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Abstract

In this work, we developed a robust, efficient and reliable hybrid iter-
ative solver for solving finite element systems modeled by the High Fre-
quency Structure Simulator (HFSS) software. There is a need for such
solvers when large and complicated geometries are modeled using HFSS.
In this case, the number of equations (unknowns) become significantly large
and conventional direct solvers can not be utilized because of their unaf-
fordable memory and CPU requirements. In the developed solver, two
versions of the Generalized Minimal Residual (GMRES) family were em-
ployed, namely, the GMRES and the Flexible GMRES (FGMRES). The
GMRES iterative solver was chosen because of its robustness, efficiency
and the complete avoidance of breakdown or nearly breakdown situations.
Due to the unknown nature, size and condition of the FEM systems gen-
erated by HFSS, the code should be automatically adapted to the FEM
system to avoid any memory or CPU waste. To speed up convergence,
preconditioning of the FEM matrix is needed. Preconditioners vary in
complexity from the simple Diagonal Preconditioner (DPC) to the compli-
cated Approximate Inverse Preconditioner (AIPC). The code can detect
the system condition so that the control parameters, the amount of precon-
ditioning needed and the preconditioning technique can be set. This feature
of adapting, changing and optimizing the preconditioner saves considerable
amount of memory and CPU. Several examples representing actual systems
generated by the HFSS are presented to demonstrate the performance of

the suggested hybrid solver.



1 Introduction

The High Frequency Structure Simulator (HFSS) package is a Computer Aided Design
(CAD) package that characterizes the performance of microwave circuits and structures
by finding the steady state response. The Finite Element Method (FEM) is employed as
the numerical technique for computing the fields in all parts of the computational domain.
Several types of microwave structures can be modeled, generated and characterized using
HFSS. Among them, waveguides, microstrip circuits, strip lines, wire and aperture antennas,
coaxial cables and any combined structure from all of them. After the structure is drawn
using the CAD package, three main steps are performed. The first is geometry sampling
(discretization). In this process, the whole domain (body) is decomposed into small subdo-
mains each representing a small finite element (tetrahedron) where the field quantities have
certain form of variation within this element. It should be noted that HFSS employs second
order H1 elements for meshing the domain. The second step includes the assembly of the
finite element equations into a global linear system. Finally, this system is solved by a direct
method based on LU decomposition.

For large geometries or complicated structures with small geometrical details, the size
of the assembled FEM system increases dramatically and the LU solver becomes inefficient
because of their high memory requirements. Therefore, there is a serious need for using
solvers with low memory requirements. Iterative solvers appear more attractive from this
point of view. In this report, we discuss the possibility of using such solvers in the HFSS
code to model large problems. In spite of their low memory requirements, iterative solvers
often suffer from two major drawbacks. The first is the lack of guaranteed convergence

particularly for poorly conditioned systems. Also, the convergence varies widely among



different systems. Two systems of the same size may have completely different conditions
and thus their convergence behavior will be significantly different. Another disadvantage of
iterative solvers is the often irregular convergence behavior which can become erratic for some
routines. For example, the Biconjugate Gradient (BCG) and the Quasi Minimal Residual
(QMR) algorithms do not guarantee convergence. However, Generalized Minimal Residual
(GMRES) family of solvers are among the robust algorithms and have been successful for
il conditioned systems. The systems generated by HFSS have a wide variation in both size,
condition, nature and sparsity. Because of the severe difficulty in knowing or detecting these
features, iterative solvers used for dealing with the FEM system should acquire two features.
The first of these features is the solver robustness with no breakdown or nearly breakdown
possibility and the ability to deal with indefinite systems. The second feature is that of
efficiency, even for poorly conditioned systems. That is, the solver should work well for all
physical problems and structures. Thus, we are looking for a solver which remains efficient
and reliable for all electromagnetic problems.

In this work, our goal is to design and test a solver that is capable of achieving all the
aforementioned requirements. Although systems generated by HFSS have wide variations in

size, condition and nature, they share some common features. Among them

1. They are indefinite (non positive or semi definite). This is because the second compo-
nent of the wave equation (which has the (—k? factor) biases negatively the eigenvalue

spectrum. Of course, this becomes more of a serious issue for larger frequencies.

2. The FEM matrices generated by the HFSS may be ill-conditioned. This is due to the

following;:

e Second order elements (used in HFSS) deteriorates the matrix condition. Al-
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though, higher order elements increase the simulation accuracy, the system con-

dition deteriorates.

e Non uniform meshing of the geometry affects the condition of the final system.

This occurs when modeling large geometries with small details.

e Use of Absorbing Boundary Conditions (ABC’s) [1]-[3] for mesh truncation also
degrades the matrix condition. This is a characteristic feature of the ABC trunca-
tion scheme. A better way of truncating the domain is using an integral operator

(non local in time and space).

Based on the above facts and our requirements, we looked at various kinds of iterative
solvers as well as preconditioners. We implemented and tested several matrices of different
sizes, conditions and configurations using the various solvers. After an extensive study, we
reached the conclusion that a hybrid GMRES-FGMRES solver with a partial Approximate
Inverse Preconditioner (AIPC) is the most acceptable scheme for dealing with linear systems
modeled by HFSS.

This report is organized as follows: we introduce the ordinary GMRES iterative solver
by presenting the algorithm, its main features and apply it to some HFSS systems. Precon-
ditioning is discussed next along with issues such as complexity, storage, CPU requirements

and convergence. At the end, we present our suggested solver and preconditioner.

2 GMRES Solver

In this section, we summarize the basic features of the GMRES solver and provide an un-

derstanding of its convergence history. The reasons behind the choice of the GMRES type



of solvers as the preferred solver for solving large ill and well conditioned systems are:

1. GMRES type of solvers are robust and efficient with monotonic convergence charac-

teristics.
2. They guarantee convergence even for badly conditioned system.
3. They lead to the smallest error among all solvers for a fixed number of iterations.

4. They provide room for optimization and adaptation by controlling certain local pa-

rameters.

5. They are characterized by a predictable error behavior. This feature will be extensively

used to get information about the FEM systems from the initial iterations.

In the following subsection, we summarize the basic features of the GMRES solver and

introduce its parameters.

2.1 GMRES Algorithm

The GMRES solver employs the projection method to obtain @ satisfying the following linear

set of equations

Az=b» (1)

where A is the system (FEM) matrix of size (n x n), @ is the solution vector of length n
and b is the feed (excitation) vector of. We seek an approximate solution @,, from an affine

subspace &, + K, of dimension m by imposing the Petrov-Galerkin condition



{b—Aen} L L, (2)

where L., is another subspace of dimension m. Here @, is the initial guess that is completely

arbitrary. The subspace K, is the Krylov subspace given by

K (A,7,) = span{r,, Aty A0y ueennnen. A™ e} (3)

with 7, =b — Ax, . The different versions of the Krylov subspace methods arise from
different choices of the subspace L., and from the manner in which the system matrix is
preconditioned. The GMRES solver is a projection method based on taking L, = A Kp,.
GMRES iterations minimize the residual norm over all vectors in &, + K,,,. Without going
through the mathematical details, this minimization is based on finding a set of m basis
functions (search vectors) which span the solution space. At each iteration, the projection of
A on all basis functions are evaluated and m steps of the Arnoldi Modified Gram-Schmidt
(MGS) procedures [4] are executed to obtain an estimate of the solution along with the
basis functions (m vectors) for the next iteration. The GMRES iterations continue until
convergence is achieved. The number of search vectors m per restart is the crucial parameter
for the convergence. In general, larger values of m lead to smaller residuals and hence faster
convergence. However, the GMRES CPU and memory costs are strongly related to m.
For all types of GMRES solvers, the memory cost is O(mn) and the computational cost is
O(m?n). Thus, there is a strong interest in keeping m as small as possible for efficiency
purposes. The GMRES algorithm is given by
Initialize z

ro=b— Az



resd = /ri.1,

vy = 7,/resd

Define the m+1xm matrix Hp, = {hij ;1 <=i<=m+1 andl <=3 <=m}

Set H, =0

For j =1,2,.....,m Do

wj = A M z; where M is the PC

For:=1,2,... Do

hi;j = (w;,vi)

w; = w; — h;;v;

End

hipij = \Jwjw;

Vi1 = w; /bt

End

Compute ¥, to minimize v/5*.s where s = resd x el — H x y

where e1 = [1000.....00]7, and the length of el is m + 1 X m

and

r=x+ MV, yn

We will now address the convergence of GMRES and its dependence on m. To make
convenient comparisons between different cases, the solver is run for a fixed number of iter-
ations. At the end of each iteration, the error is monitored. The examples used in the study
represent actual and real microwave structures such as antennas and waveguides. Results
displaying the convergence as a function of m with the corresponding matrix structure are

given in Figures 1 to 7. The following systems were examined



1. System I has 254 unknowns (n=254) and 7074 non zero elements of 7074 (nz=7074).
This corresponds to approximately 11% of matrix fill. For this system, the GMRES
algorithm was tested for m= 5, 10, 20, 30 and 40 without preconditioning. The sparsity
pattern of the matrix A is displayed in Figure 2 and the error history data are given

in Figure 1.

2. System II has 4108 unknowns (n=4108) and 147876 non zeros elements (nz= 147876).
This corresponds to approximately 0.88% of matrix fill. The GMRES algorithm was
tested for m = 5, 10, 20, 30 and 40 without preconditioning. The sparsity pattern of

this system is displayed in Figure 4 and the error history data are given in Figure 3.

3. System III has almost 42 K unknowns (n=41750) and 1447686 non zeros elements
(nz= 1447686). This gives about 0.083% of matrix fill. The GMRES algorithm was
tested for m = 5, 10, 20 and 40 with no preconditioning. The sparsity pattern of this
system is displayed in Figure 6 and the corresponding error history data are shown in

figure 5 for each m.

4. System IV has almost 110 K unknowns (n=10980) and 2.8 million non zeros elements
of (nz= 2.8 M). This indicates about 0.0231 % of matrix filling. The GMRES algorithm
was tested for m = 5 and 20 without preconditioning. The corresponding error history

data are given in figure 7.

From all these graphs, we can conclude the following about the performance of GMRES

when used to solve systems modeled and generated by HFSS.

e For all systems, the error is monotonically decreasing. This reflects the theoretical fact

that GMRES guarantees convergence. However, in some cases, for very low tolerance,
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convergence is achieved only after substantially more iterations.

e From Figures 1, 3, 5 and 7, the error decreases significantly as m increases. This
observation was expected due to the use of sufficiently large set of basis to represent

the function.

e The error history is strongly related to the condition of the system. The better the
system condition is, the lower the error will be for a fixed number of search vectors per

restart.

From the presented data, it is essential to have an estimate for m before executing the
GMRES iterations. If this number is lower than the threshold or minimum value, convergence
will be extremely slow and may not be achieved at all. On the other hand, if m is too high,
storage and CPU are wasted. The optimal value of m is directly related to two main factors,
the condition and the size of the matrix. From our examples, we found that the system
condition has a strong impact on the convergence. Preconditioning can play an important

role for poorly conditioned systems and this topic will be addressed in the following section.

3 Preconditioners

Preconditioners are usually applied to the FEM systems to improve their condition and hence
speed up convergence. There are two ways to precondition the FEM system by a certain

matrix M, namely
1. Right Preconditioning (RPC), in which M is applied to the system as follows

AMM™'z=1b (4)
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and the new linear system will take the form
A1 u = b (5)

where u = M~ and A; = A M . It should be observed that RPC does not affect

the right hand side of the linear system.
2. Left Preconditioning (LPC), in which M is applied to the system as follows
MAz=Mb (6)
and the system to be solved will be
Ajz= by (7)

where A; = M A and b; = Mb. Here, the right hand side of the linear system is

changed.
The ideal preconditioner should have the following features:

e It should be inexpensive in memory and CPU costs. This means that the PC should not
consume large storage in the memory and in the same time, it should be constructed

in few operations.
e It should work for all FEM systems and with all solvers.

e It should not be dependent on any other parameter or function. This gives the oppor-

tunity to use the preconditioner with all systems generated by HFSS.
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3.1 Diagonal Preconditioner DPC

There are different types of preconditioning schemes with variable complexity and cost. The
Diagonal Preconditioner (DPC) is the simplest one because it involves a scaling for each row
by the diagonal element. However, it typically delivers a speed up of 30% to 60%. This value
depends on the system condition, specified tolerance and the sparsity pattern. As shown in
Figure 9, the DPC achieves substantial convergence improvements. From this graph, we can
see that the convergence improvement is truly impressive since the DPC leads to more than

50 dB error reduction.

3.2 Approximate Inverse Preconditioner AIPC

For the general situation, where the matrix A is indefinite, standard preconditioning tech-
niques may fail due to code breakdown. Also, when A is not diagonally dominant, most
preconditioners (such as diagonal and ILU) are not as effective. If A has large nonsymmetric
parts, the error using traditional preconditioners will be quite high. Therefore our goal is to

find a preconditioner satisfying the following requirements:

1. It should work efficiently for poorly conditioned and highly indefinite systems.

2. It should retain its robustness even if A is not diagonally dominant.

The idea behind the Approximate Inverse Preconditioner (AIPC) depends on finding a
sparse matrix M which minimizes the Frobenius norm of the residual of the matrix R given
by

R=I-AM (8)
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where I is the identity matrix and M is the AIPC. The objective function to be minimized
is given by
Jj=n
F(M) =) ||I; - AM;l|; (9)

i=1

where I is the jt* column of the identity matrix and Mj is also the ** column of the initial
guess matrix M. Note that ||.||; denotes the Eucledian norm of the matrix.

According to [4], this minimization can be achieved in two different ways. The first is
referred to as Global Iteration approach which treats the matrix M as an unknown sparse
matrix and minimizes the objective function given by (9). One of the well known techniques
that utilizes this method is the Global Steepest Descent Method. The pseudo-algorithm for
this method is as follows:

Initialize M

For ¢« = 1 till convergence, Do

R =1 — AM, where I is the identity matrix

G = ATR

o = (IGI/IIAGIL

M =M + oG

Apply Numerical Dropping to M

EndDo

where ||.||r denotes the Frobinus norm. As expected, the drawback of this technique is
its high CPU time and memory cost (order n*) which are impractical and inefficient.

On the other hand, the Column Oriented Algorithms minimize the norm of the individual

columns of R given by
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R; =1, — AM,; (10)

There are many ways to achieve this minimization such as the application of the Conjugate
Gradient (CG) or the Minimal Residual (MR) iteration methods. We found that the MR
minimization algorithm performed better in most cases. The idea of column minimization

can be explained as follows:

1. Minimize (10) for each column of R. Two matrix vector products are needed for norm
minimization step per column. Thus the CPU cost of the AIPC increases dramatically

with the number of minimization steps per column.
2. After minimizing the norm of all columns of R, we obtain a good estimate of the AIPC.

3. At each preconditioning step, the density of M will increase and thus the memory
requirement will be higher and not affordable. A way to overcome this problem will

be addressed later.

4 Ideal Solver for Large Systems

If we have a large system with no a priori information about its condition and size, the most
robust and efficient way to solve this system is to perform the AIPC evaluation first, then
apply it to the GMRES solver with sufficient m. The total memory and CPU costs for this
technique will be addressed in the following subsections. Figure 9 shows the outstanding
performance of the AIPC against the DPC and the unpreconditioned case. For the same

tolerance, GMRES with AIPC preconditioning scheme converges dramatically faster than
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the DPC preconditioned version (see Figure 9). However, constructing the AIPC before

starting the GMRES iterations is expensive in both memory and CPU.

4.1 Memory costs

For a system of size n generated by HFSS, the storage needed for the matrix A will be on the
order of 20n to 25n. However, the total storage requirements depend on the employed algo-
rithm and the utilized preconditioner. In designing the AIPC preconditioner, the following

facts must be taken into account:

1. Usually M becomes denser as the number of norm minimization steps per column n;
increases. Typically, for n; > 2, M becomes denser and may take up to 10A. This
deteriorates significantly the advantage of utilizing iterative solvers. For the case where
only one iteration is performed with an initial PC as the DPC, the size of M is exactly

the same as A (20n to 25n).

2. For the GMRES iterations, m vectors each of length n are needed to be stored. Their

storage is O(mn).
3. Three additional vectors are needed to perform the entire GMRES iteration loop.

Thus, the total storage of the GMRES solver with the AIPC will be as follows:

Total Storage = Storage for A + Storage forM + (m + 3)n (11)

Typically, if A and M each requires 25n complex numbers, the maximum storage re-

quirement will be on the order of

15



Storage = 25n + 25n + (m + 3)n (12)
From this equation, we observe that

e The PC size is a major contributer to the memory cost and we may therefore choose
to have a less accurate AIPC rather than increasing its size. Thus, M in (10) can be

the column obtained after only one iteration.

o Numerical dropping ( not storing matrix or vector elements with small magnitudes)

may be applied to the basis functions (m ones) to reduce the storage requirements.

4.2 CPU costs

We measure the CPU time by evaluating the number of matrix vector products for all

iterations. For faster execution, it is essential to minimize the total number of matrix vector
products (MVP). In our case, we form the whole AIPC and then perform some GMRES

iterations, the total number of matrix vector products are determined as follows:

1. Two matrix vector products are needed per preconditioning iteration per column. For

one norm minimization step per column, 2n MVPs are needed.
2. One matrix vector product per GMRES iteration (m iterations) is performed.
3. One matrix vector product is needed for the residual evaluation.
Therefore, the total MVP can be approximated as
MVP =2n+ mIjnres (13)

where Igmres is the total number of global GMRES iterations.
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5 Practical Issues

As indicated in the previous sections, a robust iterative solver can be formed by considering

the following:

e Start with the matrix A and an initial guess for the PC, construct a sparse AIPC with

the same size and sparsity as A. A good initial PC is the DPC.

o Perform GMRES iterations with large m and apply numerical dropping for the residual

vectors.

e The memory cost of this technique is on the order of 24 — 3A. This is due to that the
size of the PC is exactly the same as A (based on one minimization step per column)

and the basis functions (m=30-40 typical) storage is less than A.

e The total MVPs for all iterations is given by
MVPtot = Igmres(m + 1) + 2n (14)

The first term can be regarded as the GMRES term while the second one is the pre-
conditioning one. The ratio between the second term to the first is much higher than

unity for large systems. This increases the CPU time and slows down convergence.

However, this approach for solving large systems with unknown conditions and structures,

although robust, is inefficient due to the following drawbacks:

e The CPU cost of the AIPC construction is extremely high. The ratio between the
second to the first term of equation (14) is in the range of 100 or more, implying that

the AIPC will dominate the CPU time.
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e For good and moderately conditioned systems, the AIPC may not be needed at all.
Typically, convergence can be achieved in a few iterations using the DPC. This is due

to the robustness of the GMRES solver in addition to having large values for m.

e Even for ill conditioned systems, calculating the entire AIPC matrix is wasteful. In
such cases, partial formation of the AIPC may be enough to speedup convergence.
The percentage of the AIPC matrix to be formed depends on the system condition and
required tolerance. Typically, formation of 10% to 40% of the AIPC may be enough

to achieve convergence.

Changing the PC at each iteration step is an approach which allows improvements in the
PC. The Flexible Generalized Minimal Residual (FGMRES) solver is particularly suited for

this task. An overview of this solver is given in the following section.

6 Flexible Generalized Minimal Residual (FGMRES)

Algorithm

In all preconditioners discussed in the previous sections, it was implicitly assumed that the
preconditioning matrix M is fixed at all steps of the solver. However, in many cases, M may
not be a constant operator and therefore, the iterative solver preconditioned with constant
operators will not converge. Flexible iterative solvers permit variations or changes of the
preconditioner from one step to another . One of these solvers is the Flexible GMRES. The
FGMRES pseudo code is given below

Initialize =z

ro=b— Az
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resd = |/Ti.7,
v, = r,/resd
Define them + 1 X m matrix Hp, = {hi; ;1 <=i<=m+1 andl <=j <=m}

Set H, =0

zj = M; z;
w; = A z;
For : =1,2,... Do

hij = (wj,vi)

w; = wj — h;;v;

End

hjp1j = \fwjw;

Vit1 = Wj /it

End

Compute y,,, to minimize V/s*.s where s = resd xel — H x y
and e1 =[1000.....00]T, length of el is m + 1 X m

and

Note that the matrix Z,, is formed from all the vectors z; where j = 1,2,..m. The
main advantage of FGMRES is the ability to change or modify the preconditioner at each
iteration step. The expense of this flexibility is the additional storage requirement for m

vectors (each with length n).
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7 Effects of m

As displayed in the first set of graphs, when the GMRES solver was tested without any
preconditioning, the effect of m was significant. Therefore, it is recommended to increase
the number of restarts as much as possible. However, this increases the storage as well as
the CPU time significantly. To overcome this problem, it was observed that early iterations
of GMRES are more sensitive to m. Therefore it is recommended to start with a large m
and then reduce it for the subsequent iterations. It should be noted that the variation of
m throughout the iteration can take several forms. However, all of them should satisfy the

following

e High changes for m between different iterations are not recommended. Such changes

deteriorate the convergence.

¢ A minimum value (dc value) for m is recommended regardless of n to avoid a situation
when m vanishes or becomes very small. In the latter case, convergence may not be

achieved at all.

One way of selecting m is by using the following vcriterian

m; = ami_; +d (15)

where a and d are constants and ¢ is the iteration number. These constants can be adjusted

for each class of systems or problem type.
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8 Suggested Flexible Solver

In accordance with the memory and CPU requirements of the iterative GMRES-AIPC, we
developed an efficient way of dealing with systems generated by HFSS. Our approach involves
three main stages. The error is monitored in the first few iterations. If convergence is not
achieved, we start the second stage by turning on the the AIPC and by changing (increasing)
m. In the AIPC part, we start by applying the norm minimization to columns with high
norms. This means that the AIPC is generated gradually by adding more columns to the
initial AIPC at each iteration. Using this technique, a final solver will be formed from the

following modules:

8.1 Module I: GMRES-DPC Solver

After setting m (usually 40 works for most systems) and both a and d, we perform few
(less than five) GMRES iteration with diagonal preconditioning. Convergence is checked at
the end of each iterations and the error at each iteration is recorded. If convergence is not
achieved within these iterations, the error analysis section is activated and parameters are
reset to speed up convergence.

The advantages of executing the initial GMRES iterations with DPC can be summarized

as follows:

e Significant improvements in the system condition are achieved using the simple DPC

without memory or CPU cost.

e For well or moderately conditioned systems, convergence is likely to be achieved during

these few GMRES iterations and hence no additional memory or CPU operations will
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be wasted.

o In the case of GMRES, only one matrix vector product is needed per GMRES iteration.
This gives a total of approximately mIyn,,.s MVPs in the GMRES algorithm, where
Iymres 1s the total number of global iterations before convergence. Note that this

number of MVPs represents almost half of the that needed by the FGMRES algorithm.

e Starting with large m reduces the initial error and increases the chance for faster
convergence. Reducing m in the subsequent iterations helps in achieving substantial

savings in memory and CPU operations.

o The error vector obtained from the GMRES-DPC iterations gives an indication about
the system condition as well as its convergence characteristics. For example, in Figure
8, two systems generated by HFSS were solved by the same GMRES-DPC algorithm
with the same m. The error was recorded for five iterations and the following was
found:

System A
— Number of equations: 10980.
— Number of non zero elements in the matrix: 4.4 million elements.
— System Condition: moderate.

— Initial error:-57 dB.

— Type of solver: GMRES-DPC.
System B

— Number of equations: 82740.
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— Number of non zero elements in the matrix: 2.8 million elements.
— System condition: extremely ill.
— Initial error 1s: -11 dB.

— Type of solver: GMRES-DPC.

From the observed error of the first few iterations, we can conclude that system B was
much more poorly conditioned than system A. On the other hand, system B requires

a strong preconditioner and possibly higher m to achieve convergence.

8.2 Module II: Error Analysis

After performing a few GMRES-DPC iterations, one of the following situations is likely to

occur:

1. Convergence is achieved during the first few iterations of the GMRES-DPC part.
Therefore, there is no need for increasing m or introducing the AIPC. This situation

typically occurs with well and moderately conditioned systems.

2. Convergence is nearly achieved. This can be deduced by checking two important values
(quantities). One is the error decay rate and the other is the latest error. If there is

a considerable decay rate and the final error is close to the prespecified tolerance, it is

advisable to continue with more GMRES-DPC steps.

3. The error after these iterations is much higher than the specified tolerance and the
corresponding error decay rate is low. In this case, we proceed with partial formation

of the AIPC up to a certain portion (say 50% or less). We perform this preconditioner
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on steps by constructing a small part of the AIPC (say 10%) at each iteration. Also,

we may need to increase m.

8.3 Module III: FGMRES-AIPC solver

The last part of the proposed solver is a combination between FGMRES and the AIPC. After
the error analysis was completed in module II, certain data should be supplied as inputs to

the FGMRES-AIPC part. These data include

o The initial m for the FGMRES-AIPC part..
o The constants specifying the linear change in m (defined by a and d).
o Percentage of the AIPC to be constructed at each FGMRES iteration.

e Upper bound of the preconditioning percentage.
It should be noted that the FGMRES section has the following features

1. Two matrix vector products are performed per FGMRES step.
2. Guaranteed convergence.
3. Unnecessary preconditioning and CPU operations are completely avoided.

4. Level of preconditioning is automatically related to the system condition.

9 Hybrid Solver Cost

In this section, we give an estimate of the hybrid solver cost and make comparisons with direct

solvers. The memory cost will be calculated in terms of the maximum storage requirements
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for the worst case scenario. The CPU cost is given as a function of the number of operations.

9.1 Memory Cost

The worst case scenario occurs when the whole AIPC is constructed and used in conjunction

with the FGMRES solver. In this case, the memory cost will be as follows:

1. The AIPC matrix has the same configuration as A. For the systems generated by
HFSS, the average number of non zero elements per column/row is 20 to 25. Thus,

the maximum memory requirement for the AIPC will be 25n.

2. Storage of the 2m basis functions, each of length n is needed. These vectors are usually
sparse (not highly sparse). Moreover, numerical dropping increases their sparsity, thus

reducing their storage requirements. At worst, the storage of these basis functions is

O(2mn).
3. Three additional vectors each of length n are needed, requiring 3n storage.

Summarizing, the maximum storage is
Mazimum Storage =25n+2messn + 3n = (25 + mer + 3)n (16)

where m. sy is the effective (average) number of search vectors per restart and it is given by

1 1=Iiot
>, mi (17)

tot =1

Mesy =

where I;o; is the total number of iterations in both GMRES and FGMRES parts of the
code and m; is the number of search vectors within the #** iteration. Typically, the re-

quired storage is much less than the maximum value given by (18). This is due to that

25



the complete AIPC is not needed and the basis functions are sparse either by nature or by
numerical dropping. Testing different systems modeled by HFSS showed that the typical

storage requirement is

Typical Storage = (25 + cmess + 3¢)n (18)

where c is the sparsity percentage factor and ranges from zero to one.

Direct solvers for sparse systems need memory on the order of 10At015A with approx-
imately 12A. Since A has an approximate size of 25n, the total storage for direct solvers
will be of order 300n. Thus, from (18), the memory ratio between the developed iterative

solver and the direct one is given by

25 + (meff + 3)6
300

memory ratio =

(19)

Figure 10 graphs this ratio as a function of the average (effective) m for different values of
¢ from (.1 to 1). As shown in this figure, hybrid solver offers significantly lower memory

requirements than direct ones.

9.2 CPU cost

The CPU cost of the hybrid solver will be expressed in terms of the total number of oper-

ations. Again, the worst case scenario is assumed. The following operations determine the

CPU cost

1. For AIPC, almost O(p*n) operations are required, where p is the matrix bandwidth

(typically from 20 to 25).
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2. For FGMRES, the maximum CPU cost is on the order of O(m?;;n). Therefore, the

total cost for all FGMRES iterations is given by

Number of operations = p'n + (msz) n 1 fgmres (20)

where Ifymres 1s the number of iterations in the FGMRES part of the solver. The total
number of operations for a sparse direct solver is O(¢g*n) where ¢ is the lower (or upper)
bandwidth. Typically for HFSS systems, ¢ is around 400. Consequently, the CPU ratio of

the hybrid and direct solvers is

625 + msz]fgmres

P tio =
CPU ratio 160000 (21)

Figure 11 plots this ratio for different number of iterations and different values of m. Clearly
as the effective m increases, the CPU time increases and approaches that of the direct
solver. Keeping the total number of iterations small (less than 10) makes the developed

hybrid iterative solver a more attractive choice.
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Figure 2: Sparsity Pattern of System I

31



Convergence History for System |l

_45 T T T T I I [ | I

.
=50 ot . 7

o - +

"\V 0 toy t oy
B L R 1
R R
\4 O
-60r N 0
\)
,\ O
O
65 » 0 1
0
O
\ O O
70+ ' O
N v}

751 m5 e :

+ m=10 BN
8010 m=0 T

- -m=30
BN meto 1
=90 ! | L | ! | | ! |

0 2 4 6 8 10 12 14 16 18 2
lterations

Figure 3: Effect of m on the convergence of System II
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Figure 5: Effect m on the convergence of System III
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Figure 8: Convergence performance for two systems, System A and System B. System A

is represented by the upper line while System B is given by the lower one.
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Effect of the Preconditioning on the FEM systems
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Figure 9: Comparison between the GMRES solver in the unpreconditioned case, the DPC

case and the AIPC case
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