameters used in these expressions for the zeroth-order current are given by
; : .k -k T
kl =k _ -20l~ k' = ko si 0‘. 1 lz i z !z
1 = koVe—sin6;, , = kosinb;, R} = k; TH R, —_ck; Y
_ n —- ik“z — —-ikl,z
C":(kp,Z) — ( 1) (Rh Th) + (thh 1)
Ry (Rh - rh) etkizd 4 (thh - 1) —tky:d
B (=1)"(r, = R,) e*1=% ¢ (Ryr, — 1) e7thiz2
Ry (R, —r,) eifisd 4 (R,r, — 1) e=th1ad

As before 7, and r, denotes the Fresnel reflection coefficients of the half-space medium.
If the half space dielectric is homogeneous (r, = Ry and r, = R,), the values of C,’: and
CY are one. The expressions for the first-order currents are similar to those of the zeroth

order, and are given in the Appendix.

)

Ca(k,, 2)

s



3 Evaluation of Scattered Fields

Substituting the expressions for polarization currents into (3), and following a similar
procedure which resulted in (6) of [2], the scattered field to the Nth order in A is obtained:

d

E*(r, k') lkOZO/d?kl{/ G(ky;z,2') - J(ky,2') d2’
0

N-1 n An+1 o™ n+l

: 6"""1.,

0 m=0

where
ék o _i{ S L \Lik2' ] —ik, 2’
( l,z,z)—-2 h(k;) |rnh(—k;)e™** + h(k,)e
+5(k2) [rub(—k)e™ + a(kz)e-“‘ﬂ’] fete, itz (1)

which is the Fourier transformation of the dyadic Green’s function.
Equation (10) can be divided into two parts:

E*(r,k* k') =E* (v, k" EY) + B (r, k*, k) . (12)

E*/(r, kT, l;') is the scattered field to the zeroth order in A. Substituting the zeroth-order
currents (9) into (10), the zeroth-order field is given by

Egly(r, k' B) =4 P {h(E)R(-E) RO (k) + o(B)s(-R)ROK)} - @, (13)

where Q and P are the polarization vectors of the incident and scattered fields, respec-
tively, and

Rl(f)(kp) [(1 +Ri)0(l;( ko d) — 1] e—2ik",d,
RO(KS) = [(1+ Ry)Ce(KL, d) 1] e~k (14)

v

The zeroth-order solution is equivalent to the reflected field from the original multi-
layer medium with a flat interface (f(z,y) = 0), and the expressions in (14) give
the total reflection coefficients at the air-medium interface. It should be noted that
(0(=k), h(=E})) = (94, k) and (5(k}), h(k')) = (b,,h,). The superscript ”f” in (13)
denotes the flat interface.
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[ (r, kL) as the higher-order seattered field, which only exists when the surface s

rough. Substituting the polanization currents into (10) and after some algebraic manip
ulations, the following expressions for the scattered field is obtained
k 4k (z-d NI N-u-1 N-n-1 om
sr s /U/U N 2 o (z-1) - ( m )(’/‘z)
gl ZA PRl Sl
82 k. (N —n)!
n=0 =0

P. {iz(/cz)iz(k )[Bi + (1) Ch(kp,d) + 0(k.,)i(k.) [RS = (=1)™ ]C"(k,,d)f—

k aN-—n—m—l -
+o(k,)z [Ru + (=" ](’r'rll«H( »md)k—p} : ’j("—"—‘?‘_— (ki,d) ) ®[ (ki)| -

a(z,)N n-m-1
(15)

Note that (15) is valid for all points z > d, including observation points very close to the
surface. In a special case where the observation point is far from the surface (z >> d),
the stationary phase approximation can be used for evaluating the integral in (15). The
far-field expansion for the scattered field can be written in terms of a scattering matrix
which depends on the direction of observation. Comparing (15) with (14) and (15) in [2],
EF, can be expressed in terms of scattering matrix elements:

Ego(r,k* k) = 2W2/d2kl
Sha (ki) 4 9k, (=) S5, k) + (k. )o(=ki) SW(k, k) } - Q.
(16)

zkr

iz(k) (—k%) Sin(k, ko) + h(k,)o(—k)

where the scattering matrix elements in (16) are given in [2]. The near-field expression
in (16) can be interpreted as the superposition of the scattered fields from all different
directions denoted by k. The integrand corresponding to |k, | < ko can be interpreted
as the upward propagating waves emanated from the surface. When |k,| > ko, the
corresponding waves are non-propagating which are known as the surface wave whose
contributions are confined in the vicinity of the interface. It should be emphasized that
the quantities of interest are the statistical mean and the standard derivation of the
scattered field. These surface waves are caused by the rough-surface scattering and does

not exist when the surface is flat.
Performing the ensemble averaging of (12), it is found that, up to the second order,

a a .

(B*(r, k™, k%)) ~ B (v, k7 EY) + (B O)(r, k7, 1)) . (17)
Here (E"(Z)(l',/;',li‘i)), like E*/(r, k", k) in (13), can be expressed as
(B e,k k) = b P {hl)h(-E) AP () + a(E)a(-k) AP} - Q L (19)



where R( (k k') and n )(/ ') are also given in the Appendix. Since f(r,y) is a zero mean
Gaussian process, it can |)< shown that the average of the odd-order fields vanish. The
next term of the coherent field is the fourth-order E*7, which will be ignored due to the
assumption of the slight roughness.

For the evaluation of the incoherent scattering power (variance of the field), only the
first-order scattered field is retained. Re-arranging (16), we have

Bia(r ) = 5= [ Pleulrg(ku, KOk, - K (19)

where Ipg(ky, k') is given by
tk-r

k. AF(ky - k)

+ (ke Jh(=KE) S0 k) + 5(ke)o(—K]) Sk k) - Q - (20)

Ipg(ky, k) = P {h(k)h(—k) S0, k) + h(k:)o(~k:) (k. ko)

Noting that
AXF(ky)F(K))) = ANF(ky)F(=K))) = (2n) 6(ky ~ K )W (k) (21)

the incoherent scattering power, up to the second order in 4, is given by

Esr(l)

(|Epq — (Epg)|") ~

As mentioned previously, (16) is expressed as a continuous spectrum of scattered plane
waves. What is expressed mathematically by (21) indicated that these plane waves are
mutually uncorrelated. Therefore, (22) is simply the integration of the power carried
by each plane wave. For observation points near the surface, (22) must be carried out
numerically and cannot be simplified any further. The convergence of the integral can be
examined noting that W(k ) decreases as |k, | increases and the fact that for |k | > ko,
k. becomes pure imaginary which causes the integrand (|Ipg(k, k’ )|*) to decay rapidly.

To demonstrate the effect of the surface roughness on the surface reflectivity, a nu-
merical example 1s considered. Both coherent reflectivity and incoherent reflectivity

((l sr(l)l )/ ]E‘] as a function of observation point height are calculated. These plane

wave illumination examples simulate situation where the transmitter (receiver) is airborne
and the receiver (transmitter) is near the rough interface. Consider a rough soil surface
with rms height of 0.016m, correlation length 0.16m, and dielectric constant ¢ = 8 + i1
illuminated by a plane wave generated by a source operating at f = 890 MHz. At this
frequency, the normalized rms height and correlation length are, respectively, ks = 0.3
and kl = 3.0. Figure 2 shows the magnitude of the zeroth order and complete second or-
der mean-field in (14) versus incidence angle. In this simulation, the correlation function
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for the rongh surface is assumed Gaussian. ‘The complete second order solution demon-

strates the effect of surface roughness on the surface reflectivity. Basically, the surface
roughness reduces the surface reflectivity and canses a slight shilt i the Brewster angle.
It should he noted that formulation of the second order coherent reflection coeflicients

in (18) does not converge for surfaces with exponential correlation function. This may
be due to the fact that higher order terms are excluded. However, this problem is not
observed in the formulation for the incoherent wave. [Ifigure 3a and 3b show compar-
isons between the zeroth order coherent and incoherent reflectivities as the function of
the height of the observation point for an exponential correlation function. It is shown
that for vertical polarization and observation point heights less than 0.1, the incoherent
reflectivity is significant and dominant near the Brewster angle. However, for horizon-
tal polarization, independent of the incidence angle, the incoherent reflectivity is much
smaller than the coherent reflectivity.

Generally, the incoherent reflectivities decrease as incidence angle decreases. This
could be qualitatively explained by Rayleigh criterion [4]. The criterion is stated as
follows: For a surface characterized by a distribution of irregularities of height A, if A

satisfies

A ‘

b 16cos 6 ’ : (23)
where 0 is the incidence angle, the surface can be considered smooth. As the incidence
angle increase, the surface appears "more flat”. Therefore, the incoherent scattering
" decreases. Same is true for the coherent field as shown in Fig. 2 where the coherent
reflectivity approaches unity when @ is increased to 90°.

It is noticed that the incoherent reflectivities vary as the height of the observation
point changes. As mentioned previously, the scattered field can be decomposed into two
components: upward propagating waves and surface waves. When the height increases,
while the surface wave components attenuate, the propagating waves remains unattenu-
ated. This phenomenon is demonstrated in Fig. 4 where the integrand of (19) is plotted
in k, space. The normalized magnitude of the integrand is shown in gray scale over an
area with the radius of 2k, in the spectral domain. The propagating waves are confined
in a circle of radius k,, while the surface waves are outside the k,-circle. Figure 4(a) and
4(d) show the incoherent vv- and hh-polarized power spectral densities for an observation
point 0.01X above the rough surface when the incidence angle is 20°. The integrand is nor-
malized with respect to the value at (k;,k,) = (k, sin 18.8°,0.0) for vv-polarization and
(ko sin21.2°,0.0) for hh-polarization. In this case, most of the power is in the k,-circle,
which justifies the lack of sensitivity of the incoherent reflectivity to the height variation
at 20° shown in Figs. 5(a) and 5(b). Figures 4(b) and 4(e) respectively show the inco-
herent vv- and hh-polarized power spectral densities when the observation point is 0.01A
above the rough surface at incidence angle 80°. The integrand is normalized with respect,
to the value at (k;,k,) = (=k,,0.0) for vv-polarization and (k,,0.0) for hh-polarization.
A significant component of incoherent scattering is from the contribution of the surface
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waves (the area outside the k,-circle. It is also noticed that. for vv-polarization. inco-
herent scattering is mostly from the waves around the backscattering direction. As the
height of the observation point increases to 0.5, the contribution from the surface waves
almost vanish, as shown in Figs. 5(c) and 5(f).

In near-field region, all field components are present in general. Decomposing the
field components into v, h, and k components, the behavior of the cross-polarized in-
coherent scattered waves are demonstrated next. Figures 5(a)-(d) show the incoher-
ent cross-polarized scattering, including vh, hv, kv, and kh polarizations. Like the co-
polarized scattering, the cross-polarized incoherent scattered power is stronger for obser-
vation points close to the surface. Also for v-polarized incident field, the cross-polarized
scattering powers are stronger than those of the polarization of h-polarized incident field.

4 Evaluation of Field of a Short Dipole above a Rough
Surface

Another problem of practical importance is the characterization of the field of a
short dipole above a rough surface. Consider an infinitesimal current element given by
Q4(r — r') where Q denotes the polarization of the dipole antenna, and r’ represents
the location of the dipole. At the observation point, r, the direct radiated field from the
dipole is given by [5]

: _ . 2 P2 _q _12p2
Ed(r,r')=1Z°{[ 1+zkoR+koR]Q+[3 3ik,R — k2R

drk, R3 RS J (Q : R) R} y (24)

where R =r —r" and R = |R|. For z < 2/, (24) can be expressed in terms of integral of
plane waves given by

_koZo iky(7-7") A a . '
E(r,r) =% / Pk [B(=k)h(—k) + 5(=k.)o(~k)] - Qe

(25)

The mean field can be obtained by evaluating the integral of the mean fields corresponding
to each individual plane wave and is given by

, "koZo e—iK-r‘ , -
(Bha(r,x)) =~ / P, ——Eily(r  K) (26)
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where k -k o byzoand K= k= k20 Substituting (13) into (26), 10s foand that

-, 7 etk b
(/‘,'}',Q(r, r'))y = - P-B'(r2d - i)+ 3 12 : //.:/,(//.',, E—

m

{(1 + 100,)Cg (kg )2 Pl (k) + (1 4 12,)C (/.,,,d)c““*"/"(/tp)} ,
(27)

[Squation (27) is obtained by noting that the reflection coefficients are azimuthally sym-
metric and therefore the integration with respect to ¢ is carried out analytically and are
expressed in terms of Pg(k,,) and Pj(k,) which are given in (A.3) and (A.4), respectively.
The integral in (27) is a Sommerfeld type. When both r and r’ are close to the ground
and far from cach other, the first term on the right-hand side, which can be viewed as
the ncgative image source, dominates. This results in a destructive interference with
the direct wave, and hence the surface waves, which is accounted for in the integral of
(27), become dominant. The integral in (27) can also be written in terms of asymptotic
expressions available in literatures [6]. The numerical technique for the evaluation of the
Sommerfeld integral is not discussed here. Interested readers are referred to [7]. Here
the objective is to investigate the significance of the rough surface which are included in
the integral in (27) and in the incoherent scattered field.

The first-order incoherent scattered field is written in terms of superposition of inco-

herent scattered fields:

oy —koZo [ o e KT =) |, K
Jier) == /dkl B R), (28)
from which the incoherent scattering power is obtained and given by
K3z} Hl(K")*-K')x!
Eg(l) / d’l ! lI
(1Epq (rr 64wt ki d'k k’(k”)

/ Phy gk, Ky ) gl + K — K KW (ke —K,) . (29)

Note that the integral in (29) is six-fold which is extremely difficult to evaluate numer-
ically. Practically, the distance between the dipole and the observation point is large,
which can be used to simplify (29). Suppose r = 2% and [r/| >> A. Using the stationary
phase approximation to evaluate the integrals on k', and k’/, the incoherent scattering
power can be obtained from

272 A 2 .
(1) 3V(2\ ~ koZo : PP , . PP
(lEg ( /")I ) ~87r2|r!2 /dzkl IPQ(k.L) _l‘om) ‘/V(kl + A'O—
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Numerical simulations have been performed to demonstrate the effect of the surface
roughness. Consider the rough surface of previous example with parameters ¢ = 8 + 11,
ks = 0.3, kl = 3.0, and exponential correlation function. Suppose the infinitesimal
current source is placed at 0.2\ above the surface at a location r' = 2’2" + y'g' + 0.2)2,
and the observation point is at (0,0,0.2)). Figures 6(a) (Q =P =2)and (b) (Q=P =
y) show different components comprising the received power versus the radial distance
(v/z'* + y'?) between the current source and the observation point. It is shown that, as
the distance increases, the reflection coefficients approach to —1, and the coherent ground
contribution cancel the direct wave. Note that as the incidence angle approaches 90°, the
effect of the surface roughness on the coherent field becomes insignificant, as explained
previously when stating the Rayleigh criterion. Under this circumstance, the dominant
propagation mechanism is the coherent and incoherent surface waves. H-polarized surface
waves attenuate rapidly [8]. Therefore, in Fig. 6(b), the surface wave is less significant
than that in Fig. 6(a), and the total field shows obvious interference phenomenon between
the direct wave and reflected wave. The incoherent rough surface scattering is found to
be somewhat insignificant in both cases, which was also predicted in Fig. 3 at high
incidence angles.

In the next simulation, the distance between source and observation point is fixed at
20, but the source point is moved on a circle of radius 20 in the x-z plane, as shown
in Fig. 7. As before, the observation point is at (0,0,0.2%). However the source is
at (20Asin 6,0,0.2) + 20\ cos 6) with 8 € [0,90°]. Figure 8(a) shows the coherent and
incoherent powers with Q = P = h = y. When 6 approaches 90°, the direct field and
ground reflected field interfere with each other destructively, but the total coherent field
is still about 10 dB higher than the incoherent field. In Figs. 8(b) and (c), choosing
Q =9 = (—sinb,0,cos ) whereas P = 7 in Fig. 8(b) and P = 7 in Fig. 8(c). and
Fig. (c)( 2) show the components of the received power. Note that in both simulations,
the polarizations at the observation point are not suitable to receive the ground reflected
waves, which should be (sin 6,0, cos 8). Thus, the direct field dominates. When Q and
P become perpendicular to each other, the coherent field diminishes, and the incoherent
field becomes significant.

5 Conclusions

The radiation of a short electric dipole above a slightly rough surface is studied. This
investigation is a natural extension of the classical Sommerfeld problem with the ex-
ception of the random surface irregularities at the interface between the two dielectric
media. In this paper, the formulation for the near scattered field from a slightly rough
surface when illuminated by plane waves is developed first. A perturbation technique is
applied to solve the integral equation for the induced polarization current. Analytical
expressions for the coherent field (mean-field) and incoherent scattered power at an ar-
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bitrary obscrvalion point, including points near the interface, arc obtained. Simulations
show that while the coherent scattered field generally dominates, the incoherent scattered
licld is only essential around the Brewster angle for ve-polarization. The phenomenon of
depolarization caused by the incoherent rough-surface scattering are also studied. Gen-
crally, the mcoherent scattered field become more significant as the observation pornt
approaches the interface. Then the solutions for the mean-field and incoherent scattered
power generated by a small dipole of arbitrary orientation and position are derived by
expanding the field of the dipole in terms of a continuous spectrum of plane waves and
using superposition. Although it is found that the direct and coherent reflected (reflected
+ surface waves) fields are dominant in most cases, the incoherent scattering could be
important, when the path along the line of sight is obscured.

Acknowledgment: This research was supported by Army Research Office under con-
tract DAAGS5S-98-10-0458.



Appendix

The expression for the Nth order polarization currents are given by

T ikz( 1) ¥ Lo
Tna(kys,2) _k——kl—zc h(k, ) [v,v-h(kz)} ,

T '1" l‘ z - C "

Tfha ) = 2= gty [V ot-k)]
~ _ikokp(é—l) v ~ s
Tn(ks, ) = =22 = Gk, 2) [VN o kz)} :

where

Nananl)(k)m aN—n—m—l ~
Vv=)" ’[a(z)“’"ml Jn(ky,d ] ®Fkl ,

n=0 m=0

where * is the convolution operator, F(k,) is the Fourier transform of f(z’,y’), and &

n

n P —
represents n-fold self-convolution (QF = F x F *--- x F).
The second-order expressions for reflection coefficients used in (18) are given by

)= ] 20 0N O + 1 [ON0 A )

, ClK',d) cos?(¢}, — #x) = kLk],Ce(K',d)sin?(¢ —¢k)]
d‘Zk W(k' — 0 k z™"12+0 k
/ Wik kl)[ EAE, KRR,

(A.1)

(e = 1)(1 = R,)(ky, — €k})

TGk d)Ct (k)

R£2) — kz e—Zikzd{_SZ

+21_2(5 —1)? {(1 — R,)*C(k, d)/dzk’lW(k'L ~ky)

[kgco (K, d)Ci(k, d)sin’(gy, — ) kiki. Ca(K', d)C3(k, d) cos’(g — §'4)
k; + ki, ek + ki,
. Fokok1 Co (K, d)Cy (k, d) cos(dx — ¢‘k)]

kiz(ek; + ki)

2¢k
R, -1 £
+( )6kz + klz

[k’zk;C{’(k’,d)Cg(k,d) cos(¢} — ¢x) N ki k,Cy(K', d)CY(k, d) cos® qﬁk — ') }
A.2)

C(k, d) / KWK, — k)

ek! + ki, ki, (ek! + ki,

14



The integrands in (27) are given by

2r

= /dd) tP - i‘(/fz)jl(—liz) Q otk (=5")
0

=1 (PeQz + P,Qy) Jo(ky(lp — 7']))
+m [(Per - P,Qy)cos(2¢') + (P:Q, + B,Q:) sin(2¢') | Ja(k,(]p - 7)) (A.3)

~—

I’C',‘(/c,,

2r

Py (ky,) =/d¢ [P - o(k,)o(—k,) - Q) etkL(p-5')
=5 [P = K (P.Qu + P,Qu)] Jolky(15 — 71)
2k, k, .
+ k2 [(P:Q. = P.Qz)cos ¢’ + (P,Q. — P.Qy)sin¢'] Ji(k,(1p — 7))
k)

1) [P0 = @y co(28) + (P20, + B,Q.)sn(26)] k- #1)

(A4)
¢ = cos~1 Z=Z
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In(a) Q=P =h=9, and in (b) and (c), Q =9 = (—sin 6,0, cos §), and
P=2zand P=2Z respectively. . ... .. ... ... ... ... .. ....
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Figure 1: An ihhomogenebus Half—space mediufn with a rough interface. Left side of this
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Figure 2: The magnitude of the reflection coefficients in (14) versus incidence angle. The
underlying ground is homogeneous, and the dielectric constant is € = 8 4 ¢1.
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surface has exponential correlation function, ks = 0.3, and k/ = 3.0. The incoherent
reflectivities are plotted for different observation point heights.
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Figure 4: The spectral distribution of the incoherent scattered power generated from
the rough surface. (a) and (d) are respectively for vv and hh polarization at incidence
angle 20°, and the height is 0.01X. (b) and (e) respectively for vv and hh polarization at
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Abstract

In this paper, the problem of electromagnetic wave propagation in a realis-
tic forest environment at HF through UHF bands is considered. In particular,
the effect of the non-planar interface between the air and the canopy, which
has been ignored in the previous models, is examined. An analytical formula-
tion is obtained for the mean field when both the transmitter and receiver are
within the foliage. This formulation is based on distorted Born approximation
and accounts for the surface roughness that exists between the canopy and air
interface. It is shown that the surface roughness attenuates the so called lat-
eral wave which is the dominated source of the field at the receiver locations
far from the transmitter. It is also shown that this attenuation rate increases
when the rms height of the surface roughness is increased.

1 Introduction

With recent progress in wireless technology and ever increasing demand for reliable
low power wireless systems, the need for predicting system performance has been
become an extremely important step in the design of such systems. At HF through
UHF, the channel characteristics such as attenuation, and multi-path fading statistics
significantly affect the performance of wireless systems. Prediction of the channel
characteristics can be accomplished using physics based propagation models. For
this purpose precise diffraction models must be developed and incorporated with
accurate terrain data base to construct a realistic propagation model.

Since a large portion of earth’s surface is covered with vegetation, understanding
of electromagnetic wave propagation through foliage is of great importance in devel-
opment of a comprehensive physics based propagation model. It is well known that



at HF through UHF frequencies the direct propagation between two distant points
within a forest experiences significantly less attenuation than that predicted by mod-
els. That is the predicted attenuation of the direct wave far exceeds the attenuation
values obtained from experimental results. A very interesting model that describes
the phenomena and attributes the wave propagation in forest to lateral wave was first
developed by Tamir [2]. In this approach, the forest is modeled by a homogeneous
half-space dielectric medium with a planar interface and a permittivity equal to the
effective dielectric constant of the foliage medium. This effective dielectric constant
can be obtained using a dielectric mixing formula [3] or the formulation for calcula-
tion of propagation constant in random media [4, 5, 6]. The former is appropriate for
low frequencies when typical dimensions of the constitutive particles are small com-
pared to the wavelength whereas the latter is useful for sparse media and accounts
for scattering losses. Tamir’s formulation gives the field of dipole within the effec-
tive medium at an observation point near the interface using an asymptotic integral
evaluation [11, 12]. This solution shows that the field at the observation point is
dominated by a ray emanated from the source point and traveled in the direction of
the critical angle toward the interface and along the interface before leaving it in the
direction of critical angle, in order to reach the observation point. Due to renewed in-
terest in wireless communications at HF through UHF, recently the problem of wave
propagation in forested areas has gained some prominence. The origin Tamir’s model
is extended in [7, 8, 9] by representing the forest by a two-layer anisotropic dielectric
medium. These models accounts for the anisotropy that exists in the trunk layer and
to a much lesser extent in the canopy layer. It is shown that upto UHF frequencies
the effect of anisotropy can be ignored [7].

In reality, the interface between forest canopies and air is not flat, hence it is not
clear whether the lateral wave can be excited and of it can how the surface rough-
ness affects it. In this paper, the effect of roughness of interface between canopy and
air on the wave propagation in forested area is investigated. In section 2, analytical
formulation using the volumetric integral equation in conjunction with the distorted
Born approximation is presented. An expression for the mean-field of an infinitesimal
dipole of arbitrary orientation is derived by obtaining a partial second order solu-
tion of the Born approximation. In section3, a sensitivity analysis is carried out to
demonstrate the variations of the mean-field to physical parameters such as a effective
permittivity, location of the dipole and observation points, and surface roughness.

(3]



2 Analytical Formulation

In this section. an analytical formulation for the evaluation of mean field generated
by a small dipole in a homogeneous half-space dielectric medium with rough interface
is derived. The effective permittivity of forest canopies is slightly higher than that of
free space since the vegetation particle density is very small [2]. In this case, distorted
Born approximation may be used to evaluate the scattered fields. The geometry of
the diffraction problem is shown in Fig.1 where the dipole and the observation point.
are respectively located at h and A’ inside a canopy with effective dielectric constant
¢,. The envelope of the canopy-air interface is denoted by a random process, d(z,y).
The permittivity of the upper medium(air) is denoted by ;. We modify the problem
by extending the canopy to z = 0 plane and assume that in this region, there exists a
volumetric polarization current J=ikY, (g2 — ul)E where E! = E' + E" + E*. The
unknown total internal field can be obtained from the following integral equation

E{(7) = E'(F) + E"(F) + k(€2 — / / /d(wé E!(7)dz'dy'dz’

where E is the incident field, E" is the reflected wave from the planar interface, z
= 0 and, E° is the scattered field generated by J itself and G is the dyadic Green’s
function of the half space dielectric medium(see(2) [1, 10]).

To the first order in (¢; — ), the Born approximation can be used to the scattered

field

E° = 52—51/ / /d(m G(F,7) - [E'(F) + E"(7))dz'dy'dz (1)

In (1), d(z,y) is a two dimensional random process describing the interface between
the canopy and air and is assumed to be Gaussian with a mean value of m(a positive
number) and a standard deviation of o. Noting that the z-dependence of Ei and
E" are of the form of exp(£jki,2'), where ki, = \/ k3 — ki’ — k%, the integration
with respect to z’ can be carried out analytically. This integration would result in
an algebraic expression in terms of d(z,y) which is amenable for the calculation of

statistical average of E®. It is shown that distorted Born approximation provides
a more accurate solution for E*. In this approximation, a phase correction term is
incorporated into the approximate expressions for the internal field to account for
the difference in the propagation constant between the air and the canopy. The
explicit expressions for the incident and reflected fields, including the appropriate



phase correction terms for a plane wave illumination. are given by
Fi= IA)(A_L)fi[k‘lx~’+k'yy’+k§:’] . eilks =k} )m (2
= ~ Tt of Lot ol Lot ! Y et .
E = P(—k{:)Rv,hel[k’I Hhyy' =k ilky =k m (3)

where P(kl) 1s a unit vector indicating polarization of the incident wave (P =Vor
h) and R, is the Fresnel reflection coefficient for vertical or horizontal polarization.
The unit horizontal and vertical polarization vectors are defined with respect to the
plane of incident and given by
b = 2 (k) = bl
|k} % 2]

(ki) = h(ky,) x K. 6(—ky,) = h(ki) x kT,

where kA;' = ki - Q(k; X Z)Z denotes the direction of the reflected wave.

Since the layer thickness is not uniform, the phase correction terms in (2) and (3)
are chosen for a layer with a uniform thickness m. The dyadic Green’s function for
the half-space dielectric medium when z < z’(observation point inside the foliage) is
given by [1, 10]

G=- ééé—(r—_f—) + = / / kb, ete== vy =)L {il(—klz) [Rhiz(klz)-
k2 8 0 klz
—zklzz + h ) zk“z] A‘IZ [ vv(klz)e—iklzz’ + f)(—k‘lz)eik“zl] } e—iklzz

(4)

After substituting (4) into (1), the integration with respect to z’ is carried out an-
alytically. After performing this integration, evaluation of (E’) is attempted which
requires computation of the term like (e*7°¢). Assuming a Gaussian p.d.f. for d, it
can easily be shown that

(ejsd> — %Z [e"g}‘!—erfc(—j%)+e"°’—-’——erfc(]“7\/i;.)] (5)
: —yom [ _g%s*? os® -2l y g8
<e"-73d> = e—a— [6 2 eTfC(_]—\/—i') + € 2 erfc(JV_E):' (6)

where complex variable, s can be either s; = kj, + k}, or s, = ki, — ki _, and erfe(-)
is the complementary error function defined by [13]:

2 [[* _» 2 [0 py;
erfe(z)=1- — [/ e " dt 4 je @ / e! +J2“dt]
E=1=7 s ;



where z = a + 3.

Noting that erfe(jr) =1 — —\/2—;] f_or e’ dt for real x. it can readily be shown that
(e775?) reduces to the more familiar expression, (e~/*) = ¢~/*m=*5"

The integration with respect to &' and ¥’ can now be carried out analytically which
results in §(k; —k')-8(k, —k; ). This, in turn, simplifies the integration with respect to
k. and k,. The final result is a plane wave propagating along k{. Hence the total field
in medium 2 is the sum of two plane waves: 1) the reflected wave at the hypothetical
planar interface at z = 0, and 2) the mean scattered field. Hence to the first order in

k02(52 —£1),

Ef = Er + <Es> ~ (Rref + R(l) )ei[k11r+k;yy—-k;::] (

Born

-~I
~—

where R,; is the Fresnel reflection coefficient for the canopy-air boundary.
After some algebraic manipulations, the first order reflection coeflicients (referenced
to z = 0 plane) for the mean field are obtained and given by

Cn — ] ) 2 L 2
R(l) M {i(l _ RZ + Rz<eisld> _ (e_,sld» ) kp klz

B =
orno) =9kt sy &

R, . . .
+____(<ezsgd> _ (6—132d>)k02} eis2m

S2

k02(€2 —¢ ) 1 1S —~15
Rgf))r'n(h) = 2kiz 1 —(1 - Ri + Ri(e ld> - <€ ld>)

s
. | (9)
+_(<6232d) _ (e—132d>)} gis2m
S2

Close examination of Rggm reveals that R,.s+ Rporn 1s accurate enough for horizontal
polarization, but it cannot accurately predict the Brewster angle for the vertical
polarization. To rectify this difficulty, higher order solutions must be obtained. This is
accomplished by obtaining a partial second order solution for the vertical polarization.
The second order solution for E* is given by

B)(7) = K(ey — e1)? / G(7.7) - { / GG ) [B () + E’(F")]} Wy (10)

Using only —22542—2_{2 term of the dyadic Green’s function (see[4]) in the integrand of
the inner integral, a partial second order solution is obtained.

-

Fo09) (7 _koz(*i;)&) / G, 7)- [22- (B + B )] v (1)



The complexity of this integral is of the same order as that of (1) and the ensemble
average of E*(1*) can be obtained in a manner similar to what was used in computation
of (ES(”). Including the partial second-order term, the reflection coefficient for the
vertical polarization is modified as follows.

) < _5) RU is —is 12 i
el B NS
“hyzcl 52 () (12\)
P = R R = () (2 k) e
S1 )

where k,* = kiz + ki2 Now it can easily be shown that at Brewster angle where

R, =0, Rgom vanishes also.

Having found an approximate analytical solution for a plane wave excitation, the
solution for an infinitesimal dipole embedded within the foliage can be obtained by
expanding the field of the dipole in terms of a continuous angular spectrum of plane
waves. Without loss of generality, consider a dipole, whose orientation is denoted by
a unit vector [, located at 7o = —(h 4+ m)z. The field of this dipole within a uniform
medium with permittivity ¢; can be expressed by [10]

LY Kiki i(mthks, \ iFF i
Fu(f) = —W/ / {kiz[]_ 1]-16 eRTdLdE (13)

where [ is the amplitude of the sinusoidal current carried by the dipole. The integrand
ikl

of (13) can be regarded as Eoe'*i ™ where

A =

i Ik 1 [; (K - D&
°T " 8r? ki, k2

is the amplitude of each plane wave propagating along kAi = k-i /k1. Using superpo-
sition, the mean scattered field in the presence of the upper free-space medium with
rough interface, can be computed from the coherent sum of all reflected plane waves.

That is

5 o B ko7, A . A
(B~ By - 5 [ [ [ RSO0 R + 0 -k R

. e-tk”(z m— h)ei(k;x+k;y)dkidk;

(14)



where Ere] is the field of the dipole in the presence of the upper free-space medium
with a planar interface at z = 0. The expression for E,,; is similar to the integrand in
(14) with the exception that Rpg is replaced with R, ;. Using the change of variables

T = pcosy, y=psiny
ky =k,cosy., k, =k,sinqy
and making the use of the following identities

2r
cos mue*e? =) gy, = 2™ cos mpJ (k,p)

/o
2r

/ sin mue™*e? e dy = 2mi™ sin mpJd (k,p),
0

the integral in (14) can be simplified to

= [kaZn [  k e~tkiz(z—m=h) R
(E°) = 0 0/ dk, o€ {[ Bh{(Jo(k,p) + Jo(k,p) cos 20)1,
0

4 k‘]z 2
R(1-5) k2
+ ko) sin2ely} + FE {5 (k) - o) cos2pl,

ki
L2 . ' R(l)
+—2512(ka) sin 2ply — tkyki; cos @Jl(k'pp)[z}:l &+ —fﬁ{e’z(kpp)-

sin 2l + (Jo(kop) — Ja(k,p) cos 2¢)ly } + k; { lsz(k p):
1

k2,
sin 2¢l, — —(Jo(k,,p) + Jo(k,p) cos 2¢)l, — 1k, ky, sinpJy (k,p)l, }]

R(l 5)
kz —Z—[ikpki2(cos ply + sin @l ) Ji (k,p) + k2 Jo(kop)l.)2
(15)

Obviously a similar expression can be obtained for E,. - As will be shown later, the
accuracy of the distorted Born approximation degrades as the mean height m and/or
the normalized permittivity difference -1—1 increase. To rectify this problem to some
extant, we use the fact that an exact “Solution is available for a planar dielectric
interface. In fact for a plane interface(o = 0) at z = —m, for the reflection coefficient



of each plane we have
Reract(o = O) = Rrefeﬂk“m

Hence, for a rough interface, we may write

Reract(a) =~ Reract(g = 0) - RBorn(U = O) + RBorn(U) (16)
and substituting (16) into (15), the modified solution is given by:
<Ez:ract(o.)> ~ Eel’ad(a = O) - _‘sBorn(o. = 0) + <—‘sBorn(0-)> (]‘T)

3 Asymptotic Evaluation

In the previous section, an closed form solution for the mean-field of a dipole inside
a dielectric medium with rough interface was obtained. When the radial distance
between the observation point and the source point(p) is large, the integrand becomes
highly oscillatory and therefore accurate numerical evaluation of the integral becomes
extremely inefficient. This is especially true when both points are near the interface.
The standard approach is to change the contour of the integral of integration by
first extending the limit of the integral over the entire real axis(—oo,00) and then
using a change of variable k, = k;sinw. An approximate analytical expansion can
be obtained by applying the standard technique of the steepest descent [11, 12]. The
expressions for the reflection coefficients, in the w-plane, take the following forms

cosw — VK —sin®w Kcosw — VK — sinw

R, = =
h v 2

b
cosw + Kk — sin?w Kcosw + VK —sin‘“w

where k = 2 < 1. These introduce a branch cut (with the branch point at w, =

sin™! y/k) in the w-plane which may be encountered by the steepest descent path.
In this case, diffracted field is dominated by the saddle point and the branch cut
contribution. Hence, in general, each component of the diffracted field may be written
as

E,~ I, + U(Hs — Hc)IBC (18)

where [; and Ipc represent the saddle point and the branch cut contributions respec-
tively and U(:) is the Heaviside step function, , is the saddle point, and 6, is given
by

0. = Re{wy} — cos™" [sech(Im{w;})]



The saddle point contribution can be obtained rather easily. The saddle points cor-

. . . !
responding to the integrand of (14) is wy = 0, , where sinf,, = r-l"; cost, = h%lh—

cos b, = h+hr'2+2m = /p2+ (h+ )% and 7y = \/p* + (h + B’ 4+ 2m)?. The saddle

point contribution is found to be

[koZy e 3kim :
Ef“d ~—] jo 0 [6 {Rhaih + R, cos® 0ya;,+ cospsin 20, R, 1.} +
by Ty
e—Ikir2 (19)
{RBhaih + Rp, cos® Oa;,+ cos psin 20,Rp,!l.}]
T2
for subscript i = x or y. and
azp = (1—=cos2¢)l, —sin2pl,, ay, = —(1+sin2p)l; — sin2pl,,
ayn = —sin2pl; + (1 +cos2¢)ly, ay, = —sin2pl, — (1 — cos2p)l,.
The z component of the field is given by
TkoZ —ikirs : .
E* ~ 222 (R, sin b, ‘ {cos pl, +sinpl, +sinbyl,} +
(20)

—jkira

Rpg, sin 8, {cos pl; + sinpl, + sin 6,1, }]

]

In (18) and (19), the Fresnel (R,,R:) and Born (BBh,Rgf)) reflection coefficients are
evaluated at the saddle point. Evaluation of the branch cut is far more complex. In
this case, the integral is expanded near the branch cut and the contour is deformed
to the steepest descent at the branch cut using a change of variables [11]

cos(w — ) = cos(wp — ) + js*
After much algebra, the branch cut contribution of (14) is given by

I 5 s
E ~ 16Z7; \/ J s;n i [U(8; = 0.) f1 { Rpain + R, cos’wyai,+ cospcos 2wy R, L} +

U6, - 6.)f {R},haih + Rgf)lCOSwaaiv-f- COS Y COS 2wbRg;j5)llz}]

(21)
for the x, and y components, and
e 1z, |25 . , 5)/
B~ -2t —rsin®lTuy (U0, ~ 0)fy it U (0 = 6.) RG] - )

{cos wy (cos pl, +sinly,) — sinwsl, }



~ykyr, cos(wy—6,) 1.5)
for the z component. In (21) and (22). f; = “————""" and K. R,. RUAYand
X sm(uy,—@,)rl“/) t he T B

R, are coefficients of the linear term in the Taylor expansion of the each reflection
coefficient at the branch point given by

— 2 . 2a
Rll - __kco(s)wb’ ;1 — 7 coswp
1.5)/ ey—c k2(ex—€1)
RGP = e (9 + g) s Rpy = 3 (9n + gr)
where
Gu = ADa ("’: —2)0 __]'leme—j?klmcoswb + gﬁ )
ky coswy | K coswy Aa
AEa |[. 4-xkC CB
g2 = —— |)2kym — - ,
ky coswy | kcoswy, Aa
Ae [BC : C
= — | == 9% me—]2k1mcoswb _ ’
g ki coswy | Aa Ik COS Wy
Ao [ 4+C BC
g = e |jthym = L 27
ky cos wy | coswy, Aa
and

2
A = Re{h(ws) -1}, B:Re{h(wb)gQ—aklcoswb—j:/a—%},

2

C = l—e/?mesw D= k2 cos?w, + El—sin2 Wy,
2 2 P —02k2 cos? w2 .oky coswy
E = _kl cos” wy + — sin” wy, h(wb) =e %M Wo erfc(-—]————-——)’
K V2
_ 7 sin 2w,
“ sin(wy — 0)

The above formulation is valid when the observation point 6 is away from the complex
critical angle. It can easily be shown that this formulation reduces to the flat boundary
case by letting o go to zero. In this case, h(w;) = 1 which reduces A and consequently

!
Rgf) and Rjp, to zero. The remaining terms in (21) and (22) would be the branch
cut contribution from a flat boundary. To extend the valid region to observation point
near the critical point, (18) may be modified as

E;~ I, +u(6—0.)Igc- F(B) (23)

10



where F(3) is a correction factor. This function can be obtained by retaining higher
order terms of the Taylor series expansion of the integrand near the branch cut. For a
dielectric with flat interface. F'(3) is represented by the Weber or parabolic cvlinder
function as

F(3) = B335 /81232034 D_o0(3 + )

where # = 2\/kjr; sin 03..—;6-‘-. Here D_3/5(3 + j3) is Weber function of order -3/2 and
is defined as [11, 12].

9 61'2/4
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As 3 increases, F'(3) approaches unity and (23) reduces to (18). It is, however.
extremely difficult to modify the formulation for a rough boundary in such simple
manner as the higher order derivative of the special functions in the integrand are
difficult to evaluate. The asymptotic expressions clearly indicate that the diffracted
field due to the branch cut contribution (see(21) and (22)) decays as 1/p* whereas the
saddle point contribution decays exponentially (e?¥" /r). Hence for far observation
points the lateral wave is the dominant source of the diffracted field. As will be shown
later, the lateral wave for rough boundaries are weaker (depending on koo) than the
lateral wave for a flat boundary.

4 Numerical Simulation

In this section, numerical examples are considered to examine the validity of the so-
lution based on distorted Born approximation and to demonstrate the sensitivity of
the field intensity at the observation point to the canopy parameters such as effective
dielectric constant, canopy-air interface roughness, and transmitter and receiver posi-
tions. In the following simulations, the transmitter dipole is assumed to be operating
at f=30MHz having I/ = 1. To examine the effect of transmitter polarization, a verti-
cal dipole (I = 2) and a horizontal dipole (I = ¢) are considered in a canopy with &; =
1.034j0.006, and flat interface at h=3m (0.3X). Figure 2(a) and 2(b) show the three
components of the diffracted electric field (excluding the direct field contribution from
the dipole) as a function of distance for a observation point 3m below the interface (k'
= 3m) for the vertical and horizontal dipole respectively. Also shown in these figures
are the results obtained from the asymptotic evaluation(see (18-22) for koo = 0).
From these figures, it is obvious that the field of a vertical dipole experiences far less
propagation loss than the field of a horizontal dipole.

11



Figure 3 shows the vertical component of the total field (diffracted plus the direct
field) of a vertical dipole as a function of distance when h = 2m (0.2X) and A’ = Im
(0.1X) for three different values of ;. In this simulation. the imaginary part of ¢
is kept constant and the real part is changed from 1.0l to 1.05. Figure 4 shows a
simulation similar to that of Fig.3 with the exception that here the real part of the
effective permittivity is kept constant and the imaginary part is increased. The total
field calculation for Figs. 3 and 4 is accomplished using a numerical integration for
the observation points as far as 2km and for the further point the asymptotic method
is used. As expected, the propagation loss increases with increasing the imaginary
part of ¢;. Next we examine the effect of location of transmitter and receiver in the
canopy. It should be noted that the dependence of the field on h and A’ is of the form.
h + h'. Figure 5 show the dependence of the field of a vertical dipole as a function of
ko(h+ h') for three different permittivity values at fixed lateral distance (p = 2.8km).
Unless the observation and source points are very close to the surface, the field decays
exponentially as a function of ko(h 4+ h’) with an exponential factor proportional to
Im[/1 — &].

To examine the accuracy of the distorted Born solution, a vegetation layer with
smooth boundary is considered (¢ = 0, and a non-zero m). For this case an exact
solution exists. First the Fresnel reflection coefficients are considered. Figure 6(a) and
6(b) compare the magnitude and phase of the phase compensated Fresnel reflection
coefficient( Rye**:™) of a dielectric interface with ¢; = 1.03 + j0.005 at m = 0.6
with those computed by the approximate distorted Born solution for perpendicular
polarization. The computations are performed at 30MHz for two different values of ¢,
and two different layer thickness values as a function of sin §; = k,/ko. Similar results
for paralle]l polarization are shown in Fig.7(a) and 7(b). Their errors in magnitude
and phase do not exceed 5% and 5° respectively. The accuracy of the distorted Born
approximation degrades as the dielectric constant and layer thickness(m) increases.
To determine the region of validity of this solution, the exact solution was compared
with the distorted Born approximate solution for a wide range of €; and m. It was
found that the accuracy of the approximate solution improves as the imaginary part
of the dielectric constant increases. To specialize the region of validity to the problem
at hand and lower the number of independent variable, we considered a canopy with
vegetation particle permittivity €, = 50 + j25 and used Polder Van Santer dielectric
mixing formula [3] to compute the effective dielectric constant ¢; from

5v—1f_51—1
€s+217 3

where f is the volume fraction. Tolerating 5% error in magnitude and 5° error in

12



phase of the reflection coefficient. the region under curve shown in Fig.8 denotes
values of m and z; where the distorted Born approximation produces valid results
for the reflection coefficients. With a confidence in the formulation of the distorted
Born approximation, the effect of surface roughness on the reflection coefficient is
considered next. Figure 9(a)(perpendicular polarization) and 9(b)(parallel polariza-
tion) show the magnitude of reflection coefficients as a function of k,/ky = siné;
and two different values of surface rms height o = #/10 and 0 = 7/5. In these
simulations, ¢y = 1.03 + 70.015 and m was chosen to be 20. It is shown that the
reflection coefficient is drastically reduced by the surface roughness for low incident
angle and for large value of k,/ko. The reduction in reflection coefficient is less promi-
nent near the critical angle. This property is very important so far as the field of a
dipole is concerned since a significant portion of the contribution of the integrand to
the integral comes from this point. Figure 10 shows the magnitude of the reflection
coefficient for both polarizations versus normalized surface rms height for a canopy
with ¢, = 1.03 + 70.015 at 30MHz. Figure 11 compares the field of a vertical dipole
(h = 0.2X, h" = 0.1)) obtained using exact solution and the approximate distorted
Born solution in a canopy with £; = 1.01 4 j0.006 and two different values, m = \/4
and m = A/2 at 30MHz where an excellent agreement is shown. A similar compari-
son is shown in Fig.12 where the effect of imaginary part of the dielectric constant is
examined. The eflect of surface roughness is shown in Figures 13 and 14. Vertical and
horizonta,l(i = 7J) dipole in a canopy with ¢; = 1.01 + j0.006 and &, = 1.03 + j0.015
and three different values of surface rms height, 0 = 0, ¢ = A\/2, and ¢ = X are
considered (observation point at ¢ = 45°). It is shown that the surface roughness
reduces the field intensity which is a function of the surface rms height. It is very
interesting to note that despite relatively significant surface rms height, lateral wave
is still the dominant source of the field in a forested area. This can be attributed
to the fact that most contribution of the mean field comes from the integrand of the
equation(15) for values of k,/ky near the critical angle. As shown before the value
of the reflection coefficient near the critical angle does not experience a significant
reduction due to the surface rms height.

5 Conclusion

The effect of canopy-air interface roughness on the propagation of electomagnetic
waves in forested environment was investigated in this paper. An analytic formula-
tions that takes effect of the rough boundary into account, are obtained for both cases
of plane wave and an arbitrary oriented dipole excitation. The solution is obtained

13



using distorted Born approximation to a volumetric integral equation for the induced
polarization current in a hypothetical laver above the canopy. This formulation was
validated by comparing the approximate results with the exact results in the special
case of smooth interface. It is shown that the canopy-air interface roughness reduces
the mean field surface reflectivity drastically for plane wave illumination at incident
angles below the critical angle. A significant result of plane wave simulations was
the discovery of the fact that the mean surface reflectivity near the critical angle is
not drastically affected by the surface roughness, thereby allowing the propagation of
the lateral wave despite significant dielectric interface roughness. Direct simulations
of the field of an arbitrary dipole in a forest with different effective permittivity and
surface roughness show that the field at the observation point is anywhere between 0
to 10dB lower than that for a smooth air-canopy interface dependent on the value of
the rms height surface roughness(koo).
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Envelope £, is replaced with g
plus a polarization current
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Figure 1: A short dipole embedded in a forest canopy with rough interface modeled
by an effective dielectric constant ;. A layer above the canopy is, equivalently,
replaced with a dielectric slab with planar interface(z = 0 plane) and permittivity ¢,

in addition to a polarization current, J= tk1Yi(e2 — SI)E‘.
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Figure 2: The diffracted field intensity components (see (15))for a vertical(a) and
horizontal(b) dipole in a canopy with ¢; = 1.03 + j0.006 with a smooth boundary (o =
0) , h = 3m, A" = 3m at 30 MHz. The results are obtained with the approximation
solution obtained from the asymptotic integral evaluation.
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Figure 3: Electric field of a vertical dipole as a function of distance in a canopy with
effective permittivity e;. Three different values for ¢ are used, 1.01 + j0.006, 1.03
+ j0.006, 1.05 + j0.006, and the location of the dipole and observation points are
respectively, h = 2m (0.2)), A’ = 1m (0.1)).
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Figure 4: Electric field of a vertical dipole as a function of distance in a canopy
with effective permittivity ;. Three different values for ¢, are used, 1.03 + j0.006,
1.03 + j0.03, 1.03 + j0.06, and the location of the dipole and observation points are
respectively, h = 2m (0.2)), A" = Im (0.1X).

20



-60 T T T T T T
g : : : ___ & =103+0.006
R R B o | el-tosdooos|
}
_72_:\4’—_~—~ ................................................ -
74+ 1 .................................................... -
76 F SRR EE T LR P PRPRRP PRI -
_78 ! 1 ] ] —r - _I -
0 2 4 6 . 8 10 12 14
ko(h+h)

Figure 5: Electric field of a vertical dipole(f=30MHz) in a canopy with effective
dielectric constant ¢; as function of ko(h+h’) at a fixed observation point(p = 2.8km).
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Figure 6: Comparison of the magnitude(a) and phase(b) of exact reflection
coefficient( R,e**1:™) with the approximate distorted Born solution(see (8)) for per-
pendicular polarization. Two permittivity values and two mean layer thickness values
are shown as a function of sin6; = k, / ko. €; = 1.03+j0.005, and m = 6m (0.6))
and the other is for £ = 1.01+4j0.005, and m = 10m (}).: frequency is 30MHz.

22



70

50
7
//
4 ‘ 1
Ro[:l]= 101.m=10
30 -
P
@ / ~
2 20f ~
= /
’ /

0 02 04 06 08 12 14 16 18 2
3
P 0
(a)
m T T T T T T T
——  Exact
/ --~-  Bom
150 / J
/
w L _
4/ :
/ 2N
" i
sof ,/~ 7
P
- I,_/“/ !
7
] 4
8 ofRefe,j=101m=10, 4
g
a f
0" i
Ro(:‘]=|,03,m=6
-100+
“150F R -
~200 I L i
0 0.2 04 0.6 08 1 12 14 16 18 2
k
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Figure 8: The region of validity of the distorted Born approximation (points under
the curve) is shown with regard to the reflection coefficient for 5% error criterion.
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Figure 9: The magnitude of reflection coefficient for perpendicular(a) and parallel(b)
polarizations as a function of k,/ky = sin6; for a canopy with &, = 1.03+j0.015
assuming flat surface (¢ = 0), 0 = A/10 (m = A/5), and o0 = A/5 (m = 2)/5). It
is shown that surface roughness significantly decrease the magnitude of the reflection
coefficient
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Figure 11: Field of a vertical dipole in a canopy with £; = 1.014j0.006 and smooth
interface obtained from the exact solution is compared with distorted Born approx-
imation for two values of m. An operation frequency, 30MHz, and A = 0.2)\ and

h’ = 0.1\ are assumed.
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and smooth interface obtained from the exact solution is compared with distorted

Born approximation for fixed value of kgm = 7/5. An operation frequency, 30MHz,
and h = 0.2) and A’ = 0.1) are assumed.
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Figure 13: Diffracted field of a vertical dipole in a forest canopy (h=0.2X A"=0.1))
for two different values of ¢, = 1.01 4 j0.006 and ¢; = 1.03 + j0.015 and for three
different values of surface rms height, o = 0, ¢ = /2, and 0 = \.
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h" = 0.1}) for two different values of e; = 1.01 + j0.006 and ; = 1.03 + j0.015 and
for three different values of surface rms height, 0 = 0, ¢ = A/2, and o = ).
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Abstract

The problem of wave propagation in forest is revisited. In particular, the effect of the non-planar interface
between the air and the canopy on lateral waves is ezxamined. An analytical formulation is obtained for the
mean field when both the transmitter and receiver are within the foliage. This formulation is based on distorted
Born approzimation and is shown that compared to a planar interface, the field of a dipole in a canopy with
rough interface is significantly reduced.

1 Introduction

A generally adopted model of a forest at HF through VHF, that attributes wave propagation in forest to a
lateral wave, was first developed by Tamir [1]. In this approach, the forest is modeled by a homogeneous half-
space dielectric medium with a planar interface. The field of a dipole within this medium was then evaluated at
an observation point near the interface using the asymptotic form of the integral involved. This solution shows
that the field at the observation point is dominated by the so called lateral wave that travels along the flat
canopy-air interface. In reality, however, the interface between forest canopies and air is not flat, hence it is not
clear as to what happens to the lateral wave or whether it can even be excited or not. In this paper, the effect
of roughness of interface between canopy and air on the wave propagation in forest areas is investigated. An
analytical solution is obtained using the volumetric integral equation in conjunction with the distorted Born
approximation.

2 Analytical Formulation

Geometry of the diffraction problem is shown in Fig.1 where the dipole located at heights & and A’ inside
a canopy with effective dielectric constant €;. The envelope of the canopy-air interface is denoted by d(z,y).
The permittivity of the upper medium(air) is denoted by €5. We modify the problem by extending the canopy
to z = 0 plane and assume that there exists a volumetric polarization current J =ik 1Yi(eg — 51)E where
E' = E' + E" + E°. Here E' is the incident field, E” is the reflected wave from the planar interface and E® is
the scattered field generated by J itself. To the first order in (62 —€1) the Born approximation can be used to
the scattered field

E°* = ko?(e3 — 51)/_ /00 /2(35 y)é(r*, ) - [EY(7) + B (7))dz'dy'd2’ (1)

where G is the dyadic Green’s function of the half space dielectric medium [2, 3].

In (1) d(z,y) is a two dimensional random process describing the interface between the canopy and air and is
assumed to be Gaussian with a mean value of m(a positive number) and standard deviation of o. Distorted
Born approximation provides a more accurate solution for E®. In this approximation, a phase correction term is



incorporated into the expressions for the internal field to account for the difference in the propagation constant
between the air and the canopy as seen in the following expression of incident and reflected waves.

B = B (kj) PR R gk
B = (k)R +4y/ R i~k

where P(ky,) is a unit vector (P = v or h) as is defined in [2, 3] and R, is the Fresnel reflection coefficient
for vertical or horizontal polarization.
Since the layer thickness is not uniform. the phase correction terms in (2) are chosen for a layer with a uniform
thickness m. Substituting 2-D Fourier transform of G in (1) and after performing the integration with respect
to z', evaluation of (E*) would require computation of the term like (¢%/5?) which for a Gaussian d are found
to be
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where s can be either s; = ki_ + k‘iz or 83 = k;z - kiz. . _
The integration with respect to z' and y' can now be carried out analytically which results in &(k,—k})-6(ky—Fk})-
This in turn simplifies the integration with respect to k; and k,. Thus the final result is readily obtained as,

Et — E" + <Es> ~ (Rref + R(l) )ei[kixr+k§yy—k;22] (4)

Born

where R, is the Fresnel reflection coefficient for the canopy-air boundary at z = 0.

R, f+Rggm is accurate enough for horizontal polarization, but it cannot accurately predict the Brewster angle
for vertical polarization. To rectify this deficiency, higher order solutions must be obtained but it is sufficient
to use only —ééﬂ;c—;{—l term of the dyadic Green’s function. Thus the partial second order solution can be

obtained and is given by
Fo19) = 2 €221 / G- [55- (B + EN))dv (5)

The ensemble average of E*(15) can be obtained in a manner similar to what was used in computation of (f)s(l)).
After some algebraic manipulations, the reflection coefficients for the mean field are obtained and given by

ko*(e2 —€1) 1 i B
Rg}»m(h) —()—‘Q%;L{;;[Rh"’«e 1y 1) 41— (e719)]

+ %((eis2d> _ <e—i82d>)}ei52m

(1ts) _(e2—¢€1) Ro  isay / isyd (812 402
RBorn(v)— Qkizsl {32 ((6 > <6 >) (Szkp +klz)

(1= R+ Rue™) — (o) - (k2 kD))
S €2
where k,% = k;z + kf.

Using the above result, the solution for an infinitesimal dipole embedded within the foliage can be obtained
by expanding the field of the dipole in terms of a continuous spectrum of plane waves. Assuming that a dipole,
whose orientation is denoted by a unit vector I, is located at rg = —(h 4+ m)2, and using superposition, the
mean scattered field can be computed from the coherent sum of all reflected plane waves. That is

~ ]k Z i PR Qi Y
(EBorn — 040 / / k1 ( v5) + (l . hi)Rg,)L]e_lk“(z_m_h) i(kLz+k y)dkz dk‘z
1z
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For more accurate computation. the mean field for a dielectric medium with a rough surface is calculated by.

Eez‘act(a) ~ Ecract(g = 0) + EBorn(U) - EBorn(U = 0)

where E.zqct(0 = 0) is the field of the dipole in the presence of the upper free-space medium with a planar
interface at z = —m.

3 Numerical Simulation

In order to verify the accuracy of the distorted Born approximation, first, the approximate analytical solution
for reflection coefficient of a planar boundary is compared with the exact Fresnel reflection coefficient when a
plane wave is incident at the boundary. We consider a canopy with effective permittivity ¢ = 1.03 + 20.001
and the interface between the canopy and air is assumed planar at a distance m = 6[m] from the x-y plane
of the reference coordinate system. Figure 2 and 3 show the comparison between the reflection coefficients
as predicted by the distorted Born approximation and the exact solution for both parallel and perpendicular
polarizations. A very good agreement is obtained for this example. Further sensitivity analysis show that the
accuracy of the distorted Born approximation degrades. Similar behavior is obtained when m is kept fixed and
dielectric constant of the dielectric layer is increased. Next we considered the field of dipole inside a dielectric
layer with ¢ = 1.03 4 ¢0.001 at a depth of 2[m] below the interface. The field is observed at a depth in 1[m]
below the interface as a function of radial distance. The exact solution is compared with the distorted Born
approximation for a chosen value of m = 2[m] at 30[MHz] in Fig.4. An excellent agreement is obtained. Close
examination of these results indicates a maximum relative error of 2 % between the two solutions. As for
the plane wave illumination simulations, the discrepancy between the distorted Born and the exact solution
increases with increasing m.

With confidence in the distorted Born solution, the effect of the interface roughness on the field can now
be examined. Fig.5 shows the variation of the field as function of radial distance between the transmitter and
the receiver (h = 2[m], h’ = 1[m]) for two cases. In the first case, €, = 1.01 4 0.6 and ko = 3 (roughness
parameter) and the second case, £, = 1.03 4 0.6 and ko = 2. The results are also compared with those had
ko = 0 (flat interface). It is shown that these surface roughnesses reduce the field by a factor of 3-5dB. For

these simulations, we used a p.d.f. for d of the following form f;(d) = —\/2=—e“’12/2"2 where d can only assume

2no
positive numbers.

4 Conclusions

Analytical formulation for the mean-field of a short dipole embedded in a forest is computed. In this
formulation, the effect of the roughness of the air-canopy interface is taken into account. Distorted Born
approximation is shown to provide a very accurate results for the limiting case when the interface roughness
disappears. Simulated results indicate that the roughness of the interface reduces the contribution of the lateral
waves significantly.
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Abstract

In this paper a preliminary study is carried out to demonstrate the application
of wavelets for improving the computation time and reducing computational memory
required for evaluating the statistics of the scattered field from rough surfaces using the
method of moments in conjunction with a Monte Carlo simulation. In specific, Haar and
the first-order B-spline wavelet basis functions are applied to the MoM formulation of
one-dimensional rough surfaces in order to compare the computation time and sparsity
for wavelets in the same family but of higher order. Since the scattering coefficient (the
second moment of the backscatter field per unit area) is a gentle function of the surface
parameters and the radar attributes, it is demonstrated that a relatively high thresholding
level can be applied to the impedance matrix which leads to a sparser impedance matrix
and faster computation time. It is also shown that applying a high threshold level the
coefficients of the high order wavelets would increase out of proportion, however the effect

of these current components averages out when computing the scattering coeflicients.

The resulting sparse impedance matrices are solved efficiently using fast search
routines such as the conjugate gradient method. A systematic study is carried out to
investigate the effect of different threshold levels on the accuracy versus computing speed
criterion. The computed scattering coefficients are compared to previous results com-

puted using a conventional pulse basis function as well as the existing theoretical solutions



for rough surfaces. It is shown that wavelet basis functions provide substantial reductions

in both memory requirements and computation time.

I Introduction

The problem of electromagnetic scattering from rough surfaces has been the sub-
ject of intensive investigation over the past several decades for its application in a number
of important remote sensing problems. Radar remote sensing of the oceans, soil mois-
ture, and mine detection using wideband radars are such examples. For these problems,
where the rough surface is either the primary target or the clutter, the understanding
of interaction of electromagnetic waves with the rough surface is essential for developing
inversion or detection algorithms. An exact analytical solution for random rough surfaces
does not exist. However, approximate analytical solutions exists for rough surfaces with
specific types of surface roughness conditions. For surfaces with small root mean square
(rms) height and slope, the small perturbation method (SPM) is the most commonly
used formalism. Formulations based on SPM exist for perfectly conducting [10], homoge-
neous dielectric [4], and inhomogeneous dielectric [12] rough surfaces. Another classical
solution which is valid for surfaces with large radii of curvature is based on the tangent
plane approximation [15]. The region of validity of these classical approaches are rather
limited. In recent years much effort has been devoted to extend the region of validity of
these models [3, 9], however, the improved techniques still have the basic limitations of

the original models.

An alternative approach for evaluating of the scattered field and its statistics for
rough surfaces is Monte Carlo simulation. In this approach many sample surfaces with
the desired roughness statistics are generated, and then the scattering solution for each
sample surface is obtained using a numerical method. Monte Carlo simulation have
primarily been considered for evaluating performance of and characterizing the region of

validity of approximate analytical models [1, 2, 3, 9]. In general, the limitations of Monte



Carlo simulation of scattering from rough surfaces are the computation time and the
required memory as the typical size of the scatterers (sample surfaces) must be chosen
to be much larger than the wavelength. Another issue is that the rough surfaces are
the targets of infinite extent which must be truncated appropriately before the numerical
scattering solution can be obtained. This can be done either using a tapered illumination
[9], or padding the sample surfaces with a tapered resistive sheet [11]. It has been shown
that with the tapered illumination, larger sample surfaces must be used as a considerable
portion of the induced currents on the surface do not contribute significantly to the
total scattered field. Application of the tapered resistive sheet is advantageous in that
a relatively small portion of the sample surfaces is actually used to suppress the edge

currents. This improves the computation time and reduces the required memory.

In order to use Monte Carlo simulation for evaluating the scattering statistics of
rough surfaces more routinely, computationally more efficient scattering codes must be
developed. In this paper the application of wavelets as a basis function for the expan-
sion of induced surface currents is considered. Traditional method of moments (MoM)
in conjunction with Galerkin’s method would require matrix fill computation time of
the order of N? and matrix inversion computation time of the order of N® (using Gaus-
sian elimination). It is well known that the solution of linear system of equations can
be obtained far more efficiently using search routines, such as the Conjugate Gradient
method, if the matrix of the coefficients is a sparse matrix. In MoM, the application
of conventional pulse or rooftop basis and testing functions would usually produce full
impedance matrices. Although the diagonal elements are usually larger than the rest of
the elements, the smaller elements cannot be arbitrarily thresholded without drastically
altering the resulting scattering pattern. The success of wavelet expansion function in
generating sparse matrices have been demonstrated for many circuits and antenna prob-
lems [5, 6, 7, 8]. In the Monte Carlo simulation of scattering from rough surfaces the
quantities of interest are the statistical parameters, such as the mean and variance of the

scattered field, and therefore it is expected that the overall accuracy be less sensitive to



the threshold level.

An investigation is conducted on the use of two different types of wavelets with
compact support, Haar and B-spline wavelets with edge wavelets. and the effect of dif-
ferent threshold level with regard to the overall accuracy and the computation time.
The method is applied to one-dimensional perfectly conducting random rough surfaces
to demonstrate the improvements achieved. In the Monte Carlo analysis presented here
the tapered resistive sheet approach is used to suppress the edge current for plane wave
illumination. The numerical results are also compared with the approximate analytical

solutions.

II Integral Formulation of Scattering Problem

In order to characterize both the backscattering coeflicient and the bistatic scatter-
ing coefficient using the MoM and a Monte Carlo simulation, a large number of random
surfaces with known statistical parameters (ks, k¢) must be generated. Then it is desired
to find the surface current density J. induced by a plane wave from which the scattered
field can be computed. For a horizontally polarized plane wave excitation the scattered

electric field is given by:

koZ,
()= === [ L) H kol — 7)at (1)

here kq is the wave number, Z, is the intrinsic impedance of free space, H(gl) is the zeroth-
order Hankel function of the first kind, and p and p’ are the position vectors of observation
and source points, respectively. The sample surface is discretized into sufficiently small
cells, as shown in Figure 1, and equation (1) is cast into a matrix equation. The expression

for the plane wave propagating along k; = sin 6;Z — cos 6,3 is given by,

Ei(l'm,ym) — eikg(zm sin 6; —ym cos §;) ) (2)



As mentioned before, because of the singular behavior of the current near the edges
of the surface when excited by a horizontally polarized incidence wave. tapered resistive
sheets must be added at the edges of the sample surface in order to suppress the edge
currents. The induced surface current on a resistive sheet is proportional to the tangential

electric field, or mathematically:

i x (i xE)=—RJ . (3)

where R is the surface resistivity (for a perfect conductor, R = 0). Another boundary
condition for resistive sheets mandates continuity of the tangential electric field across

the resistive sheet, that is, [ x E]? = 0.

Therefore the electric field integral equation for the surface current is given by

koZo /eJe(ﬁ(gl))Hél)(kOIp(Z) _?(g’)l)df’ . (4)

E'(p) = R(p)Ie(p(0)) + —

IIT Tapered Resistive Sheets

Tapered resistive sheets, as introduced in section II, are added on the edges of the
surface samples to suppress edge effects on the induced surface current and the scattered

fields. An optimum tapered function for resistivity (found by trial and error) is given

by [11]:

0, 2| < 5
r= 2-p1\* p D )
ZO(’ZBR_) ) —2‘§I$|§7+DR

where D is the width of the sample surface and Dp is the width of the resistive section.
This taper function was found to significantly decrease diffraction due to the edge discon-

tinuity. Figure 2 shows a normalized resistivity profile of the tapered resistive sheets and



the placement of the resistive sheets on a surface described by a Gaussian hump. Fig-
ures 3a and 3b show the induced current distribution on a flat surface with and without

thin tapered resistive sheets, respectively.

Expanding the current in terms of the basis functions J.(p) = 3" a,0,(p) and ap-

plying Galerkin’s method to equation (4) we have:

[ émlp)E¥(p)dt =

4

N
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where ¢,,(p) is the testing function, and ¢,(p’) is the basis function. Equation (6)
can be solved using numerical integration, and cast into a matrix equation, given by

[Z][I}] = [V]. This matrix equation can easily be solved to find the surface current J..

IV Applications of Compact-Support Wavelets

As stated above, the EFIE used in conjunction with Galerkin’s method can be cast
into a matrix equation using appropriate expansion and testing functions. The restric-
tion on the expansion and testing functions is that they have to be in the domain of the
integral equation operation. To expand the induced current in terms of a multiresolu-
tion expansion, first, the current must be projected onto the z-axis or the surface must
be arclength parameterized. For natural rough surfaces with moderate rms slope it is
more convenient to project the current on the z-axis since the domain will be identical
for all sample surfaces. Applying a multiresolution expansion to the projected current

distribution (f(z)) on the z-axis we have:

mp—1

flz) = Zcmh,némh,n($) = ;cmz,n¢mz,ﬂ(x) + Z de,"‘/’m,n(‘r) ’ (7)
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which consists of the scaling functions at the lowest resolution, plus wavelets at the
lowest resolution and subsequent higher resolutions. This expansion is equivalent to one
consisting of only scaling functions at the highest resolution (¢, (). Using the Fast
Wavelet Transform(FWT)(18], the program needs only to compute the EFIE impedance
matrix at the highest level of resolution. From this computed impedance matrix at the
highest resolution, lower resolutions can be found in terms of the original computed
impedance matrix. This reduces computation time drastically from having to perform

the integration for each wavelet at various resolution levels.

Sparse matrices arise due to the fact that the scaling functions and wavelets are
orthogonal and wavelets have zero moments. For example, Haar and linear B-spline
wavelets both have zero mean and the first moment of the linear B-spline wavelet is also

zero. Higher order wavelets also have vanishing higher moments, that is

/ zP(z)dz =0 n e {0,. N}, (8)

where N depends on the order of the B-spline wavelet. Figures 4 and 5 show the Haar

and linear B-spline scaling functions and wavelets.

The significance of vanishing moments of the wavelets stems from the fact that
the integration of the kernel over the domain of the wavelet would produce a small
quantity. This quantity is smaller for wavelets with higher vanishing moments. Then,
when integrating over the kernel, very small matrix element values are usually calculated
for cells that are relatively far from one another with the kernel being fairly regular.
For adjacent cells and self-cells the integration of the kernel produce element values that
are significant. In fact, the self-cell contribution is the largest element of the impedance

matrix.

Once the impedance matrix for the highest resolution is computed, the FWT algo-
rithm is applied to the matrix to find an equivalent impedance matrix for the multireso-

lution expansion. Using the FWT it is expected that a sparse matrix will be generated.



At this stage a user-defined threshold level. usually of the order of .01% to 1%. is imposed

on the matrix and only significant elements of the matrix will be preserved.

For a preliminary examination of the wavelet-based Method of Moment. a Gaussian

hump described by equation

y(x) = A e () (9)

is used. The effects of the multiresolution expansion and application of different threshold
levels on the moment matrix on the bistatic scattering is investigated. Initially, pulse
basis functions with the highest resolution is used to generate a reference solution to the
problem of a plane wave incident at normal incidence upon a Gaussian hump surface
and the solution is found with no threshold applied. This solution became the standard
of comparison for subsequent tests on the Gaussian hump surface involving both Haar
wavelets and first order B-spline wavelets for various levels of resolution and threshold

levels.

Using Haar wavelets, described by equation

1, 0<|z|<]

h(z) = .
-1 l<fr) <t

(10)
along with pulse basis functions, the moment matrix produced had a maximum sparsity
level of over 89% when a threshold level of 0.3% was applied and 5 levels of resolution
were used. The bistatic scattering pattern produced from the reduced moment matrix
shows no significant differences in the scattering levels when compared with the results
obtained from the original full moment matrix. The sparsity level increases with the
number of resolution levels, because a larger number of localized wavelets contribute
to the cancellation effect at slowly varying regions of the induced current distribution.
Sharply varying components of the current which are mostly localized are captured by a

small number of wavelets. Keeping the same threshold level for the moment matrix, the



sparsity achieved for 2. 3. and 4 levels of resolution are respectively 72.5%. 80.7%. and

84.8%.

Next, rooftop basis functions along with linear B-spline wavelets were investigated.
The results from the linear B-spline wavelet case agreed well with the Haar case. and a
sparsity of over 99% was observed when a threshold level of 3% was applied and 5 levels
of resolution were used, and the overall bistatic scattering pattern shows no significant
differences. As expected, higher sparsity is achieved with linear B-spline wavelets. For 2,
3, and 4 levels of resolution with the same threshold level applied to the moment matrix,
sparsities of 93.2%, 97.3%, and 97.8%, respectively, are achieved for the linear B-spline
wavelet expansion. Once a sparse matrix is obtained, a search routine, such as conjugate
gradient method, can be used to find the solution. Since the number of non-zero matrix
elements is far less than the original matrix, the computation time for obtaining the
solution is reduced drastically. The comparison between the full matrix solution, Haar,
and linear B-spline wavelets with 5 levels of resolution and the threshold levels stated

above for the respective basis functions is shown in Figure 6.

V  Monte Carlo Simulations of Random Rough Sur-

faces

Encouraged by results obtained for a simple Gaussian hump surface, the multi-
resolution expansion method is then applied to random rough surfaces of known statistical
parameters. Near normal incidence, sample surfaces for numerical analysis must be
at least 40 correlation lengths (¢) long in order to accurately characterize the bistatic

pattern [13]. This requirement becomes more stringent for near grazing incidence.

Since the Monte Carlo simulation of the scattering problem requires the numerical
solution of the problem many times, the computation speed achieved by thresholding

the moment matrix of a multi-resolution expansion in conjunction with a search routine



lincar system solver becomes very significant with regard to the overall computation time

necessary for evaluating the statistics of the scattered field.

V.1 Random Surface Generation

Monte Carlo simulations require a large number of sample surfaces of a random
process with prescribed surface height statistics. To generate the sample surfaces, the
procedure in [10, 15] is used. First, a long string of numbers is generated using a ran-
dom number generator having the same pdf as the height distribution of the surface
(for example, a zero-mean Gaussian pdf). Next, a subset of the numbers of the string
are correlated with a weight vector related to the Fourier transform of the desired au-
tocorrelation function [9]. For the simulations presented in this paper, surfaces with
Gaussian correlation function and Gaussian height distribution are considered. Hence,
the surface statistics are uniquely specified by the surface height standard deviation (rms
height), s, and by the surface correlation length, £. Figure 7 shows a sample surface of
a Gaussian process with ks = 0.3, £/ = 3.0 and the corresponding histogram of height
and calculated correlation function generated from 60 independent sample surfaces. The
calculated correlation function gives kf = 3.17, and the calculated standard deviation
of height distribution gives ks = 0.3020. These agree closely with the desired surface

roughness parameters.

V.2 Validation and Results

Numerical simulation of rough surface scattering is performed for three different
surfaces denoted by Sy, Sz, and S3. The roughness parameters (ks, kf) for each of these
surfaces are respectively ks; = 0.3, kf; = 3.0; ks, = 0.5, kly = 6.13; and ks3 = 2.0, k3 =
2.5. The first two surfaces fall within the region of validity of small perturbation and
physical optics models respectively, and hence the two numerical results can be compared

with the analytical models. Comparisons are also made on the threshold level imposed
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on the moment matrix for both Haar and B-spline wavelet basis functions and on the
matrix solving times using a fast Conjugate Gradient solver for sparse matrices. Another
test that was run was the effect of the MoM and wavelet technique on backscattering
enhancement. Finally, the effect of the number of resolution levels on the scattering

pattern is investigated.

SPM is known to be valid when ks < 0.3,k( < 3.0, and m < 0.3, where m is the
rms slope and is given by m = v/2s/( for a surface with a Gaussian correlation function.
The analytical bistatic pattern for the SPM is derived in [17] for a 3-dimensional surface
with a Gaussian correlation function. For a 2-dimensional surface, the bistatic scattering
coefficient (03,) is related to the 3-dimensional bistatic scattering coefficient (03,) via

054 = 7034. Then, 03, is given by:

024(0:,05) = 4k> cos2(93)cos2(9,-)fth(|kl — ki) (11)

where W (k) is the power spectral density. For a Gaussian surface correlation, W (| k; — k,;|)

is given by

_ (S%[-ﬁ[sin(ﬁ_-)—sm(ei)]?)

W(,kl — k_]_,'l) = \/7?[826 (12)

Furthermore, for a perfect electrical conductor (PEC), fr, = cos?(¢, — ¢;) which equals

1 for a 2-dimensional problem.

The incoherent bistatic scattering coefficient for 8, = 30° using the Monte Carlo
simulation with 40 independent samples and threshold applied is compared to the ana-

lytical bistatic SPM from equation (11) in Figure 8, and a good agreement is observed.

The Physical optics (PO) method using the tangent-plane technique for approxi-
mating the fields on a surface, S, is next investigated. Under the tangent-plane technique,
the fields present at any point, P, on S are approximated by the fields that would be
present on a plane tangent to P. This is a valid approximation if every point on S has a

large radius of curvature. The three-dimensional bistatic scattering coeflicient is derived
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in [19] for the PO approximation. Using this formulation o3, is calculated and is given

by:

1 + cos(6,) cos({.)  sin(®)) Sin(m)? ’

U;d(giaos) =R ( COS(Gi) + COS(&S)

where

—

J=2 /0 " dz cos[kz(sin(6;) — sin(6,))] | €

- 7)

where x = ks[cos(8;) + cos(0,)]. For surface S; which falls into the PO region of validity,
a comparison is made in Figure 9 between the PO model in equation (13) and results
obtained using the wavelet based moment method. The bistatic scattering results from

S, agree well with the theoretical Physical Optics solution.

A comparison of different threshold levels imposed on the moment matrix for surface
S using B-spline basis functions is shown in Figure 10. The parameters for the simulation
on S; are ; = 30.0°, length = 32 resistive tapered ends length = 1A and Az = 0.1)\.
For this simulation, only a single surface (N = 1) is used for comparison. As is shown
in Figure 10, the scattering pattern varies very slightly and only at angles near grazing
observation. This figure indicates that a sparsity of more than 90% can be achieved
without substantial compromise in the accuracy of the bistatic pattern using B-spline

wavelets.

The bistatic scattering coeflicient obtained using the Haar and B-spline wavelet of
surface S5 are shown in Figure 11. For this simulation, ks = 2.0, k¢ = 2.5, number of
independent surfaces N = 40, sample length = 32), resistive tapered ends length = 1),
Az = 0.04) and 6; = 30.0°. Since this surface does not fall into the region of validity
for any analytical models, no comparison may be made. This figure shows again that by

thresholding the moment matrix, a high sparsity can be achieved without compromising
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the accuracy. It is also shown that a higher sparsity is achieved using the linear B-
spline wavelet. An average sparsity of 97.3% is achieved by the linear B-spline wavelet
whereas using Haar wavelets only 82.2% average sparsity is obtained for a threshold
level of 0.15%. Figure 12 shows a comparison of the exact current distribution and one
where the impedance matrix has a sparsity of about 97%. A portion of a surface with
characteristics given above (ks = 2.0, k{ = 2.5, etc.) was used and the sparse matrix has
a threshold of 0.5%. Even though this sample surface (which is indicitive of the current
distribution for every sample surface) has a current distribution that varies significantly
from the exact solution, because the far-field scattering pattern is an averaging process

the bistatic scattering pattern does not vary significantly from Figure 11.

The threshold level imposed on the moment matrix and the number of multiplica-
tions needed to solve the matrix using a fast Conjugate Gradient solver routine is studied
next. As stated previously, by imposing a threshold level the scattering pattern remains
relatively unchanged, yet the moment matrix could be made quite sparse. It was also
found that linear B-spline wavelets would produce a sparser matrix for a given threshold
level before the scattering pattern were to deviate significantly from the exact solution.
This is due to the fact that the linear B-spline wavelet has a vanishing first moment.
Table 1 provides the average number of multiplications necessary to solve for the sur-
face current of S; for both Haar and linear B-spline wavelets and for different values of
threshold levels. It is found that the number of multiplications, or equivalently the com-
putation time, decreases significantly with the first order B-spline scaling function and
its corresponding wavelets. For the Haar wavelet-based MoM, a slight improvement was
observed (approximately 20%), yet for the linear B-spline wavelet-based MoM, a factor

of about 20 improvement was observed.

The question arises if the solution produced using a wavelet based MoM technique
show the effect of backscattering enhancement. The backscattering enhancement is pro-
duces primarily due to multi-path and surface-wave effects on a rough surface. A surface

was chosen that has physical parameters where backscattering enhancement is known
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to occur. and these parameters are ks = 10.636. k{ = 19.472. Figure 13 was produces
using the aforementioned physical parameters, as well as number of independent surfaces
N = 400. sample length = 30), resistive tapered ends length = 1A, Ar = 0.0625) and
6; = 10.0°. Also, 5 levels of resolution were used, and the matrices had an average spar-
sity of 97.5%. It can be seen that around 6, = —10° there is an enhanced backscattering
effect. This figure is in linear scale to display the enhanced backscattering effect, and

agrees very well with Figure 5 of reference [20].

The effect of the number of resolution levels on the scattering pattern is next in-
vestigated using surface S;. Since it has already been determined that both Haar and
B-spline wavelet-based MoM produce similar results, the effect of the number of resolu-
tion levels is demonstrated with Haar wavelets only. Monte Carlo simulations are run on
random rough surfaces for 5, 4, and 2 levels of resolution, for threshold levels of 0.1% and
0.3%, except for the Haar with 5-levels of resolution in which 0.1% and 0.15% threshold
level is used. This is because 0.3% threshold level is too high for 5 levels of resolution and
the conjugate gradient solver does not converge. The results based on the full matrix is
also included at 5 levels of resolution for comparison. As is shown in Figure 14 the scat-
tering pattern starts deviating from the exact pattern for 5 levels of resolution and 0.1%
threshold level imposed on the moment matrix. The average sparsity, obtained from 40
independent samples, for each case in Figure 14 is summarized in Table 2. The scatter-
ing pattern agrees quite well with the exact solution for almost all levels of resolutions
shown with only slight deviation at near grazing observations. One notable exception
is for 4 levels of resolution and an imposed tolerance level of 0.3%, which deviates no-
ticeably from the exact bistatic pattern at certain angles of observation. As shown in
Table 2, the matrix is less sparse for fewer levels of resolution at a single stated threshold
level. Therefore, by increasing the number of resolution levels, while holding a constant

threshold level, the sparsity of the matrix will increase, as is shown in Table .
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VI Conclusion

It has been found that using wavelet basis functions with MoM and Galerkin's
method along with a fast solver routine such as conjugate gradient can drastically reduce
both the memory requirements of a system and the time necessary to solve the MoM
matrix. This leads to solutions for rough surface scattering that are quite accurate when
compared to other basis functions, yet take significantly less memory and time to solve.
Matrices can be made over 97% sparse yet still produce accurate bistatic scattering
coefficients in scattering problems. Thus, it becomes possible to generate statistics for

the scattering from surfaces of different roughness in a relatively short period of time.

The number of resolution levels were shown to play a significant role in determining
the sparsity of the matrix and the accuracy of the solution. It was shown that the
higher the number of resolutions, the more sparse the matrix could be made without
compromising the bistatic scattering pattern. Also, the higher order the B-spline was
made, the higher the sparsity achieved in the matrix, and thus, the faster the computation

time to solve the matrix.
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Figure 1: A typical discretized sample surface.
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Threshold | Sparsity | Number of Mults
Bspline 0.0% 0.0% 5.3 x 10°
Bspline |  0.05% | 90.7% 8.4 % 107
Bspline 0.1% 93.4% 6.4 x 107
Bspline | 0.5% | 97.3% 2.6 x 107
Haar 0.0% 0.0% 7.0 x 108
Haar 0.05% 66.1% 9.5 x 10%
Haar 0.1% 76.9% 7.0 x 10®
Haar 0.15% 82.2% 5.6 x 108

Table 1: Number of multiplications needed to solve the matrix and sparsity vs. imposed
threshold level for a random surface with ks = 2.0, k{ = 2.5, N = 40, length = 32),
resistive tapered ends length = 1A, Az = 0.04), 6; = 30.0°, and 5 levels of resolution.

Threshold | Sparsity
Haar 0.0% 0.0%
Haar-5 levels res. 0.1% 76.9%
Haar-5 levels res. |  0.15% 82.2%
Haar-4 levels res. 0.1% 68.9%
Haar-4 levels res. 0.3% 85.5%
Haar-2 levels res. 0.1% 51.1%
Haar-2 levels res. 0.3% 74.4%

Table 2: Sparsity vs. threshold for a number of different resolution levels used for a
random surface with ks = 2.0, k/ = 2.5, N = 40, length = 32, resistive tapered ends
length = 1\, Az = 0.04) and 6; = 30.0°.
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NUMERICAL SIMULATION OF SCATTERING
FROM ROUGH SURFACES USING AN ITERATIVE
PHYSICAL OPTICS APPROACH
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Abstract

The application of iterative Physical Optics (PO) in conjunction with a Monte Carlo simulation for
characterizing the bistatic scattering coefficient of random rough surfaces is examined in this paper. The
iterative PO method offers decreased memory and computation time restrictions compared to the standard
numerical methods such as the Method of Moments (MoM). Results from the iterative PO method are
compared to the standard electric field integral equation (EFIE), the magnetic field integral equation
(MFIE) as well as the existing theoretical solutions for rough surfaces. It is demonstrated that memory
requirements and computation time is significantly decreased while providing fairly accurate results for
surfaces with moderate to low rms slope.

I Introduction

Development of numerically efficient Monte Carlo-based models for simulations of electromagnetic scattering
from random surfaces has attained significant prominence over the past decade (4, 2, 1]. A major stumbling
block in this endeavor has been the large memory and computation time requirement. This is because the size
of the scatter is large compared to the wavelength and the Monte Carlo simulations demand computation of
the scattering problem many times. Iterative methods offer an alternative approach when exact solutions are
not available and have been used in different electromagnetic problems. By construct evaluation of iterative
solutions are rather straight forward especially when the perturbation parameter is relatively small. Physical
Optics (PO) approximation is known to provide accurate approximation for the induced surface currents
provided that the local radii of curvature at each point on the surface of scatterer is large and the surface is
convex. For concave surfaces and surfaces with many adjacent humps multiple scattering drastically alter the
standard PO current. However these surface current variations can be estimated through an iterative process.
Unlike Method of Moments (MoM) which requires matrices on the order of N2 to find the surface current of
the sample surface with N elements, the iterative Physical Optics method only requires memory size of the
order N. Thus, substantial memory savings are realized. Also, since no solver routine is necessary in order to
solve for the surface currents, as in the MoM, substantial time savings are realized as well.

We investigated the use of the iterative Physical Optics method upon a variety of surfaces in order to find the
approximate region of validity for such a method. The results obtained using the iterative PO method are also
compared to the results found using the electric field integral equation (EFIE) with tapered resistive sheets
at the ends of the surface samples as well as the magnetic field integral equation (MFIE) for a horizontally
polarized wave.

II Formulation

Using a Monte Carlo simulation, first many sample surfaces of a stochastic random process representing the
desired random rough surface is generated using a standard procedure (4, 2]. As mentioned earlier it is far
more convenient to solve for the induced polarization current using an iterative method as opposed to brute
force numerical methods. Magnetic field integral equation (MFIE) can be used as the basis for the iterative
PO solution using the surface curvature as the perturbation parameters. The MFIE for the induced surface
current (J,) over a perfect electric conductor is given by [6]

Ji(r)=2(r x H) 4 %fs.],(r')(ﬁ (r'=r)) (ik ]

1 ) ¢ik(ir=r')

v —r/|2

ds’ (1)

r—r|

where H' is the incident magnetic field, 7 is the unit normal at the observation point, and { represents
the principle value integral. It is obvious from (1) that for a flat surface (r' —=r) -2 = 0 which renders



Js(r) = 2(n x H') which is the standard Physical Optics approximation for the induced surface current. For
undulating surfaces with large radii of curvature the contribution from the integral has a secondary effect and
therefore (1) may be solved in an in iterative fashion. To examine the accuracy of the iterative PO approach the
results must be compared with an exact solution obtained from a numerical method. Numerical solutions for
one-dimensional rough surfaces are tractable and thus the accuracy of the iterative PO approach is examined
for one-dimensional rough surfaces. The MFIE for two-dimensional problems (one-dimensional roughness) can
easily be obtained. For 2-D scattering problems the transverse (J;) and longitudinal (J.) components of the
induced current are decoupled and the integral equations for a TM and TE incidence are respectively given

by:

Je(o) = 20 H) -+ 2 £, ol - p|,—l)df' 2)

iko n-(p'—p

~p) = 28+ f0) D el - o) ) ar 3)

lo—p'|
where { = 7 x 7 is the tangent unit vector. Again we recognize that for a flat surface (7 = #) the contribution
from the integrals in (2) and (3) are zero and the PO currents are retrieved.

Consider a perfectly conducting rough surface illuminated by an E-polarized (TM) plane wave. Points on the
surface can be grouped into two categories: 1) lit points and 2) shadowed points. As a first-order approximation

the induced current over the lit region is given by JY = 2(n x H') and over the shadow regions J = 0. This
current produces a scattered magnetic field whose tangent on the surface induces a secondary PO current. It
can be shown that the expression for this first order scattered field is given by

1k0 1) n-(p-p')
J“) H O (kolp = p'|) 222 —P) 4y 4
( ) 1 ( 0| pl) |p_p/| ( )

and hence the second order PO current can be obtained from J{*) = 2(n x Hfl)) which is exactly the same as

n X HEI)

the integral in (2). From this argument it is evident that starting with J , the integral in (2) can be used in
a recursive manner to find a higher order solution. There is a subtlety in the computation of the second order
current over the shadow regions. The reason for shadow is that the scattered field is out of phase with the
incident wave. Basically we have to add the contribution from the incident field to the first-order scattered
fields over the shadow regions. Therefore the corrected second order solution is

@ L

(2)corrected __ over lit region

Iz =\ @ ; . (5)
+2 (7 x H') over shadow region

2 ted .
Once JiDeorrected o characterized, higher order currents can be obtained from

n iko n— n-(p-p
10 = 2 fa=0(e) 1l 1) 2L e ©

n . . . . . . . .
and J, = ™) The convergence 1s examined by monitoring the normalized difference in the successive

solutions < ) .

IIT MFIE and the Method of Moments

Using Galerkin’s Method, equation (2) is re-written as

g

n=1"%
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which can be solved using numerical integration. and cast into a matrix equation. In equation (7). o, and oy,
are the basis function and testing function respectively.

This 1s also compared with the EFIE which, using Galerkin's method is given by

.

koZo < , / Q

S [ omondiol kol - o't (¥
4 n=1"v"

/"%Ei(p)d[:/sé"’ R(p)Ie(p) +

where R is the surface resistivity (for a perfect conductor, R = 0). For the EFIE, tapered resistive sheets are
used to reduce the edge effects. An optimum tapered function is reported in (2].

IV Results

To verify the accuracy of the iterative PO method, a perfectly conducting surface with two Gaussian humps, as
shown in Figure 1(a), was studied. The total bistatic scattering pattern for normal incidence excitation is shown
in Figure 1(b) and excellent agreement is observed between the electric field integral equation (EFIE), magnetic
field integral equation (MFIE) and the iterative Physical Optics (PO) method. After verifying that the results
from the iterative PO method, EFIE and MFIE gave similar results, numerical Monte Carlo simulations
of rough surface scattering is performed for four different surfaces denoted by Sy, Sa, S3, and S4. The
roughness parameters (ks, kf) for each of these surfaces, created using [4], are respectively ks; = 0.3, k{; = 3.0;
ksy = 0.5,kfly = 6.13; ks3 = 1.0,kl3 = 3.0; ksq = 0.5,k€y = 2.0. Surfaces S; and S, were chosen because
they fall into the regions of validity for the Small Perturbation Method (SPM) and the Physical Optics (PO)
method, respectively.

For surfaces S and Sy, whose bistatic scattering patterns (¢°) are shown in Figures 2(a) and 2(b) respectively,
good agreement is shown between the EFIE, MFIE, iterative PO method and the analytical solutions. S
sample surfaces are 30 A in length (except for the EFIE where 1 X resistive tapered sheets are added on each
end) with Az = 0.2X and §; = 30.0°. 40 sample surfaces are used to find the estimate of ¢°. Good agreement
is shown in the figure until about —60°. S, sample surfaces are 46 ) in length with Az = 0.1Xx and §; = 30.0°.
Again, good agreement is shown in the figure until about —60°.

For surfaces S3 and S4, good agreement is also shown for the bistatic scattering pattern. For surface Ss,
N = 40, length = 18, 6; = 30.0°, rms slope = 0.471 and Az = 0.1, and the bistatic scattering pattern is
shown in Figure 3(a). For surface Sy, N = 40,length = 18), 6; = 30.0°, rms slope = 0.354 and Az = 0.1},
and the bistatic scattering pattern is shown in Figure 3(b).

V Conclusion

It has been found that using an iterative PO method for characterizing the bistatic scattering pattern for
random rough surfaces with low to moderate rms slope (< 0.6), relatively good agreement with the exact
solution using both the EFIE and the MFIE is demonstrated. Computation time is significantly decreased
as well as memory size necessary to perform the numerical solution for the iterative PO method. Since for
3-D problems the kernel of the integral equation decays faster with distance than that for 2-D problems, it is
expected that iterative P.O. to perform even better for 3-D problems.
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Figure 3: (a) Comparison of bistatic scattering from a random surface with ks = 1.0 k¢ = 3.0, N = 40,
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Abstract

The application of a fast far-field iterative Physical Optics (FIPO) method in conjunction with a Monte
Carlo simulation for characterizing the bistatic scattering coefficient of random rough surfaces is examined
in this paper. The FIPO method offers decreased memory and computation time restrictions compared to
the standard numerical methods such as the Method of Moments (MoM), and decreased computation time
compared to an exact iterative PO method. Results from the FIPO method are compared to the standard
electric field integral equation (EFIE), the magnetic field integral equation (MFIE), a complete iterative
PO (IPO), as well as the existing theoretical solutions for rough surfaces. It is demonstrated that memory
requirements and computation time is significantly decreased while providing fairly accurate results for
surfaces with moderate to low rms slope.

I Introduction

Numerically efficient Monte Carlo-based models for simulations of electromagnetic scattering from random
surfaces has attained significant prominence over the past decade [4, 2, 1]. A major stumbling block in this
endeavor has been the large memory and computation time requirement, but as previously reported, the
computation time and memory size has been reduced using a standard iterative PO method which produces
fairly accurate results [9]. For a surface consisting of N elements, the iterative Physical Optics method only
requires memory size of the order N. Thus, substantial time and memory savings are realized compared to
the Method of Moments (MoM).

Previously, we investigated the use of the iterative Physical Optics method upon a variety of surfaces in
order to find the approximate region of validity for such a method [9]. The difference between a complete
iterative PO approach and the new fast far-field IPO (FIPO) approach is that the original IPO was order
N? in computation time, while the new FIPO approach is only order N computation time. Both routines
are order N in memory requirements. The results obtained using the FIPO method are also compared to the
results found using the electric field integral equation (EFIE) with tapered resistive sheets at the ends of the
surface samples, the magnetic field integral equation (MFIE), and the complete IPO method for a horizontally
polarized wave.

II Formulation

For a Monte Carlo simulation, many sample surfaces representing the desired random rough surface character-
istics are generated using a standard surface generation routine [4, 2]. As previously reported, the Magnetic
field integral equation (MFIE) is used as the basis for the iterative PO method [9] and the currents over a
perfect electric conductor is given by [6]

3.(0) = 2 (i x HY) + — 3,0 - (' = v)) ik
2r J,

1\ eklle=rl)
) £ ds’ (1)

- r=r'|) |r—r']?

where H! is the incident magnetic field, 7 is the unit normal at the observation point, and § represents the
principle value integral. For the MFIE for two-dimensional scattering problems (one-dimensional roughness),



the transverse (J;) and longitudinal (J.) components of the induced current are decoupled and the integral
equations for a TM and TE incidence are respectively given by:

] N k / f

Jilp) = 2n < B2+ 5 000 kel - ) e (2)
i lko (1) 7'1’ (=0 .

—Jg( = QH + — Jt H }»olp [) T—pT’—_ dl (3)

where { = z x n is the tangent unit vector.
Consider a perfectly conducting rough surface illuminated by an E-polarized (TM) plane wave. Points on the
surface are grouped into two categories: 1) lit points and 2) shadowed points. As a first-order approximation

the induced current over the lit region is given by JN = 2(7 x H') and over the shadow regions JY = 0. This
current produces a scattered magnetic field whose tangent on the surface induces a secondary PO current.
The expression for this first order scattered field is given by

k
an’l)_l——OfJ” NVHD (kolp - o) l;” ’T)dz' (4)

and hence the second order PO current can be obtained from J{* = 2(n x Hfl)) which is exactly the same as
the integral in (2).

For the fast far-field iterative PO (FIPO), instead of a complete solution as given in (2) or (3), the surface is
divided into a near-field region and far-field regions. Then, (2) and (3) can be written as

, M
ik / ik n— '
5 0) = 52 fa il ) L e 5T B [ S0 ko) = e
2 near fieldm | ‘ m=1:m'#m 2 farfzeld , | |
)

W p —
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lo—p|

(6)
Then, the FIPO can be found by summing the contributions from the near-field plus the far-field contributions.
The far-field contributions, or last terms, from (5) and (6) may be approximated respectively using the large
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argument expansion of Hankel functions and noting that in the far field -B—L,I ~ @ where @ = 2 if p, > pg or
u=-2if p. < pa
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2 farfield

where ppmiq 1s the midpoint of the far field section. For the far field, since the fields fall off quickly due to
the kernel, large sections of surface are integrated over to give us the far-field contribution to the integral. As
shown in (7), for any near-field section, the far-field section only has to be calculated once. Then instead of
an N? calculation the order of calculation is N M, that is, a computational savings factor of (%) is achieved,
where M is the total number of far-field sections. As an example, for a 40\ surface consisting of 400 elements
divided every 5A which leads to m = 8 distinct sections, FIPO is approximately 50 times faster than the
traditional IPO. In the actual implementation, the adjacent sections should also be excluded from the far-field



approximation. that is. m’ # {m — 1.m.m + 1}. Then, for the example above. for each section m, there are
6 far-field sections if m is equal to 1 or 8, and 5 far-field sections if m is in the range {2...7}. For any section.
m. there are 100 or 150 near-field elements which have to be iterated over. and 5 or 6 far-field sections. which
are calculated once.

The above argument allows one to start with J™ and recursively find a higher order solution. As reported
previously there exists a subtlety in the computation of the second order current over the shadow regions [9].
The corrected second order solution 1s

2 . .
J(2)corrected _ J& over lit region )
. - 9 . . E
) J 42 (A x HY) over shadow region

From JZ(Q)Corremd, higher order currents can be obtained.

(n)

R

)

The convergence still is examined by monitoring the normalized difference in the successive solutions (

as in [9].

IIT Results

Previously, it was determined that the iterative PO method produced very favorable results for surfaces with
small RMS slope. The FIPO method was then compared to the IPO method for a number of surfaces and
found to also produce very favorable result. These results are compared to the complete IPO, the Electric
Field Integral Equation (EFIE) as well as the Magnetic Field Integral Equation (MFIE).

First, the FIPO method was compared to the EFIE, MFIE, and IPO method for a single Gaussian hump,
as shown in Figure la. The bistatic scattering pattern for a single Gaussian hump is shown in Figure 1b
and excellent agreement between the EFIE, MFIE, IPO, and FIPO method are shown. After verifying these
results, two surfaces, S; and S, were compared for the IPO method as well as the FIPO method. Surface S;
is a surface that was measured in [9] and produced excellent agreement with the EFIE and MFIE method. S;
has surface characteristics ks = 0.5 and k€ = 2.0. In addition, a Monte Carlo simulation of surfaces that have
characteristics ks = 0.65, k¢ = 2.0 and where each surface is 800\ in length (or 8000 elements) is compared.

For surface S1, the total bistatic scattering pattern (og) is shown in Figure 2a. S; sample surfaces are 18\
in length, with Az = 0.1}, the number of surfaces averaged over, N, is 40 and 6;=30.0°. For surface S, the
total bistatic scattering pattern is shown in Figure 2b, and the IPO and FIPO methods are compared to result
obtained by surfaces with the same characteristics (ks, k€). It is obvious the both the IPO and FIPO methods
work very well compared to the EFIE and MFIE methods. For surface S, ks = 0.65, k£ = 2.0, N = 30,length
= 800X for FIPO and IPO, while length = 20\ for EFIE, and 6; = 30.0°.

IV Conclusion

It has been found that when using a fast far-field iterative PO method for characterizing the bistatic scattering
pattern for random rough surfaces with low to moderate rms slope (< 0.6), relatively good agreement with
the complete iterative PO method, as well as with the exact solutions using both the EFIE and the MFIE is
demonstrated. Computation time is significantly decreased as well as memory size necessary to perform the
numerical solution for the iterative PO method. Since for 3-D problems the kernel of the integral equation
decays faster with distance than that for 2-D problems, it is expected that iterative PO to perform even better
for 3-D problems. ‘
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Figure 2: (a) Comparison of bistatic scattering from a random surface with ks = 1.0 k¢ = 3.0, N = 40, length
= 18), resistive tapered ends length for EFIE = 1A, Az = 0.1\ and 6; = 30.0°. Comparison shows difference
between IPO, FIPO, and EFIE method. (b) Comparison of bistatic scattering from a random surface using
FIPO and IPO ks = 0.65 ,k¢ = 2.0, N = 20, length = 800\, Az = 0.1 and 6; = 30.0° vs. the EFIE for
the same physical characteristics, but N = 40, length = 20\ with tapered resistive sheets of 1). Comparison
shows difference between IPO, FIPO, and EFIE method.



