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Abstract-Uniform high frequency diffraction coefficients are presented for up to
and including the third order interaction mechanism associated with impedance
double wedge structures. Our formulation is based on the Extended Spectral
Ray Method and thus rigorously accounts for surface wave contributions. Also
key identities are provided that enable the efficient asymptotic evaluation of
the resulting integrals via a modified Pauli-Clemmow steepest descent method.
Without these identities the derivatives of extremely complicated functions would

have to be computed.



Examples of the geometries presented in this report include the thick impedance
half plane, the impedance insert in a full plane whose outer faces do not intersect

and convex cylindrical polygons composed of multiple double wedge structures.



1 Introduction

Interest in diffraction from material coated structures has prompted the in-
vestigation of geometries such as those of impedance strips, thick half planes,
polygonal cylinders, and inserts in a full plane. All of the above structures have
a generic double wedge structure in which one face is common to both wedges.

Prior work in this area has been for the case of a perfectly conducting dou-
ble wedge configuration which included only the primary and doubly diffracted
mechanisms [1]. In this paper we will present uniform diffraction coefficients up
to and including third order mechanisms associated with the impedance double
wedge and in which the contribution of the surface waves are rigorously included.
The coefficients for the double and triple diffraction mechanisms are derived by
using the Extended Spectral Ray Method (ESRM) [2]| and thus remain valid
even when one edge lies in the transition region of another. Of particular impor-
tance in this derivation is the introduction of identities which greatly simplify the
Maclaurin series expansion associated with the modified Pauli-Clemmow steep-
est descent asymptotic evaluation of the integrals. Without these, the evaluation
of the derivatives of rather complex functions would be required.

In this report we will consider the isolated double wedge structures shown in
figure 1 and also cylindrical structures with a polygonal surface as shown in figure
2. Examples of isolated double impedance wedges are the thick impedance half
plane and the impedance insert shown in figures 3 and 4. Some calculations for
the scattering by these special structures have recently appeared in the literature

[3,4], and are therefore of interest for the purpose of verifying our solution.



In the case of isolated double wedges, all interactions are among two edges.
However, when considering the scattering by a polygonal cylinder, our solution is
extended to include the contribution of triply diffracted mechanisms which may
involve up to three wedge vertices of the polygon. The first of these vertices must,
of course, be directly illuminated and the last will be visible to the observer.

Section 2 of this report presents the analysis associated with the isolated
double impedance wedge along with backscatter and bistatic calculations of some
which are compared to those generated by an alternate formulation. In section
3, the analysis is extended to the case of a polygonal cylinder by accounting for
the additional triple diffraction mechanisms. Calculations are also presented for
triangular and square cylinders, and are compared with moment method data.
Both backscatter and bistatic patterns are presented in order to demonstrate the
importance of the multiple interactions.

Finally, section 4 presents the analysis of an impedance strip as a special case
of the cylindrical polygon. In this case, however, one must include the contri-
bution of double and triple diffraction mechanisms associated with the bottom
surface of the strip. We note that the impedance strip has been considered pre-
viously via the ESRM by employing the integral describing the scattering by an
impedance half plane as given in [5] . Here the more general representation of
the field scattered by an impedance wedge as given by Maliuzhinets [6] is em-
ployed, and it is therefore of interest to compare the results generated by the two

formulations. They are, of course, expected to be the same.



2 Double Wedge Formulation

The geometry of the isolated double wedge having external wedge angles of
nm at @; and mnr at @, is shown in figure 1. In this section only the interactions
between the edges at Q; and @, will be considered. The resulting solution will
therefore be directly applicable to geometries such as the thick impedance half
plane and impedance insert. Up to triple diffraction mechanisms will be included
in the solution, and it will be seen that these are sufficient to accurately evaluate

A

the scattering by double wedges having a common face of width as small as §

For the case of the impedance insert, results will be also given which demonstrate
the importance of the surface wave interactions at grazing aspects.

Throughout our analysis @, will be our phase reference point and all local an-
gles will be measured with respect to the common (“0”) wedge face. In addition,
10,71 and 7, will respectively denote the normalized impedances of the common

face, the outer (“n”) face at Q, and the outer (“n”) face at Q respectively.

2.1 Primary Diffraction from an Impedance Wedge

A plane wave

— ejk(zcos $o+y 8in ¢o) (1)
H;
is assumed to be normally incident upon the isolated wedge shown in figure 5.
From Maliuzhinets[6] we then find that an integral representation of the diffracted

field is (here and in all subsequent references u will represent E, or H,)
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where S(0) is the steepest descent path (see figure 6) obtained after the defor-
mation of the Sommerfeld contour. In addition, ¢, is the angle of incidence, ¢ is

the observation angle and ¥ is a function defined by Maliuzhinets[6] as

¥(a) = \Ilq,(a—{—(b-l—g——0+)\I/q(a—-<I>—-72£+0_)\Il¢(a+<I>—-72£+0+)\II¢(a—-(I>+g-—0_)

)
In the above, ¥y (2) is usually referred to as the Maliuzhinets function for which
highly accurate approximations are given in (7] for all z. Also ® = 2% (2 is the

external wedge angle) and

e sin“l(%) E-pol. )
sin"!(n) H-pol.
where the =+ corresponds to the common (“0”) and outer (“n”) faces of the wedge,
respectively.
Equation (2) can be rewritten in a form which is needed when considering the
evaluation of the double diffraction integral having a vanishing integrand at the

saddle point. Such a form is obtained by introducing the identity

\I/(a_}_?zzr-—w) = C(a,0+,0',n)\1’(a+22"7£+7r)a (5)



where

sin(""g;“”) sin( “;:+) . cos(2=TH) cos (255~
. 4T T —o- ="
sin(SEET) sin(25) " cos(SEEE) cos(74E)

C =C(e,0,607,n) =

) sin(2£=)  cos( ) cos(

(6)

When (5) is substituted in (2) we obtain

. —jkpcosa s — ¢ Y(a-o+ 5+
'u,‘li(¢, ¢0) = 2;7r—n/;(o)e ike Sln(a - ¢) (a‘y(pzl — 2 ) 7[')
. { 1 ~ 1 __sin(%)Con(a - ¢) } i
cos(Ttfe) —cos(22)  cos(Z=fe) —cos(%2)  cos(T=2t) —cos(Le) |

(7)
In the above, we also made use of the relations
C=1+(C-1), (8)

Cla,8%,07,n) — 1= sin(%)C,,(a, 6,0, n) = sin(%)Co,.(a), 9)

_ 25{sin(%) — sin(%) — 2sin(%) cos(£) + sin(*2%) + sin(75))

Conla n - e 10
on () sin("‘+’2';’+)sin(“;:+)cos(°’4'"’2’;0 )cos(%'::—) (10)
and
sin(‘f—f) sin(f;f) B
cos( ) — cos(2e) cos(2Z) — cos($2)

-

Sin(S) {cos(m"') — cos(2) - cOS(l—;&)l— cos() } .

The first order asymptotic evaluation of (2) corresponds to the diffracted field

from an isolated wedge whose non-uniform form (valid in the far zone) is

d _ I 27 gy S Ur+2-¢)  Y(-m+2Z -4
ui(¢,9,) = 2mn kpe ikp o3 V(2 - ¢,) [cos("—;ﬂ) - cos(%) cos(%é) - cos(%’-)
(12)



or from (7)

1 2m _,, _ix . ¢\I’(_¢+M+7r)
d — 2T ke ,—i% r 2
ui(9, do) 5 lcpe e’ esin-—o (==4)
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Since we are primarily concerned with far field patterns, a uniform primary
diffraction coefficient is not required. If we were, however, interested in such a
coefficient, then the approach discussed in [8] will be directly applicable for its
derivation. We remark that by using this approach, the resulting coefficient will

be uniform at the geometrical optics as well as surface wave boundaries.

2.2 Geometrical Optics and Surface Wave Poles

In the subsequent derivation of valid coefficients accounting for the contribu-
tions of the double and triple diffraction mechanisms we will require a knowledge
of the poles arising in the integrals which render their contribution. These will
be the traditional geometrical optics poles and the surface wave poles appearing
in the integrands of (2) or (7). The geometrical optics poles are easily identified
as the zeros of the trigonometric terms within the brackets. However, the surface
wave poles are associated with the ¥ function and can be identified only after

using the identity

3w, . wwtz) w2 T
Uplz £ (20 + -2—)] = +sin 10 csc(E)\Ilq,(Z(I) ~3 + 2). (13)

The pole associated with the surface wave field on the common wedge (“o0”)



face occurs when the condition
a-®-7r—-0t=0 (14)

is satisfied. This field exists if its associated pole is captured in the deformation

of the Sommerfeld contour to the steepest descent path and this occurs when
gd(Im(6%)) — Re(d + 7 + 6%) > 0, (15)

where gd is the Gudermann function and ® + 7w+ 8" is the surface wave pole. We
note, however, that even if a surface wave does not exist, surface ray diffraction
effects must still be accounted for when considering the multiple diffraction effects

as presented next.

2.3 Double Diffraction Mechanism

Starting with the geometry in figure 7, we will explicitly derive the bistatic
second order mechanism from Q; to @Q; via the Extended Spectral Ray Method
(ESRM) [2] . The integrand of equation (7) may be considered as an infinite
sum of complex plane waves which are launched from Q; at an angle —a. A
simple geometrical argument now shows that plane waves forming a local angle
—a at @, will form a local angle o at Q, as demonstrated in figure 8. Thus, the
complex plane wave launched from @; at an angle —a will be incident at Q, at
an angle a. Clearly, the diffracted field from @, due to a plane wave incident at

an angle & and diffracting at an angle ¢, is (see (12b))



1 27 .. ee . . 02 Y(—a+ 2E 4 7)
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(16)

after invoking reciprocity and when its phase is referenced to @;. In this case w
is the width of the common wedge face.

In accordance with the above argument, the basic integral representing the
far zone doubly diffracted field from Q; to Q; is obtained by multiplying the

integrand of (7) by (16) to give

-1 2T : ¥ 1
d — /__ —ikp i %
u21(¢2a¢o) animn kpC (4 \Il(ﬁ,f _¢o)\p(_”_;1 _¢2)

N R
/;(O)e sm(n)sm(m)\Il(a+ 5 + m)¥(—a + 5 + )

{ ( 1 1 ~ sin(%"-)Cm(a)o}

Ttde) —cos(2)  cos(Z=$2) — cos(2)  cos(%=2) — cos($2)

' 1 B 1 sin(%)C’om(—a) .
{cos("—:nﬁz) —cos(Z)  cos(Tih) - cos(%)+ cos(Zt2) — cos(£2) } do

(17)

The first term of the asymptotic expansion of this integral about the saddle
point is zero. Therefore, we must employ a higher order expansion to obtain an
evaluation of the integral. As a result, higher order integrand derivatives must be
computed. Such a computation is rather simple for the integrand in (17) because
of the appearance of the product of sines. Clearly, this is the primary reason for

preferring (7) and (12b) over (2) and (12a).



Equation (17) is in a form suitable for a uniform evaluation via the modified
Pauli-Clemmow approach. It is further of importance to note that such an eval-
uation must account for the presence of the geometrical optics poles as well as
the surface wave pole(s). Details of the evaluation can be found in Appendix A
of [9]. We find that the doubly diffracted field from Q,; to Q; is

—j eIt emike W(BX 4 1) W(2E 4 q)
mk(mn)? Vw /p V(5 — 6,)Y(EE - ¢,)
-alazas[A{l - ka(kwal)} + B{l - ka(kwaz)} + C{]. - F,,,(kwa;;)}]

{1 L 1 ﬁﬂ%@m%}

ugl (¢2’ ¢o)

—cos(™2%2) 1—cos(™tf2) cos(Z) — cos

(
{ ! L, si()0m(©

1—cos(Ttf2) 1 —cos(=£2)  cos(Z) cos(%‘l)} 2

(18)
where
a; = 2cos’ % (19)
a; = 2cos’ %3 (20)
a3 = 2sin’ g (6 of common face) (21)
-1
A = 22
(a2 — a1)(as - a;) (22)
-1
B = 23
(0 —a2)(es — ) (23)
-1
C = 24
CEOED 2)
and

Fip(2z )—2]\/—6”/ e dr (25)

10



is the UTD transition function [10]. When z is complex, the correct choice for the
bramch of 1/ can be more easily defined after relating Fj,(2) to the transition

function of Clemmow [11] via the relation

Fip(2%) = £252F¢(£2). (26)

where the minus sign is chosen when % <arg(z)< 5} , and the positive otherwise.

Note that the Clemmow transition function satisfies the identity

Fo(—2) = Vze i’ — Fy(2), (27)

which is essential for maintaining total field continuity. When (27) is employed
in (18), u3, will therefore include the contribution of the surface wave fields.
Furthermore, in (18) z = —wcos ¢ and a factor of one half was also included to
account for grazing incidence on the common wedge face.

Equation (18) represents the coefficient for the doubly diffracted field when
the incident wave impinges first on @, and then diffracts to Q,. If we were
concerned with the reciprocal diffraction mechanism from Q; to @1, (18) is still
valid provided the following substitutions are made : £ — —wcos ¢,, ¢, = 71—,

¢s = T — ¢, m— n,and n — m.
2.4 Triple Diffraction Mechanism {Q, — Qu+1 — Qn}

The ray geometry of the triple diffraction mechanisms to be considered in this

section is shown in figure 9.

In accordance with ESRM, an integral representation for the triply diffracted
field from @, to @, and back to Q) is

11



j —jkwecosa . (&
u¢1‘21(¢s¢o) = %/;(0)8 * sm(;)ugl(aa‘bo)

U(a+ 2 + )
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_ 1 _ 1 __sin(2)Con(a) N
(= e

Tt#) —cos(2) cos(™=2) — cos(2) cos(%:2) — cos(2

n

n

(28)
where u3, (e, ¢,) is the doubly diffracted field incident at Q; and is given in (18)
with p = w. We also note that in deriving (28), reciprocity was invoked for the
final diffraction at @; toward the far zone point. Therefore, the integrand of
(28) can again be interpreted as an infinite sum of complex plane waves incident
(diffracted) at @, at a local angle of —a and diffracted (incident) at a local
angle ¢. We note that this choice of +a is consistent with our geometrical

interpretation illustrated in figure 8.

Replacing u$, in (28) by (18) (without the 0.5 grazing factor) gives

. v nr
u(li21(¢’¢o) = A 50) e'kacosasin(%) Sln(i—) EI(Jx(jn_;Ez—_;_)ﬂ)
{ —2sin = Com(0)
[T cos(2 )T — con(52)] " cos() — con(z)

cos(*$) — cos(2) - cos(%=%) — cos(2) cos(%=2) - cos(f)

n

_ { 1 1 sin(£)Con(a) }

-az[A{1 — Fyp(kway)} + B{1 — Fy,(kway)} + C{1 — Fyp(kwas)}]de
(29)

where

12



e~ikve-ike  Y(ZL 4+ 7)U(BE + )
2m2k(mn)*n, /wp U(5F — o) ¥ (5 )
_ { 1 1 sin(%)Con (0)

A =

aias

1—cos(Z=2e) 1 - cos(Zte) COS( ) — cos() } '
(30)

Equation (29) must now be uniformly evaluated via the modified Pauli-Clemmow
method of steepest descent while accounting for the presence of the surface wave
and geometrical optics poles. The details of this procedure can be found in

Appendix B of [9] and the result is

J2y/2e~ 12k i g=ike V22X 4+ ) U (2E + )

u121(¢’¢°) = (kyr)zw(nm)sn \/_ ‘I’(_— o)\I}(%—(ﬁ)‘I’(%E)

Z:a_”‘:‘ [A{1 — Fiy(kwa1)} + B{1 — Fip(kwas)} + C{1 — Fi,(kwas)}]
| Fip(kwas) — Fip(kway)] - e—;kz

, { 11 sin(%2) Con(0) }
1—cos(Tf) 1- cos(fiﬁ-) cos(Z) — cos(£2)

_ { 1 B 1 sin(£) 0,,(0) }
1—cos(=%) 1- cos(m) cos(Z) — cos($)

{ —2sinZ  Com(0) }

[1—cos(Z)]? 1—cos(Z)

(31)

where a factor of % was included to account for grazing on the common wedge

face and
ay = 2cosz(§).

Also the value of z is zero when referring to the case of triple diffraction ema-

nating from @,, as discussed above.

13



When considering the contribution of the triply diffracted field emanating
from Q, as shown in figure 10, (31) is still valid provided the transformations

o = T — o, d = ™ — ¢, m — n, and n — m are made in addition to setting

z = —w|cos(@) + cos(d,))]-

2.5 General Double Wedge Applications

The thick half plane and the impedance insert in a full plane, shown in figures
3 and 4, are two examples of double wedge structures whose outer wedge faces
do not intersect.

The thick impedance half plane is composed of a double wedge structure in
which both wedges have an external angle of 1.57. The Maliuzhinets function in
this case is given by
_cos(25%) cos(2EE)

\pif(a) = cos?(%) cos(Z)

(32)

Figure 11 presents backscatter patterns for the thick perfectly conducting half
plane for both E and H incidences. The thickness of the half plane is varied from
0.95) down to 0.01) and in all cases we find that the patterns are nearly identical
to those presented in [4] where the Angular Spectrum Method (ASM) along
with the Generalized Scattering Matrix Formulation (GSMF) was employed. We
note that even for a thickness of 0.01) the two approaches give nearly identical
results and particularly for the H incidence where the contribution of the multiply
diffracted fields is significant. Bistatic patterns for the perfectly conducting thick
half plane are shown in figure 12, again for both polarizations and a similar set of

thicknesses as before. The agreement with the ASM-GSMTF still holds remarkably

14



well.

Figure 13 presents backscatter patterns from a thick impedance half plane with
E incidence for n(= 1, = n1 = n2) = .25, 4, 2+ 52, and 2 — 52 and for various
thicknesses ranging from 0.01) to 0.4\. Again, all patterns corresponding to the
first three impedances are in agreement with those computed via the ASM-GSMF
[3] except for some differences corresponding to the case of n = 0.25. We remark
that this discrepency is probably due to the inherent approximation associated
with the solution given in [3]. Finally, we note that although all face impedances
in the above examples were kept the same, our formulation can certainly account
for any arbitrary set of face impedances.

The impedance insert in a full plane is a special case of a double wedge con-
figuration composed of two wedges each having external angles of 2® = 7. Thus

the required Maliuzhinets function in this case is \II%(z) given by
Us(z) = (2 + 7)Upe(z — m) /[Wn (m)]? (33)

where ¥, (2) is the corresponding Maliuzhinets function associated with the

impedance half plane. A highly accurate approximation for ¥,(z) was found

from [12] to be

1 —0.01392* Im(2) <4.2
U, (2) ~ N o (34)
1.05302 {cos 1 (2 — j(In2)}* ezp {2ei*} Im(z)>4.2

provided Re(z) < ¥; otherwise, the identities

15



009 {u @) elizd) (35)

Ue(2") = Vo(2)

U, (—2) = Uy (2)

must be employed in conjunction with (33). We note that an alternate ap-
proximation for ¥,(2) can also be found in [7], where the given expressions are
applicable for all ¥y(2) .

Just like the thick half plane above, each face of the impedance insert config-
uration can be defined separately. However, for the examples to be presented,
the outer sides of the insert will have equal impedance values. Figure 14 shows
a bistatic pattern for an impedance insert in a ground plane with H-incidence.
The impedance insert width was 1.6\ and the source was located just over the
surface of the ground plane (¢, = 1°). The normalized impedances of the insert
were —7.25,7.25, and .25 and the results compare favorably with the moment
method solution as well as a similar high frequency solution given in [13].

Figures 15 and 16 present the effects of varying the outer side impedances
while holding the insert impedance constant (7, = 2 — j1). In each case three
E-incidence patterns are given corresponding to n; = n, = 0.001, 10, and 1000.
We should note, of course, that the same patterns will correspond to H-incidence
but with #; = n, = 1000, 0.1, and 0.001, respectively. The backscatter patterns
shown for insert widths of 1) and 0.5\ reveal that the surface wave interactions

are noticeable at grazing aspects for the H-incidence with outer faces almost

16



perfectly conducting sides (7, = 2 = 0.001). A similar observation also holds

for the bistatic patterns given in figure 16 with incidence at 45°.
3 Cylindrical Polygons

In this section we remove the restriction requiring the outer sides of the double
wedge not to intersect. Now the range of the external wedge angles (2®) can be
such that 1 <m < 2,1<n <2 and thus we can consider the scattering by any
polygon whose adjacent sides form a convex shape. The strip is a special case of
a polygon whose adjacent sides have zero included angles and fits in the general,
framework of this analysis. Its scattered field is given later.

In this section we will consider the far-zone scattered field by a polygon which
will include the contribution of all primary, double, and triple diffraction mech-
anisms.

The contribution of the primary and double diffraction mechanisms are the
same as discussed in the previous section provided all parameters of the given
expressions are applied to the local geometry of each wedge and double wedge
forming the polygon. However, the contribution of the triply diffracted fields
will include not only that caused by the interaction of two wedge vertices as
discussed earlier, but also that due to interactions involving three wedge vertices
as illustrated in figure 17. These last mechanisms have not yet been considered
and thus expressions for their contribution are developed in the next section.
The procedure used is, of course, parallel to that employed for the evaluation of

the triply diffracted field associated with two wedge vertices.

17



3.1 Triple Diffraction Mechanism {Q, — Qn+1 = Qn+2}

This triple diffraction ray path is shown in figure 17. An incident wave on
Qr generates spectral waves diffracting at an angle —a and propagating toward
@n+1. Using the same logic as in the double diffraction analysis we can invoke
reciprocity and have an incident wave impinge upon Q,,;; and diffracted at a local
angle a. The field diffracted at Q.+ is, of course, the doubly diffracted field given
in (18) . After diffraction from Q,; a spectral wave may now propagate towards
and diffract at @42 before returning to the observer. Since we are concerned
with the far field we can again invoke reciprocity and have an incident wave
impinge upon @, at an angle ¢, which will in sequence generate spectral waves
diffracted at an angle —a. Finally, the spectral waves will impinge at Qn;; at
a local angle a or 2® — a depending on the chosen face of reference. Thus an

integral representation for the triply diffracted field is

d — j / —jkwcosa _: a4 ‘I,(a+ 221 +7T)
u , @) = — e sin(—)us,(2® — a, ¢, -
121(4S ¢ ) 27rp S(O) (P) 21( ¢ ) \If(% _¢)

1 1 sin(£)Cop(a)
. { - - 2) } do

cos(T£2) — cos(2)  cos(2) - cos(%)  cos(%*%) — cos($

(36)
where pr is the external wedge angle at (Q,z) while, as before, nt and mn
correspond to the external wedge angles at the first (Q,) and second (Qn+1)

vertices, respectively. We further note that in the above, u$,(a, ¢,) is given in

(18) .

18



Substituting for ud; gives

d — —jkwgcosa s (XY s E\I’a+pzl+7l')
tinl®ide) = B¢ sin( s Ym0
—2sin = Com (0) }
[~ cos( =BT — cos(=2252]] " cos(Z) — cos(P5)

cos(i;#) —cos($) - cos(’—;é) —cos(2) cos(%%) — cos(%)

az[A{l - F,,p(kwlal)} + B{l - ka(kwlaz)} + C{l - ka(kwlag)}]da

. { 1 1 sin(%)Cop(a) }

(37)
where
e~ Tkw1g=ike (2 4+ 7)¥(2E + 7)
A = nx n a1a3
2n2k(mn)?p,/wip U(5 — ¢o) V(5 — ¢)
1 1 sin(£2)C,,(0)
1—cos(™=22) 1-—cos(™%) cos(X)— cos(L) ]’
(38)

Equation (37) can now be uniformly evaluated using the modified Pauli-
Clemmow method of steepest descent while accounting for the presence of the

surface wave and geometrical optics poles. The result is
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Uy (kﬂ_)é\/m(nm) p2m \/_ ‘Il(-—-— o) ¢)\I’( )
OB (1 — Fiplfwr)} + B~ Fg(bunar)} + O{1 — Fibras)}]
—~jkz

| Frp (kw3as) — Fip (kwaq)] - —
{ 1 1 sm(ﬂ) (0)

1—cos(*=£2) 1 —cos(Ztf2) cos(Z) — cos( %)

o

—2sm—

1 1 s1n
. 1—cos(1§2) 1- cos(m) cos(Z —cos

. 39
{[1 — cos(ZE2Z)][1 — cos(Z=22)) * 1+cos Timr) (39)
where

as = 2sin2(0"2+1),

in which 6,, is associated with the surface connecting Q.41 and Q,+2. In ad-
dition z = —wjcos(¢) — w} cos(¢,) with ¢,¢,,w}, and w) as defined in figure

18.

3.2 Cylindrical Polygon Application

In this section we will explore the accuracy of the previously developed coeffi-
cients. Particularly, the sum of the contributions from all possible first, second,
and triple order mechanisms will be used in predicting the scattered field by
impedance polygons. The results will then be compared with corresponding mo-
ment method data. It is, of course, expected that as the sides of the polygon
become smaller, the higher order mechanisms will become more significant and

therefore the accuracy of our third order solution will decrease when fourth order
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mechanisms are of importance. The examples considered in this section are the
triangular and square cylinders whose sides have equal length and impedances.
Their geometries are shown in figure 19.

Backscatter patterns are presented in figure 20 for the triangular cylinder
whose sides vary from 1A down to 0.25A. These pattern are with E-incidence
and correspond to either n = 2 + 72 (inductive) or n = 2 — 52 (capacitive).
As seen, our high frequency solution agrees remarkably well with the moment
method for cylindrical sides as small as %

A set of bistatic patterns were also calculated and compared with moment
method results. The conclusions are similar to those given for the backscatter
case. It is also important to note that in these examples an edge of the cylinder
may lie in the non-ray optical region of another edge. In such a situation the
diffraction coefficients generated via the ESRM approach are still valid, where as
those obtained via the self consistent GTD method [14] would not be applicable.

The backscatter patterns shown in figure 21 correspond to a square cylinder
with a normalized impedance of n = 4, side length of 1\ and E-incidence. A
mechanism to mechanism comparison reveals that the backscatter pattern is
primarily a first order effect. However, for bistatic cases in which the direction of
incidence is almost parallel with a face of the square, the higher order terms are
significant. This is illustrated in figure 22 along with moment method results.
The pattern due to primary diffraction matches the moment method data only
near the backscatter direction. It is further seen to have several discontinuities

most of which are compensated only after inclusion of the double diffraction
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effects. The rest of the discontinuities are associated with the triple diffraction
mechanisms and particularly those involving three vertices. Thus, they are seen
to vanish when the triply diffracted field is also included.

We conclude that overall, the agreement of our analytic solution with the
moment method data is quite remarkable. Furthermore, although the consid-
ered polygons had equal impedances on all sides, it should be noted that our

formulation is applicable for any polygon with arbitrary side impedances.
4 Impedance Strip m=n=2

The impedance strip is a special case of the polygonal cylinder (both wedges
have ® = 27) and is included here for completeness purposes. The scattered
field by an impedance strip has been previously found via the ESRM using the
current spectra of an impedance half plane [15].

For a strip there exist four double diffraction mechanisms and eight triple
mechanisms as shown in figures 23 and 24 . Fortunately, we need to only solve
for the contribution of two double diffraction and four triple diffraction mecha-
nisms. The contributions of the other mechanisms can then be obtained by an

appropriate transformation of the geometrical variables.
4.1 Double Diffraction From a Strip

Let us first consider the diffraction coefficients associated with the double
diffraction mechanisms from Q; to Q,. As discussed above, the coefficients asso-

ciated with the mechanisms from @, to @; can be then found by an appropriate

variable transformation. The contribution of the double diffraction mechanism
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for the top surface is given by (18), and is still applicable for the strip provided
we set n = m = 2. However, in the case of the impedance strip, the field due to
the double diffraction mechanism associated with thg bottom surface must also
be accounted for. The procedure in deriving this doubly diffracted field via the
ESRM is very similar to that employed in association with the top surface. Some
care, though, must be exercised in the definition of the local angles correspond-
ing to the spectral plane waves. Particularly, if we use the bottom (“n”) face
of the strip as our reference, then the spectral waves in the integral of (2) must
be interpreted as forming an angle of a with respect to the bottom face at @;.
Consequently, they will be forming an angle of -a with the bottom strip face at

Q2. Accordingly, we find that

_ iemem [y
un(dnd) = Vo /p (T —4,)¥(r —¢y)
-alaza;[A'{l — Fyp(kway)} + B'{1- Fip(kway)} + c'{1- ka(k“’a’s)}]
{ 1 _ 1 N sin(%“)Czn(O)}
1+sin(%) 1-sin(%) cos(%)
YN
1-sin(%) 1+sin(%)  cos(%) 2
(40)
where
Cz(a, 0+, 0_, n) —1=sin 'Z"sz(a)’ (41)
_ sin(£) - sin(%-) — 2sin(Z) cos(2=2%) + sin(r—no+) + sin(£=7)
Onle) = =88 { () s ) o ) con( ) |
(42)
ag = 2sin2(7—), (43)
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and

' -1
A = ]
(a2 — a1)(as — @)
) -1
B = [
(a1 — a2)(as — a2)
o - ~1

Once again, z is equal to —w cos @, and a factor of one-half is included to account
for grazing effects.

All together there are four double diffraction mechanisms for the strip and the
coefficients presented above are for the incident wave impinging upon Q; first.
If we were concerned with diffraction from @; to @; then we would make the
following transformations in (18) and (40) : z — —wcos¢,, ¢ — 7™ — ¢, and

¢ — T — &s.

4.2 Triple Diffraction from a Strip

The eight triple diffraction mechanisms are paired in groups of two as shown
in figure 24. Each pair has the same itenerary but in reciprocal directions. The
contribution of the triple diffraction mechanisms shown in figure 24(a) is given by
(31). Normally we would just list the results for the next three sets of mechanisms
if the derivations were the same as those shown in figure 24(a). Unfortunately,
this is not the case at hand. Particularly, we must consider the fact that the
diffracted field wraps around the strip for the mechanisms in figure 24(c) and
(d). Thus, for the sake of completeness the diffracted fields due to the rest of the

mechanisms will be derived next.
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Starting with the mechanisms in figure 24(b), the integral for the correspond-

ing triply diffracted field is

)ugl (21[' + a, d’o)

[ VU(a) U(-27 + a)
sin(2) — cos($)  sin(2) + cos(2)

™S

j —jkpcosa _:
""1121(¢’,¢o) = E-/.‘s'(o)e skpe sin (

da

(44)

where u3,; is defined in (40). Equation (44) can be again interpreted as an infinite
sum of spectral plane waves forming an angle o with the bottom face at @, .
The angles in ug, are, of course, defined with respect to the top surface and to
be consistent the spectral waves make an angle of —a with the bottom face at

Q2. Inserting (40) into (44) gives

o . . w
uiy(4,4,) = A S(O)e_’k‘"c‘”“sm(g)sm(g)—\p(_}ra_) )

o vy i
sin(£)Cs, (a
.{Sin( 1 1 . _sin($)Can( ))}

+
%) - cos(%) sin(%) + cos(%) sin(%) + cos(%

-ag[A'{1 = Fyp(kway)} + B'{1 — Fyy(kway)} + C'{1 — Fy,(kwag)}]dex

(45)
where
N 10\ et B
B 6472k, /wp U(m — ¢,)¥ (1 — ¢) 143
1 1 sin(£2)C1a(0)
'{1+sin(%e)'1—sin(%z)+ cos(%) } (46)

Finally, by using the modified Pauli-Clemmow approach, (45) yields
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V2e kv eit gmike [¥(0)]2¥(27)

d
Yalbd) = et VB W ¥ - V()
T A L= By(kwom)} + {1~ Fip(2kw)} +0'{1 = Fy(kway))

[F(kwd,) — Fiy(kway)] %e‘j""
_ { 1 1 sin(22)C2a(0) }

1+ sin(%e) C1- sin(%i).*- cos(22)
1 1 sin(%)Csn(0)
- {1 +sin(%) C1- sin(2) * cos($) }

{2+ Cym(0)} (47)

where z = 0 if the diffraction occurs from @Q; and z = —w[cos(¢) + cos(d,)] if
the diffraction occurs from Q.

Continuing our derivation for the contribution of the mechanisms in figure
24(c). Let us first consider the mechanism which initially diffracts along the top
face of the strip before wrapping around the bottom face. Using reciprocity,
the triple diffraction integral for this case will consist of spectral plane waves
diffracting at @, at an angle o. Thus, they will be forming an angle -a with
respect to the bottom face at Q,. As a result the triple diffraction integral for

this case is

u‘l’n(cﬁ, $) = J /:g@ g ikweosagin gugl(Zw + a,d,)

4m
¥U(a) N U(-27 + @)

| Lin(%) —con(®) " sm(3) + eos($)] "

(48)
where u$; is the doubly diffracted field given in (18) with p = w. Inserting (18)
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and (8)-(11) in (48) gives

d — e—jkwcosasin _Cf sin 2 \I’(a) 2 _ C"m(o)
vin(d,4) = A 5(0) (2) (2)\11(——7r - a) {cosz(%) cos(%) }
’ { 1 N 1 sin(£)Cyn() }
sin() — cos(2)  sin(%) +cos(2)  sin(2) + cos(2)
-as[A{1 — Fyp(kway)} + B{1 — Fiy(kwas)} + C{1 — Fiy(kwas)}]de
(49)
where
A = e~ Tkwg=ike [T(27)]? aas
64m2k,/wp V(7 — ¢,)¥ (7 — @)
g R M S0
1- sin(%—”) 1+ sin(%—") cos(%—")
(50)
and
as = sinz(gzj-) (51)

A subsequent modified Pauli-Clemmow evaluation of (49) yields

uclizl (¢’ ¢o) -

jV/2ei2kwei S g=ike W (0)[¥(2r)]?
64(kr)iw /P Y(T — ) ¥(7 — $)¥(~7)

.%15’_3_‘1%‘?[,4{1 — Fiy(kway)} + B{1 — Fi,(2kw)} + C{1 — Fip(kwas)}]
(B (budy) - By (kwa)] - 7

' {1 - siln(%ﬂ) T1 siln(%e) ¥ Siniz)(?‘;:;(m }

'{1 + slin(%) 1- slin(%)+ m(ﬂ)i‘*)w)}

{2 = Com(0)}. (52)



where z = 0 if the final diffraction occurs at @, as developed above and z =
—w(cos(¢) + cos(@,)] if the final diffraction is at Q,.

Finally, the last set of triple diffraction mechanisms to be considered is shown
in figure 24(d). This situation is, of course, very similar to the pair of mechanisms
in figure 24(c) whose contribution is given by (52). Let us first consider the
mechanism which involves first diffraction along the bottom surface and then
over the top surface. In this case the triple diffraction integral will consist of
spectral plane waves diffracting from @; at an angle of -a with the top surface
if reciprocity is involved. Thus, they will be forming an angle of a with respect

to the top face at @Q;. As a result the triple diffraction integral will be

a, Y(a+ 2m)
2)\11(7r )

(e -28)

' {— sm(%) —cos($) sin(’%) —cos(2)  sin(2) — cos($
ag[A'{1 - Fip(kway)} + B'{1 - Fip(kway)} + C'{1 — Fy, (kwag) }|dex

ulp (4, o) = A/ —kacowsm(g)sm(
1 sin(%)Co,.(a) }
)

(53)
where
et (WOF
64n7k fop U(r — 4 )¥(r—9) © °
. 1 sin($)Cin(0)
. {1 + sin(%) C1- sin(%ﬂ) * cos(%) } (54)

and we have employed the doubly diffracted field u$, given in (40). Evaluating
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(53) via the modified Pauli-Clemmow approach gives

JV/2e"ituei gmiko [¥(0)]>¥(27)

ular($,90) = 64(km)iw /B Y(m— @) ¥(m — $)¥(r)
.a;:‘qf’;r [A'{1 - Fy(kway)} + B'{1 = Fiy(kway)} + C'{1 = Fip(kway)})
[Fip(kway) — Fyp(kway)] - ze~3*

. { 11 4% sin(%2)C2n(0) }
1+sin(%) 1-sin(%) cos(%)
) { 1 1 Sin(g)can(o)}

1 —sin(%) 1+ sin(2) * cos(2)
{2 - Cam(0)} (55)

for the mechanisms in figure 24(d) where z = 0 if the final diffraction occurs at @,
and z = —w[cos(¢) +cos(¢,)] if the final diffraction is at Q,. The transformations
listed in the double diffraction for a strip apply in this situation to recover the

components whose incident field is at @;. They are: ¢, = 7 — ¢, and ¢ — 7 — Q.

4.3 Comments on the Impedance Strip

The diffracted fields given above for the impedance strip are identical [15] to
those derived by employing the half plane diffraction integral given by Senior [5].
The last has, of course, been verified to agree with moment method scattering
data for strip widths down to % in the case of backscattering. However, the
high frequency results generated here by employing the Maliuzhinets impedance
wedge diffraction integral along with the ESRM, have the added advantage of

allowing non-equal impedances on the top and bottom sides of the strip.
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5 Conclusion

The high frequency scattering by impedance double wedge structures using the
Extended Spectral Ray Method was studied and uniform diffraction coefficients
were presented for up to and including the triple diffraction mechanisms. These
were derived in a rigorous manner and include contributions due to surface waves.
Indentities given in this paper were crucial to putting the integrands of the
diffraction terms in forms amenable to asymptotic evaluation via the modified
Pauli-Clemmow method of steepest descents.

The double wedge structures analyzed were divided into two categories. The
first included some special geometries in which the adjacent sides of the com-
mon wedge face did not intersect. Examples of these structures were the thick
impedance half plane and the impedance insert in a full plane. Computations
of the diffracted fields were also presented and were found to agree with corre-
sponding data generated via the Angular Spectrum Method (ASM)-Generalized
Scattering Matrix Formulation (GSMF) and Moment Method approaches. In
particular the thick impedance half plane with a width of 0.01\ compared quite
well with ASM-GSMF data.

The second category of double wedge structures included convex polygonal
cylinders. In this case, an additional third order mechanism was derived to be
used in conjunction with the previous coefficients to characterize the contribution
of all triple diffraction mechanisms. The results from impedance cylinders of
triangular cross section were further examined in order to examplify the necessity

of including higher order mechanisms. The total analytic solution compared quite
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well with moment method data for cylinder sides as small as %.

Finally, for the sake of completeness, the scattering by an impedance strip
was presented. The results compared well with moment method data and with
an alternate ESRM formulation using Senior’s half plane diffraction integral. We
noted, however,that the Maliuzhinets wedge diffraction integral employed with

ESRM gave the additional freedom of having non-equal impedances on each face

of the strip.
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Fig. 1.  Isolated impedance double wedge structure.

Fig. 2. Examples of convex cylindrical polygons.



Fig. 3.  Thick impedance half plane.

Fig. 4. Impedance insert in a full plane.



Fig. 5.  Isolated wedge.
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Fig. 6.  Topology for the integral representation of the diffracted field. {13]
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Fig. 7.  Second order diffraction mechanism.

Fig. 8.  Spectral plane wave with angle —a at @, has an angle a at Q.
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Fig. 9.  Triple order diffraction mechanism at Q,.

Fig. 10.  Triple order diffraction mechanism at Q.
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impedance is n; = C and the width of the strip is 1.6A.
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Fig. 17.  Triple diffraction mechanism involving three vertices.
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Fig. 18. Geometry of triple diffraction mechanism involving three vertices.
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Fig. 19.  (a) Equilateral triangular and (b) square cylinders.
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of incidence ¢, = 1°. The impedance on all faces is
(a) » = 4, 1) in length, and the field consists of single, double,
and triple diffraction mechanism contributions,

(b) n = 4, 1) in length, single diffraction contribution and
(c) n =4, 1) in length, single and double diffraction field
contributions.
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Fig. 23.

Double diffraction mechanisms from a strip.
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Fig. 24, Triple diffraction mechanisms from a strip.



