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1 Introduction

This report details the development of a new hybrid physical optics-moment method (PO-MM)
formulation for analysis of nose-radome antennas. The radome is assumed to be a body of
revolution (BOR) and this is taken into consideration to reduce the overall problem to a two-
dimensional one by decomposing the antenna radiated fields into cylindrical modes used as the
excitation on the dielectric radome.

The primary reason for considering a hybrid PO-MM implementation stems from our interest
to modal very large radomes which are possibly 100\ long and 30 — 40\ wide at the back of
the radome where the antenna aperture resides (see Fig. 1). For this analysis, the radome
shell is assumed uniform but layered configurations can be readily incorporated . In combining
the PO and MM technique for evaluating the transmission properties of the radome, the MM
1s employed to rigorously model the tip of the radome (up to 3 — 5) long) and account for
diffraction contributions.

The PO method (i.e. ray optics) is employed to compute the transmitted fields away from
the tip region where multiple scattering and tip diffraction effects are not pronounced. Higher-
order ray interactions can, however, be included in the PO implementation to account for
multi-bounce effects within the radome cavity.

In combining the PO and MM, an equivalent current is computed on the radome surface
based on the PO fields computed at the interior and exterior surfaces of the radome. These are
subsequently used as excitation in the context of the MM along with the direct antenna fields
to evaluate the equivalent MM surface currents. The final radiation pattern is then evaluated
by integrating the electric and magnetic equivalent currents (both PO and MM currents) on
the exterior surface of the radome.

The report is organized as follows. Section 2 gives a description for evaluating the aperture
radiation on the radome interior surface near-zone fields. These near-zone field components are
then decomposed into cylindrical modes to subsequently perform the BOR moment method
implementation. Section 3 introduces the physical optics (PO) approximation for both electric
and magnetic surface currents on the flatter radome surfaces. The hybrid BOR moment method

formulation is presented in Section 4. Here PO currents for the PO-region are incorporated



into the surface integral equation as effective sources. Numerical examples and validations
(including a very large radome of 100 wavelengths) are given in Section 5. Finally, Sections
6 and 7 describe the Fortran program that implements the hybrid PO-MM BOR. Sample
geometry runs are included as examples in using the hybrid code to be referred to herein as

ABOR (Antenna-BOR).

2 Near Field Computation and Decomposition

The geometry of the problem considered is illustrated in Figure 1. The radome is assumed to
be axi-symmetric (body of revolution), but the curvature of the inner and outer surfaces can
be completely arbitrary. The aperture antenna (reflector, horn, open waveguide etc.) is placed
inside (as illustrated) and its pattern can be arbitrarily selected as well. In this development, a
circular aperture antenna is assumed but this is an arbitrary selection. The governing equation

and pictorial shape of a Von Karman radome are given in Appendix A.

Region 3 _
MM-region

Region |

/

/ Incident
/' Fields
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/ S,

~
l'll

{ Aperture Antenna

Figure 1: Geometry of the problem considered.

The circular aperture antenna is separately shown in Figure 2, with its corresponding coor-

dinate system.



Figure 2: Circular aperture antenna

2.1 Near-Zone Field

Before proceeding with either PO or MM analysis of the transmission through the radome
it is necessary to first compute the antenna field on the inner surface of the radome. This
computation must be carried out with as much accuracy as possible since it will serve as the
excitation field for the MM or hybrid PO-MM solutions.

The near-zone electromagnetic field can calculated from the following two equations:

E,=—jwA - j—V(V A) - —v x F (1a)
WHE
— . — . 1 - ]- -
Hy=—jwF -j—V(V-F)+ -V x A (1)
wWe L
where
v M = exp(—jkR)
A= 4%// J(r )——————R ds (2a)

/ / exp j exp(—JkR) ;o (2b)



and R = |7 — |. Here, vecJ(r') and M(r') represent the radiation currents on the antenna
aperture or simply some externally provided sources. For reflector or waveguide-type aperture

antennas,

where E,(r) and H,(r') are the aperture fields.

To evaluate the integrals, we must carry out all differentiations first. We have

VXF_—// y &P(IkR) ]’“R x M(r) ds'

. - —jkR
V(v.F):f;//S J(T/).Vve_xri_]__) ds'

R
and B
g &Pkl =) (1 +5kE) eip(—JkR)ﬁ
7= 7| R
Wexp(|—3’k|7jl— ) _ 0 +ykR>I;<p< jhR) (3 K°R? +j?;§53> exp(—jkR) 5
r—r

—

R=[z-2)i+(y-y)g+ (-7

Substituting these into (1) gives

o e Fy R L hR | qo (3= KRR 43R o
] ,u// < Y J + [J(r") - R]R( k2R5] )>exp(—]kR)ds

o [ [ S ) ex-ikR)is ®

where

M<7:;) = E’a(_;) Xz = an(xluy )2 = Eo(2', )0
If the “far-zone” relation

L1 By
H,=-ZxE, 4
. (4)

is further employed on the aperture, we get

T ] AN = "] !
(r') = == Eu(',y)2 an(xvy)y:—'ﬁEa(T) (4)



and thus

s R LR s o 5 a(3— KR 4 SKR o
// (E S () o kZRf’] )>exp(—]kR)ds

(1+ kR S ,
// jk]RS X Ey(r") x z] exp(—jkR)ds'
We can rewrite this in terms of spherical components by using transformations
% = sin @ cos 7 + cos 0 cos ¢ — sin ¢

y = sin @ sin ¢7 + cos 6 sin ¢9 + cos qﬁg{;

Z = cosOr — sin 64,

to get
Ey(z,y,2) :/ . Qo(z,y, 2,2, y’,z’)@%@ds’ (5a)
E¢(:r,y,z):/ ; Q(p(x,y,z,x’,y’,z’)wds’ (5b)
where
o K2R? 1 - jkR
Qo(z,y,2,7',y,2') = [Eaa(r )cos¢+an( )smqﬁ]cos@[ Y2 ]

— —
! !

+[(z = ") Egr (") + (y — ¥') Eay (r")][(z — 2") cos O cos ¢ + (y — y) cos Osin ¢ — (z — 2') sin 6]
(3 — k2R? + j3kR)

k*R*
+ ([Eax(f’) cos ¢ + Eoy (1) sin ¢)(z — 2') cos § + [(z — &) Eoa () + (y — ') E, ()] sin 0) (—ljk—;{kz@
k*R? — 1 — jkR
Q¢(x)yaz7ml7yl’zl> = [ E ( )Sln¢ + an( )COS ¢] ,: k?lRZ : }
5 (3 — k*R% + j3kR)

+(z — 2" )Eu(r') + (y = ¢)E, (;)][—(l’ —2')sing + (y — y') cos ¢]

(1+ jkR)
jkR?

k2R4
+[=Eu(r )sm¢+an( )cos¢](z—z)



Antenna coordinate
system origin

Radome coordinate
system origin

Figure 3: Coordinate transformation

2.2 Coordinate Transformation

One last step is the transformation from the antenna coordinate system (Za, Ya, 24) to the

radome system (X,, Y;, Z.). After having computed all the field components, we need consider

the coordinate transformation as, shown in Figure 3.

Referring to Figure 3, the appropriate transformation is

X, cos? 0 —sin{ T 0
Y, | =10 10 Yo | T O
Z, sin2 0 cosQ 2 s

(6a)

where s is shift distance between the two coordinate systems alone the radome axis. Alterna-

tively, the inverse transformation is

T, cos? 0 sinQ X,
Yo | = |0 10 Y,
Za —sin? 0 cos® Z,—§
Also, note that
22+ 12422 =/ X2+ Y2+ (Z, — 5)?
a - Y;
Fo = tan™ %a = tan”! X,cosQ+(Z, — s)sinQ



6, = tan™! @ — tan~! VX, cosQ+ (Z, — s)sin Q2 + Y2 -
' “a =X, sinQ + (Z, — s) cos

Because of the rotation angle €2 shown in Figure 3, the vector field components will be

different after the transformation. Specifically, the 6 and ¢ unit vectors in the two different

coordinate systems will change as follows:

A
z
9,
<
b
\ .0,
0
Xa
Q >
0 X
Figure 4: Unit vectors in two coordinate systems
0, = and + a1né (8a)
o = 0210 + a2 (8b)

where

(22 + y?) cos Q + zzsin O
V(T cosQ + zsin Q)2 + y2] (22 + ¢2)

, \/ 2 + y? + 22
Q9 = Q91 = ysin§) T

11 = Qg2 =

zcos) + zsin Q)2 + y?](2? + y?)
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2.3 Modal Decomposition of the Incident Fields

Having evaluated all field components in the radome coordinate system, we next proceed to
decompose the antenna aperture field into cylindrical modes. Based on the well-known body of
revolution (BOR), this decomposition is essential to taking advantage of the radome’s geometry.
Since the cylindrical mode has the same p-dependence for each ¢-angle and the same is true
with the geometry, the resulting scattered/transmitted field will have the same as the incident
mode. Thus, it suffices to only evaluate the currents/fields on a single cross-section of the
radome. Therefore, modal decomposition reduces the 3D problem to an equivalent 2D problem.
However, each mode must now be analyzed separately and resulting currents/fields need to be
summed to compute the total field transmitted through the radome.

At point P on radome’s inside surface, the electric field components are given We begin by

considering the original expression

Ep = Epr(z,0)7 + Epp(2, ¢)é + Epy(2, ¢>¢B (9)

at point P on the radome. By invoking mode orthogonality, each of these components is

expanded as follows:

N
= 3 Bratentng 100
N ~
Epf)(z,¢) = Z EpO,n(z) exp(jn¢) (IOb)
n=—N
N
Z Ep4.n(2) exp(jng) (10¢)
n=—N
where )
N 1 (2"
Eprn(2) = %/0 Ep (2, ¢) exp(—jng)de
B 2m
Epn(z) = %/0‘ Epo(z, ¢) exp(—jneg)de

B 1 2m
Epon(z) = 3= [ Bl ) exp(=jne)ds.

A similar decomposition can be carried out for the magnetic field components. The final

expressions are the same as those with the replacement E by H;.
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3 PO Approximation

This section describes the physical optics approximation for computing the field transmit-
ted through radome. A key assumption in this approximation is that the radome is locally
planar. The transmitted/reflected fields can then be computed using the place wave reflec-
tion/transmission coefficients for the thick dielectric slab. Based on the approximations for the
reflected and transmitted fields, the equivalent electric and magnetic surface currents can then

be obtained from

JPO(F) = ! x HPO(r7) (11a)
MPO () = EPO(r) x n. (11b)

As illustrated in Figs. 5 and 6, the two incident wave polarizations must be computed

separately. The reflection coefficients for the perpendicular and parallel polarizations are are

Figure 5: Reflection and transmission at a dielectric interface: perpendicular polarization.

0; — v/ &, — sin®(;)
R =EATVE : 12a
b cost /e — sin?(6;) (12a)
R{/ € cost; — /e — sin?(6;) (126)

- €, cos 0; + /€, — sin*(6;)

and these refer to a simple dielectric interface.
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Figure 6: Reflection and transmission at a dielectric interface: parallel polarization.

For a finite thickness dielectric layer (as shown in Fig.7), we must consider multiple interac-

tions. These can be accomplished for by the composite reflection and transmission coefficients,

Transmitted Ray

Reflected Ray

Incident Ray

Figure 7: Reflection and transmission through a dielectric slab.

_ R(1-P}PR,)

= 13a
- PP, (13a)

(1 - R} P
= 135
1~ RPP, (135)
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where
_]'koﬁrt

e — sin®(6;)
. < 20n
P. = exp J2kot sin“(6;)
€, — sin’(6;)

refer to the propagation delays through the layer of thickness t.

)

Py = exp

Contributions from multi-bounces within the radome can be evaluated using ray-tracing.

Referring to Fig. 8, let us consider the incident ray direction

A 7 /’E
)
o
R e
o /P
1
0 X

Figure 8: First-order PO solution

P TpT + YpY + 2p2

712
VTt ys+ 2

where
Tp = ppos(dp),  Yp = ppsin(g,), pp = p(2p).

To obtain the reflection angle, we note that the tangential and normal unit vectors at P are

given by

7 = ,0;(2,,)(53 COS ¢, + ¥ sin ¢p) +Z

p oS (150)
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and
. Zcosg,+ysing, — pi(z,)2

n 15b
” T o
Thus, Snell’s reflection angle is given by
0; = cos™" (k; - 1i) (16)
and the z distance between the entry and exit point of the layer is found from
sin 6; 1 Pi(zp)
0,=2y— 2=t ( + i (17)
T Ve —si? V@GP T V()P
Also, the angle « of the reflected ray with respect to the horizontal is given
ay =20 +6, ~ 3 (18)

where
t, = pe(2p) — pi(zp)’ 6, = tcm—l(&)

[i(2)]? +1 %

The following table summarizes the incident, reflected, and transmitted ray fields at an

arbitrary point P on the interior surface of the radome. In the table, Ey5(60,, ¢o) and Eyy(6,, @)

Ray Perpendicular polarization | Parallel polarization
Incident ray EY = Eu4(64, ¢a) Ej/ = Epy(0a, ¢0)
Reflected ray BT =T, E(04,¢a) Ej, = ') Epg(0a, da)

Transmitted ray EY =T E)4(04, ¢a) B}, =T} Ep(0a; 60)

are given in (9) and (10). The PO currents J7 and M are evaluated as

JPO = qy x (H' + H") (19a)
MFPO = F' + E") x iy (19b)
JTO = fy x H (20a)
MFPO = E! x (200)

where 7, and 7, are illustrated in the following figure.

15



4 Integral Equation Formulation

This section develops the combined field integral equation formulation for evaluating the ra-
diation from an antenna enclosed in a dielectric radome. Figure 9 shows the geometry of the
problem being considered. In proceeding to the formulation, we identify regions 1, 2, 3, and
boundary surfaces S; and Sy, as shown in Figure 9. The dielectric radome is denoted as Region
2 and the exterior free space is denoted as Region 3. The antenna is in Region 1 (interior of the
radome) and is illuminating the boundary surface Si, i.e. the interior surface of the radome.
The equivalent electric and magnetic surface currents on the interior surface of the radome will
be denoted as J; and M;. Similarly, the equivalent electric and magnetic surface currents over

the outside surface of the radome will be denoted as J, and M.

4.1 Surface Integral Equations

Based on the usual moment method procedure for multi layer dielectrics [1-8] for axisymmetric
structures, we begin by introducing equivalent currents on each cross-sectional boundary sep-
arating the three regions of interest. Using these equivalent currents, the field in each region

can be expressed as follows.

16



Region 3

MM-region

Region |

] / /Incident

| PO-region
/] Fields

Region

| Aperture Antenna

Figure 9: Geometry of the problem considered.

Region 1 (interior of radome):

0(7)E, = E™ — Ly Ji(7) + K M, (7) (21a)
7 7 T (= 1 Y
H(T_')Hl =H" - K1J1 (T‘) - *n—ngMQ(T) (21[))
1

where 6(7) is the Heaviside function and is defined as

L; for 7€ R,
0(F) = | 1/2; for 7€ 8 (22)

0; otherwise.

Here, the electric and magnetic surface currents fl and ]\7[1 are related to fields on
Ji =10 x Hilg, M, = E|s x 0y

and introduced on the interior surface of the radome. The integro-differential operator L; and

K; (i=1,2,3) are defined as [1]

LX(F) = jwui/ )+ —=VV' - X ()| G(k|F = '|)ds’ (23a)

S

17



and
KX (7) = / () x VG| - 7|)ds’
S
where the Green’s function is given by

L5 exp(—jk;|7 — 7
Gl — ) = SRR =),

47r|?"—7ji

and k? = w?p,e;. Similarly, for the other regions, the fields are given by

Region 2:
9(’F)EQ = ng'l(’f—”) — Kle(F) + L2j2(7—!) - KQMZ(F)
— = 1 - g 1 =
0(F)Hy = Ko Jy (7) + FLQMI(F) + Koo (7) + FI&M?(F)
2 2
Region 3:

0(7)Ey = —LaJo(7) + K3 Mo (7)

1
13

0(F)Hy = —K3Jo(i*) — = LM ()

where the electric and magnetic surface currents J; and M, are
Jy =My X Hy|g, My = E3|s X iy

and reside on the exterior radome surface.

(230)

(24)

Employing the above equations and enforcing the boundary conditions of the total tangential

electric and magnetic field continuity across the surface, we obtain the combined field integral

equations:

(Ly + Lo)Ji (7) = (Ky + Ko) My (7) + Lo Jo(F) — KoMy (7) = E™, on S

> 1 1 - = 1 ~ oy
(Kl + KQ)Jl(F) + (7—75L1 + 'T)—QLQ)Ml (f’) + KQJQ(’/_") + —n—QLQMQ(F’) = Hmc, on Sl
1 2 2

szl(f') - KQAZl (F) + (LQ + Lg);fg(f’) — (KQ + Kg)MQ(T’_') = 0, on SQ
- 1. - . 1 1. . -
K2J1<7_'I) + '77—2L2M1<T_() + (K2 + Kg)Jg(f‘() + (FLQ + FL:})MQ(F) =0, on 9.
2 2 3

where Ein¢ and H® are the incident fields from the aperture antenna, as given in (9).

18
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4.2 Moment Method Solution

The integral equations (27a)-(27d) can be solved by the method of moments for the surface
equivalent electric and magnetic currents fl, M 1 J;, and Mg. To do so, we proceed to discretize
the unknown electric and magnetic currents into a finite series of basis functions spanning the

surfaces S; and S, as follows:

jl(f') = Z(aﬁ,nk‘]—}zk - a({),nk‘]_g)k) (28a)
n,k
M) =m0 ) (8 e Tk = 07 i Tin) (280)
n,k
j‘Z(F) = Z(aé,nkj;tlk - ag,nka)k) (286)
n,k
M?(F) =T Z(bénkj;tzk - bg),nlcj;fk) (28d)
n,k

where
. T :
= Uq—— exp(yn
and T}, is the triangle function spanning the k-th annulus with four segments, as shown in Fig.

10.

2i-1 2i 2i+1 2i+2

Figure 10: Triangle function and four impulse approximation.
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Substituting the above basis functions and using Galerkin method (testing function Wfk =

J2.), we can derive the following matrix equation.

L1 + L2 —(Kl -+ KQ) Lg —KQ aj Emc
L1 L2 L2 ] nc
K, +K, AT K, > b, _ H (29)
L2 ~K2 (Lz + L3) —(Kz + Kg) as 0
K, 3 Ky +K; #+% by | 0 |
The L operator has the form of
Lt Lt
(30)
Lot 1¢¢
where )
Ll = Z [jprqu(sin Up SN UGy, + COS U, COSV,Gy) — wLTquGn (31a)
€
Pg=1
4 ¢ 0o
L ==Y |wpT,Tysinv,Gy, + —T,T,G, (310)
p’q:l wepp -
4 ¢ N -
Li ==Y |wpT,Tysinv,Gy + —T,T,G, (31¢)
pa=1" Py /
2
LY = Z T,T, []wu(;m + G, (31d)
pa=1 JWEPyPq
with
G = 81,0, [ gl)costns)is
0
Gen = AtpAtq/ g(¢) cos(ng) cos ¢pdg
0
G, = AtpAtq/ g(¢) cos(ng) sin pd¢
0
and
eXP(_ijpq)
9(¢) = ——5—
RP‘I
V(o + (2 — 20)* + 20504 (1 = cos 0),if p# g
o = \/Atp/4 +202(1 —cos¢),if p=g¢q

20



The K operator has the form of
Kt Kt
K¢ K¢

where

4
Ky =—jm E T,TyHyp [sin v, sin v(2, — 24) + pgsin v, cos v, — p, o8 v, sin v,
pg=1

4
K,‘flt = Z T, T, [(sinvg(2p — 24) + pg cOs Vg) Hen — pp cOS vy Hy]
pg=1

4
K = —n Z T, T4 [(—sinwy (2, — 24) + pp c0S vp) Hen, — py cOS v, Hy]
p,q=1

4
K/ff = J7o Z (2 = 2¢) T, Ty Hsn

p,g=1
with

H, = At,At, /7r h(®) cos(ng)de
0
H., = At,At, /7r h(¢) cos(nd) cos pd¢
0

H, = At,At, /7r h(¢) cos(ng) sin ¢d¢
0

and
(14 jkRyg) exp(—jkRy,)
R3, '

The right-hand side of the matrix equation (29) can be written as follows.

h(¢) =

Eine = on / Ti(t) Eimdt
' k—thsegment

Eie, = or / T (t) Einedt
k—thsegment
s = 2 | Ty ) Hjpds
k—thsegment

f{g,lrik = 27!'770/ Tk(t)f{;;lcdt
k—thsegment

(32)

(33a)

(330)

(33¢)

(33d)

(34a)

(34b)
(35a)

(35b)

Solution of the matrix equation (29) gives the surface equivalent electric and magnetic currents

on the radome surface. This moment method solution is accurate and suitable for relatively

21



small radomes. For electrically very large radomes (such as 100 wavelength long radome), the
MM solution is a formidable task. In order to alleviate this difficulty, next subsection introduces

a new hybrid PO-MM technique for the analysis of very radomes.

4.3 Hybrid PO-MM Solution

As shown in Fig. 9, the entire radome surface is divided into two parts: MM-region and PO-
region. The moment method described in the previous subsection is applied to the MM-region,
and the PO-region is modeled by the physical optics approximation introduced in Section 3.
The corresponding equivalent surface currents are denoted by JMM MMM - JMM MM 454
JPO NFO JFO NPO for the MM-region and PO-region, respectively. Having invoked the PO
approximation presented in Section 3, we obtain the PO currents J70, MFO, JFO and MFO.

These known currents are then incorporated into the matrix equation (29) in the following

manner.
LALLM (KM KYM) LM KM [ alm
LMM LMM LMM
K{\/IM_l_KéVIM 1 4+ =2 KéVIM bMM
m U Ub
MM MM MM MM MM MM MM
L, -K; (L' + L) (K™ 4+ K3'™) a,
LMM L MM LMM
L 3 - L -

Finc _ (Lf”P + Lé\/.IP)a{?O + (K{VIP 4 KMP)bPO _ Lé\/IPago + KéWPbgo

rine LMP LMP LMP

| o (R R0 - (4 Bt - xprae - Hupe |
~LYPal® 4 KPbO — (LYP + LYP)ak0 + (KYF 4+ KYP)bEO

mMP,PO _ L)'"1 po MP MPy,PO _ (Ly'"  LY¥P\ po
—Ky'art = by — (K" + Ky')ay? — ( 7 T )by

where the operators LM* and KM* (5 = 1,2, 3 for regions 1,2,3, respectively, and j = M, P for
MM-region and PO-region, respectively) are defined in (30) and (32) for different parts of the
boundary and different associated regions. are coefficients af®, b0, af©, and by’° are related

to PO currents JFO, MFPO, JPO and MFO on
al’? = Jrop, (37q)

bPO = MFPO), (370)

22



al’? = Jrop, (37¢)
b9 = MFOp,. (37d)

Here p; and p, are the radii of points on the interior and exterior surface of the radome

)

respectively. Equation (36) is the hybrid PO-MM matrix equation and can be solved for the

aMM pMM aMM bMM )
MM currents Ji"M = S— MMM = =, MM = 2 and MM = ~—. Having MM
1 1 € €

currents Jy" and M;™ and using the PO currents JFO and MFO on the exterior surface

of the radome, we can then proceed to compute the far-zone radiation pattern of the radome-

enclosed antenna.

4.4 Far-Zone Radiation Pattern

Once J, and M, (from MM and PO) are found, the computation of the far zone field is obtained
from the radiating integral following standard steps. For the far-region radiated field, we have

Z

D2 0 Dy /2 x

Figure 11: Calculation of far-region radiation pattern.
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A~ —

where nﬁs = kg X Ej is understood. The 6 and ¢ components can be decomposed from this to

get

— kQX k 27r ) . L ,
By= = P — / / i [y x Ey(r)ly — 7 x [ x Ey(r )H¢) exp(jkor-r')dS" (39a)
—jkexp(—jkr) L .o o o
E¢ = - (n X [ks X Es(r’)]]¢ +7r X [n X Es(r )]|9) eXP(]koT~7’ )dS (3%)

0 0

where the integrands can be explicitly expanded to give

it x [ks x Es(m)]lg — 7 x [ x Ey(r)]]4
Eglp,(2;)(cos 8 + cos8') — sin§'] cos(¢p — ¢') — Eggsinf

1+ [pL(2))?
Byl (2) — sin @' cos 0 + pl(2%) cos § cos 0] sin(¢ — ¢')

L+ [pe(2))7

+

and

it X [ky x Ey(r )]|¢+r><[n><E( Nlo
_ Egl-p,(z;) + cosfsint — p,(2]) cosf cos '] sin(¢ — ¢')
1+ [t (2))]?
Eyylp.,(2;)(cos 8 + cos0') — sin '] cos(¢ — ¢') — E4sinf
L+ [ (20)]? |
The double integral in (39) can be reduced to a single integral by introducing the modal

+

expansion
N
Ey(r") = Ey(z,¢) = ) Ey()) exp(jng) (40)
n=—N
and the the identities
Fopl = 25 cos B + p,sinf cos(¢p — ¢')

2m
/ exp(jkr - ') d¢’ = exp(jkz, cos O + jng)2mj" J, (kps sin 0)
0

27
/ exp(jk# - /) cos(¢ — ¢')d¢’ = exp(jkz, cosd + jng)2mi" " J! (kp, sin )
0

Jn(kps sin 0)

2
/ exp(jkr - 7:7) sin(¢ — ¢')d¢' = — exp(jkzs cos ) + jng)2nmj" .
0 kpssin

The final expressions for the far-zone radiated E-field are then given by

-7k exp —jkr)
Ey = Z/ W ( Eol, + Esglgn -+ Es¢13n) exp(jkzs cosf + jng)

(41a)
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I

—]kexp (—gkr)
E, = Z/

(E‘s¢lln + Es¢12n - Esglgn) exp(jkzs cosf + jng)

(41b)

1+ pe

where

Iy = [p,(2;)(cos 0 + cos§') — sin 0']J) [kpe(2.) sin ]

Ion = —jsin0J,[kp,(z,) sin 6]
—njJn[kpe(2,) sin 6]

fin = [pL(#) = sinff cosb + 4, () cosfcos ] —H =S g

and the well-known integral identity
2T
/ exp(jzcosd + jnf)dd = 2mj" J, (2)
0

was employed in deriving (41).

5 Sample Results

In this section, we present numerical results for three illustrative examples. The first example is
a sanity-check of the developed program. By setting the dielectric constant of the radome mate-
rial to 1, the computed radiation pattern is compared to that directly calculated by integrating
the equivalent surface currents over the antenna’s aperture. In this example, the lengths of the
interior and exterior Von Karman radome surfaces are respectively L; = 10\, Ly = 10.2),.
The interior and exterior diameters at the radome base are assumed to be D; = 5), and
Dy = 5.2, respectively. The distance s and steering angle 2 are all set to zero. For the
antenna, a circular aperture is used carrying a uniform y-polarized E-field. As shown in Figure
12, the radiation pattern of the aperture antenna through a transparent radome is in very good
agreement with that from direct integration (no radome). The moment method solution is used
as reference for the hybrid PO-MM and as seen the two methods are also in good agreement.
The second example shows the computed radiation pattern for the same aperture through
the same radome shape and size except that the dielectric constant of the radome material is
now €, = 2.0. In Figure 13, we show the radiation patterns for the three different methods.
The pure MM solution refers to the case when the moment method is applied everywhere on

the radome’s surfaces (no PO approximation is invoked); the pure PO solution refers to the
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case where almost the entire surface is modeled by the physical optics currents (except for a
very small region around the tip). The hybrid PO-MM solution represents the results obtained
by using MM formulation up to 3 from the tip and the rest contour currents replaced by the
PO currents. Again, we observe that the hybrid solution agrees fairly well with the pure MM
solution. However, the pure PO solution is substantially in error in the side lobe region. In
fact, the PO result shows peaks where the MM gives nulls. The CPU time needed by these

three methods for this relatively small problem is listed in the following table.

Method CPU time (in seconds)
Pure PO 133
Pure MM 224

Hybrid PO-MM 148

The third example is that of radiation through a very large radome. The Von Karman
radome is now assumed to be of length L, = 100), (inner), Ly = 102}y (outer); the diameters
at the radome base are D; = 30\; and Dy = 34, respectively: and ¢, = 4.0 for the radome
material. The aperture antenna is of radius 2\, and a uniform y-directed field distribution is
again assumed. The computed radiation patterns by the hybrid PO-MM and the pure PO are
shown in Figure 14. No pure MM solution is shown due to the excessive computer resources
needed to carry out this analysis. For the hybrid PO-MM solution, the MM arc was 10X long
from the tip and the rest was assigned to the PO-region. It should be mentioned that the CPU
time for the hybrid PO-MM is about 5.5 hours.
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6 Description of ABOR, a Computer Program for An-

tenna Radiation Through Radomes

Our computer program for evaluating antenna radiation through radomes is called “ABOR”
and can be divided into six sections. The first section of the program needs the user-provided
parameters,including radome’s length, diameter, shape and dielectric constant, aperture size as
well as the location and orientation and field distribution on the aperture surface. The second
section of the program calculates the near-zone radiated field from the antenna aperture on
the insider surface of the radome. This section of the program can of course be changed by
different antenna apertures. The third section of the program determines the PO equivalent
surface currents on both the interior and exterior radome surfaces. Another section of the
program carries out the moment method solution for the hybrid implementation and uses the
antenna radiated fields and the PO currents on the radome’s surfaces as excitation. The fifth
program section combines all available information to calculate the far-region radiation pattern
through the dielectric radome. The latter section of the program is a collection of standard
subroutines, such as LU decomposition, spline interpolations for curved arcs and surfaces. The

following subsections give all the six sections of the program mentioned above.

6.1 Acquiring Data

The subroutines that fulfill the task of acquiring the input data are:

o radome_inpu
Subroutine radome_inpu gets the information pertaining the radome shape, radome length

and bottom diameter, dielectric constant e, .

o aperture_inpu
Subroutine aperture_inpu acquires the information for the aperture antenna, including
the radius 7y, of the circular aperture, files storing the field distribution on the aperture

surface, distance s, and steering angle (2.
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o input(mode,ang,angl,ang2,nang,npir,npor,nplo,np2o)
This subroutine reads-in the following parameters: mode, ang, angl, ang2, nang, npir,

npor, nplo, np2o, bk, and Imm. These variables are explained in Appendix B.

e DBORIN
This subroutine calculates the required parameters such as information for the discretiza-

tion of the radome arc and the basis functions based on the entered parameters.

6.2 Computing and Decomposing the Near-Zone Fields

o subroutine nfint(r,phi,za,ya,za,sph,cph,sth, cth, efr,eft, efp, hfr,hft, hfp)
Subroutine nfint defines the functions for all six near-zone field components (three electric
components and three magnetic field components) at a given point (r, phi) for a known

aperture field distribution.

e subroutine nearfd(nip,zp,rop,some,come,fepr,fepa,fepe, fhpr,fhpa, fhpe)

This subroutine calculates the near-zone electric and magnetic fields.

o subroutine ecomp(mode,npir)
Subroutine ecomp decomposes all six field components into modes and stores all the
computed results into six two-dimensional array, which are called later for computing the

PO fields (interior and exterior of the radome) and the MM excitation fields.

6.3 PO Currents

Subroutine pof(n,mode,npir,npor,nplo,np2o,cfv,cfi,cfo) calculates the PO equivalent surface

currents on the interior and exterior surfaces of the radome, for a given mode.

6.4 Moment Method Solution

o SUBROUTINE LOP
Subroutine LOP(Z, ISYM, N, C, MU, EPS, NPI, RSI, ZSI, DSI, SVI, CVI, TI, TPI,
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NPJ, RSJ, Z5J, DSJ, SVJ, CVJ, TJ, TPJ) calculates the L operator for a given boundary

and a specified region.

e SUBROUTINE KOP
Subroutine KOP(Z, ISYM, N, C, MU, EPS, NPI, RSI, ZSI, DSI, SVI, CVI, TI, NPJ,
RSJ, ZSJ, DSJ, SVJ, CVJ, TJ) calculates the K operator for a given boundary and a

specified region.

e SUBROUTINE CZGEN(N,Z,7Z1)
Subroutine CZGEN assembles the computed L and K operators into a matrix, which is

then factorized into two triangular matrices (LU decomposition).

o SUBROUTINE RCRGEN(N,NPIR,NPOR,NP10,NP20,CFV,CFI,CFO,CBR)
Subroutine RCRGEN generates the right-hand side of the hybrid matrix equations. This
subroutine also calls another one named LKOP(N, C, MU, EPS, NPI, RSI, ZSI, DSI,
SVI, CVI, TI, TPI, NPJ, RSJ, ZSJ, DSJ, SVJ, CVJ, TJ, TPJ, QLTT, QLTP, QLPT,
QLPP, QKTT, QKTP, QKPT, QKPP) for the L and K operators of the PO part.

6.5 Main Program

The main program utilizes all available information and control the execution. The far-zone
radiation pattern is computed at the end of the main program by calling subroutine RC-
SPAT(N,NPOR,TH,RBT,RBP). Matrix dimension check is also done in the main program. It
should be mentioned that after gathering all entered information, the main program calls a
subroutine named RECOVE(NPIR,MODE,ANG, ANG1,ANG2,NANG,rsum) to calculate the

radiation pattern directly from the field distribution on the aperture antenna.

6.6 Standard Auxiliary Subroutines

The following standard auxiliary subroutines are used in the program ‘ABOR’.

e SUBROUTINE GAUSS(WT,ASC,N,AA,BB)
Subroutine GAUSS calculates the weights and integration points of coordinates for per-

forming Gaussian quadrature of a given order.
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e SUBROUTINE BESJ(X,N,BJM,BJ,BJP)
Subroutine BESJ computes the J,, J,41, and J,;; Bessel functions for a given argument

z and order n.

o SUBROUTINE CGECO(A,LDA,N,IPVT,RCOND,Z)
This standard subroutine from LINPACK does the LU decomposition for a complex
matrix A. Some other similar subroutines such as SUBROUTINE CGEFA(A, LDA, N,
IPVT, INFO) and CGESL(A, LDA, N, IPVT, B, JOB) are also needed to solve a linear

matrix equation.

e subroutine curvl (n,z,y,slpl,slpn,islpsw,yp,temp,sigma,ierr) Subroutine curvl determines
the parameters necessary to compute an interpolatory spline under tension through a
sequence of functional values. Another function curv2 (t,n,z,y,yp,sigma) is used to inter-

polates a curve at a given point using a spline under tension.

o subroutine surfl
Subroutine surfl(m, n, z, y, z, iz, zzl, zzm, zyl, zyn, zryll, zzyml, zzyln, zzymn, islpsw,
zp, temp, sigma, ierr) determines the parameters necessary to compute an interpolatory
surface passing through a rectangular grid of functional values. A follow-up function
surf2(zz, yy, m, n, , y, z, iz, zp, sigma) interpolates a surface at a given coordinate pair

using a bi-spline under tension.

o Functions bessjd(n,z) and BESSJ(N,X)
These two functions calculate the Bessel J,(z) and its derivative J’(z) using double

precision.
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7 Running the Program ABOR (ABOR Manual)

The program ABOR consists of two parts: ABOR.f and ABOR_SUBS.f. On unix, one can use
the command
f77 -0 ABOR ABOR.f ABOR_SUBS.f-O
for compiling, or just simply type
make
to generate the executable file “ABOR”. A detailed description of the input data required to

execute ABOR is given below. The definition of each input variable is also provided.

e read(*,*) BK

- Input the free-space wave number (27/))

e read(*,*) MODE

- Read number of modes considered. The recommended number of

modes is the closest integer to kpyq. + 1.

e read(**)IRS

- Specify the radome shape

IRS =1, for Von Karman Radome
IRS =2, for Radome shape defined by the user as data files.

e Read(*,*) Ly, Dy, Ly, Do, and s if IRS =1

- Give values of Von Karman radome’s interior length, interior diam-

eter, exterior length, exterior diameter, and shift s along the z-axis.

e Read(**) radin.dat if RS =2

- Input the file name storing the interior curve of the dielectric radome

(see 7.2 for definition of format).

e Read(*,*) radout.dat if TRS = 2

- Input the file name storing the exterior curve of the dielectric

radome (see 7.2 for definition of format).
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e Read(*,*) real(Er), imag(Er)

- Read the real and imaginary parts of the complex dielectric constant

of the radome material.

e Read(*,*) Lmm

- Read the length along the z-axis defining the radome arc over which

moment method will be performed.

e Read(*,*) Phi

- Define the ¢ angle (in degrees) at which the radiation pattern will

be computed.

e Read(*,*) Angl, Ang2, Nang

- Input the starting angle and stop angle (in degrees) of 6 and the

number of sampling points between Ang; and Ang,.

e Read(*,*) Omega

- Define the angle Q2 for antenna’s rotated direction.

e Read(*,*) Rapa, Rsubr, Nrad, Nphi

- Read the radius of the circular aperture antenna, radius of the cir-
cular sub-reflector, number of sampling points in the radial direction, number of sampling

points in the azimuthal direction.

e Read(*,*) Ex.dat

- Input the name of the data file for reading the x component of

electric field on the aperture surface (see section 7.3 for definition of data file format).

e Read(*,*) Ey.dat

- Input the name of the data file for reading the y component of

electric field on the aperture surface (see section 7.3 for definition of data file format).

To familiarize the user with the input data file, two sample data files are given in Subsection
7.1. Subsection 7.2 demonstrate the structure of the data file defining the radome shape.

Subsection 7.3 details the structure of the data files storing the aperture E-field distribution.
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7.1 Sample Input Date Files

This appendix gives two examples for the input data file. The first is for a Von Karman radome,
and the other is for a radome specified by the user.

Example One: Von Karman Radome

6.2832

J

1

15.0, 5.0, 16.0, 6.0, 0.0
2.2,0.0
3.0

0.0

0., 90., 91
0.0

2., 20, 20
Ex.dat
Ey.dat
Example Two: User-Defined Radome
6.2832
5,0.5

2
radin.dat
radou.dat
2.2, 0.0
3.0

0.0

0., 90., 91
0.0

2., 20, 20
Ex.dat
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Ey.dat

7.2 Sample Data File for Defining the Radome’s Shape

This subsection gives a sample data file for defining the radome’s interior and exterior surface.
Both interior and exterior use the same data structure. The number of sampling points will be
determined by the program from this input data file. Sampling points can be non-uniformly
distributed over the radome arc.

z p(2)

.0000000 1.5000000

.5000000 1.4859140

1.0000000
1.5000000
2.0000000
2.5000000
3.0000000
3.5000000
4.0000000
4.5000000
5.0000000
9.5000000
6.0000000
6.5000000
7.0000000
7.5000000
8.0000000
8.5000000
9.0000000
9.5000000

1.4604454
1.4277130
1.3891178
1.3454080
1.2970309
1.2442598
1.1872478
1.1260552
1.0606601
.9909589
9167565
8377454
7534657
6632326
0659961
4600385
3421973
2050837

10.0000000 .0000000



7.3 Data File Storing the Aperture Field Distribution

This subsection provides a sample data file for storing values of the electric field components
on the aperture surface. Both x- and y-directed components have the same data structure and
the same sampling points. For the example considered here, we assume N4 = 4 and Ny, = 6.
The location of these sampling points is shown in Fig. 15.

(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
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Here Nrad=4, Nphi=8 Reflector covers the shaded area

0
7

Data file format
List the value Ex in Ex.dat file for the jnner circle

Ex atphi=0

Ex at phi = 45 deg

Ex at ph§ =90 deg Extra data circle

Ex at phi = 135 deg outside the reflector

Ex at phi = 180 deg needed for derivative

Ex at phi = 225 deg (set data equal to those

Ex at phi = 270 deg of the next interior circle or as
Ex at phi = 315 deg computed)

Ex at phi = 360 deg

Figure 15: Von Karman Radome
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8 Appendix A: Von Karman Radome
The governing equation for the Von Karman radome is

plz) = %[cb ~ 0.55in(2®)]"/?

where

2z
® =cos™!(= - 1).
cos (L )

Differentiating (A1) gives
- ~Dsin®
VTL\/® - 0.55in(29)

A typical Von Karman radome is shown in Figure 16.
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Figure 16: Von Karman Radome
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9 Appendix B: Input Variables Description

ANG Fixed ¢ angle (degrees).
ANGI1 Starting ¢ angle (degrees).
ANG2 Stop 0 angle (degrees).
BK Wave number (27/) for the problem (meters™).
D, Diameter of the interior bottom surface.
D, Diameter of the exterior bottom surface.
Er Dielectric constant of the radome material.

Ex.dat File name that stores the x-component of E-field over antenna aperture.
Ey.dat File name that stores the y-component of E-field over antenna aperture.
IRS Index for radome shape. IRS=1 for Von Karman radome;

IRS=2 for radome shape defined by the user as data files.

L, Length of the interior radome surface.
Lo Length of the exterior radome surface.
Mode Number of modes considered.
Maximum number can be set to kppqe + 1.
NANG Number of varied 6 angles.
NPIR Number of sampling points on radome’s interior surface.
NPOR Number of sampling points on radome’s exterior surface.
NP10O Number of Sampling points for the PO-part
on the interior surface.
NP20

Number of Sampling points for the PO-part

on the exterior surface.
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Niph Number of sampling points in the azimuthal direction
for aperture field distribution.
Nyod Number of sampling points in the radial direction
for aperture field distribution.
radin.dat  File name storing the interior curve of the radome (IRS=2).

radou.dat File name storing the exterior curve of the radome (IRS=2).

Rapa Radius of the circular aperture antenna.
Ry Radius of the circular sub-reflector.
s Distance from radome’s bottom center to

antenna’s location (meters).

Q Steering angle of the antenna (degrees).
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10  Appendix C: Optimizing parameters for speeding
up the Axi-Symmetric Body of Revolution (ABOR)

code

Introduction The Axi-Symmetric Body of Revolution (ABOR) code used the new hybrid
physical optics-moment method for analysing nose-radome antennas. The code demonstrated
excellent accuracy and speed for radomes of large length as 100\ with an aperture antenna of
radius of 2A. Motivated by the trials to run the code for such large radomes with large aper-
tures of 23Aradius extensive work were done to optimize the code so that accurate results are
produced in a reasonable amount of time. The purpose of this report is to present the different
optimizing parameters for the code and show how can these parameters be used for different
kinds of problems.
In the first part of this appendix the blockage effect of the antenna subreflector is introduced.
In the second part the parameters governing the speed and the accuracy of the code are in-
vestigated. We spent quite a lot of time in investigating these parameters. We ran diffirent
radome geometries combined with different aperture andblockage sizes. We have concluded the
optimum parameters settings for a large radome with a large aperture.
Aperture Blockage

The antenna subreflector blockage was implemented in the code by altering the integration
interval over the aperture. Instead of integrating from 0 to Taep , the integration now is now
modified to be from 7, (the sub-reflector radius) to Tqp (the aperture radius). The aperture
subreflector radius should be entered in the input file after the apperture radius. The old format
was Rapa, Nrad, Nphi. The new make file the format of this line should be Rapa, Rsubr, Nrad,
Nphi. Explicitly
Old Format: Read(*,*) Rapa,Nrad, Nphi
New Format: Read(*,*) Rapa, Rsubr, Nrad, Nphi

Fig. 17 shows the results of the farfield pattern for the exact solution and that generated
by the modified code. As seen the agreement between the modified ABOR code and the exact

solution is excellent. The exact solution for a constant X-directed aperture field is given by
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Figure 17: Exact solution and the farfield pattern through a radome with ¢, = 1
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E(r) = f(t) |cos¢ 6 — sin ¢ cos 0 $ (1)

2 i b2J, (bkg sin 0
f(t) = a Jl(ak[-) sinf)  b°Jy(b o Sin ) @
koa sin 6 kobsin 0

where a is the main reflector radius, b is the subreflector radius, k¢ is the free space wave

number, J; is the Bessel function of the first kind and of order one, and # and ¢ are the
spherical coordinates.
Parameter Optimization for speeding up the code:

The parameters that can be varied to speed up the code are:

1. NGUASS: number of Gaussian integration points used between sampled points on the
aperture. Fig. 18 shows the results for Ngauss = 2,3 and 4. It can be concluded that
NGAUSS can not be degraded when integrating over the aperture as it will severely

affect the accuracy of the solution.

2. NPIR: number of sampling points used on the radome’s internal surface.
NPOR: number of sampling points used on the radome’s outersurface.
The formaulas for calculating NPIR and NPOR in the code are:
NPIR=nint(FACTOR*15*t11*bk/6.2831)+1
NPOR=nint(FACTOR*15*%t12*bk/6.2831)+1
Fig. 19 shows the results for different values of FACTOR when L, = 100X, Ly = 100A,
Dy =30, Dy = 30X and € = 4. This parameter is a key to speed up the code. Table 1
shows the CPU time and the corresponding factor value for the NPIR and NPOR. From

these results it can be concluded that the optimum value for this factor is 7/15.

Let us now consider a much larger reflector. For a large radome (Ly = 100, Ly = 102),
Dy = 60A, D; = 63)), but with much lareger reflector Rapr = 23X, The corresponding
pattern for ¢, = 1 and Ry, = 0 is given in Fig. 20. Since e, is unity, itis expected that
this pattern will gree with the analytical integration. It is clear that in spite of the CPU

time reduction from 20 days (estimated) down to 54 hours and 43 minutes, the accuracy
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Figure 18: Results for different npir and npor values
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Figure 19: Results for different npir and npor values
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Factor CPU time

1 10 hours and 47 minutes

2/3 | 5 hours and 56 minutes

7/15 | 3 hours and 16 minutes

1/3 | 1 hour and 52 minutes

Table 1: Values for the npir factor and the corresponding CPU time

of the main and side lobe levels is unacceptabl. This is revealed more in Fig. 21 where

we see that the main lobe is 6db down. the

T T T 1

Exact Solution
Improved CPU time solution

dB
A
S

6 (degrees)

Figure 20: Results for the large radome with large reflector with the parameter factor=7/15

So this optmization parameter FACTOR can not be used alone for a large radome with

a large reflector.

3. NR: number of integration pointson the aperture.Fig. 22 shows the results for a small ap-
perture.Table 2 shows the nr values and the corresponding CPU time. It can be observed
that for a small radome and a small aperture, NR makes a great difference. However, for
a large radome and a small aperture the reduction in cpu time is negligable. The effect
of NR on a large radome with a large aperture is expected to be significant (It will be

demonstrated later).
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Figure 21: Results for the main beam with the parameter factor=7/15

nr | CPU time

7 | 10 minutes

4 | 6 minutes

3 | 3 minutes

Table 2: Values for nr and the corresponding CPU time

4. NIP,number of integration point from 0 to 27 for modal decomposition. Setting NIP to
10 and Factor to 10/15 gives exact results and CPU time of 26 hours and 12 minutes
the results are shown in Fig. 23.

The combined effect of NIP, NPIR,NPOR and NR is now considered where NIP is set
to 10, Factor is set to 2/3 and NR is set to 15 points instead of 60 points. This will lead
to a CPU time of 26 hours. Fig. 24 shows the results which is in excellent agreement with
the far field pattern.Table 3 shows the values for NIP and NR and the corresponding
CPU time. It should be noted that the reduction of the NR points will work fine with

apertures that have no rapid tapering. In case of field tapering NIP and Factor are the

only parameters to be optimized.

Conclussion After the detailed study of optimizing the various parameters for speeding up
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Figure 23: Results for NIP=10 and Factor=10/15

the ABOR code, we conclude the following recomended values:

NIP = 10
FACTOR = 10/15
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L =864, L,=881, D,=61), D,=63, rapv=23}“ Touor=4h
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Figure 24: Results for NIP=10, Factor=10 and NR=15 points

nip | nr CPU time
10 | 60 | 26 hours and 7 minutes

10 | 15 | 7 hours and 30 minutes

Table 3: Values for nip, nr and the corresponding CPU time

For constant aperture fields and slow tapered aperture fields an extra reduction in CPU time

is achieved by reducing NR by a factor of 4.
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