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EFFECT OF AN INTRUDER ON A SECURITY SYSTEM

The purpose of this study was to develop a theoretical model simulating the
effect of a man in various positions relative to one of the Omni-spectra microwave
security systems. To guide the development of the model and to provide information
with which to judge the effectiveness of the simulation, data were supplied showing
the signal measured at the receiving antenna under carefully controlled conditions.
The conditions governing these experiments are discussed in Chapter 1 and selected
data are presented in Chapter 3. Chapter 2 is concerned with the theoretical
modelling of the scattering situation. Formulas appropriate to the near-forward
scattering situation for a man-like object are derived and the resulting expression
for the perturbed signal at the receiving antenna reproduces all of the key features
observed in the measured data. The expression also satisfies the other require-
ments of ""physical meangfulness' and wide applicability, and a program for the

computation of the received signal is listed in the Appendix.

1. Preliminary Considerations

The system consists of two identical 8-inch diameter center fed dishes a
horizontal distance d apart and mounted with their (phase) centers at heights Z
and Zg above the ground. The frequency used is 10.525 GHz, implying a wave-
length A = 1.1214 inches, and the transmitted field is horizontally polarized.

The measured polar diagram of a dish is shown in Fig. 1. The main lobe
is rather clean with a width ¥9° at the -10dB level, but since the diagram is not
quite centered on the 180° line of the chart, we have transcribed the lobe, center-
ing it and then averaging the two sides. The resulting voltage polar diagram P(a)

plotted on a linear scale is shown in Fig. 2. A numerical fit is provided by the

formula

13

Pla) =(1+9.04x10 alO) exp(-0.0114 az) (1)

where o is measured in degrees, and this has been used in all of our numerical

work, even in those cases where the angles involved exceed 18°. Although Eq. (1)
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Fig. 2: Voltage polar diagram: (——) average measured,
(----) analytical simulation, eq. (1).



does not, of course, reproduce the side lobes of the antenna pattern, their actual
contribution in all cases of interest to us is so small as to be insignificant.

For the test data supplied to us, the measurements were carried out in a
garage having a rather flat concrete floor with the antennas 100 ft apart. In most
cases z, =z, = 40 inches although some data were obtained with measured heights
lower than this. In examining the role played by the ground under these circum-
stances, we first remark that since the range and heights involved are all large
compared with the wavelength, we would expect some form of ray theory to be
applicable. On the assumption of a smooth planar ground, the angle of incidence
of a ray specularly reflected to the receiving antenna is small indeed, suggesting

that the voltage reflection coefficient of the ground for horizontal polarization will

be close to -1. Since the angle to grazing is

z, . +z
=171 T2
0 = tan 3 s
we have, for example,
o L _ 0
zl—z2—40 in. : 6 =3.814
and 2, =2, =38in. : 6 = 3.624° .

The Fresnel reflection coefficient for an incident plane wave polarized per-

pendicular to the plane of incidence is

0(6) = - \/ez—cosze - sinf 2)
\/e -cos 06 + sinf

(Stratton, 1941; p. 493) where € is the complex permittivity of the ground material

whose permeability has been assumed equal to that of free space. From waveguide
measurements of representative samples of concrete, Cosgriff et al. (1960; p. 14)
report that at X-band frequencies € = 6.5 + i1.5, and using this and the average

value 6 = 3.750, Eq. (2) gives

|o]=0.9472 ,  argp =180.4°.



Since the results are relatively insensitive to the precise value of 6, it would seem

sufficient to choose
p=0.95¢" (3)

in simulating the measured data.

The point of specular reflection is that for minimum path distance from the
transmitter to the receiver via the surface of the earth. It is also the stationary
phase (or saddle) point of a physical optics integral expression for the field scat-
tered by the ground in the direction of the receiving antenna, and though it is true
that the dominant contribution to the integral is provided by the surface area in the
immediate vicinity of this point, it is also true that for nonzero A there is some
contribution from the surrounding area. This leads to the concept of Fresnel zones,
with the first zone being the area responsible for the return.

If x,y are Cartesian coordinates in the plane of the ground referred to an
origin at the base of the transmitter, the distance from the transmitter to an arbi-

trary point on the ground is
R'1 =Jx2+ y2+z?
. 2, 2
(see Fig. 3), and for x >>\/y + z)
1,2, 2
1 v —_—
R1 x+2x(y +z1) .

The distance from the receiver is similarly

1
2(d-x)

R'2= \ﬁd-x)2+y2+z§ ~d-x+ (y2+z§)

and if we define the first Fresnel zone as the surface region where the electrical
distance (or phase) exceeds the minimum by no more than 7/4, the boundary of the

zone is given by

KR +Ry) = KR, +R) = 7/4



Fig. 3: Geometry for Fresnel zone calculation.



Since
R+R"’d+—1-(z +z)2
1 72 2d 1 2

it follows that in the particular case Zo = 2 the boundary of the zone is

2+z2
S PRI &
x(d - x) 1 4d
and when Z, = 40 inches,
2 2
(5m) + (550) - @
0.7642 11,17

where all dimensions are in feet. Equation (4) is an ellipse of semi-axes 11.17
and 0.7642 ft. centered on the point of specular reflection, and is plotted in Fig. 4.
If we enlarge the zone to correspond to phase differences of up to 7 /2 (path length

up to A/4), Eq. (4) is replaced by

2 2
(T%zﬁ) +<f5ig) =1 (5)

and this curve is also plotted in Fig. 4. With either definition, the zone is a very

slender ellipse and will be substantially blotted out by a narrow object resting on
the ground in the boresight plane y = 0.

In addition, the ground illumination produced by the transmitter is a
variable function of position throughout the zone. If the radiated field is taken to
be

E = P(a) Ei-% (6)
R

where a is measured relative to a horizontal line in the boresight plane, the ground

illumination is

|Ex,y)| = —’g—?‘l—’ (7
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Fig. 4: Fresnel zones and their illumination.



2.1/2
1) / } The decrease with distance is partially offset by

the polar diagram of the transmitter, and some '"curves' of constant [E] are

with o = tan_l {-}1; (y2+z

superimposed on Fig. 4. It is seen that the illumination varies very slowly through-
out the Fresnel zone and is not in itself a factor which significantly affects the region
contributing to the ground return.

In contrast, any roughness that the surface possesses could be an important
factor, and affect the region which contributes through the random phasing intro-
duced. Cosgriff et al. (1960) have examined the rms roughness of representative
samples of concrete roadway and found it to be approximately 0.015 ¢m (= 0.0063
inches). This is much less than the wavelength and indicates that smooth concrete
should act as a coherent specular reflector at X-band. They also measured the sur-
face correlation as a function of distance (p. 14) and the scattering as a function of
the angle from the specular direction, out of the plane of incidence as well as in it.
These data confirm the specular nature of the scattering and show that the rough-
ness is too small to have any noticeable effect on the reflected field.

For at least a concrete surface it now seems adequate to simulate the
presence of a ground by a single ray reflection, allowing us to replace the ground in
favor of an image transmitter localized at the geometric image of the real transmit-
ter in the ground and having a relative strength determined by the Fresnel reflection
coefficient p. This is, of course, an approximation for any ground other than a
perfectly conducting one, but is reasonable for the types of smoothed surface near
which the system is likely to be installed. More to the point, however, the approx-
imation is essential to obtain any usable simulation of the effect of an intruder.

It is now a simple matter to determine the received voltage in the absence of
any perturbation. If the free space field of the transmitting antenna is that of Eq. (7),
the "direct" field at the receiving antenna is obtained by giving o the value 6, where
the angle ¢ is shown in Fig. 5. The corresponding voltage is

(po}?
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provided both antennas are looking horizontally so that their polar diagrams are
symmetric about the zero angle. The field which reaches the receiving antenna after
reflection from the smooth ground is represented by the field of an image transmitter

of strength p, and its contribution is

exp 1k(R1 +R2)}

+ Jy
Rl R2

0(6) {p(0)}’

leading to the net voltage

ikR 2
_ 2 ¢ PO\ _R .
v = {re}° = [1+p(6){P(6)} e exp{lk(R1+R2—R}:] .

+
For d>>z1 Z2’

1/2
2 2%, 1 2
R.+R_ = {d +(Z1+ZZ) } —d+2d(z1+zz)

1 72
1/2
2 2 ~ 1 2
and R = {d +(z1—zz) } ~ d+ >d (zl—zz) ,
implying
i o]
1 2
and
2z .7
172
+R -R &~
R +Ry-R= =4

With z, near 40 inches and Zg in the range 30to 45 inches approx., P(9) differs
from unity by less than 0.5 percent and P(6) varies by no more than two percent
about a mean value of 0.85. It is therefore sufficient to ignore the variation of

P(9)/P(5) for such changes in height, and to an adequate approximation

11



ikR
v={p6)}* S Gz, 2,) (8)

where

A(zl, z2) =1+0.8]p| exp{;i(Zkzlzz/d + argp)} . (9)

If either Z, Or z, is fixed, the received voltage will oscillate as a function
of the other height, corresponding to constructive and destructive interference be-
tween the direct and ground-reflected signals. It is reported that for
Z) =25 = 40 inches and d = 100 ft the received signal was a maximum, but if this
was so the maximum must have been the third one above the surface, and Eq. (9) then
implies that argp = 224.9°. This is highly improbable and quite at variance with the
expected value based on the constitutive parameters of concrete. If, instead, we use
the value of argp given in Eq. (3), A is a maximum if Z) =2y = 41.01 inches, and
the next lower maximum is at 31.77 inches. Although it is possible that the discrep-
ancy is due to an error in the height measurement of the antennas, or even to a dis-
placement of the phase center of each dish from its geometrical center, a more
likely explanation is that the concrete floor was slightly concave. Were it one inch
lower at the center of the range, perhaps even iﬁfentiénall} so for drainage purposes,
the antenna heights relative to the reflection poinf of the ground-reflected ray would
exceed the measured heights by this amount, thereby accounting for the discrepancy.
In the absence of information to the contrary, this explanation will be accepted, and
henceforth it is assumed that the "true' heights of the transmitting and receiving
antennas exceed their measured values by an inch.

For the reflection coefficient (3) of concrete for angles close to grazing, Eq.

(9) becomes

4z1z2
A(Zl’ ZZ) =1-0.8075 exp \i7 d (10)
and it is a trivial task to compute this as a function of z, and/or z_. Figure 6

1 2

shows the variation of }A(z 1 zl)l for 0<z ) <45 inches, from which it is evident

12
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that z 1= 41.01 inches is indeed the third maximum above the earth. Reducing the

common height to 36.68 inches produces 45 dB reduction in the signal. For Zy held
fixed at 41 and 39 inches, the variations as a function of receiver height are shown
in Fig. 7.

When the system is perturbed by the introduction of a scattering body, the
scatterer must also be imaged in the ground, but since the image is a localized one
only when the ground is perfectly conducting and its use is an approximation under
all other circumstances, the strength that must be assigned to the image scatterer
is not immediately apparent. However, only one choice is logical, and this is evi-
dent from Fig. 8. When the ground is "removed" in favor of an image transmitter
T' and an image scatterer S', four scattered signals are received corresponding to
the scattering of the fields radiated by the actual and image transmitters by the body
and its image. According to ray theory, the ray paths are as shown in Fig. 8a,
and this situation must be entirely equivalent to the one shown in Fig. 8b in which
rays are reflected at the ground rather than attributed to an image. The following

equivalence then results:

Fig. 8a Fig. 8b
TSR TSR
TP SR T'SR
TSI]—" R T'S'R
TP1§P2R TS'R

Since any ray reflection at the ground introduces a reflection coefficient p, we
observe that the relative strengths of the four contributions are 1, p, p and p2; and
if the image transmitter is assigned a strength p (as required by the first two lines
of the Table), the image scatterer must have a strength unity when excited by the
image transmitter, but a strength p2 when illuminated by the actual source. We
remark that these assignments are in accordance with exact theory when the ground
is perfectly conducting, implying p = T,

The problem has now been reduced to that of a scatterer infree space illumi-
nated by a single point source or dipole field. Given a solution of adequate generality,

each of the four scattered field contributions at the receiving antenna can be obtained

14
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by appropriate scaling and identification of coordinates, and an expression for the
received voltage then follows immediately. The consideration of this basic scatter-

ing problem is our next task.

2. The Theoretical Model

2.1 Man as a Scatterer

In all respects, not least the way in which he scatters electromagnetic waves,
man is a very complex object indeed. Were we to attempt to simulate any man pre-
cisely, the model would inevitably depend on the physique, posture, attitude, clothes,
etc. of the man selected, and because of these dependences, the model may have
very little relevance to the genus "homo sapiens' even if it could be found. A more
profitable approach is to seek the simplest possible models which reproduce those
features of the scattering important for the task in hand, and then select the specific
model which most naturally ""'resembles'" a man. It is this that we shall do.

Measurements of the radar scattering properties of a man have shown
(Schultz, et al., 1958) that at X-band frequencies the backscattering cross section
ranges from 1.2t0 0.7 m2 dependent on the angle of look, and averages 0.94 m2
independent of polarization. Were we to model a man by a dielectric cylinder of

radius a and length 2b, the high frequency cross section would be

o=4|p|2kab2 : (11)

where p is the Fresnel reflection coefficient for normal incidence: see Eq. (2)
with 6 = 90°, Judged by the volume and cross sectional (or shadow) area of a
typical man, we are led to choose a = 0.5 ft, b = 3 ft, and to fit the measured
data we would then require that € = 1.48. The fact that this is much less than the
average permittivity of the biological materials themselves is because a man does
not have the specular scattering capability of the smooth surface of our model.

As the bistatic scattering angle increases to 900, the measured radar cross
section of a man decreases by about 25 percent and then rises slowly, but remains
independent of the polarization. To simulate this behavior it would be necessary to
change the radius and/or permittivity of the cylinder, and to do so differently for the

two principal polarizations. Fortunately we are spared this task. Our concern is

17



with angles fairly close to forward, and though no measured data have been found for
angles greater than 900, the near forward scattering from any body is primarily
determined by its shadow forming capability. Provided the body is opaque, its
material properties are relatively unimportant, and this allows us to select any body
whose geometric shadow is comparable to that cast by a man. Our initial choice is
a perfectly conducting right circular cylinder.

2.2 Plane Wave Scattering by a Cylinder

We consider first the simple case in which the cylinder is illuminated by a
plane wave incident in a plane perpendicular to the z axis of the cylinder, with its
electric vector in this plane. The task is to obtain an expression for the scattered
field in a direction close to forward, and at large distances from the cylinder but not
necessarily in the far zone.

Since the body is perfectly conducting, the scattered field is determined by the

electric Hertz vector

i7Z eikIE_I'l
7(r) = == \\ D\H(r) S dS' (12)
T

where r and r' are the position vectors of the point of observation and the variable

point of integration on the surface S of the cylinder; and in terms of 7,

ES(E) = V/\V/\lr ~ —kz?'/\(;‘/\lr) (13)

at large distances from the cylinder. Although the exact surface field is unknown,
physical optics should constitute a reasonable approximation because of the large
electrical dimensions of the cylinder. According to this approximation, the surface
field is

n

H

{2 n Agl on the illuminated portion
A -

0 on the shadowed portion

where the affix "i" denotes the incident field. Equation (12) then becomes

18



. . iklr-r|
(r) = Z n, H(r')

1
57k n, ds (14)

|z-r']
where the integration is confined to the "front' half of the curved surface of the
cylinder, and for a given incident field, this is an explicit integral which can be
evaluated.
We choose
i ikx i ikx

E'=§e", H =Y2e (15)

representing a plane wave propagating in the positive x direction with its electric
vector perpendicular to the axis of the cylinder, and take the point of observation
to be in the plane z = 0 displaced a distance A from the perpendicular bisector of
the cylinder. If p and § are cylindrical coordinates such that x = p cos b,

y = psing, the curved surface of the cylinder is p = a and the illuminated portion

is (see Fig. 9)
T]2<$'<3r/2, -b+A<z'<b+A .
Since r=r(Rcosd +ysing) = rt
r' = a(Reosg' + §sing)+z'2
and D =Xcosg'+ysing', ' .

it is a trivial matter to express (14) as a double integral over ,6' and z', and when

this is substituted into (13) we have

E°(r) ~ (-Ksing + J cos §) e—gs(ﬁ) (16)
where
b+A  A37/[2
S(g) = - %f cos(g' - §) glK8 GO g lrfr'l GKlz-x |-n) dg'dz' .
-b+A Jr [2 (17)

We note that the forward scattering direction is § = 0.

19
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Fig. 9: Geometry for the cylindrical scattering problem.
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In the amplitude factors of the integrand, r' can be neglected in comparison
with r, but the phase factor needs more careful attention. Provided r >maxr’,

1
I_I.'.-E'I= r- ?Iv +_2.; rrz_(f.zv)z}_l._l_z. (’I\‘_I_") r'

2r

2_(3-r )2}+o<r ) (18)

giving
k{lr r' =-kacos(g5' ¢$)+ {a sm r-g) +z! }

+ %cos(ﬁ' - gS){azsinz(gS' -9+ z'2}+ O(r~3). (19)
2r

The standard far field situation is that in which the second and all subsequent terms
on the right hand side of (19) can be neglected. If the criterion for neglecting a term
is that its contribution to the phase shall not exceed 7 /8, that portion of the second
term which depends on §' is negligible if

2 2
>_.-
r> K(Za)

requiring r>21.4ft if a=051t .

Because of the nature of the @' factor, this is act'ually an over estimate of the
range required, and in any case the criterion is adequately fulfilled at all ranges of
interest to us to justify omitting this portion of the second (and all subsequent) terms
in (19). However, the terms involving z' are another matter. Even when the offset
distance A =0, the choice b = 3 ft implies that the second term on the right hand
side of (19) must be retained unless r >770.4 ft, and to retain the second but omit
the third term demands r >19.6 ft.

With the retention of the second order (quadratic) phase terms in z', the ¢’

and z' integrals separate and the expression for S(¢) becomes
5 T/2

s =52 1) cos(fr- ) exp{Zikasing sm(gs'-g)}dw (20)
-7 [2
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with
bt+A
. k .2} '
exp 12rz dz' . (21)
-bt+A

1

=%

If 2ka sing >>1, the ¢' integral can be asymptotically evaluated using the stationary

phase method to yield the geometrical optics expression for the scattered field, but
this is no longer valid in directions close to forward where 2ka sin12é L1, An
alternative approach which is effective in this region is to use the identity

cos(f' - §) = cos(p' - jg)cos -g + sin(g' - ‘g) sing ,

in which case

S(g) = ikiab Kr) {coszg sinc(ka sin ¢) + :B(;S)} (22)
where
MmX=s§X
and
7/2
BM)=%smg Mm#f$em{m@smgsmwhg%d#.
-7 /2

Clearly B(0) = 0 and for 2ka sin‘;é <1, B($) = - sinz‘;é . Unfortunately, we will

be concerned with values of ¢ as large as 200, implying 2ka sing as large as 12,
and since B(g) provides the dominant contribution to the scattering from a metallic
cylinder at wide angles, there is no way to justify omitting B(¢#) from the scattering
problem.

On the other hand, the metallic cylinder is a reasonable model of a man only
in directions close to forward and there are good reasons, both theoretical and prac-

tical, for retaining only the sinc term in (22). Physical optics is only an approxi-

mate method and overestimates the magnitude of B(¢) for small §. An exact
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analysis for a circular cylinder shows that the correction to the sinc term is

attributable to creeping waves, and even for a metallic cylinder
1 -2/3
IB| ~ ST (ka/2) "7 q

(Bowman, et al., 1969; p. 112) where q is of order 0.3 throughout the angular
range of interest. Since it is unlikely that the irregular surface of a man could
actually support creeping waves, it is logical to suppress their contribution in our
simulation, in which case

ik2ab
T
24

2
(4.194) of Bowman, et al. (1969) shows that (23) is identical to the scattering ampli-

S(g) = I(r) sinc(ka sin §) (23)

where we have assumed cos can be replaced by unity. Comparison with Eq.
tude for a perfectly conducting rectangular plate whose dimensions are those of the
shadow cast by the cylinder. In effect, the approximations which have been applied
to Eq. (22) have reduced the cylindrical model to the simpler planar one, and this
was actually the model used by Row and Abraham (1965) in their investigation of
anti-intrusion systems. As we shall see, the simulation is adequate provided the
range effect represented by the function I is retained.

2.3 Plane Wave Scattering by a Rectangular Plate

To set the stage for the analysis which will follow, it is convenient to
parallel the above derivation in the simpler case of a rectangular plate, and to
examine the role played by the range factor I in relation to this geometry.

Consider, therefore, a thin perfectly conducting rectangular plate occupying
the region -a<y<a, -b+A <z <b+A of the plane x =0. For the incident field
defined in Eq. (15), the illuminated portion of the surface is the face x = -0 where
the outward unit vector normal is A = -X. The physical optics expression for the

scattered field is then given by Eq. (16) with

23



b+tA Aa

JKlr-z|-1) o

S(p) = % cos ¢ 'dz.'

-b+A J-a

If x>(y‘-y)2+z'2,
L1 2. 2
|z-1'| -X+§;{(Y’-y) +z! } ,

equivalent to the neglect of cubic and higher order terms in the phase expansion. The

y' and z' integrals now separate and

9 b+A 9 aty
2 keospo) A
S(g) = o cospe exp <1k zx)dz
-bt+A -aty

2
e L) got
exp <1k 2X)dy .
(24)

The z' integral was previously defined as 2bl, but both integrals in (24) have
exactly the same form and can be expressed in terms of the finite range (complemen-
tary) Fresnel integral

t

.2
Fy= \ e du . (25)
0
Clearly F(-t) = -F(t)
and for t <1
F(t) >~ t,
implying F(0) =0 ;

whereas for t>>1
F(t) ~ -;— VT em/4

In terms of the functions

24



Iz
C(z) =V2/x cosuzdy

0

VZ
S(z) = V2/7 sinu2 du
0

tabulated by Jahnke and Emde (1945, p. 35),

F(t) = 7 /2 sgn(t) {C t7) +iS(t )} (26)
where
-1 t<0
sgn(t) =
1 t>0
Equation (24) can now be written as
12k2ab ikr{cos - 1)
S(f) = = cosg e ° 11 (27)
where

1= 4 [2 [{f(mm}w{ (b- A)ﬂ (28)

(see Eq. 21) and I' differs from I only in having b and A replaced by a and

y respectively. In the particular case A =0,

‘ 2
and is a function of the single variable 7= kb /2x. The modulus and phase of the
range function I have been computed as functions of 7, 0 <7<20, and the results
are plotted in Figs. 10 and 11. For large 7, i.e., at small ranges, the phase oscil-

lates about the mean level of 450, but as T decreases below 3, the phase decreases

25
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almost linearly to zero and the modulus increases to unity. The far field is that
region for which I can be replaced by unity, e.g., 7<0.4.

If x exceeds kb2 but does not necessarily exceed k(b i'A)z, I has an
alternative expression which is convenient and suggestive. From the integral repre-

sentation (21),
b

I= -2% exp{i-E (z'2+ 2z‘A+A2)} dz'

2x
-b

and if kb2 /2x <7 /8 so that the term in z'2 can be omitted from the exponent,

b
I= -2ib exp(ikAz/Zx) exp(ikAz'[x) dz'
-b

= exp( kA /2x) sine(kbA/x) . (29)

When this analysis is applied to I' and we use the fact that r =~ x + y2/ (2x) Eq. (21)
is recovered precisely, showing that the expression for S(¢) in terms of the sinc
function is merely a special case of the more general result (27). Nevertheless,

this special case is of much interest in modelling the effect of an erect man and a
rather detailed study of this formula has shown it bapable of reproducing the type of
perturbations that are measured. With the confidence gained from this investigation,
we now proceed immediately to the general situation where the plate is offset in two
directions with respect to transmitting and receiving antennas both of which are
directive and at finite distances.

2.4 Simulation in the Absence of the Ground

We choose Cartesian coordinates (x,y,z) as shown in Fig. 12 with z =0
defining the horizontal and, later, the level surface of the ground. The plane y =0
is the boresight plane containing the transmitting and receiving antennas, and propa-
gation is in the direction of increasing x.

A transmitting antenna at the point r 1= (0,0,z,) radiates a horizontally

1
polarized field with polar diagram P(a) where o is the angle measured from the
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Fig. 12: Simulation geometry.
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horizontal in the boresight plane, and if it is assumed that all cosine obliquity factors
are absorbed into P(a), the unperturbed (or "incident") field at a point r=(xYy,z)

in free space is

ikr-r |
E'x,y,2) = § Pla) (30)
,-'51 l
. iklr-r, |
Hx,y,z) = Y2 Pa) —e—lz—_-El—,— (31)

where o is, of course, a function of position. When there is no scatterer present,
this is the total field at the point 52 =(d, 0, z2) of the receiving antenna, assumed
identical to the transmitting antenna, with its polar diagram also directed horizon-

tally, and the unperturbed (or incident) voltage is then

i emhé‘ﬁﬂ
V' = Plo)P(f) —/— (32)
|z, -1, |
2 1
where
0 1/2 (zz—zl)2
- = - x> +
|2z, | {d +{z Z1)} 4+
and
Z. -7
@ =B =tan 2d (33)

We now introduce the scatterer in the form of a perfectly conducting

rectangular plate of dimensions 2a by 2b occupying the region
y-a<y<y+a, Z-b<z<Z+b

of the plane x =X, where 0<X<d. The plate will perturb the field, and the
added (or "scattered") contribution at an arbitrary point r is given by an electric

Hertz vector whose physical optics expression is
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where the integration is over the illuminated face x =X-0 of the plate. On

inserting the expansion (31), we have

ikk' _1'1' ‘ eiklz_zv]

_ i :
@(x) = ok ¥ P(a) lf'"_ll o] dy' dz'

and since P(a) can be assumed to vary little over the surface of the plate, @ can
be assigned the value appropriate to (say) the midpoint of the plate. P(e) is then a

constant and can be removed from the integral with

. 1/2
e
o =q =tan — . (34)
X
and if r is such that the quadratic approximation
1/2
j-x') = {22y’ + (z- 297}
1/2

R
M

T {(y—y')2+(Z-Z‘)2}

2(x -%)

to the phase is adequate,

ib{
where
y+a ~z+b
M) = exp [%(% {y'2+(z'—z1)2} +X—}§{(y_yv)2
y-a VZ-b

+(z—z')2}>] dy'dz' . (36)
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At the location r = I, of the receiving antenna, the scattered field is

S ~ 1 2A
E(r )=~ -k r2A(2A1T)

and if we again absorb all cosine obliquity factors into the polar diagram P{(B) and

assign 3 the value

~2 o 2
o o
B_B_ an d_'i‘

appropriate to the midpoint of the plate, the added voltage is

S ikd
v -——p(»@)(d_)rqg (38)

The net voltage is therefore
V=v4+v®

and when this is normalized with respect to the voltage V' in the absence of the

perturbation, we obtain the result
(39)

v _ ik P(@) P(B)
f—H%Hmmmeﬂmzz”m}d'vr

The evaluation of the double integral expression (36) for [ (32) is facilitated

by introducing the quantites ¢y and € where

oz (40)
Y X d-X
Z Z
€= = +—2— | (41)
X d-x



After some manipulation, the integrand reduces to

i 2 2 2
ol (P

and the y' and z' integrals are now of the general form shown in Eq. (14). Hence

F(;z) = exp{lk(z -2, /ZdB[ {\/T y+a)} { (¥- a)}j’
. [F{J;%(E—e'y+b)}— F{%(E’- e'y—b)}jl (42)

where F is the Fresnel integral (25), and when this is substituted into (39) we have

vV o_,,iP@ P@ [ ([E o x
vi =1+ 7 D) BB [Fg 2y (y+a)}— F{( 2y (?—a)}jl
k ~ k .
) [F{’z_,y (Z’€’Y+b)}- F{ '2; (Z-s'y-b)}] . (43)

In the particular case Zy =2 when the antenna heights are equal, ey = Z;.

2
If, in addition, kb /2y < 7/8,

k . kK .
F{,E:; (z—e'y+b)}— F{‘;Y @ -e’y—b)}
o~ 2b,/—21 exp{ik('z"—z )2/27} sinc{kb(%'-z )/’y} (44)
k 1 1

and the situation is analogous to that treated in the latter part of Section 2.3. For
computational purposes, however, it is more convenient to stick with the general
form (43) in spite of the simplifications that are possible in special circumstances.

2.5 Simulation with the Ground Present

To complete our simulation of the effect of a man on the system, we must

now introduce a ground whose surface is the plane z = 0. The ground is assumed
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to have the reflection coefficient p, constant over the range of angles of concern
to us, and when the transmitting antenna and the plate are both imaged in the ground,
we find ourselves with two sources of radiation each illuminating two scattering
objects. The strengths that must be assigned to the images were determined in
Chapter 1.

When there is no perturbation present, the received voltage is attributable to

the free space fields gf": the transmitter and its 7ir;1;ge7: Ti}é expi'ession for the voltage
provided by the actual transmitter is given in Eq. (32), and if this is written as
Vl(zl), the voltage due to the image is simply le(—z 1). The unperturbed voltage

is therefore

V= Vi(zl)+pVi(—z1) (45)
where
e a2 e
Viz,)= {P(a)} = (46)
1/2
with R= {dz + (z2 -21)2} (47

and o as defined in Eq. (33).
The introduction of the scatterer produces an added voltage consisting of

four separate contributions. One of these is associated with the actual transmitter

and the actual body and the expression for the corresponding voltage is given in Eqgs.

(38) and (42). If this is denoted by v3(z T 7), the analysis in Chapter 1 shows that

the added voltage when the ground is present is

2

Vi(z.,-3) (48)

v = Vs(zl, ¥) + pVS(—Zl, %) + pVS(-Zl, B +p N

where

S ~ i eikR ~ k T
\Y% (Zl,z) =7 R P(@) P(P) ]:F{J;—; (y+a)}— F{/z—y (y—a)}_J
: [F{/;—g(z—e'ﬁb)}— F{J-z-_l’{;(z—eﬂy—b)}:l . (49)
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and v, €, a, 3 are as defined in Eqs. (40), (41), (33) and (37) respectively. We

note that e, 2{, B: R and o are all functions of z, , andthat & and E depend on

1’
Z as well.

The total signal normalized to that in the absence of the perturbation is now

s
Lo L (50)
i i
\ \

where V' and V° are given in Eqs. (45) and (48).

3. Computed Data

A program has been written to compute the unperturbed and scattered voltages
of Egs. (45) and (48) respectively and thence the normalized voltage shown in Eq. (50).
The program is in Fortran IV for use on the IBM 370/168 computer at The University
of Michigan and a listing and specimen output are given in the Appendix.

The program reads the transmitter and receiver heights, the model half width,
half height and center height, the modulus and phase (in radians) of the ground reflection
coefficient, the frequency, and the initial, incremental and final values of the dis-
placement y of the model's center from the boresight plane as input data, and pro-
duces the unperturbed voltage FDIR, the scattered voltage FSCAT and the normalized
voltage square (or power) MOD as functions of §. As part of this process, the
appropriate values of the angles o and 8 are determined and fed into a function
POLAR(A) which computes the polar diagram according to Eq. (1). Having this as
a function enables the polar diagram to be changed without recompiling the entire

program. The Fresnel integrals are computed according to the formula

F(®) = {7/2 sgn(/) {C(x) + iS(x) )

using the subroutine CS(C, S,X) contained in the IBM System 360 Scientific Subroutine
Package, Version II. Since the argument x of the cosine and sine integrals is the
square of the Fresnel integral argument, the signum function is taken care of using

a set of conditional IF statements.
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In order to check the adequacy of our model, data were supplied for each
of two men (subjects ""A" and '"B") walking or crawling (slithering ?) in a direction
perpendicular to the boresight plane at different distances from the transmitter.

All of the data are for a range d = 100 ft and in most cases the corrected or "true"
transmitter and receiver heights were 41 inches. The various curves of power
versus displacement from the boresight plane show considerable variations from
case to case, particularly in the fine structure, and such variations are evident even
when a subject repeats a traverse in a manner as close as possible to the previous
one. From the more than 20 sets of data that were provided, it would appear that

at least part of the fine structure is due to the inevitable limb and body motion that
accompanies a traverse, and the most regular and symmetrical curves were ob-
tained when the subject limited his jiggling to the maximum extent possible.

We consider first the case of an erect man. Based on the blocking area of a
typical man, our initial choice of the plate parameters a and b was a = 0.5 ft and
b = 3 ft, and Figs. 13 and 14 show comparisons of theory* and experiment for a man
walking across at distances of 50 and 30 ft respectively from the transmitter. The
experimental curves are for subject A walking slowly with minimal limb movement
and are the averages of the measured values for the subject approaching and leaving
the boresight plane. On the whole, the agreement is rather good and though the
theoretical curve for X = 50 ft has a somewhat deeper oscillation than the experi-
mental one, particularly for ¥ in the 3 to 4 ft range, we remark that the averaging
applied to the measured data tends to reduce the larger oscillations. Some of the
raw experimental traces do reveal oscillations as large as those predicted by the
model. To examine the effect of changing the half width a of the plate, Figs. 15
through 17 repeat the theoretical-experimental comparison of Fig. 13 but with
a = 0.455, 0.375 and 0.25 ft respectively. The choice a = 0.455 ft does produce a

slight improvement for § > 2 ft at the expense of an increased discrepancy in the

* For all of the data presented the reflection coefficient p has been given the value
shown in Eq. (3), and except where otherwise stated, z, = z, = 41 inches (= 3.417 ft),
d = 100 ft and the plate has its lower edge on the groundl.
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vicinity of the main peak. This trend continues as a is decreased further, but
because of the growing magnitude of the secondary peak, we have lost the character
of the experimental curve by the time a = 0.25 ft, and the simulation is then good
only for Sr'$ 2 ft.

All the experimental traces where the transmitter and receiver heights are
such that the direct and ground-reflected signals are in phase have certain features
in common. The more prominent features are a local maximum in the boresight
plane, an absolute minimum for y = 1 ft, followed by a main peak at ¥y ¥ 2 ft, and
all of these are reproduced by the theoretical model. To try to get a better feel for
the optimum values of a and b for an erect man, we have computed the theoretical
maxima and minima as functions of a, 0.25 <a (ft) <0.75, for b = 3.0 ft, and as
functions of b, 2.5 <b(ft) <3.25 for a = 0.5 ft, all for x = 50 f, and these are
compared with the averages of the experimental values in Figs. 18 and 19. Unfor-
tunately, the results are rather inconclusive, and do not provide any real grounds
for choosing dimensions other than those suggested by a man's physical "blocking"
area. We shall therefore continue to choose a = 0.5 ft and b = 3 ft to simulate a
man walking across the range. If the man walks sideways, however, his blocking
area will be greater, and it is logical to expect that a larger value of a would be
appropriate. This is indeed the case, and Fig. 20 shows a comparison of experiment
and theory for a = 0.75 ft. The experimental trace has a regular oscillation which
would seem to be due to the swaying motion of the man resulting from his lock-step
progression across the range. Obviously, the theory does not take this into account,
and this apart, the agreement with experiment is reasonably good.

For a crawling man the experimental data were less numerous and much less
complete. Results were available for only single passes at 50, 30 and 10 ft. Since
the man slithered across on toes and elbows,; he should therefore have presented a
reasonably symmetric target, but the measured traces are rather asymmetric and,
particularly for X = 30 ft, it is quite impossible to locate the midpoint corresponding
to the boresight plane. This is evident from Fig. 21 where we show the experimental

data for x = 50 and 30 ft and we also remark that no record was kept of the horizontal
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scales. For all these reasons, it is almost impossible to make any realistic
assessment of how well our model simulates a crawling man, but we have made
some comparisons of theory and experiment. Figs. 22 through 24 are for a man
crossing at mid range with a =3.0 and b = 0.5, a=3.0 and b = 0.25, and
a=3.3and b = 0.5 ft respectively. The common experimental curve purports to
be the average of the measured data about the boresight plane with the horizontal

scale adjusted to best fit the theoretical curve. The agreement between theory and

experiment is relatively good, particularly in Fig. 23 where even corresponding
peaks match one another. A7t30 ft, however, the theoretical and experimental
curves (see Figs. 25 and 26) agree only in their average values, but because of the
wide degree of uncertainty in the ""average' experimental curve at this range, it
would be unwise to make any judgment one way or another. There is certainly no
evidence that the model is inadequate to simulate a crawling man, and it still seems
sufficient to select values of a and b based on the cross sectional area he presents.
In the remaining figures we explore some of the system implications of the
theory. For an erect man (a = 0.5 ft, b = 3 ft) walking across the range, the nor-
malized power received for a range 100 ft long will depend on the antenna heights
chosen. If the man is at mid range (X = 50 ft) and the heights are such as to put the
direct and ground reflected signals in phase quadrature or out of phase, the changed
responses are shown in Figs. 27 and 28 respectively. In each case the solid line
corresponds to the in-phase situation and is the same as that in Fig. 13. The main
effect of having the two signals in phase quadrature is confined to distances of about a
foot from the boresight plane, but having the signals out-of-phase substantially in-
creases the normalized power and tends to interchange all maxima and minima in the
pattern. Unfortunately, this last situation is not too practicable. The increased level
is primarily due to a decrease in the signal when there is no intruder present and any
slight change in, for example, the ground reflection coefficient would significantly
affect the system. Results analogous to those in Figs. 27 and 28 but for X = 30 and

20 ft are given in Figs. 29-32.
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If the range is increased beyond 100 ft, we can still maintain the in-phase
situation at the receiving antenna by adjusting the antenna heights accordingly.
Table 1 lists the ranges for in-phase addition with equal antenna heights lying between
30 and 45 inches and by shifting from the third to the second and then to the first max-
imum above the ground it is seen that all ranges from 54 out to 602 ft can be covered
with the exception of those from 201 to 267 ft. To illustrate the normalized power
received at these longer ranges, Figs. 33 and 34 show the results for an erect man
crossing at midrange when d = 300 and 500 ft respectively. The only substantial
difference from the curves for 100 ft is a proportionate increase in the horizontal

scale. This is true also of the curves in Figs. 35 and 36 for a crawling man at mid

range.

Table 1: Ranges d for in-phase addition

z, =z, d (ft)

(inches) 3rd max 2nd max 1st max
30 93.504 89.173 267.520
31 57.130 95.217 285,651
32 60. 876 101,459 304.378
33 64. 740 107.900 323.699
34 68.723 114,538 343.614
35 72.825 121.375  364.124 ‘
36 77.046 128.409 385,228
37 81.385 135. 642 406.927
38 85. 844 143,073 429,220
39 90. 422 150.703 452,108
40 95.118 158.530 475,590
41 99.933 166.556 499,667
42 104. 868 174.779 524,338
43 109.922 183.204 549.611
44 115.094 191. 824 575,471
45 120.385 200,642 601,926
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One possible way in which an intruder might seek to avoid detection is by

"jumping'', e.g., pole-vaulting, across the range. To see how feasible this might
be, we have run a series of simulations for a 100 ft range with Z =2y = 3.417 ft
and an erect man (a = 0.5 ft, b = 3 ft) with his midpoint Z at heights incremented
in 0.5 ft steps from 3 ft (feet on the ground) to 15 ft (feet 12 ft above the ground).
For each set of data the boresight, minimum and maximum values of the normalized
power were determined, and these are plotted as functions of z for crossings at 50,
30 and 20 ft in Figs. 37 through 39 respectively. The results are remarkably simi-
lar and if, for example, a 10 percent change in the received power is necessary for
detection, the man could safely cross at all three distances by raising his feet 4 ft,

i.e., midriff 7 ft, above the ground.
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¥ ()

Fig. 13: Erect man at 50 ft;: --- experimental (subject 'A"),
—— theory for a = 0.5 ft. and b = 3 ft.
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Fig. 14: Erect man at 30 ft: --- experimental (subject 'A'),

—— theory for a = 0.5 ft. and b = 3 ft.

42



¥ (f1.)

Fig. 15: Erect man at 50 ft: --- experimental (subject 'A'),
—— theory for a = 0,455 ft. and b = 3 ft.
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Fig. 16: Erect man at 50 ft: --- experimental (subject 'A'),
—— theory for a = 0.375 ft. and b = 3 ft.
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Fig. 17: Erect man at 50 ft: --- experimental (subject 'A’)
—— theory for a = 0.25 ft, and b = 3 ft.

t
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Fig. 18: Erect man at 50 ft: theoretical (——) and average

experimental (---) boresight, minimum and maximum
values for b = 3 ft.
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Fig. 19: Erect man at 50 ft: theoretical (——) and average
experimental (---) boresight, minimum and maximum
values for a = 0.5 ft.
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y (£1.)
Fig. 20: Erect man moving sideways at 50 ft: --- experimental
(subject 'A'), —— theory for a = 0.75 ft. and b = 3 ft.
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Measured raw traces for a crawling man at 50

and 30 ft.

Fig. 21
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Fig. 22: Crawling man at 50 ft: --- 'average' experimental,
—— theory for a = 3 ft, and b = 0.5 ft.
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Fig. 23: Crawling man at 50 ft: --- 'average' experimental,

—— theory for a =3 ft. and b = 0. 25 ft.
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Fig. 24: Crawling man at 50 ft; --- 'average' experimental,

—— theory for a = 3.3 ft. and b = 0.5 ft.
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Fig. 25: Crawling man at 30 ft: --- 'average' experimental,
—— theory for a = 3 ft. and b = 0.5 ft.
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Fig. 26: Crawling man at 30 ft: --- 'average' experimental,

theory for a =3 ft. and b = 0.25 ft.
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Fig. 27: Theoretical simulation of an erect man at 50 ft: in-phase
(z1 = 2" 3.417 ft.), --- phase quadrature (z1 =297 3.224 ft.).
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Fig. 28: Theoretical simulation of an erect man at 50 ft: ——in-phase

(z1 =2, 3.417 ft.), --- out-of-phase (z1 =2, = 3.033 ft.).
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Fig. 29: Theoretical simulation of an erect man at 30 ft: —— in-phase
(Z1 = 2, = 3.417 ft.), --- phase quadrature (z1 = 2,=3.224 ft.).
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Fig. 30: Theoretical simulation of an erect man at 30 ft: in-phase

(zl =24 =3.417 ft.), --- out-of-phase (z1 = 2, = 3.033 ft.).
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Fig. 31: Theoretical simulation of an erect man at 20 ft; —— in-phase

(z1 = 2= 3.4117 ft.), --- phase quadrature (zl =z, =3.224 ft.).
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Fig. 32: Theoretical simulation of an erect man at 20 ft: —— in-phase
(z1 =2,= 3.417 ft.), --- out-of-phase (z1 = z,* 3.033 ft.).
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Fig. 33: Theoretical simulation of an erect man (a = 0.5 ft.,
b = 3 ft.) at mid range with z2,=2y= 2.647 ft. and
d = 300 ft.
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Fig. 34: Theoretical simulation of an erect man (a = 0.5 ft.,
b =3 ft.) at mid range with Z) = 2" 3.417 ft. and
d = 500 ft.
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Fig. 35: Theoretical simulation of a crawling man (a = 3 ft., b = 0.5 ft.)
at mid range with Zy =297 2.647 ft. and d = 300 ft.
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Fig. 36: Theoretical simulation of a crawling man (a = 3 ft,, b = 0.5 ft.)

at mid range with 2= 2= 3.417 ft. and d =500 ft.
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7 (Ft) |
Fig. 37: Boresight (——), minimum (---) and maximum (—-—) values

of the normalised power for a man (a = 0.5 ft., b = 3 ft.) crossing
at d =50 ft. as a function of his midpoint elevation z.
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Fig. 38: Boresight (——), minimum (---) and maximum (— - —) values

of the normalised power for a man (a = 0.5 ft., b =3 ft.) crossing
at d = 30 ft. as a function of his midpoint elevation z.
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Fig. 39: Boresight (——), minimum (---) and maximum (— - —) values

of the normalised power for a man (a = 0.5 ft., b = 3 ft.) crossing
at d = 20 ft. as a function of his midpoint elevation .
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Appendix: Program Listing and Specimen Output
IAPLICIT REAL(K,I,H),CONPLEX ()
5 R2a0 300, RF,41,:2,4,0,8,A,C,Y1,DELY, Y2,RHO, ARG
ARGI=ARG®180./3.16159
PRT YT 10D ,RB,2¥,0,41,5,102,4,RH),C,AKs1
L=0
K=6,333148%RP
K256=K/2./(D=-D*D/R)
FRFC=5HO®CMPLY (COS (AaG) ,SIN(Auis))
ALPAAT=ATAN ((H2-H1) /R)
ALPTA2=ALAN ((H2+HT) /R)
RZL1=SIRT (R¥% 2+ (H2-11) ¥%2)
KZ2=506T (R¥* 2+ (H2+Hd1) *%2)
PAT1=POLAR (ALPHAA 1)
PA2=DPOLAR (ALPHA2)
GEPZ1= (H1% (R-D) +H2%D) /R
5RPI2= (H1% (D-R) +H2%D) /R
FPH1=CMPLX (COS (K*¥R41) ,SIN(K*RkZ1)) /721
FPHS2=CMPLX (COS (K*RZ2) ,5IN(K¥222)) /RZ2
FDI(=PAT*%2%¥PDHS 14 PA2X¥ Q¥ FPHS2*FRIC
R2=7BAL(FDIK)
12=11IMAG (FDIR)
PRINT 101,R2,I2
PRINT 105
10 DELUAV=ATAN (SQRT {(H1-C) *¥*2+Y 1%%2) /D)
DELTA2=ATAN (S5ORT ((H1+4C) ¥¥2+Y1%¥%2) /D)
BETAT1=ATAN (SQRT ((H2-C) **2+Y1%*%2) /(R-D))
BETA2=ATAN (SQRT ((H2+C) *¥*24Y1%%2) /(R-D))
PD1=POLAR (DELTA1)
PD2=POLAR (DELTA2)
P31=POLAR (BETA 1)
PB2=POLAR (BETA2)
CALL CS(C1,5,K2G%(Y1+4A)**2)
F1=CHPLX(C1,5)
CALL CS(C1,5,K26% (Y1-2) *%*2)
F2=CMPLX(C1,S)
CALL CS(C1,5,K25% (C-GEPZ14B) **2)
F3=CMPLX(C1,5)
CALL CS(C1,5,K2u*{C-GEPZ 1-3) **2)
F4= 4PLX (C1,3)
CALL CS(C1,5,K26*%(C+GEPZ1+B) *%2)
F5=_MPLX (C1,5)
CALL CS(C1,5,K2G%(C+GEPZ 1-B) ¥*2)
FH=CMPLX (C1,3)
CALL CS(C1,S,X2G* (C-GEPZ2+B) **2)
F7=CHMPLX(C1,5)
CALL CS(C1,5,K206% (C-GEPZ2-3) **2)
F3=CYPLY(C1,3)
CALL C5(C1,5,K20% (C+GEPZ2+B) *%2)
F3=CMPLX(CT,S)
CALL C5(C1,5,K2G% (C+GEPZ2-B) *+2)
F10=CHPLX (C1,5)
IF ((¢Y1+4).LT.0.) Fl1=-F1
IF ((Y1-A).LT.0.) F2=-F2
IF ((C-GEPZ1+3).LT.0.) F3=-F3
If ((C-GEPZ1-B).LT.U.) F4=-F4
IF ((C+GEPZ1+3).LT.2.) F5=-F5
IF ((C+GEPZ1-3).LT.U.) F6=-F6
I7 {(C-GEPZ2+B).LT.J.) F7=-F7
IF ((C-GLEPZ2-8).LT.C.) F8=-F8
IF ((C+GEPZ2+3) .LT.2.) F9=-F9
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IF ((C+GEPZ2-B) .LT.J.) F10=-717
F5CAT= (0. ,.5) % (F1-F2) % (FPHS 1% (DD1*PB 1% (F3-F4) +PRFC*%2%PD 2%PB 2% (F5-
DES)) +FRFCKFPA52% (PD24P31% (F7-F8) +PD1%PB2* (FI-F1C)))
FVLTi= (FDIR+ F3CAT) /FDIR
MOD=CABS (FVLT3) %%2
R1=REAL (FDIR+FSCAT)
I=ALHAG (FDIR+FSCAT)
PRINT 1C2,Y1,R1,I,40D
{1=Y14DELY
L=L+1
IF(L.NE.41.AND. L. NE.91) GO T0 20
PRIJT 103
PRINT 101,R2,I2
PRIAT 105
20 IF(Y1.LE.Y2) GO TO 10
G0 TO 5
130 FORMAT (*1%,20X,'PLRTURBATION B3Y A NAN (OMNISPECTRA)'//3X,'RANGE',]
21K, '% (FI)',F3.3,10K, '"FREQUENCY',6X, 'F (GUZ) ', F8.3/3X,"DiSTANCE',B
PX, ') (FT) ',F3.3,10%, 'TRANS HT',7X,'Z1 (FT)',F8.3/3X,'MODEL 1/2 HT!
3,4%,'8 (FT)',#8.3,10X,'REC HT',9X,'Z22 (FT)',F8.3/3X,'MODEL 1/2 WD!'
A, 4%,') (FT)',F8.3,10X,'EFLC COEF:  MAG ',F8.3/3X,'CENTER HT!
9,7%,'% (FI)',F3.3,23X,"ARG (DEG)',F3.3//)
1)1 FORAAT (* ' ,27X,'UNPERTURBED VOLTAGR'//25X,'REAL',16X,'IMAG'/16X,F1
4.5, 7%,F14.5//)
102 FORMAT ("+',10X,F5.2,3F14.5/)
123 FORMAT (*17)
105 FORMAT {' ',28X,'PERTURBED'/30X," VOLTAGE',13X," NORMALIZED'/14X,'Y",
210X, 'REAL',10X, ' IMAG',8X, "MOD SQRD'/)
330 FORMAT (3F6.3,2F7.3,6F6.3,F4.2,F7.5)
END
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RANGE
DISTANCH
MODEL 1/2 HT
MODEL 1/2 WD
CENTER HT

0.0
9.1
.22
J.3)
CG.U0
0.59
J.62
0.7
Z.80
0.9
1.02
1.10
1.22
1.3)
1.42
1.5)
1.62
1.72
1.8)
1.90
2.0)
2.1
2.2
2.3)
2.43
2.5)
2.67
2.7
2.8)
2.9)
3.02
3.1)
3.20
3.3
3.40
3.50
3.65
3.7
3.82
3.90
4.06>

N> T O D

71

PEZTURBATTON BY A MAN (OMNISPECTRA)

72 (FT)

(FT) 100.022) FREQUENCY

(*T)  50.000 TRANS HT 71

{FT) 3,050 REC HT

(FDY  0.500 RFLC COEF:  MAG

(FT) 3,000 ARG

UNPRRTURBRED VOLTAGE
REAL THAG
NL01461 3.0080h
PERTURRBED
NORMALIZED
REAL IMAG MOD SQRD

0.00319 0.00918 0.33935
0.00322 0.00903 0.32984
3.07233¢C 1.00857 7.30297
0.00348 0.00783 0.26360
0.00380 0.00683 0.21970
0.004 34 0.00564 0.18192
0.07516 0.00433 0.16281
2.00631 0.00301 0.17553
5.00783 0.£0182 0.23186
0.00968 0.00093 0.33962
7.01179 0.00048 3.49988
0.01399 0.00061 0.70445
0.01607 0.00139 3.93067
0.01778 9.00276 1. 16254
0.01888 n.00u58 1.35483
0.01921 0.00656 1. 48031
5.01878 1.00838 1.51872
0.01774 0.00971 1.46871
0.01640 3.01037 1.35124
0.01513 0.01033 1.20517
0.01425 5.00981 1.27465
0.01388 0.00913 0.99176
0.01391 0.00863 0.96236
0.01604 0.00844 0.96401
0.01401 5.00843 3.96053
0.01376 0.00832 0.92806
0.01351 0.00786 7.87695
0.01365 0.00713 0.85109
0.01439 0.00655 2.89753
0.01551 0.00664 1.02212
1.01633 3.00761 1.16595
0.01620 0.00899 1.23258
0.01501 5.£0988 1.15965
0.01351 0.00955 0.98280
0.01281 ).00815 . 0.82762
0.01348 0.00674 0.31587
¢.01498 0.006U6 5.95577
0.01602 0.00749 1.12325
9.01574 0.00885 1.17071
0.01454 0.00928 1.06879
0.01367 ).00854 0.93267

F (GiZ)

10.525
3.417
3.417
0.950

180.0C0



UNPERTURBED VOLTAGE

REAL IMAG
Z.01461 J.C 826
PERTURBED
VOLTAGE NORMALIZED
Y KEAL IMAG 40D SQKD

4.1) 0.01387 0.00756 0.89555
4.2) 2.01469 0.00733 0.96755
4.3) 2.01514 v.C0785 1.04460
4.4) 0.01492 0.00833 1.04878
4.5) 2.01456 0.00832 1.01012
4.69 0.07449 0.00813 0.99183
4.7 0.C145 ¢.C081C G.99194
4.80 0.01443 5.00802 0.97900
4.93 J.01454 0.60779 G.37675
5.00 0.01491 0.00784 1.01916
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