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Abstract

This paper considers the implementation of the Adaptive Integral Method (AIM)
on the Boundary Integral (BI) subsystem to reduce storage requirement and solution
time associated with iterative solutions of Finite Element - Boundary Integral (FE-
BI) systems. Analysis of cavity-backed antennas possessing fine details such as slot
arrays, spirals and log-periodics, with the FE-BI technique leads to large boundary
integral systems which limit the size of such simulations. In this paper, we show
the benefits of AIM when applied to compute the boundary integral matrix-vector
products. Significant reduction in storage requirements and CPU time are achieved
with very little loss of accuracy in computing impedances and radiation patterns of
cavity-backed antennas.



1 Introduction

Fast integral equation methods were introduced in computational electromagnetics in the
early 1990s and have been shown effective in accelerating the computation of matrix-vector
products in iterative solvers. The Adaptive Integral Method (AIM) [1] and the Fast Multi-
pole Method (FMM) [2] belong to this class of fast integral solution techniques. Both AIM
and FMM reduce the solution time and memory requirement of the moment method (MM)
solutions and their initial applications focussed on electromagnetic scattering from large con-
ducting bodies. More recently, they have also been used successfully in hybrid methods such
as the FE-BI method [3],[4], [5],[6] to evaluate the scattering from composite structures.
FMM achieves its CPU reduction by grouping the far-zone unknowns and interacting their
weighted contributions. In the case of AIM, the CPU reduction is achieved by mapping the
original MM discretization onto a rectangular grid and exploiting the Toeplitz property of
the Green’s function on this grid. That is, the Fast Fourier Transform (FFT) is invoked to
compute the matrix-vector products in the iterative solver. For an arbitrary three dimen-
sional body, a three dimensional FFT is required and as can be understood, this calculation
is very time consuming. For planar scatterers and radiators the dimensionality of the FFT
is reduced by one, thereby significantly accelerating the solution.

In this paper, we consider the implementation of AIM in connection with to a finite
element-boundary integral solutions radiation and scattering by cavity-backed antennas. The
modeling of such antennas has been discussed extensively [7], [8],[9],[10] and it is known that
considerable computational challenges are present when the surface aperture is associated

with antennas possessing fine details as is the case with thin slot and thin printed antennas.



For such geometries, the number of boundary integral unknowns balloons due to the high rate
of discretization needed for accurate simulation. In these situation, AIM is very attractive for
reducing memory and CPU requirements. Although certain approximations are introduced
when mapping the irregular grid to a rectangular uniform grid, the input impedance can still

be computed at sufficient accuracy.

2 FE-BI formulation for cavity-backed antennas

Consider a cavity-backed antenna recessed in a ground plane as depicted in Figure 1. This
class of configurations have been modeled using the finite element [8],[10],[11] very success-
fully. The most rigorous of the implementations is to employ the finite element method to
model the interior volume below the cavity and the boundary integral for truncating the
finite element mesh on the antenna/cavity aperture [8],[10].

To develop the necessary linear equations, a standard approach is to begin with the

weighted residual equation
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where E and H denote the electric and magnetic fields, ¢, and fi, are the relative tensor
permittivity and permeability of the cavity filling (possibly inhomogeneous), Sy represents

the non-metallic portions of the aperture and Sy denotes the junction opening to the feeding
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Figure 1: Geometry of a cavity-backed annular slot antenna in a ground plane

structures. As usual, T represents an appropriate testing/weighting function to be specified
later. The volume V; refers to that occupied by the impressed sources J; and M;. Also,
note that the latter integral refers to H on the antenna aperture S, and the feed aperture
Sy, typically located at the lower section of the cavity. Here, the unit normal # is directed
outward from the boundary surfaces S, and S;.

For a unique solution of (1) for E we require knowledge of H over S,. In the context of
the FE-BI method, the relation between H and E is determined by the boundary integral

equation
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where
o—ikoR

4T R (3)

Go =

is the free space Green’s function with R = |r—r’|. For this problem, H% is equal to the sum
of the incident and ground plane reflected fields for scattering and zero for antenna analysis.

To construct a linear set of equations from (1) and (2), we must first tessellate the
volume and introduce expansions for each of the tessellation elements. We can choose,
among a variety of standard volume tessellation elements, including bricks, tetrahedrals and
prisms [12]. For printed antenna applications, the cavity depth is typically kept constant
but the antenna shape (slot and printed configuration) can be of any arbitrary configuration.
Examples include spiral antennas, log periodics, narrow slot elements, patches of various
shapes as well as frequency selective surfaces employing resonant elements of various shapes.
Thus, for this application, the chosen tessellation elements can be of constant depth but
must be more adaptable for surface modeling. The edge-based prismatic elements presented
in [11],[10],[JinFa Lee] allows for this type of flexibility while at the same time provide for
meshing simplifications. In essence, for this application, prismatic elements, provide the
advantage that once the surface mesh of the cavity (including the antenna elements) is
constructed, the volume mesh can be generated by simply growing the mesh downwards
within the interior of the cavity volume.

Choosing prisms as the tesselation elements (see Figure 2), the field is expanded within

the cavity volume as
9

E° =) EWS = [W]I{E} (4)

j=1
where (W], = [{W.},{W,},{W.}] and {E°} = {Ef, Eg,..., ES}T are specified explicitely
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Figure 2: Right angled prism

in [10]. On the aperture, since the top and bottom faces of the prism are triangles, these

reduce to

E*(r) = ; E;S;(r) = [S];{E"} (5)

where [S]; =[S, S,] and
L. .
SiZQACZX(I‘—I'i) (6)

Here, r and r; refer to the position vector within the triangle and at the i** node of the
triangular face. The parameters /; and A° denote the length of the ith edge of the triangle

and its area, respectively. We also observe that apart from its vector direction, S; is simply



the roof-top basis function used in the usual moment method implementations [13]. To
generate a linear system for the solution of Ef, (4) and (5) are substituted into (1) and (2)

and Galerkin’s method (setting T = W) is employed to yield

Ny N, Ny Ns
Z_:[Ae]{Ee} + ;[Bs]{Es} + Z_:{Ke} + ;{Ls} =0 (7)

in which N, and Nj; indicate the number of volume and surface/aperture elements, respec-

tively. The matrix elements are given by

A5y = [ AT < W) 7 (V% W)~ BBW, - W)y (8)
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and the final system of equation is obtained by carrying out the sum or assembly of the

element equations given in (7). Doing so, the resulting matrix system takes the general form

n {E"} . OF (O] | J{E7} | _ ] ") 12)

{E°} ] 8] ] | {E°} {v°}
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In this system, {EY} denotes the field unknowns within the volume enclosed by S, whereas
{ES5} represents the corresponding unknowns on the boundary S,. The excitation column
{bV} results from the assembly of { K¢}, and {6} is associated with incident field excitations

(for scattering).

3 Fast Integral Methods for Dense Matrix-Vector Prod-

uct Calculations

Typically, the system (12) is solved using iterative solvers [14],[15] to take advantage of the
sparsity of the matrix [A]. Since [A] has only 9 to 30 non-zero entries per row, whereas the
matrix order Ny is in the thousands, the execution of the matrix-vector product is an O(Ny)
operation and this is a major characteristic and advantage of FEM. However, the boundary
integral matrix which is generated from the second term of (7) is a dense matrix and requires
O(Ns?) operations, where Ns denotes the number of aperture edges. Therefore, the greatest
CPU time in the iterative solver is expended in calculating the matrix-vector product [B]E?.
To speed up its calculation, k-space methods [16],[17],[18] were considered several years back
to cast the matrix in Toeplitz form. In this case, a rectangular surface grid is employed but
unfortunately these lead to approximations of the geometrical specification of the modeled
structure.

This method was extended to handle triangular grids [9] by mapping them to rectangular
ones using linear interpolations. Such interpolations were found of acceptable accuracy when

the mapped grid was not highly distorted from the triangular. Also, the interpolation cannot
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Figure 3: Mapping of the original triangular grid to a uniform AIM grid.

be employed with confidence in cases where the triangular grid contains very fine details as is
the case with slot and printed antennas such as spirals, log-periodics, etc. unless excessively
small uniform rectangular grids are also used. This is not, of course, highly undesirable since
it leads to a substantial increase from the original degrees of freedom (DOFs) or unknowns.

More recently, the fast multipole method (FMM) [3],[4],[6] was employed in conjunction
with the finite element method for speeding-up the calculation of the boundary integral
matrix-vector product. FMM reduces the CPU requirements down to O(N'*) or even lower
by using the multilevel FMM. However, this speed-up is realized for large computational do-
mains and moreover FMM works on the original triangular grid. For antennas, the aperture
grid may not be large in terms of wavelengths (unless dealing with arrays) but it may be
highly dense resulting in excessively large DOFs. Thus FMM must still deal with the large

boundary DOF's and for small apertures the speed-up benefits may not be realized.



An alternative fast integral method is the adaptive integral method(AIM) which was
introduced by Bleszynski et. al. [1]. This approach is similar to the k-space method in
several respects but is devoid of geometrical inaccuracies. Much like the approach in [9],
AIM also introduces a coincident equi-spaced rectangular grid over the original unstructured
triangular grid (see Figure 3). However, in the case of AIM, delta sources are placed at
the nodes of the rectangular grid to represent the exterior radiated or scattered field by the
cavity. The strength and polarization of these sources is found by enforcing equality of the
moments between the original grid sources (edge fields) and the new delta sources on the

rectangular grid. The following important observations make AIM attractive in computing

the boundary integral matrix-vector product associated with the FE-BI system (12):

o The rectangular AIM grid can be chosen much coarser than the original antenna grid.
Thus, small antenna details do not dictate the final DOF's used for calculating the final

matrix-vector products.

o For antenna applications, there is little or no wastage of grid points which may lie
beyond the aperture when the original grid is overlaid with the rectangular AIM grid.
Thus, two dimensional FFTs can be efficiently employed for calculating the matrix-

vector products as done in [17],[18].

o The near zone matrix elements are calculated using the original boundary matrix and
discrete elements. Thus, as in the case of FMM (but not so with the implementation
in [9] and [19]), AIM makes no compromises in modeling the near zone interactions.

In the implementation of AIM, this is achieved by decomposing the matrix into two



submatrices, one containing the near zone interactions (a sparse matrix) and another
representing the interactions of the equivalent sources on the AIM rectangular grid.

The latter can be written as a product of sparse and Toeplitz.

o Using AIM, the CPU requirements for the boundary integral matrix-vector product is
O(NslogNs) for large Ng and this is a consequence of the Toeplitz/Circulant nature

of the boundary matrix associated with the uniform AIM grid.

4 Fast BI computation with AIM

As noted in the previous section, the purpose of AIM is to perform fast computation of the
BI matrix-vector product [B]{E®} in (12). The objective of AIM is to cast the system into

a Toeplitz format. This is achieved by first splitting the matrix as
[B] = [B™"] + [B*"] (13)

based on a threshold distance referred to as the near-zone radius. The matrix [B"*"] contains
the interactions between elements separated less than the threshold distance, whereas [B%]
contains the remaining interactions. The elements of [B"**"] are evaluated with the exact
procedure while those of [B/*"] and the product [B/*"|{ ES} are evaluated in an approximate
manner.

Application of AIM requires that the whole geometry be enclosed in a regular rectangular
grid. Basically, the fields of each interior edge is re-expressed using a new expansion based

on delta sources located at the nodes of the uniform AIM grid. For the m® edge, this new
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expansion has the form
=2 02 = Tmg)8(Y — Yma) Ay + AL 3] (14)

where r,,,, are the position vectors of M? points on the square surrounding the center of the
edge and () is the usual Dirac delta function. The coeflicients ALY are suitably chosen so
that the new expansion is equivalent to the original representation using triangular elements.

A similar expansion is used for the divergence of the basis functions

M
=D 8z = ng)3(y = yma)A%, (15)

To find a relation between the AZY and I, coefficients, we equate moments of the two

expansions up to order M. Specifically, we set

M" =F" (16)

91,92 91,92

where

My, = /_oo /_oo (@ = 20)" (y — ya)2dady for 0< q,qa <M
M2
= ) (Tmg = 2a)" (Ymg — Ya)2[AT & + AL 9] with ¢=q+ ¢ (17)

q=1
Foie / / m(T = o)™ (y — ya) " dzdy (18)

Similarly, by equating moments of [V x S], with the new expansion (15), we establish a

relation between A% and I,. That is, we set

Dy 2= Hy oo (19)

192
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where

M2

D= [ [ e =)™y = ga)Pdedy = Y-(mg = )" (ymg — 9)"A,  (20)
—00dJ -0 =1
HY., = /oo /Oo [V X Spl:(z — 20)"(y — ya)®2dzdy (21)

16) and (19) give three M? x M? systems yielding the equivalence coefficients as the solution.
g y g q
Were we to use the equivalent expansions to represent the currents everywhere, the

resulting impedance matrix will be of the form

Bl = YIAKGIAT 22

In this, [A]; are the sparse matrices containing the coefficients of the expansion (14) and
(15) whereas [G] is the Toeplitz matrix whose elements are the free space Green’s function
evaluated at the grid points. It has been shown [1] that [B]! is not of sufficient accuracy
for modeling the interactions between the nearby current elements. To take advantage of
the Toeplitz structure of [G] and sparsity of [A] we can still use [B]%%} to represent the far
element interactions. However, we will retain the exact interaction matrix elements for the

near element interactions. That is, we rewrite [B]{!%2! as

[Bist = (Bt + (B (23)

Comparing this to (13) and setting [B)/%" ~ [B]}¥,, we can rewrite the original [B] matrix

[B] ~ ([B]"**" — [Bly7w) + [Bld1z (24)
[B] =[]+ 3_[AKGIIALF (25)
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where [S] = [B]™*" — [B]&%; is a sparse matrix corresponding to the difference between
the near field interactions computed by the standard boundary integral technique and AIM.
The Toeplitz property of the Green’s function, defined on the regular grid, enables use of the
FFT to accelerate the computation of the matrix-vector product. The sequence of operations
involved in the construction of the coefficient and Green’s function matrices are indicated in
Figure 4(a); those for the matrix-vector product execution are outlined in Figure 4(b). In the
computation of the matrix-vector product, the initial step of transforming the currents from
the original MM grid onto the uniform AIM grid is comparable to the grouping operation
of the FMM. While the FMM relies on grouping to reduce the number of scattering centers,
the sequence of operations in AIM can be interpreted as a realignment of scattering centers
onto a regular grid. Although, this process does not reduce the number of scattering centers,
the regularity of their location enables use of the FFT for fast computation of matrix-vector

products.

5 Results

A computer code based on the discussed formulation was implemented. The first step was to
validate the spatial-domain FE-AIM formulation with results from a spectral domain FE-BI
formulation. Figure 5 compares the spatial domain FE-AIM solution with a spectral-domain
FE-BI solution presented in [20] for the scattering by a cavity-backed patch antenna. Having
accomplised such a validation, the results presented in Figures 6-10 compare spatial domain
FE-BI and FE-AIM solutions, to demonstrate the savings in memory and CPU time. Figure

6 shows the radiation pattern for an annular slot computed in the elevation plane, ¢ = 5°.
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The reference FE-BI solution [10] is contrasted with computations of BI using AIM (indicated
as FE-AIM). It is seen that for this example, the threshold distance in AIM can be reduced to
0.25X without significant loss of accuracy. This enables the reduction of matrix entries stored
in the near field portion by a factor of three resulting in a corresponding savings in memory
as indicated in the tabulation of the near-zone non-zero entries. Figure 7 shows the radiation
pattern for the same antenna in the ¢ = 90° elevation plane. The normal direction in this
plane, reveals the characteristic separation between co-polarization and cross-polarization
levels for the annular slot at observation angles close to normal in the elevation plane. From
this figure, it is gleaned that the threshold distance in AIM can be reduced down to even
0.15X if an average error of a dB could be tolerated. From the computation of near-zone
matrix entries, such a threshold would result in a factor of five saving in memory. Figure 8
shows a scattering cross-section for the same slot but at a frequency of 0.73 GHz (at which
the antenna is electrically even smaller) instead of the previous 1 GHz. It should be noted
that for a threshold of 0.4) (larger than the diameter of the BI contour) the near-zone and
far-zone entries for AIM cancel each other in accordance with (24), thus yielding a very small
error (0.00086 dB) in comparison to the FE-BI solution. A quantity of vital importance in
antenna computations is input impedance. Figure 9 depicts the input impedance of a very
narrow probe-fed annular slot, computed using FE-BI and FE-AIM. The probe is placed at
y = 0. It is seen that evaluation of the boundary integral with AIM enables the reduction of
the near-zone non-zeros by more than half. Computation of input impedance demands very
high accuracy and the threshold distance was held constant at 10.5 cm (corresponding to

0.35A at 1 GHz and 0.49X at 1.4 GHz - the corresponding diameter of the entire BI contour

14



varying from 0.513) to 0.718)). While, Figures 6-9 demonstrate the ability of AIM to
translate very fine details such as a narrow slot onto a coarser equivalent grid, Figure 10 and
11 indicate the importance of a low threshold distance in modeling cavity-backed antenna
arrays. Figure 10 and 11 indicate that for an average error of less than a dB in scattering
and radiation patterns it is possible to reduce the number of non-zeros in the near-zone part
of the impedance matrix by a factor of six, resulting in substantial saving in memory. This
is a consequence of employing a threshold distance of 10 cm, which is about a fifth of the
cavity diameter. It is necessary to note that employing such a threshold distance results in
a majority of the interactions between different slots being treated with the AIM procedure.

This is of paramount importance in modeling antenna arrays and spiral antennas.

5.1 Summary

AIM, with its low threshold distance, and ability to translate to an equivalent grid is capable
of saving a significant amount of memory and solution time for bodies which are finely
discretized even though they may not be electrically large. Its accuracy is preserved even
while performing radiation computations thus making it the method of choice for analyzing

antennas with intricate details.
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Figure 4: (a) Matrix build operations and (b) Matrix vector product computation in AIM
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Figure 7: Radiation pattern from an annular slot in the ¢ = 90° elevation plane



Average Error
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in near Z matrix (dB)
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Figure 8: Bistatic scattering pattern from an annular slot; Normal incidence in the ¢ = 0°

plane and observation is in the ¢ = 90° elevation plane
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Near-zone threshold
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Figure 9: Input impedance of a very narrow annular slot computed with FE-BI and FE-AIM
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Inner radius of each slot = 7.325 cm
Cavity diameter = 49.4 cm
Cavity depth = 1.5 cm

Total Edges: 5529 Non-PEC: 983 Cavity filling 6=2

Surface Edges: 2110 (PEC)
496 (Slot) 248 (Non-Pec)

Slot width = 1.5 cm

1 GHz (wavelength = 30 cm)
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Figure 10: Bistatic RCS at normal incidence (¢ = 90° plane) from a cavity-backed slot array

computed with FE-BI and FE-AIM
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Inner radius of each slot = 7.325 cm
Cavity diameter = 49.4 cm

Cavity depth = 1.5 cm

Cavity filling €= 2

Slot width = 1.5 cm
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Figure 11: Radiation from a cavity-backed slot array computed with FE-BI and FE-AIM in
the ¢ = 90° plane
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