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Abstract
Second and Third Order Generalized Boundary Conditions are presented for
simulating metal-backed dielectric coatings. A detailed quantitative assessment of their
accuracy as a function of thickness and material parameters is first given. The higher
order boundary conditions are subsequently used to derive corresponding diffraction
coefficients for a coated wedge. The solution is obtained via a modification of
Maliuzhinets method requiring the introduction of a particular solution which serves to

produce the correct edge behavior and yield a reciprocal result.
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I. Introduction

Of considerable interest in the computation of the radar cross section by complex
targets is the simulation of metallic geometries coated with penetrable material. Such
material are usually magnetic and serve to reduce the scattering of an otherwise perfectly
conducting surface or junction. For thin coatings the standard impedance boundary
condition[1] has been traditionally employed to provide a suitable mathematical
simulation. However, the validity of this simulation is generally poor for oblique
incidences, particularly in the case of low loss dielectrics. In a recent study[2] it was
shown that higher order boundary conditions analogous to those proposed by Karp and
Karal[3] can correctly predict the reflection by a dielectric layer at all angles of incidence,
including grazing. These boundary conditions involve higher order derivatives of the
surface field and as a first correction to the standard impedance boundary condition they
account for the presence of currents normal to the dielectric layer. Notably, the maximum
layer or coating thickness that can be accurately simulated depends on the highest
derivative order kept in the boundary condition and this determines the order of the
condition. When only the first derivative is kept they reduce to the standard impedance
boundary condition and are, thus, accordingly referred to as generalized impedance
boundary conditions(GIBC).

This report is concerned with the use of second and third order generalized
impedance boundary conditions for computing the radar scattering by a fully coated
wedge. The geometry, shown in Fig. 1, often occurs on aircraft structures and is thus
of practical interest. An approximate solution to the diffracted field by the subject
geometry using the standard impedance boundary condition is well known and has been
given by Maliuzhinets[4]. The solution given here is more accurate by virtue of the
employed GIBC and reduces to that in [4] for high loss coatings.

The second and third order boundary conditions to be employed in this analysis are

presented in the next section along with data quantifying their accuracy as a function of



the coating's thickness and refractive index. They were derived elsewhere[2, S]and are
analogous to those employed recently [6, 7] for the diffraction by a semi-infinite
ferrite/dielectric layer. The diffracted field is obtained via a modification of the
Maliuzhinets' method[4] requiring the addition of a particular solution as a direct
implication of the employed higher order boundary condition. Such a particular solution
is difficult to determine in a closed form for an arbitrary wedge angle. However, it has so
far been derived for two specific wedge angles[5, 8] and, interestingly, its function has
been to produce a reciprocal scattered field by cancelling out terms of the homogeneous
solution that are of unacceptable order. Therefore, here we avoid the derivation of the
particular solution by imposing reciprocity to obtain the "correct" diffracted field. As
expected, it involves the usual Maliuzhinets' functions for which highly accurate
approximate analytical expressions are available[9].

In the following, after presentation of the boundary conditions we proceed with the
solution for the H-polarization. The E-polarization solution is then obtained directly from

the H-polarization one via modification of the impedance parameters.

II. Boundary Conditions

For the problem at hand, a plane wave is assumed to be incident on the coated
wedge configuration shown in Fig. 1. In the case of H-polarization, the only non-zero
field components are Hz, Ex and Ey and for E-polarization the corresponding non-zero
components are E,, Hy and Hy. To proceed with a mathematical solution of the scattered
field due to an incident plane wave excitation, it is necessary to replace the coating with
an effective boundary condition. Recently [2, 5], higher order boundary conditions were
proposed for this purpose. These can be generally written as (an e-10t time convention is

assumed)
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were, E, and H,, denote the respective normal components to the coating's surface and %implies

differentiation with respect to the surface normal. They provide an improvement over the
standard impedance boundary condition and are thus referred to as generalized impedance

boundary conditions (GIBC).
For M = 1, these reduce to the standard impedance boundary conditions

[inkrl]Efo (fn—ﬂkl‘ )Hn=0 @

with
1__.N
[ =— = =tan (Nk7) (3)
1 &
in which eX and p are the relative permittivity and permeability of the coating on the
upper (+) or lower (-) face of the wedge, N = ket ,kis the wavenumber and T denotes the

coating's thickness. But an alternative and more common form of (2) is given in terms of

tangential components as

[%‘-yl %t K J{[}Z’]} =0 ¢=t0 @

where (p, ¢) are the usual cylindrical coordinates and

I, for H - polarization
Yy =

—  for E - polarization %)

A solution for wedge diffraction based on the standard impedance boundary condition
(1st order GIBC) has been given by Maliuzhinets [4]. However, as is well known, the
standard impedance boundary condition is only applicable for high loss dielectric
coatings, particularly for H-polarization, since it does not account for the presence of

polarization currents normal to the coating.



The second order GIBC provides the next best simulation to the standard

impedance boundary condition. It takes the form [5]

) (1)
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where 7; 5 are parameter functions of the material properties and specific expressions for
these have been derived in [2,5].
A second order GIBC which has been found to yield reasonable accuracy has

associated values of 7; 5 given as
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for H-polarization and as
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for E-polarization. In these
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Figures 2 to7 show the maximum thickness for which the above second order
GIBC is capable of predicting the coating's plane wave reflection coefficient within 10
degrees of its actual phase and/or 10% of its actual magnitude. As seen, in comparison
with the standard impedance boundary condition, the second order GIBC provides
substantially better accuracy for incidence angles away from normal. Notably, the
simulation improves monotonically as one approaches grazing. In making this
observation it should be also noted that the given curves are for lossless dielectrics and,
therefore, represent a worse case. We may conclude from figures 2 to 4 that for
H-polarization, the second order GIBC is capable of simulating coatings having thickness
up to 1/5 of a wavelength for incidence angles greater than 35° from normal (55° from
grazing). This is regardless of the dielectric's properties since the simulation improves
substantially as N and/or the loss in the coating increases. In contrast, the 1st order
GIBC provides a superior simulation, with respect to the second order GIBC, for the rest
of the angular region (i.e. within 35° from normal). Turning to Figures 5 to 7, one again
arrives at similar conclusions for E-polarization. However, it should be noted that for

small N the deterioration of the simulation provided by the second order GIBC as normal



incidence is approached, is now more rapid.

It is desirable for practical purposes to have a single boundary condition simulating
the coating's presence for all incidence angles. From the above, the second order GIBC
is obviously not adequate if our goal is to simulate coatings of at least 1/4 of a wavelength
in thickness. Therefore, it is of interest to examine the suitability of a third order GIBC.

The third order GIBC may be written as
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for E-polarization. In these, 4y, 4, Ay, A, A) and a, are as defined in (8). The remaining

constants a, and a, are given by
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Clearly, (10) reduce to (7) when a, =2, =0 or T, = l“; - oo,

From Figure 8 to 10, it is now seen that the above third order GIBC provides an
acceptable simulation for coating thicknesses of at least 0.4A regardless of material
properties, angle of incidence and polarization. This is, of course, a conservative
statement since the simulation improves for lossy coatings having large refractive indices

and for angles of incidence away from normal.

III. Solution

Consider a wedge whose faces are locatedat ¢ =+ @ =+ BZE . The wedge is illuminated

by the plane wave

Hiz . ikpeos(9-9,)
(=u(p,9)=¢ (12)
{Q}

and each face is subject to an Mth order boundary condition with impedances I = siner: for
H-polarization and I’H'l = sin 6': for E-polarization (m =1, 2, ..., M) on the upper (positive)

t
and lower (negative) face with Re sin 8, 20. Itis required that, for small kp, the total field

u(p, ¢) satisfy the edge condition

( Hz(p,d»]> ]
00 =u(p,0) =0 {(kp)°)

with € > 0.

Following Maliuzhinets [4] we write
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up, 9= [ s(as) da (13
Y

where v is the double loop Sommerfeld path. Application of the boundary conditions

then gives

. M
jc“""c““{ IT (sin ¢ £ sin Bmi)s (a itb)} do=0 (14)
Y "

and the necessary and sufficient conditions for this to be satisfied is [10]

M M M
n(sinaisine;)s(am)-nl(- sinatsing)s(-at®=snay A cos"a
m=1 m= m=0
(15)
. t
for appropriate constants A |
As the solution of (15) we write
s(ax) = g(a) o) + h(cx) (16)
where
M Y6 ,0)
g(a) =11 T an

and ¥ is a product of four Maliuzhinets functions [4]. For large IIm . ol
gl@)=0 {exp(%llm .al]}

where n = 2d/r , and for brevity we shall refer to this as "order M". To satisfy the edge

condition it is necessary that s(ct) be of order -ne. In order to reproduce the incident

field (12) we choose

B
@)
o

G, (@)=

(18a)

w2

-5

11



where

= gin & =cos &
S—smﬁ— , C—cosn ,
. ¢0 ¢0
So=sm—n— , C0=cos—n— , (18b)

and thus the first term in (16) is of order M-1. The second term on the right hand side of
(16) is a particular solution of (15) which is free of singularities in IRe. al <@ and
cancels all terms of excess order in g(a) 6, (o). In addition to these three requirements
on h(a), there is a fourth one as we shall show later. Provided such an h(a) can be
found, the resulting solution will satisfy the correct edge behavior and reciprocity.

When the expression for the diffracted field is reduced to an integral over a steepest

descent path through the origin, the non-exponential part of the integrand is

s(a+m) - s(o-m) = f(ar) + h(a-x) - h(a-m) (19)
where
f(o) = g(a+m) 00(a+n) - g(0-1) 6, (0-Tr) (20
and we have
ga+m) =X, (o, q)o)mhril(am x) (b_+x) (1)
M
glo-m) = Xy, (@, 911 (2, -y) (b, +y)
where
a_ =cos %—(9; -nf2) , b =cos %(en; -1f2) (22)
x=¢S+pC , y=qS-pC (23)
with
p=sin—£% , q=cos% (24)
and
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4™ ) N (Y0, .00 )¥@, 65, 8 )} 25
XM((X,¢0)—4 { (b(’t/Z)} m=1[ (a’ m’ m) (¢01 m’ ’m )} ( )
Thus, Xp(ct, ¢g) is symmetric in o and ¢ and of order -M. Further,
Q0 (o2 -
0, (ain)=5[(2q -1)S-S0 +2pq C} (26)
where
D=5"-2(2¢-1)$S,+ S; - 4p° ¢ @7
and D is also symmetric in o and ¢;. It follows that
o0=1x 0,0 2 (20205000 0,30 G, #0-11 (4,9) G|
(0) = = X (0, %)T)_ oL ™ OO Y O
M M
-2pqC (M (8, %) (0,0 +11 (3 9) G,9) ) 8)

In general this is neither symmetric in o and ¢ nor of acceptable order, and to see this

we consider the cases M =1, 2 and 3.

Fi r Boun ndition (M=1
This is the simplest case. When M=1 it can be shown that the constants Ai in (15) are all

zero and hence h(a) = 0. Since

xy=2pC , x+y =2¢S , (29)
X -y = 4pgsC x4yt =22g21) S™2p?

we have
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fle)=1X (@, ) %9 [ (Qa™18S,) (a0)b;+0) - (3 9)by )
2pqC (2,0, #x)H(a, )b y) |
= 1X, (@ 093] Cy (1) $-8g) (- 64y)+ (ayb)(xy) )
-2pgCC, (- (%+y) - (2, b,) (x4y) + 240, ) |
which reduces to
fla)=1X, (@ ;) 2pE§‘l 29(SS;+) - (3, b,) (S+5,) - 2aab,| (30)

This is symmetric in o and ¢ and of order -1, implying u(p,¢,) = O {(kp)/n} for small

kp. Consequently, there is no need for any particular solution h(c).
n r Boun ndition (M=

The constants A; and AT in (15) are no longer zero and hence h(x) # 0. From (28)

C
f0)= X, (@ 0) 2] (a1)$-8y) { (4, 0Xay )b, +1)b,+1) - & 3)(a3Ho,+y)0,)

-2pqC {(a,%)a, %), +1)(b,#x) + (2, 1)@, )b, +)b+y)

= %xz (a, ¢0)% [co { q™1) 8-Sy} { x*y*- (A, B (X-y) + (A,#B,-A B )(x2y)

+(A,B,-A B,) (x-y) } - 2pqCC, {x*+y* - (A -B, Xx*+y?)
+(Aj#B,-A B)(x™y)+ (A, -A B))(x+y) +2AB.} | (31

where
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A1 =a+a, ,

Aj=aa,  B,=bb . (3

The first order term (involving x % y) in square brackets is

B1 =b1+b2 ,

-2pCC, (S+5,) .

and the second order term is
-4pq CC, (S8, +p).

Both are symmetric in o and ¢, and of allowed order in [Im. al. Since

X -y =2pC ((4g*1) S4p?)

© +y} =208 (4-3)S*+3pY) |
x'-y*=8paSC { Qg2 - 1) S’ + )

x4yt =28q"- 82+ 1) S + 4 (4g21)psP + 2pt

(33)

after much tedious trigonometric manipulations the third order term is found to be

2
2pCC, (S - (4g-1) §°S,- p? (4q*+1)S - p’S )

and this is not, obviously, symmetric. Moreover, the first term is not of allowed order,

but the entire expression can be rewritten as

2p CC,SD- 2p CC,(S+S)(SS#p%)

and the second term of this is symmetric and of allowed order. Finally, after much

simplification the fourth order term in square brackets is

4pq CC, (* - 20¢™1) 5°S, - 4%’ - 2978, - p*)
= 4pq CC,S D - 4pq CC,(SS 1+ 1)’

and the second term of this is both symmetric and of allowed order. Note that the

"elimination” of the term S# has also eliminated the unacceptable one involving S3. Thus

15



f0)= 22X, (0, ) CC, {295~ S(A, - B) +K

CcC
-";{3 X0, 9) =% | 2 (SS5+pY)" - (A,B,XS+5,)(SS;+p)
+2q(A+B,- AB ) (SS,+p%) + (A,B,-A B,)(S+S,) (34)

+2qAB, +K [ (5+5,)° - 4q%(SS;+p)

where K is an arbitrary constant independent of ¢,. The second group of terms is
symmetric in o and ¢, and of order -1; however, the first group violates both the
symmetry and order conditions, and it is therefore necessary that the particular solution

h(a) be chosen such that

hoam) -hloem) =- X, (0, 0) CC, (29 5°-S (A B +K) . (39)

This is the fourth and final condition to be satisfied by h(a).

To complete the solution it now remains to find the constant K and to show that

h(a) exists as defined above . The first can be determined by examining the edge
behavior of the solution for a given ¢, and from this it can be conjectured that K = 0.

However, the existence of a solution for h(a) has not yet been rigorously established for

an arbitrary wedge angle (2-n)r, although at present we believe that a proof of its

. . _ nn _ Lln .
existance can be established for @ = ——= for integer values of L, .

2 2L2+1
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Thir r Boun ndition (M=
This is similar to the previous case but just a little more complicated. From (28)
C
fle)=1X, (@ 6,) 2] (26%1)8-8,) (@, %)(a, 3)a; R)b,+x)(b,+0)b+1)
(a9, Y)ay Y)0,+y)0,+3)(by+y) | - 200C (2, %), x)(ay x)b, +xXb,+x)b+x)

+(2,79)a )y Y0, #)b,+y)by#) ) |

X5 0) [ € (24058, - (659 + (A Boy) + (A ByAB Yoy
+(AyBy+AB-AB )’y) + (A, +A B, - AB )Jx%y)
+(AB,-AB)(xy) ) - 20g CC, { - (+y%) + (A B )4y )

+(AB,-AB )x"+y")+(A;B+AB, - AB ) +y?)

+(AB +AB,-A B )x%+y) + (A;B, - A,B,)(x+y) + 2A,B,)

(36)
where now
A = atata , B = bl+b2+b3 ,
A2 =a,2,ta,0,42,0, B2 = blb2+ b2b3 + b3b1 ,
Ay=appa;,  By=bbyb, . (37

The first and second order terms in square brackets are, apart from the multiplying

constants,

-2p CC, (S+S,)

and
-4pq CC(SS +p%)

respectively, as in the previous case. Similarly, the third and fourth order terms are

17



2p CC, SD- 2p CC(S+S,)(SS+p?)
and
4pq CC, S°D-4pq CC, (SS#)”
respectively, but there is now a subtle point that should be noted. In the third order case
even the first term is of allowed order, and its separation out is forced by symmetry
considerations and not by order. Thus, for a third order impedance boundary condition,
specification of the edge behavior is not sufficient to ensure reciprocity.
Since
X -y* =20 (16g°- 12g+1)8" + 264" 'S - p*)
X +y =2q8 { (16¢° -20q% +5)8* + 10Qq2-1)p2S” + 3p*)
x6 -y = 4pq €S {(16g* - 16¢%+3) S* + 2(8%-3)p2S” + 3p*)
x6 +y5 = 2(32q5-48q%+18%-1)8° + 6(16¢"12¢%+ 1)p’s* (38)
+6(6%-1)p's’ + 2p8

we again find after much trigonometric manipulations that the fifth and sixth order terms
in square brackets of the expression for f(xx) are

2 CC, S { (4q*-1) S+ S, + 2% D - 2p CC, (S+8,) ((SS4+p)’ - 2p)

and
-4pq CC, (22¢-1)8" +§°, + 3p*") D

+4pq CC, S8, (5°Sp + 3p? S8, + 3p)
respectively. Clearly, in each case the second group of terms is symmetric and of

allowed order.

The resulting expression for f(o) now is

18



0)= 22X, (0 0,) CC, |- 20 (209%18" + 8%, + 3p’S")
+(AB)S ((4g>-1)S° + S8, +2p%) +2(A B, - AB S’

+(A7B, +AB,-AB) S +K (S45) +K, ]

CC
-%flx3(a, ¢0)—D—°[-2q (S8, +P)°- %) + (A, B)S+Sp) ((SS,+pD)’ - 2p%)
+2q(AB,-AB ) (SSy#pY)’ + (A,B, +A B,-A ,B, )(S+5 XSS ,#p)

+2q(A,B, + A B, - AB,)XSS+p") + (A;B,-A B,)(S+S))

+20AB, + (K (348 + K} [ (545" -4 (SS,+ p) )| 40)

where K, and K, are arbitrary constants independent of ¢,. The second group of terms
is symmetric in o and ¢ and of order -1, but the first group violates both of these

requirements. It is therefore necessary to choose the particular solution h() such that

2
h(o+n) - ho-7) = - nl X, (o, 0,) CCO[ 2 {2(2q2-1)S4 + SSSO+ 3p282}
+(A-B)S {(4q2-1)Sz+SSO+2p2] +2q (A1B2-A2B1)S2
+(A;-B,+AB,-AB))S +K,(5+5) +K, | (41)
Comparison with (35) shows how rapidly the complexity of h(c) increases with the
order of the imposed boundary condition . Similarly to the second order case we may

again conjecture that K; = K, = 0 but the existence of h(ct) for an arbitrary ® remains to

be shown.

19



IV. Determination of the Field
To determine the field u(p, ¢) given by (13) we may close the contour Y by two
steepest descent paths through o = 2r. In this process, we may capture the geometrical

optics poles located at e = &ty =- ¢ + dgand ot = o, = - § - ¢ + 2P as well as possible
surfacewavepolcslocatcdata=a§=-¢+n+d>+¢fanda=af=-¢-(n+d)+¢j).
bcaed at o =af=- 0+ m+®+ 6 and o=af=-9- (1 + ®+86,). Ifcaptured, the residue of

these poles must be added to the total field u(p, ¢). The remaining contribution (the
non-residue contribution) is the diffracted field given by

wp, )=~ [ € ¥ {50+ 1) - (o - m)) da “2)

where S(0) is a steepest descent path through o = ¢. For the first order GIBC

(s(m)- s(a-m) = (@) =,(c, 0,) @)
with f(a) as given in (30). In case of the second order GIBC we have from (19), (34)
and (35)

{s(a+m) - s(o-m)} =1, (ct, )
2 CC
= nl X,(0, 9,) -D—° [ 2q (SSo+p2)2 - (A B )S+S)(SS,+pY)
+2q (A,+B, - A B )(SS;+p) + (A,B, - A B,)(S+S )

+2qAB, ] @4)
with X,(a, ¢) as defined in (25), A and B; as defined in (32), p and q as defined in

(24), S, S, C and C,, as defined in (18b) and D as given in (27). Finally, for the third
order GIBC we obtain from (19), (40) and (41)

20



(s(m) -s(-m)) =£,(t, )

CC
= 2 (0,00 5[ 2050 2+ A B XS+ IS 2')

2
+2q(A B,-A,B,)(SS;+p) +(A,B,+A B,-A,B, ((S+S )5S +7")

+2q(A,B +A B,-A,B )(SS;+p))HA,B,-A,B,)(S+S)

+29A,B, (45)
with X3(a, ¢p) as defined in (25), A, and B; as defined in (37), p and q as defined in
(24), S, Sy, C and C; as defined in (18b) and D as given in (27).

A non-uniform evaluation of (42) now yields

ikp
u(@, ¢°)~CED(¢' 6) (46)

where D(0 ¢y) is the associated diffraction coefficient given by

D(,) =- _JEI—E"M (s(O+m)-s(0-T))

=L e 6,0 @7
e M

for the Mth order GIBC. The corresponding echowidth is given by

.41
k

6 =21 D, o) = 48)

Figures 11 to 14 include several backscatter patterns for coated wedges with a
variety of material coatings. As a simple verification of the validity of the derived second
and 3rd order solutions, figures 11 and 12 present the echowidth patterns for a wedge
with an electrically (€ = 1+i 103, p=1) or a magnetically (¢=1, u=1+i 105) conducting

coating. It is seen that all solutions, regardless of order, are in agreement and predict the
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traditional known patterns. The patterns in figure 13 correspond to a wedge with an
internal angle of 30 degrees (n=1.833) and coated with a uniform lossless dielectric layer
having €=4 and p=1. It is now observed that although the first and second order
solutions are reasonably close, the third order one deviates from both of these,
particularly for the thicker coating. Interestingly, the three solutions do not display
substantial variance near edge-on incidences, but in contrast, for incidences near grazing,
the third order solution (which provides an accurate simulation of the reflected field)
predicts much higher echowidth. This is surprising and is currently investigated on
whether it is inherent to the employed simulation and not necessarily related to a physical
phenomenon.

The patterns in figure 14 correspond again to a similar wedge which is now coated
with an absorber layer having €=7.4+i1.11 and p=1.4+i0.672. As expected, the general
level of the echowidth patterns is now lower, particularly for the thinner coating.
However, we again observe a similar disagreement among the solutions for grazing
incidences. This, of course, demonstrates the inadequacy of the first and second order

solutions in simulating the coatings.

V. Summary

The problem considered was that of diffraction by a coated wedge of arbitrary
angle. To obtain a solution for the diffracted field a simulation of the coating was first
developed using higher order impedance boundary conditions, referred to here
generalized impedance boundary conditions(GIBC). A qualitative assessment was then
given on their accuracy. In particular, the second and third order GIBCs were examined
in some detail. This examination amounted in comparing the coating's plane wave
reflection coefficient predicted by the employed GIBC with the exact. It was found that if

a phase error of 10 degrees (or 10% in magnitude, but the phase error criterion is usually
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more limiting) was acceptable, the second order GIBC was capable of simulating
coatings up to 0.25 wavelengths in thickness regardless of the coating's material
composition provided the incidence was away from normal. This last limitation prompted
the need to consider simulations using a third order GIBC. It should be noted, however,
that the second order GIBC is probably sufficient for most practical materials with some
loss and under the same conditions the maximum allowed thickness for a 10 degree error
could also be relaxed. The employed third order GIBC was found far superior to the
second order one. In particular, the third order GIBC allowed simulation of coatings as
thick as 0.4 wavelengths regardless of their composition and the angle of incidence for
the same error criteria. Similarly, to the second order GIBC the maximum allowed
thickness for a 10 degree error can again be relaxed for high contrast and/or lossy
coatings.

The solution to the scattered and diffracted fields by the coated wedge were
obtained via a generalization of Maliuzhinets ' method. This required the introduction of a
particular solution h(e) to the difference equations which result upon application of the
subject GIBC imposed on the wedge faces. Such a particular solution is zero for the
standard impedance boundary condition, but is required for higher order GIBCs and
causes substantial complexity in the analysis. It serves to correct the order of the spectral
function under the Sommerfeld integral and allows for a reciprocal solution in the last
phase of the analysis. Fortunately, it does not appear in the final result and, therefore,
the only requirement (for a valid solution of the diffracted field) is a proof of its
existence. Once established, the particular solution can be ignored and the solution for the
diffracted field can then be obtained by retaining the terms of the homogeneous solution
satisfying reciprocity as well as the edge condition.

The second part of this report presents solutions of the diffracted field based on the
second and third order GIBCs. In both cases the necessary difference equations satisfied

by h(c) are stated, but not solved. Essentially, the diffracted field is derived by ensuring
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reciprocity. As mentioned above, this amounts to the tedious task of partitioning the
homogeneous solution into reciprocal and nonreciprocal terms. Since the last are to be
cancelled by the particular solution h(a), the diffracted field is the contribution of the
remaining reciprocal terms.

Finally, using the derived diffraction coefficients for the first, second, and third
order GIBCs a number of backscatter echowidth patterns were presented. These
included several coating configurations and demonstrated the strong variance of the third
order solution from the first and second order ones for grazing incidences. The

FORTRAN program used for generating the patterns is given in the Appendix.
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List of Figure Captions

10.

11.

Geometry of the coated wedge.

Maximum allowed thickness vs. INI for a metal-backed layer modelled using the 1st
and 2nd order GIBC with a 10-degree phase (and/or 10 percent amplitude) error.
Curves shown are for e=2 and €=7 with incidence at 30 degrees from grazing (a)
H-polarization 2nd order GIBC. (b) H-polarization 1st order GIBC.

Maximum allowed thickness vs. INI for a metal-backed layer modelled using the 1st
and 2nd order GIBC with a 10-degree phase (and/or 10 percent amplitude) error.
Curves shown are for €=2 and €=7 with incidence at 55 degrees from grazing (a)
H-polarization 2nd order GIBC. (b) H-polarization 1st order GIBC.

Maximum allowed thickness vs. INI for a metal-backed layer modelled using the 1st
and 2nd order GIBC with a 10-degree phase (and/or 10 percent amplitude) error.
Curves shown are for €=2 and €=7 with incidence at 70 degrees from grazing (a)
H-polarization 2nd order GIBC (b) H-polarization 1st order GIBC.

Maximum allowed thickness vs. NI for a metal-backed layer modelled using the 1st
and 2nd order GIBC with a 10-degree phase (and/or 10 percent amplitude) error.
Curves shown are for €=2 and €=7 with incidence at 30 degrees from grazing (a)
E-polarization 2nd order GIBC. (b) E-polarization 1st order GIBC.

Maximum allowed thickness vs. INI for a metal-backed layer modelled using the 1st
and 2nd order GIBC with a 10-degree phase (and/or 10 percent amplitude) error.
Curves shown are for €=2 and €=7 with incidence at 55 degrees from grazing (a)
E-polarization 2nd order GIBC. (b) E-polarization 1st order GIBC.

Maximum allowed thickness vs. INI for a metal-backed layer modelled using the 1st
and 2nd order GIBC with a 10-degree phase (and/or 10 percent amplitude) error.
Curves shown are for €=2 and €=7 with incidence at 70 degrees from grazing (a)
E-polarization 2nd order GIBC. (b) E-polarization 1st order GIBC.

Maximum allowed thickness vs. INI for a metal-backed layer modelled using 3rd
order GIBC with a 10-degree phase (and/or 10 percent amplitude) error. Curves
shown are for €=2 and €=7 with incidence at 30 degrees from grazing (a)
H-polarization (b) E-polarization.

Maximum allowed thickness vs. INI for a metal-backed layer modelled using 3rd
order GIBC with a 10-degree phase (and/or 10 percent amplitude) error. Curves
shown are for €=2 and €=7 with incidence at 55 degrees from grazing (a)
H-polarization (b) E-polarization.

Maximum allowed thickness vs. INI for a metal-backed layer modelled using 3rd
order GIBC with a 10-degree phase (and/or 10 percent amplitude) error. Curves
shown are for €=2 and €=7 with normal incidence grazing (a) H-polarization (b)
E-polarization.

Backscatter H, echowidth for a plane wave incident on a perfectly conducting half
plane coated on both faces with 0.1 wavelengths thick electrically (e=1+i103) or
magnetically (u=1.+110) perfectly conducting layer. (a) Magnetically perfectly
conducting layer. (b) Electrically perfectly conducting layer.
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12.

13.

14.

Backscatter H, echowidth for a plane wave incident on a perfectly conducting
wedge having n=1.5 and coated on both faces with 0.1 wavelengths thick
electrically (e=1+i10%) or magnetically (u=1.+i10°) perfectly conducting layer. (a)
Magnetically perfectly conducting layer. (b) Electrically perfectly conducting layer.

Backscatter H, echowidth for a plane wave incident on a perfectly conducting
wedge having n=1.833 and coated on both faces with a layer whose €=4 and p=1.
(a) Coating thickness t=0.1 wavelength. (b) Coating thickness 1=0.2 wavelengths.

Backscatter H, echowidth for a plane wave incident on a perfectly conducting
wedge having n=1.833 and coated on both faces with an absorbing layer whose
€=7.4+il.1 and p=1.4+i0.672. (a) Coating thickness 1=0.1 wavelengths. (b)
Coating thickness t=0.2 wavelengths.
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APPENDIX

FORTRAN Listing of Program GIBCWEDGE
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PROGRAM  GIBCWEDGE
THIS PROGRAM COMPUTES THE DIFFRACTED/SCATTERED FIELD FROM
A DIELECTRICALLY COATED WEDGE
IF FAR ZONE IS CHOSEN ONLY DIFFRACTED FIELD IS GIVEN
IF NEAR ZONE IS CHOSEN THE TOTAL UNIFORM FIELD IS COMPUTED
PROGRAM WRITTEN BY J.L. VOLAKIS, AUGUST 1988

OO0
QOO0

COMPLEX AO,Al,A2,A3,A4,Gl,G2,G3,c0,C1,C2,C3,RI
COMPLEX B1,B2,B3,All,B11,CC,DD,EE,ETA4,DDC
COMPLEX*8 AU, BU, AL, BL,QQ, PP, RR, XM, THX, CPOWER, GEE, PSIPHO,PSIPH
COMPLEX PSIPI2,PSI,PSIPHI,AC2(3),BC2(3),AC3(3),BC3(3),CONST
COMPLEX THP1 (3),THP2(3),THP3(3),THM1 (3), THM2 (3), THM3 (3)
COMPLEX REFL1,REFL2,REFL3,REFL4,HZ1,HZ2,HZ3
COMPLEX TH1,TH2,TH3,ER,UR,CF1,CF2,CF3,AA, BB, AB,APB,CFF,DFC
COMPLEX CI,CI4,ETA,ETAl,ETA2,ETA3,HEE,RINDX,DEN, TEMP, ETAN
COMPLEX CSQRC, LGEE,PHC, CFFG, ARG, FFCL, HA, GINCB, GINCT, REFLN
COMPLEX GUP,GBOT,FKP1,FKP2,FKP3,SUM, SGEE, TH1L, TH2L, REFLH
COMPLEX SWRES1,SWRES2, HAP,FKP4,FKP5,COSW1,COSW2, SWD1, SWD2
COMPLEX GAM1,GAM2, TEMPC,ROOT,R1,R2,EXREFL,CTAN,REFLL, PHASE
DIMENSION HZDB1 (361),HZDB2(361),HZDB3(361),ANG(361)
COMMON /CONS/AA, BB, AB,CF3
COMMON /PS/PSIPI2
DATA CI,PI,CI4/(0.,-1.),3.1415926,(.707107,-.707107)/
PI2=PI/2.
TPI=2.*PI
PRINT *,'ENTER WEDGE ANGLE IN DEGREES:'
READ (5, *) WA
DTR=PI/180.
WA=WA*DTR
WN=2- (WA/PI)
PHIW=WN*PI/2.
PRINT *,'WEDGE CAP PHI AND N:',PHIW/DTR,WN
PSIPI2=PSIPHI (CMPLX (PI2,0.),PHIW)
C PRINT *,'PSIPI2',PSIPI2
PRINT *,'ENTER PH,PHO,DPH,DPHO (IN DEG):"
READ (5, *) PH,PHO,DPH,DPH0
C PRINT *, 'NUMBER OF PATTERNS:'
C READ (5, *) NPLOTS
DTR=PI/180.
NPTS=WN*PI/DPH/DTR
PH=PH*DTR
PHO=PHO*DTR
PHI=PH
PHOI=PHO0
DPH=DPH*DTR
DPHO=DPHO*DTR
C BEGIN PLOT LOOP
C DO 2000 J=1,NPLOTS
PH=PHI
PHO=PHOI
PRINT *,'ENTER PERMIT.,PERMEAB. (EXP (+JWT)) AND THICK:'
READ (5, *) ER,UR, THK
C EXACT REFLECTION COEFFICIENT
SPHO=SIN (PHO)
CPH0=COS (PHO)
CPH0S=CPHO*CPHO0
SPH0S=SPHO*SPHO0
C ENSURE THE CORRECT BRANCH



59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

ER=ER+CI*1.E-6
UR=UR+CI*1.E-6
C COMPUTE EXACT REFLECTION COEFFICIENT
RINDX=CSQRC (ER*UR)
ROOT=CSQRC (RINDX*RINDX-CPHOS)
ARG=2 . *PI*THK*ROOT
CTAN=CSIN (ARG) /CCOS (ARG)
R1=ROOT*CTAN
R2=CI*ER*SPH0
EXREFL=- (R1-R2) / (R1+R2)
CTAN=CSIN (2 .*PI*THK*RINDX) /CCOS (2 .*PI*THK*RINDX)
ETA=-CI*RINDX*CTAN/ER
C PHASE=CEXP (-2 .*CI*2*PI*THK*SPHO)
C EXREFL=EXREFL*PHASE
C "A" COEFFICIENTS OF GIBC
AR1=2,*PI*THK
RI=RINDX
C1=CSIN (AR1*RI)/CCOS (AR1*RI)
C2=CSIN(.5*AR1/RI)/CCOS (.5*AR1/RI)
C3=C1*C2+1.
Cl=C1-C2
A0=(RI-(.5/RI))*C1
Al1=CI*ER*C3
A2=(C1+AR1*C3* (RI-(.5/RI)))/(2.*RI)
A3=-CI*AR1*ER*C1/(2.*RI)
A4=AR1*C3/ (4.*RI*RI)
REFL4=- (A4* (SPHO**4) -A3* (SPHO**3) +A2* (SPHO**2) -A1*SPHO+A0)
TEMPC= (A4* (SPHO**4) +A3* (SPHO**3) +A2* (SPHO**2) +A1*SPHO+A0)
REFL4=REFL4/TEMPC
REFL2=- (A2* (SPHO**2) ~A1*SPHO+AQ) / (A2* (SPHO**2) +A1*SPH(0+A0)
REFL3=- (-A3* (SPHO**3) +A2* (SPHO**2) -A1*SPHO+A0)
TEMPC= (A3* (SPHO**3) +A2* (SPHO**2) +A1 *SPHO+AQ)
REFL3=REFL3/TEMPC
C FIRST ORDER BOUNDARY CONDITION
THP1 (1)=PI2-HEE(ETA,1,1.)
THM1 (1) =THP1 (1)
PRINT *,'1ST ORDER TEST on THETA:',ETA,CSIN(THP1 (1))
PRINT *,'lst ORDER THETA:', THP1 (1)
REFL1=- (ETA-SPHOQ) / (ETA+SPH0)
C SECOND ORDER BOUNDARY CONDITION
G1=Al/ (A0+A2)
G2=-A2/ (A0+A2)
TEMPC=CSQRT (G1*G1+4.*G2* (1.+G2))
ETA1=0.5* (-G1+TEMPC) /G2
ETA2=0.5% (-G1-TEMPC) /G2
PRINT *,'2ND ORDER ETAS:',ETAl,ETA2
C REFLECTION COEF. USING ETAS
REFL2=- (ETA1-SPHO) * (ETA2-SPH0) / ( (ETA1+SPH0) * (ETA2+SPH0) )
THP2 (1) =PI2-HEE (ETAl,1,1.)
THP2 (2) =PI2-HEE (ETA2,1,1.)
IF (REAL (THP2 (1)) .LT.0.) THP2 (1)=PI-THP2 (1)
IF (REAL(THP2(2)) .LT.0.) THP2 (2)=PI-THP2 (2)
C THP2 (2)=THP2 (2) -REAL (THP2 (2) )
THP2 (2)=THP2 (2)
THM2 (1) =THP2 (1)
THM2 (2)=THP2 (2)
PRINT *,'TH1,TH2:',THP2(1),THP2(2)
PRINT *, 'CHECK:',CSIN(THP2(1)),ETAl,CSIN(THP2(2)),ETA2



117 C 3RD ORDER GIBC

118 Gl=(A1+A3)/ (A0+A2)

119 G2=-A2/ (A0+A2)

120 G3=-A3/ (A0+A2)

121 C find cubic roots

122 PP=-G2/G3

123 00=-(G1+G3) /G3

124 RR=(1.+G2)/G3

125 AL=(3.*QQ-PP*PP) /3.

126 BL=(2.*PP*PP*PP-0, *PP*QQ+27.*RR) /27.

127 XM=2,*(0.,1.)*CSQRC (AL/3.)

128 ARG=3.*BL/ (AL*XM)+CI*1.E-6

129 THX=HEE (ARG, 1,1.)/3.

130 ETA1=XM*CCOS (THX)-PP/3

131 ETA2=XM*CCOS ( (PI/1.5)+THX)-PP/3

132 ETA3=XM*CCOS ((4.*PI/3.)+THX)-PP/3

133 PRINT *,'3RD ORDER ETAS:',ETAl,ETA2,ETA3
134 C reflection coefficient using etas

135 REFL3=- (ETA1-SPHQ) * (ETA2~-SPH0) * (ETA3-SPHO0)
136 REFL3=REFL3/ ((ETA1+SPHO) * (ETA2+SPHOQ) * (ETA3+SPHO) )
137 THP3(1)=PI2-HEE (ETAl,1,1.)

138 THP3(2)=PI2-HEE (ETA2,1,1.)

139 THP3 (3)=PI2-HEE (ETA3,1,1.)

140 DEF1=CABS (THP3 (1) -THP1 (1))

141 DEF2=CABS (THP3 (2)-THP1 (1))

142 DEF3=CABS (THP3(3)-THP1 (1))

143 IF ((DEF1.LT.DEF2) .AND. (DEF1.LT.DEF3)) THEN
144 TH1=THP3 (1)

145 TH2=THP3 (2)

146 TH3=THP3 (3)

147 ENDIF

148 IF((DEF2.LT.DEF1).AND. (DEF2.LT.DEF3)) THEN
149 TH1=THP3 (2)

150 TH2=THP3 (1)

151 TH3=THP3 (3)

152 ENDIF

153 IF ((DEF3.LT.DEF2) .AND. (DEF3.LT.DEF1) ) THEN
154 TH1=THP3 (3)

155 TH2=THP3 (2)

156 TH3=THP3 (1)

157 ENDIF

158 THP3 (1)=TH1

159 THP3(2)=TH2

160 THP3 (3)=TH3

161 THP3(2)=PI-THP3(2)

162 THP3 (3)=PI-THP3(3)

163 THM3 (1)=THP3 (1)

164 THM3 (2) =THP3 (2)

165 THM3 (3)=THP3(3)

166 PRINT *,'3RD ORDER THETAS:',K THP3(1l),THP3(2),THP3(3)
167 PRINT *,'CHECK:',CSIN(THP3(1l)),ETAl,CSIN(THP3(2)),ETA2
168 C PRINT REFLECTION COEFFICIENTS:

169 PRINT *,! REFLECTION COEFFICIENTS:'
170 EXMAG=CABS (EXREFL)

171 EXPHAS=BTAN2 (AIMAG (EXREFL) , REAL (EXREFL) )
172 ELMAG=CABS (REFL2)

173 ELPHAS=BTAN2 (AIMAG (REFL2) ,REAL (REFL2))

174 EHMAG=CABS (REFL3)



175
176
177
178
179
180
181
182
183
184
185
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187
188
189
190
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EHPHAS=BTAN2 (AIMAG (REFL3) ,REAL (REFL3))
ENMAG=CABS (REFL4)
ENPHAS=BTAN2 (AIMAG (REFL4) ,REAL(REFL4) )
E1MAG=CABS (REFL1)
E1PHAS=BTAN2 (AIMAG (REFL1) ,REAL(REFL1) )
PRINT *,'EXACT,4TH ,3RD, 2ND & 1ST ORDER:'
PRINT *,EXREFL,EXMAG,EXPHAS*180/PI
PRINT *,REFL4,ENMAG,ENPHAS*180./PI
PRINT *,REFL3,EHMAG,EHPHAS*180./PI
PRINT *,REFL2,ELMAG,ELPHAS*180/PI
PRINT *,REFL1,E1MAG,E1PHAS*180/PI

C PRINT *, 'CHOOSE 1ST, 2ND OR 3RD ORDER B.C:'

C READ (5,*) M

C GENERATE A & B CONSTANTS
A11=CCOS ( (THP1 (1)-PI2) /WN)
B11=CCOS ( (THM1 (1) -PI2) /WN)

PRINT *,'THETA:',THP1(1)
DO 10 MS=1,2
AC2 (MS)=CCOS ( (THP2 (MS) -PI2) /WN)

10 BC2 (MS)=CCOS ( (THM2 (MS) -PI2) /WN)
DO 11 MS=1,3
AC3 (MS)=CCOS ( (THP3 (MS) -PI2) /WN)

11 BC3 (MS)=CCOS ( (THM3 (MS) -PI2) /WN)
P1=SIN(PI2/WN)

Q1=COS (PI2/WN)

C BEGIN PATTERN LOOP
DO 1000 I=1,NPTS
Al=Al1
B1=Bl1l
SPN=SIN (PH/WN)

SON=SIN (PHO/WN)

CPN=COS (PH/WN)

CON=COS (PHO/WN)
CONST=CI4/ (2.*PI)
CONST=CONST/WN

P2=P1*P1

02=01*Q1
DENOM=SPN*SPN-2,* (2,*Q2-1.) *SPN*SON+SON*SON-4 , *P2*Q2
DNOM1=SIN ( (PH-PI)/WN)-SON
DNOM2=SIN ( (PH+PI) /WN)-SON
DNOM3=DNOM1 *DNOM2
D1=DNOM1

HZ1=CI4/(2.*PI)
HZ1=(HZ1*CON/WN)
CONST=HZ1/DENOM

C FISRT ORDER STADARD MALIUZHINETS DIFFR. COEFF.

C PSIPHO=PSI (CMPLX (PHO0,0.),PHIW, THP1 (1), THM1 (1))

C PSIPH=PSI (CMPLX (PH,0.),PHIW, THP1 (1), THM1 (1))

o HZ1=HZ1/PSIPHO

C TEMPC=PSI (CMPLX (PH-PI,0.),PHIW, THP1 (1), THM1 (1)) /DNOM1

C TEMP=PSI (CMPLX (PH+PI,0.),PHIW, THP1 (1), THM1 (1))
HZ1=HZ21* (TEMPC-TEMP /DNOM2)

C 1ST ORDER IMPEDANCE WEDGE DIFFRACTION COEFFICIENT
TEMPC= (2*Q1* (SPN*SON+P2) - (A1-B1) * (SPN+SON) -2 . *Q1*A1*B1)
TEMPC=TEMPC*CPN*2, *P1
XM=GEE (CMPLX (PH, 0.) ,PHO, PHIW, THP1, THM1, 1)
HZ1=-XM*TEMPC*CONST

C 2ND ORDER IMP. WEDGE DIFFRACTION COEFFICINET



233 Al=AC2 (1) +AC2(2)

234 B1=BC2 (1) +BC2(2)

235 A2=AC2 (1) *AC2 (2)

236 B2=BC2 (1) *BC2 (2)

237 ST=SPN*SON+P2

238 SPON=SPN+SON

239 TEMPC=2.*Q1* (ST**2) - (A1-B1) *SPON*ST+2, *Q1* (A2+B2-A1*B1) *ST
240 TEMPC=TEMPC+ (A2*B1-A1*B2) *SPON+2 . *Q1 *A2*B2
241 TEMPC=TEMPC*2 ., *P1*CPN

242 XM=GEE (CMPLX (PH,0.) ,PHO, PHIW, THP2, THM2, 2)
243 HZ2=CONST*XM*TEMPC

244

245 C 3RD ORDER IMP. DIFFR. COEFFICIENT

246 A1=AC3(1)+AC3(2)+AC3(3)

247 B1=BC3 (1) +BC3(2)+BC3(3)

248 A2=AC3 (1) *AC3(2) +AC3 (2) *AC3 (3)+AC3 (3) *AC3 (1)
249 B2=BC3 (1) *BC3(2) +BC3 (2) *BC3 (3) +BC3 (3) *BC3 (1)
250 A3=AC3 (1) *AC3(2) *AC3 (3)

251 B3=BC3 (1) *BC3(2) *BC3 (3)

252 ST=SPN*SON+P2

253 SPON=SPN+SON

254 TEMPC=-2.*Q1* (ST**3-P2%*3)+ (A1-B1) *SPON* (ST*ST-2.*P2*P2)
255 TEMPC=TEMPC+2 . *Q1* (A1*B2-A2*B1) * (ST*ST)

256 TEMPC=TEMPC+ (A3-B3+A1*B2-A2*B1) *SPON*ST

257 TEMPC=TEMPC+2 . *Q1* (A3*B1+A1*B3-A2*B2) *ST+ (A3*B2-A2*B3) *ST
258 TEMPC=TEMPC+2 . *Q1*A3*B3

259 TEMPC=TEMPC*2 , *P1*CPN

260 XM=GEE (CMPLX (PH, 0.) , PHO, PHIW, THP3, THM3, 3)
261 HZ3=CONST*XM*TEMPC

262 HZA=CABS (HZ1)

263 HZDB1 (I)=10.*ALOG10 (2. *PI*HZA*HZA)

264 HZA=CABS (HZ2)

265 HZA2=10*ALOG10 (2. *PI*HZA*HZA)

266 HZDB2 (I)=HZA2

267 HZA=CABS (HZ3)

268 HZA3=10.*ALOG10 (2. *PI*HZAXHZA)

269 HZDB3 (I)=HZA3

271 ANG (I)=PH/DTR

272 o PRINT *,'PH,HZ:',ANG(I),HZ1,6HZ2,HZ3

273 PH=PH+DPH

274 PHO=PHO+DPHO

275 1000 CONTINUE

276 C IEND=0

277 o IF (J.EQ.NPLOTS) IEND=1

278 CALL GENPLO (ANG, HZDB3,NPTS, 0, 0)

279 CALL GENPLO (ANG, HZDB2,NPTS, 1,0)

280 CALL GENPLO (ANG, HZDB1,NPTS, 2,1)

281 2000 CONTINUE

282 CALL EXIT

283 END

284 o

285 COMPLEX FUNCTION GEE (ARG,PHO,PHIW,THP,THM,M)
286 COMPLEX PSI,ARG,THP(3),THM(3),PSIPI2

287 COMMON /PS/PSIPI2

288 DATA PI,PI2/3.1415927,1.5707963/

289 M8=8.*M

290 GEE=PSIPI2**M8/ (4, **M)

291 DO 10 MM=1,M
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295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

GEE=GEE/PSI (ARG, PHIW, THP (MM) , THM (MM) )
GEE=GEE/PSI (CMPLX (PHO,0.),PHIW, THP (MM), THM (MM) )

c if (M.eq.3) print *,'gee:',gee
10 CONTINUE

RETURN

END
C

COMPLEX FUNCTION PSI(ALPHA,PHI,THETAO,THETAl)
COMPLEX PSIPHI
COMPLEX THETAO,THETAl,UJ,CJ,ALPHA
COMPLEX CN1,CN2,CN3,CN4
DATA PI2/1.5707963/
DATA CJ,UJ/(0.,1.),(1.,0.)/
CN1=ALPHA+ (PHI+PI2) *UJ-THETAO
CN2=ALPHA- (PHI+PI2) *UJ+THETAl
CN3=ALPHA+ (PHI-PI2) *UJ+THETAO
CN4=ALPHA- (PHI-PI2) *UJ-THETAl

c print *,'cnl,2,3,4###:',cnl,cn2,cn3,cnd
CN1=PSIPHI (CN1,PHI)
CN2=PSIPHI (CN2,PHI)
CN3=PSIPHI (CN3,PHI)
CN4=PSIPHI (CN4,PHI)
PSI=CN1*CN2*CN3*CN4

c print *,'cnl,cn2,cn3:',cnl,cn2,cn3,cné
RETURN
END

C

COMPLEX FUNCTION PSIPHI (CANG, PHI)

WRITTEN BY MARTIN HERMAN, UNIVERSITY OF MICHIGAN
BASED ON THE SUBMITTED ARTICLE BY HERMAN, VOLAKIS
AND SENIOR. 12/1/86

CANG : Complex Argument of the function

THIS CALCULATES THE MALUIZHINETS FUNCTON
FOR ANY ARBITRARY WEDGE ANGLE PHI

IF THE IMAGINARY PART IS LESS THAN 10 THEN A
REIMANN SUM IS PERFORMED, OTHERWISE THE LARGE ARG
FORM IS USED

PSIPI2 IS THE COMPLEX MAL. FUNCTION OF THE IDENTITY
GIVEN IN HERMAN, VOLAKIS, AND SENIOR

QOO0

COMPLEX CANG,CANG1,COEF
COMPLEX CN1,CN2,CN3,CN4,CN5
COMPLEX PSISQ,U,UJ
DATA PI,PI2/3.141592654,1.5707963/
DATA UJ/(1.,0.)/

C

C CALCULATE PSISQ USING REIMAN SUM

oNo NN

1
[I| MIDPOINT METHOD 5 POINTS (INTERVAL 0,1.5)
1]

UR=PI/2.
UI=0.
SUM=0.
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357
358
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369
370
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377
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381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

30

40

10

SUM1=0.

FH=1.5/5.

FH2=FH/2.

DO 10 I=1,5
S=FLOAT (I-1) *FH+FH2
FS=(COSH (UR*S) *COS (UI*S)-1.)
DENOM=S*COSH (PI*S/2.) *SINH (PHI*2.*S)
FS=FS*FH/DENOM
FS1=(SINH (UR*S) *SIN(UI*S))
FS1=FS1*FH/DENOM

SUM=SUM+FS

SUM1=SUM1+FS1

CONTINUE
CN1=-,5*CMPLX (SUM, SUM1)
CN1=CEXP (CN1)

PSISQ=CN1*CN1

AR=REAL (CANG)
ATI=AIMAG (CANG)
ITTT=0

IF (AR.GT.0)GO TO 30
AR=-AR

ITTT=1
ITT=0
IF(AI.GT.0)GO TO 40
ITT=1

AI=-AI

IT=0
CANG1=CMPLX (AR, AI)
IF (AR.LT.PI2)GO TO 90
AR=AR-PI

CN5=UJ* (PI*PI/ (8.*PHI))
CN4=UJ*PI
R5=PI/ (4.*PHI)

COEF=PSISQ*CCOS (CANG1*R5-CN5)
IT=1
IF (AR.LT.PI2)GO TO 90
AR=AR-PI
COEF= (CCOS (CANG1*R5-CN5) ) /CCOS ( (CANG1-CN4) *R5-CN5)
IT=2
IF (AR.LT.PI2)GO TO 90
AR=AR-PI
COEF=PSISQ*CCOS (CANG1*R5-CN5) *CCOS ( (CANG1-2.*CN4) *R5-CN5)
COEF=COEF /CCOS ( (CANG1-CN4) *R5-CN5)
IT=3
IF (AR.LT.PI2)GO TO 90
AR=AR-PI
COEF=CCOS ( (CANG1~-2.*CN4) *R5-CN5) *CCOS (CANG1*R5-CN5)
COEF=COEF/ (CCOS ( (CANG1-3.*CN4) *R5-CN5) *CCOS ( (CANG1-CN4) *R5-CN5) )
IT=2
IF (AR.LT.PI2)GO TO 90
AR=AR-PI
COEF=CCOS ( (CANG1-2.*CN4) *R5-CN5) *CCOS (CANG1*R5-CN5)
COEF=COEF/ (CCOS ( (CANG1-3.*CN4) *R5-CN5) *CCOS ( (CANG-CN4) *R5-CN5) )
COEF=PSISQ*COEF*CCOS ( (CANG1-4.*CN4) *R5-CN5)
IT=3
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420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
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437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

QOO0

oNeoNe!

90

100

CONTINUE
IF (ABS (AR) .GT.PI2)PRINT *,'AR > PI2 ',AR

U=CMPLX (AR, AI)
UR=AR

UI=AI
IF(UI.LE.10.)THEN

SMALL ARG APPROACH USING
MIDPOINT METHOD 5 POINTS (INTERVAL 0,1.5)

SUM=0.

SUM1=0.

FH=1.5/5.

FH2=FH/2.

DO 100 I=1,5
S=FLOAT (I-1) *FH+FH2
FS=(COSH (UR*S) *COS (UI*S)-1.)
DENOM=S*COSH (PI*S/2.) *SINH (PHI*2.*S)
FS=FS*FH/DENOM
FS1=(SINH (UR*S) *SIN (UI*S))
FS1=FS1*FH/DENOM

SUM=SUM+FS

SUM1=SUM1+FS1

CONTINUE
CN1=-.5*CMPLX (SUM, SUM1)
PSIPHI=CEXP (CN1)

ELSE

large APPROX

CN1=U*PI/ (4.*PHI)
CN2=CCOS (CN1)
AMP=CABS (CN2)
AMP=SQRT (AMP)
R1=REAL (CN2)
R2=AIMAG (CN2)
PH=ATAN2 (R2,R1)
IF(PH.LT.0.)PH=2.*PI+PH
PH=PH/2.
R1=AMP*COS (PH)
R2=AMP*SIN (PH)
CN1=CMPLX (R1,R2)
B=2.556343
C=-3.259678
D=1.659306
E=-.3883548
F=.03473964
PSIPHI=CN1*EXP (- (B*PHI+C*PHI**2+D*PHI**3+E*PHI**4+
1F*PHI**5) /PI)
IF (REAL (PSIPHI) .LT.0.)PSIPHI=-PSIPHI
END IF

IF (IT.EQ.1)PSIPHI=COEF/PSIPHI
IF(IT.EQ.2)PSIPHI=COEF*PSIPHI
IF(IT.EQ.3)PSIPHI=COEF/PSIPHI
IF(ITT.EQ.1)PSIPHI=CONJG (PSIPHI)
IF(ITTT.EQ.1)PSIPHI=CONJG (PSIPHI)
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492
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494
495
496
497
498
499
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512

RETURN
END

COMPLEX FUNCTION HEE (ETA,IUD,SBO)

Cl|| NEW VOLAKIS VERSION
CIII COMPUTES THE INVERSE COSINE OF COMPLEX NUMBER

300

10

20

COMPLEX ETA,ETAl,CJ
DOUBLE PRECISION RE,AE,REP,REM,AA,BB, SGN, RAA
DATA SRT2,FPI,CJ/1.414213562,12.56637061, (0.,1.)/
DATA PSIPI2,PI/.9656228,3.14159265/
ETAl=1./ (ETA*SBO)
IF (IUD.EQ.1)ETA1=ETA/SB0
RE=REAL (ETA1)
AE=AIMAG (ETA1)
REP=RE+1.
REM=RE-1. :
AA=.5% (DSQRT (REP*REP+AE*AE) +DSQRT (REM*REM+AE *AE) )
BB=.5* (DSQRT (REP*REP+AE*AE) ~-DSQRT (REM*REM+AE *AE) )
IF (AE.NE.0.D0) THEN
SGN=AE/DABS (AE)
ELSE
SGN=1.D0
ENDIF
RAA=AA*AA-1.
IF (RAA.LT.1.E-6)RAA=0.
HEE=DARSIN (BB) +CJ*DLOG (AA+DSQRT (RAA) ) *SGN
HEE=.5*PI-HEE
RETURN
END

COMPLEX FUNCTION CSQRC(Z)
COMPLEX 2
ZR=REAL (Z)
ZI=AIMAG (Z)
PHAS=BTAN2 (ZI, ZR)
CSQRC=SQRT (CABS (Z) ) *CEXP (.5% (0., 1.) *PHAS)
RETURN
END
REAL FUNCTION BTAN2 (Y, X)
DATA PI/3.1415926/
IF (ABS (X) .GT.1.E-6) GO TO 20
IF (ABS(Y) .GT.1.E-6) GO TO 10
BTAN2=0.
RETURN
BTAN2=.5*PI
IF(Y.LT.0.)BTAN2=-BTAN2
BTAN2=ATAN2 (Y, X)
RETURN
END
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Fig. 1. Geometry of the coated wedge.
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