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ANTENNA PATTERN MODIFICATION BY A NEARBY MOUNTAIN
by E. F. Knott and T.B. A. Senior

1. Introduction

This is the Final Report of a brief study carried out for the Megatek
Corporation under Purchase Order SAN 18459 during the period 5 June to 15
August 1974.

The purpose of the study was to estimate the effect of a nearby mountain
on shore station antenna patterns at HF. The geometry that was specified is shown
in Fig. 1. For propagation in the plane of the diagram, the mountain is modelled
by a perfectly conducting wedge of included angle 60° with its vertex at a height of
2700 ft. above an infinite flat earth. The mountain is 4 miles from a quarter wave
monopole antenna at the surface of the earth, and will, of course, affect the pat-
tern of the antenna through shielding (shadowing) and reflection, as well as by
diffraction at its apex. However, the aspects of concern are those close to grazing
incidence on the apex, and for these, shadowing and diffraction are the relevant
’effects. In order to determine the modifications which the mountain produces, the
far field antenna patterns must be computed with and without the mountain present.

Data were required at each of the three frequencies 4, 11 and 30 MHz for
two different specifications of the earth: a) perfectiy conducting, simulating ''sea
water", and b) lossy or "poor" ground whose relative permittivity €. is 15 and
conductivity o is 1072 mhos/m.

In the following sections we summarize the derivation of analytical
expressions for the perturbed patterns of the monopole, then describe the compu-
tations carried out, and conclude with the presentation and brief discussion of the
results obtained. It is a pleasure to acknowledge the assistance of Professor C-T

Tai and Dr. D. L. Sengupta in this investigation.

2. Analysis
The geometrical theory of diffraction (GTD) provides an effective and

convenient method for determining the diffracted contribution of an edge such as
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the "vertex'" of our mountain. In order to show how the method is employed, we
consider first the problem of a point source T in the presence of a metallic wedge
in isolation, i.e. of the mountain without the ground present.

If the source is far from the vertex, so that the incident field is a locally
plane wave with its electric vector in the plane of Fig. 1, the field at the point of

observation P is made up of optics and diffracted parts. The former is
eikR
; kR
E'(P) = (1)
0 a<0

a>0

where k is the free space propagation factor and a time factor e_lwt has been
suppressed. For convenience we have normalized the source strength in the direc-

tion TP to unity. The diffracted contribution is

d_, _ i ikr
E(P) =E (V)I ,De (2)
where EI(V) is the field incident at the vertex, I"‘VP is the divergence factor for
the diffracted rays and D is the diffraction coefficient of the edge. If the source

is omnidirectional,

i eikro
E (V) = - (3)
0
and since the radius of curvature of the wavefront incident at V is rO,
T T
= ——O——NG it r>>r . (4)
(r 0 +r)r r 0

The local diffraction coefficient D can be deduced from the solution for the
canonical problem of the diffraction of a plane wave by a wedge, and for this

polarization
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provided « is not close to zero. The specific requirement is that |kr |sina| >> 1
and we observe that as 0 —=>0, X—> . Inegs. (6) and (7), 750 is the angle which

TV makes with the interior bisector of the wedge, and
v=2(1- Q)
T
where 2Q2 is the included angle of the wedge. Thus, for the mountain specified,

v=5/3

On assembling the results of eqs. (1) through (7), the total field at P

becomes

E(P) = (X+Y)

eikR <1> exp[k(rﬂ' )+ :]
-— +
kR 0 kr VZTka‘O

and since r ~ R for r > rO,

KR exp(4 +21kr sin oz/2>

The discontinuity in this formula at & = 0 is produced by our use of the

simple ""wide angle' expression for the diffraction coefficient D, and can be re-

moved by using in place of X a uniform representation X' valid even in the



immediate vicinity of the shadow boundary:

1 o 2 a\ o
t = + - — 41 -3 3 -_— I —
X'=X 5 cosec 5 +i ]2kr0 exp<21kr0s1n 2> F [,/2kr0 sin 2] (9)

(Oberhettinger, 1956), where F(x) is the Fresnel integral

00

2
Fix) = \ e du . (10)
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we observe that the modified result

eikR exp(lf- +21krO sin2 %)
E(P) = 1+ (X'+Y) (11)

kR ’27rkr 0

is continuous through @ = 0, and reduces to eq. (8) well away from the shadow

boundary. It also predicts that

ikR
e
kR

E(P) = %

when o = 0, as required.

Equation (11) is in agreement with the "uniform" expression for the field of
a point source in the presence of a wedge (see Bowman et al., 1969; p. 274) and
is the basis for our subsequent analyses.

2.1 Ideal earth

If the earth is perfectly conducting, the pattern factor for a vertical electric

monopole at its surface is (Wolff, 1967)



cos -g-sin'y
Aly) = Toosy (12)

where < is the elevation angle shown in Fig. 1. When there is no mountain, the

field observed at P is then

eikR
E(P) = A(y) TR (13)
whereas with the mountain present
. it .. L2«
e1kR exp(z +21kr0s1n E
= —— 1
E(P) = =1 Al +Aly) =, (X' +Y) (14)

where Y, =17.3° is the elevation of the mountain top. Apart from a normalization
through the removal of the space factors, the fields in (13) and (14) are the ones
whose moduli have been computed. We note that (14) does not take into account any
reflection from the front face of the mountain, nor does it in any way simulate
disturbances produced at the junction of the mountain with the earth. The latter
would be a second order effect and strongly influenced by the precise details of the
model used to simulate the foothills.

2.2 Lossy earth

The far field of a short vertical electric dipole at the surface of a lossy
earth can be decomposed into a space wave and a surface wave as follows (Feinberg,

1967, chapter 5; Stratton, 1941, p. 587):

g = V@) + %) \ (15)
in which the space wave is
E(l)(P) = G (1+ A) y (16)
E = R cos Yy
and the surface wave is
(2 R , n
E(P) = R (1-A)cosy=-Bsiny) fw)y , (17)



where
/ 2
Nsiny=-V¥ N=-cos vy
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Nsin'y+\/N-cos 0%
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r WeE €
r 0
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B = C(;Is 1+ Esin 'y> N-cos vy

i NA(L-A)
IR

and f) = 5
N-cos v

The strength of the dipole has been normalized to unity through absorption of a
i {
itoku 0I
4
Computations of the space and surface waves for the specified ground show

factor

(see, for example, Fig. 2) that the relative strength of the latter is small at angles
comparable to the elevation of the mountain top even at the lowest frequency of
interest. It is therefore sufficient to confine attention to the space wave alone,
thereby removing the conceptual difficulty posed by the radial component of the
surface wave which has not been included in eq. (17).

In the absence of the mountain, the field is now given by (16) alone, but to
ease comparison with the results for an ideal earth, we have renormalized the field
through multiplication by a factor 1/2 (since A—>1 as 70 = for v #0) and have
replaced cosvy by the A(y) of eq. (12). The result is

ikR

EP) = &— 1

R 2 (1+A)A(>Y) (18)

which differs from the eq. (13) for an ideal earth only in the presence of a modified

pattern factor

(1+2)A®) (19

DN |—

Al(y) =

in place of y. When the mountain is present, we can therefore use eq. (14) again

provided A is replaced by the factor A'.
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3. Computer Programs

Because of the highly specific nature of the problem, the computer program
developed for the calculations was also specific, and therefore limited in scope.
Since the geometry of the source and wedge is fixed at the dimensions given in Fig.
1, appropriate distances and angles are embedded in the program as constants.
The total far field pattern (consisting of the sum of direct and diffracted rays) was
initially calculated from the horizon to the zenith at intervals of 1 degree, but after
it became apparent that the perturbation to the direct field was 1dB or less for
elevation angles above 30 degrees, the program was modified to cover only the first
30 degrees at intervals of 0.25degree. The modification involves only two state-
ments in the program and was a trivial one; although an equally trivial modification
could be contrived to accommodate any angular range and sampling rate, the highly
specific nature of the program hardly warranted a more sophisticated treatment.

A FORTRAN listing of the program is given on pages 16 and 17. It first
reads the frequency of the source and the dielectric property N of the ground from
the input stream, then computes the intensity of the excitation of the wedge apex,
stored in the variable B. The program then indexes through 121 elevation angles,
computing the direct and diffracted far fields, which are called A and ED. The
total field E is the sum of the two and, after converting all three to decibels, the
program prints them on the output record along with the elevation angle. When
the computations have been completed for one frequency, the program returns to
the input stream for a new data card. Specific instructions for an end-of-file
condition are not included because The University of Michigan computing system
provides for automatic program"‘ shut-down in this event.

Because the formulation of eq. (11) was chosen as a uniform representation
of the diffracted pattern through the transition region and into the shadow, the in-
tensity B at the apex must be added to the diffracted field instead of the pattern
factor A when the fields in the shadow are calculated. The program tests for this
condition and, depending whether the elevation angle v is above or below the

shadow boundary, A or B is added to the diffracted field, respectively.



The one subroutine called by the program is that supplied by IBM in its
Scientific Subroutine Package. The subroutine CS returns the real and imaginary
parts C and S, respectively, of the complementary Fresnel integral, and is required
for the computation of the diffraction coefficient for each far field direction. Two
scratch variables (SDUM and ARG) are used to hold intermediate results which, after
being used in subsequent instructions, are no longer needed.

Although the program is restrictive because of its specificity, and therefore

of limited application, a copy of the FORTRAN source deck is available upon request.

4. Computed Results

The far field radiation patterns are displayed in Fig. 3 for the perfectly and
imperfectly conducting cases in the absence of the wedge. The pattern for per-
fectly conducting earth is the familiar cosinusoidal one characteristic of a half-wave
dipole and is the same for all three frequencies (assuming a quarter-wave vertical
monopole in each case). The maximum radiation is, of course, toward the horizon.

When the ground becomes imperfectly conducting, the strong lobe along the
horizon becomes a null and the direction of maximum radiation shifts to about 25
degrees above the horizon for the dielectric properties specified ( 10-2 mhos/ m,
€/e 0" 15). The complex relative dielectric constant N is assumed to have the

form

where €. is the relative permittivity and o the conductivity of the earth, Z 0 is the
impedance of free space and k is the free space wave number. Table I lists the
values taken by N for the three frequencies used in the calculations; these were the

values specified on input to the computer program.

Table 1
Electrical Properties of Earth Used in the Computations
frequency, mHz N
4,0 15.0+i44. 96888
11.0 [ 15.0+i16. 35232
30.0 15.0+i 5.99585
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The total far field patterns are plotted in Figs. 4 through 6 for the three
frequencies as solid lines, along with the reference patterns of Fig. 3 as dashed
lines. In each case there is a reduction of the direct pattern from the perfectly
to imperfectly conducting case and at an elevation angle of 25 degrees amounts to
2.2, 3.4 and 3.9dB, respectively, for 4.0, 11.0 and 30.0 MHz. The oscillatory
nature of the total pattern is due to path length differences (between direct and
diffracted rays) that change rapidly with increasing angle.

The amount of the perturbation is slightly smaller for the imperfectly
conducting case than for the conducting case. This is because the excitation of the
wedge apex is reduced by 6 to 9 dB over the perfectly conducting case while the
radiation pattern (above the shadow boundary) is reduced by only the 2.2, 3.4 and
3.9dB mentioned above. Thus, in a relative sense, the source of perturbation
(i.e., the diffracted ray) becomes weaker in going from perfectly to imperfectly

conducting earth,
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