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ABSTRACT

HIGH FREQUENCY SCATTERING FROM CANONICAL IMPEDANCE
STRUCTURES

High frequency uniform diffraction coefficients for impedance half planes and wedges
are presented which rigorously account for surface wave effects. Similar coefficients for
the resistive and conductive half planes are also presented. A primary concern in this
dissertation is the evaluation of the diffraction associated with multi-edge structures. This
is accomplished by employing the Extended Spectral Ray Method (ESRM) which remains
applicable even in regions where the fields are non ray-optical and where conventional GTD
techniques fail. The resulting integrals are evaluated via the modified Pauli-Clemmow
steepest descent method to yield the diffraction coefficients. Uniform diffraction coefficients
are obtained for impedance, resistive and conductive strips. These include second and third
order interactions in addition to contributions due to possible surface waves in a rigorous
and uniform manner. The diffraction by double wedge structures is then considered. In this
case key identities are introduced which enable the integrals to be evaluated as stated above.
Without them, derivatives of extremely complex functions must be performed. Also highly
accurate approximations for the Maliuzhinets function of the wedge formulation are derived,
applicable to any external wedge angle. Examples of double wedge structures are thick half
planes, inserts in a full plane and convex polygonal cylinders, where the strip is a special

case. Bistatic as well as backscatter patterns are presented for all of the aforementioned

structures. Several comparisons of our results with corresponding moment method data or

other data available in the literature are included with excellent correlation in all cases.
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CHAPTER 1

INTRODUCTION

Interest in diffraction from dielectric and material coated structures has prompted inves-
tigations for deriving uniform diffraction coefficients for geometries composed of canonical
shapes such as half planes and wedges (see figures 1.1 and 1.2) as well as strips, double
wedges and polygonal cylinders in which multi-edge diffractions could be significant.

The non-uniform solution for a wedge with arbitrary face impedances and included
angles was given by Maliuzhinets in 1951 (dissertation) and was published in the English
literature in 1958 [1]. His solution was based upon function theoretic techniques, however,
because of the difficulty in evaluating special functions (henceforth to be referred to as the
Maliuzhinets functions) associated with the resulting expressions, its utility was limited
except for a few wedge angles of which the half plane was not one. Only recently has
a highly accurate analytic approximation been developed for the Maliuzhinets function
associated with the half plane [2| and thus easing the calculation of diffraction patterns and
encouraging the development of the complete analytic solution for the half plane.

In 1952, Senior {3] solved for the diffraction from an impedance half plane using a
Wiener-Hopf approach involving the current spectra. His solution was uniform with respect
to the geometrical optics fields but did not include surface wave contributions. Later, Senior
showed the relationship between his split function and Maliuzhinets’ special function [4]
which is crucial in establishing the equivalence of the two formulations for the case of the
impedance half plane. In any case, both approaches are based on the impedance boundary
condition which is briefly reviewed in Appendix A. However, Senior’s solution has the
particular advantage of being able to decouple the contributions due to electric and magnetic

currents and thus extending our capabilities to study resistive and conductive half planes



Figure 1.1 — Geometry of a half plane

®, is the incidence angle, ¢ is the observation angle and p is the observation distance

?

"0" face

"n" face

Figure 1.2 — Geometry of a wedge

#, is the incidence angle, ¢ is the observation angle, p is the observation distance

and nr is the external wedge angle



and strips. Thus, the diffraction from an impedance half plane may be thought of as the
summation of the diffraction contributions from individual resistive and conductive half
planes.

Senior’s solution for the diffraction by an impedance half plane was uniform at the geo-
metrical optics boundaries. It is therefore of interest to present a uniform formulation which
includes t;he surface wave contributions as well as the geometrical optics ones. Bucci and
Franceschetti [5] studied the conditions under which surface waves may exist for capacitive,
resistive and inductive impedance half planes‘for both E and H polarizations. However,
their solution did not uniformly account for surface wave contributions. Anderson [6], in
1979, presented an analysis of the diffraction by a thin dielectric (resistive) half plane which
included the residue contribution of the surface wave pole but did not perform a uniform
evaluation of the surface wave field. In view of this, chapter II contains the derivation
of a uniform first order diffraction coefficient using a method introduced by Clemmow 7]
(see also Senior [8]) and expounded upon by Volakis and Herman [9]. Backscatter patterns
presented emphasize the importance of surface wave contributions.

The impedance, resistive or conductive strips can be modeled via a superposition of
impedance, resistive and conductive half planes, respectively. Because the impedance strip
is amenable to an analytic solution, Bowman [10], Senior 11, 12, and Tiberio et. al. [13]
have investigated its scattering behavior. In all of these investigations the goal has been
to obtain a high frequency solution for the multiply diffracted fields which can be added
to the first order contribution [1, 3, 13] for predicting the total scattered field by the strip.
However, a rigorous uniform evaluation of the multiply diffracted field in the context of the
Geometrical Theory of Diffraction (GTD) and for all angles of incidence and diffraction is
not yet available.

The difficulty in obtaining a valid solution for the multiply diffracted fields is primarily
due to the non-ray optical behavior of the field which illuminates the second edge after
diffraction from the first. This occurs for incidence angles near edge-on and can be quite
dominant in the backscatter and forward directions. Because of the non-ray optical behavior
of the interacting fields in these situations, the concept of slope diffraction [14, 15] is not

applicable.



Senior [12] presented an approximate higher order solution for the diffraction by a
resistive strip via the introduction of caustic matching functicns drawn from the known
uniform solution [16] for the perfectly conducting strip. However, his result did not include
the effect of the surface wave pole which is significant in the case of strips simulating thin
dielectric layers. Tiberio et. al. [13] developed a valid high frequency solution for the
diffraction by an impedance strip which included the effect of the surface wave pole but
was restricted to edge-on incidence. Their approach in treating the non-ray optical fields
involved the use of the Extended Spectral Ray Method (ESRM) [13, 17] which has been
found quite successful, and its principles will also be employed in our analysis whenever
multi-edge diffraction is involved. The ESRM can be considered as an extension of the
Uniform Geometrical Theory of Diffraction (UTD) [18] and is related to the Spectral Theory
of Diffraction introduced by Rahmat-Samii and Mittra [19, 20, 21]. Chapter III presents
an overview of the ESRM with particular emphasis on the geometrical interpretation of the
spectral rays.

In Chapter iV, the ESRM is employed to find explicit simple expressions for the double
and triple diffraction mechanisms for a resistive strip using the current spectra formulation
given by Senior [3]. It is then shown that the solutions for the conductive and impedance
cases are easily derived from the known resistive case. This is due to the fact that the
electric and magnetic currents are decoupled for a planar topology [22]. Far field bistatic
and backscatter patterns are also presented and compared to moment method data 23]
Example cases where the strip may or may not support surface waves are given.

The more general problem of uniform diffraction from an impedance wedge is developed
in chapter V. Tiberio et. al.[24] presented a uniform solution for an impedance wedge
which included only the geometrical optics fields using a modified Pauli-Clemmow steepest
descent asymptotic approach. In chapter V, a diffraction coefficient which is uniform at
the geometrical optics and surface wave boundaries is derived using the same technique
described in chapter II for the impedance half plane. In this chapter some identities are
also introduced which will be of particular importance when considering the evaluation of
integrals representing the contributions of the multiply diffracted fields. Also, simple and

highly accurate analytic expressions are presented for the special functions which arise in



the Maluizhinets formulation associated with any external wedge angle 25].

Uniform diffraction coefficients up to and including the triple diffraction mechanism
associated with an impedance (isolated) double wedge structure whose, outer faces do not
intersect. are presented in chapter VI using a combination of the ERSM and the Modified
Pauli-Clemmow steepest descent asymptotic evaluation. The contribution of the surface
waves are rigorously included in the solution. Prior work in this area has only been re-
ported for a perfectly conducting double wedge structure where only the contributions of
the primary and double diffraction mechanisms were included [26]. In this chapter we also
demonstrate the versatility associated with the ESRM when evaluating higher order diffrac-
tion coefficients including that for the fourth order mechanism. Examples of bistatic and
backscatter patterns from isolated double wedges such as thick impedance half planes and
impedance inserts in a full plane are presented. Some calculations for the scattering by these
structures have recently appeared in the literature [27, 28] and are therefore of interest for
the purpose of verifying the present solution. Also in our presentation we include examples
of isolated double wedge structures with varying external wedge angles. The solution is
general enough such that each external angle and wedge face impedance may be defined
independently.

In the case of isolated double wedges, all interactions are among two edges. However,
when considering the scattering by a polygonal cylinder, the present solution is extended
to include the contribution of triply diffracted mechanisms which may include up to three
wedge vertices of the polygon. This development is accomplished in chapter VII, where
bistatic and backscatter patterns are also given for triangular and square cylinders. The
selected examples demonstrate the importance of the multiple interactions and as a check
of the validity of the high frequency solution, the results are compared to moment method
data.

A special case of the polygonal cylinder is the impedance strip. Complete uniform
diffraction coefficients are presented up to and including the triple diffraction mechanism.
The advantage of this strip solution to that presented in chapter IV is that the impedance
values of the top and bottom of the strip can be independently assigned.

Chapter VIII of this dissertation is the conclusion along with some recommendations



for future work.



CHAPTER II

DIFFRACTION FROM RESISTIVE, CONDUCTIVE AND IMPEDANCE HALF
PLANES

In this chapter the formulation of the diffraction coefficient from an impedance half
plane is presented. It is based on Senior’s integral formulation [3] for an impedance half

plane in which both top and bottom face impedances are equal. A uniform evaluation of

this integral equation is obtained using a method introduced by Clemmow [7] ( also Senior

[8]) and expounded upon by Volakis and Herman [9] (see Appendix B).

1
The scattering from an impedance half plane may be written in terms of the sum of

electric and magnetic currents which are uncoupled [22]. As a consequence of this fact

3

we can associate the field due to the electric current with a “resistive” half plane and the

magnetic current! with that of a “conductive” half plane.

Formulation

Assuming an E-polarized plane wave normally incident * on an impedance half plane
shown in figure 1.1,

En' — ejk(zcos¢o+ysin¢o) :
z

(2.1)

we find from [3] that an integral representation of the scattered field is

J 1
27 J o cos a4 cos ¢,

= {1q:n\/(1+cosa)(1+cos¢o)}

~K+(a)K+(¢o)e_j""°°S(a_¢)da; yzo

i Although a fictitious quantity, the concept of a magnetic current is a useful analytic tool .
2 Throughout this dissertation an &#%“! time convention is assumed and suppressed.



where C is depicted in figure 2.1, ¢, is the incident angle, ¢ is the observation angle, 7 !

the normalized impedance and K, () is the split function, defined by

3 /2 v ( ”— ~0w,-— 9)
K.(a) = b Egpef¥(F e s }

no 2| vi(3) -
T _ 3_7[ _ _ -
/{(1*\/_cos( ;T9>><1+V@cos<——2 .2a 9))},
{1—00w%2 Im(z) < 4.2
Vr(z) > . 1.05302 \//cos Hz-j(In2)exp {g—;e”} Im(z) > 4.2 (24)

provided Re(z) < T; otherwise, the identities

¥ () = {w—)}a—%j—))

where the asterisk denotes the complex conjugate, must be employed as many times as
necessary until the argument is in suitable form for use in (2.4). The above is a highly ac-
curate approximation of the Maliuzhinets function [1] W, (z) given by Volakis and Senior[2!.
Finally, the variable 6 is related to the normalized impedance by the relation sinf = % for
E-polarization and sin f = n for H-polarization .

In order to perform a uniform asymptotic evaluation of (2.2) it is necessary to consider
the effect of the geometrical optics and surface wave poles as they approach the saddle
point at @ = ¢. Clearly the geometrical optics (g.0.) poles are located at @ = 7 —
¢, and T + ¢,, while the surface wave pole at @ = —8 corresponds to the zero of the
term 1+ v/2cos| (32 — & - §)/2] appearing in the expression for K. (). The object of the
uniform evaluation is to maintain total field continuity for all pattern angles 6. For the
perfectly conducting case (all poles lie on the real axis) a uniform evaluation referred in the
context of UTD(Uniform Theory of Diffraction) [18] involved a modified Pauli-Clemmow
[29] evaluation of the integral by retaining the first non-zero term of the pertinent Maclaurin

series expansion of the integrand. Thus, it is restricted to cases where the pole crosses the

1 It is assumed throughout this dissertation that the real part of n is positive. This corresponds to a passive
material.



Csop

a plane

Figure 2.1 — Topology of the integral representation of the edge diffracted field
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saddle point as ¢ is varied and therefore not applicable to the present situation where a
pole having a complex value may appear.

The approach for evaluating (2.2) follows the one described by Volakis and Herman
9](see Appendix B). It involves first the subtraction and addition (to the integral) of certain
auxiliary functions, each containing one of the singularities of the integrand. The auxiliary
functions can be usually integrated exactly and the residue of the pertinent singularity
1s equal to that obtained with the original integrand. Thus, the new expression can be
subdivided into singular and non-singular parts. The non-singular parts are evaluated
asymptotically in a non-uniform manner while the singular ones correspond to the added
auxiliary functions which are integrated exactly and will therefore be uniform.

Appropriate auxiliary functions for the integral at hand are

Q= QuTT :
Gpi(a, 8) = sec (——;”—) ; 1=1,2,3 (2.5)

which are clearly singular at o = oy, where ap = 7 - ¢,, apy = 7 + ¢0, and apz = -0
correspond to the poles of the integrand in (2.2). Proceeding as discussed above, we can

express the uniform diffracted field by an impedance half plane as

Eg(¢:¢05n) = E;iNU(qs, ¢0; 77) + EgGO(¢; ¢01 ’7) + Egsw((.b.’ ¢0; f]) (26)

In the above, EZ"U denotes the non-uniform diffracted field by the impedance half plane,

EZ50 represents the contribution of the g.o. poles to the diffracted field and ESW denotes

a similar contribution caused by the existence of the surface wave pole. They are given by

5 + -
wu _ 21 g 5_}
EF" =5 b {to(é)sec 5 + t1(¢) sec ;

K, (6)e Tt (2.7)

. fom *
EszO = [.7 \/TC; {"to(apl)K+- (O‘Pl)sec ﬂT

—t1(ap2) K+ (apz) sec %:}
g+
T to(ap) Ks (g1 )4/m Fo[£ 1/ 2kp cos 7]

(o) Ko VTR Blpcos T 95, 29)
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.27 ;*r_‘_qH-B)
. | — se
J\/ kp 2
r— =0 F .1 _ .
T 47 F,[=\/2kp cos ¢Fr+o e ’%e"k"; >0,
| Y<
where
,*’3: :d’i?oo:
-] 1 n
ole) Tom Lsin 2 gip %o B 5] K- (60),
-7 1 n ‘
h(@) =2 |- ———p - 1 K.(50),
1(e) 27"[ tisin%sin%2 2 (90)
-J 1 n}
tg a) =— + = K 05 y
(@) 2 [4sin‘:’2—sm%9 2 +(62)
=) 1 n
i3la) =— | — T K Do),
3() 27‘[ 4sm%sm¢2—° 2 +( O)
K&(ia)
K+ (ia): .‘
‘ sin(52)
\/— [ 3 /o]
Koy(e) =1+ V2cosl(— —a-0)/2] ¢ Ki(a),
and

(e ¢]
F.(x2) = &7 e dr
tz

is the Clemmow [7] transition function satisfying the identity

Fi(-2) = Ve 7567 - Fy(2),

(2.9)

(2.17)

(2.18)

essential for maintaining total field continuity. In (2.17), the minus sign is chosen when

ST

T <arg(z)< 3 , otherwise the positive sign is used. To illustrate how continuity is main-

tained, figure 2.2 shows the position of the surface wave pole in relation to the closed

contour and the corresponding argument of Fp. Contour C is detoured to close the path

of integration in the steepest descents method of integration. This path (steepest descent

path) is described by the Gudermann function and the location where it crosses the real o

axis is determined by the observation angle . When the closed contour C and curve 1 (the
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SDP) captures the surface wave pole, we find in (2.17) that arg(z)> 7 and therefore the
negative sign is chosen. Thus, (2.18) must be invoked to recover the residue contribution of
the surface wave pole. When the pole lies directly on the stecpest descent path (contour 2)
the corresponding phase of the argument of F, is exactly % Finally when the surface wave
pole is not captured by the closed contour (curve 3) the phase of the argument of F, is less
than % requiring the choice of the positive sign in (2.17).

As mentioned above, when the & sign within the transition function changes, we can
apply the identity given by equation (2.18) to recover the residue contributions of the poles.
Such a result is, of course, easily checked by calculating this residue contribution directly
from the integral. Applying (2.18) to the transition functions appearing in (2.8), we find

that the residue contributions of the geometrical poles are

— 4mjty(apr) Ky (orpy) €M 0087 (2.19)

— dmjty(ape) Ko (ap)e®csf (2.20)

In addition, from (2.9) we obtain the surface wave pole residue contribution to be

—0+6,\ _
47"]'to(ap3)K+u(ap3) sec < j¢ ) g ke coslére) y>0 (2‘21)
. - -0 - do —7kp cos(6 —¢)
4ty (aps) Kiu(ops) sec S e y<O0. (2.22)

Clearly (2.21) and (2.22) represent (attenuating) plane waves traveling on the upper or
lower face of the half plane, respectively.

When considering the general class of surface waves, it is important to distinguish
between the contributions due to the residue of the surface wave pole and that due to surface
wave diffraction. The first is generally referred to as the surface wave field. However, even if
the surface wave field is absent (the surface wave pole is not captured by the closed contour),
the diffracted field ( termed surface ray field ) given by (2.9), must still be included for a
complete uniform representation of the total field.

Equations (2.6)-(2.9) give the uniform diffracted field from an impedance half plane
in terms of the Clemmow transition function. We can easily rewrite the result using the

transition function introduced by Kouyoumjian and Pathak [18] in the context of UTD by



123

Surface Wave Continuity
(phase of the argument of F.)

Figure 2.2 — Continuity of the surface wave field and the corresponding argument in the

Clemmow transition function
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employing the relation,
Fgp(2%) = £2j2F o(%2).

(2.23)
The diffracted field can now be expressed as
B' = Dl6,85in) =
= ’ 0; T’ 2
- (224
with
D(6,buin) = D2 (6,05m) + D6, 05m) + D B.60n)
being the uniform diffraction coefficient. From (2.7)-(2.9) and (2.23) we find that
17 l? R + - _ E
DU —; /_;_K-T(c,é) {to(¢)sec ?{)— +41(@) sec %—} PRk (2.26)

+

. |2 (8
Dico _ _ J\//—[ {to(ap1)K+(°‘pl)sec ﬂ? (1 — Fgp|2kpcos*® (%—)])

+ t1(ap2) Ko (aupg ) sec %- <1 ~ Fyp|[2kpcos? (%—)]) } ¢4 (2.27)

Fro+0

)
{ <tg(ap3)sec( —f ; ¢o) + té (apa) sec( - ; ¢0)>

-

, o TP T 6 _iT
: (1 - Fgp E_2kpcos‘(EéT7r+—)}> } 7% yZO (2.28)

, o
D¥EW = _ ]\/—E—hw(apg)sec(

The above diffraction coefficient for the impedance half plane includes the contribution
of both electric and magnetic currents. In order to obtain a corresponding diffraction
coefficient for a resistive half plane, one needs to only keep those terms associated with the
electric currents. This is easily done by retaining the first term of t,(a) in (2.11)-(2.14). If
the second term of t,(a) in (2.11)-(2.14) is retained, we will obtain the diffraction coefficient
corresponding to a conductive half plane which supports magnetic currents only.

For the case of E-polarization a capacitive material will support a surface wave [3].
This corresponds to a negative reactance in the impedance value. In terms of half planes
the impedance and resistive structures can support a surface wave if the following criteria
1s met

0 < Re(d) < |gd(Im(8))], ~Im(8) <0 (2.29)

1

where gd(z) = Cos_l(cosh(z

)sgn(z) is the Gudermann function. Conductive and impedance

half plane may support surface waves if the impedance is inductive and the incident field is
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H-polarized. As expected an inductive impedance has a positive reactance. The criteria in
which surface waves do exist is still given by (2.29). Finally, for the special case in which the
impedance is purely resistive (reactance is zero) the surface wave pole is real and can never
satisfy (2.29). Naturally, this material cannct support a surface wave but the surface ray
field may still be important. This is true for the case of a high resistivity and E-polarization.
When the surface wave pole is real an ambiguity can exist between the surface wave and
geometrical optics poles which could indicate that a double pole exits. In order to avoid
this situation we can use another auxilary function in the present formulation to eliminate

this possibility.

Numerical Results

Six sets of bistatic patterns of echowidth (¢) (per wavelength) versus angle of observa-

tion are presented in figures 2.3 - 2.14 . The echowidth is defined as

o =101 [lim 2r IEJTIZ]
= 10lo 2 3
tls T TR

where E7 is the total scattered field. Each data set consists of an impedance, resistive and
conductive half plane patterns for the normalized impedances n = 0.5 = 55, 0.5 £ 51 and
0.5+ 50.5. In every case an E-polarized wave is normally incident upon the half plane and
observed at a distance of 1.6\ from the edge. In the cases when an inductive material was
used (n = 0.5+ 75, 0.5 + 51 and 0.5 + j0.5) no surface waves existed [5] but surface ray
fields were present, although usually small. This is easily seen by observing that the total
field tends to zero as the observation angle approached the shadowed side of the half plane.
However, when the half plane consisted of a capacitive material (n = 0.5 - 75, 0.5 - j1 and
0.5—-70.5) it may (and did in these examples) support surface waves. The total field on the
shadowed side of the half plane is now quite significant due to the surface wave field. It is
clear from the prior examples that the most significant effects of the surface wave, when it
exists, occur near grazing observations. This is especially important when accounting for
the sources of higher order diffraction mechanisms as will be encountered in the chapter 4.

The magnetic current contribution dominated when the reactance was large as shown

in figures 2.3 and 2.4. As the reactance decreased the electric current became dominant.
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At the same time the strength of the surface wave contribution decreased. This effect is
easily explained by the surface wave pole position in the complex plane moving away from

the SDP and the saddle point.
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Figure 2.3 — Bistatic scattering from an impedance half plane (n = 0.5 + ;5),

E-polarization

Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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Figure 2.4 — Bistatic scattering from a resistive and conductive half planes

(n = 0.5 +55), E-polarization

Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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Figure 2.5 — Bistatic scattering from an impedance half plane (n = 0.5 - 75),

E-polarization

Angle of incidence equals 120°, and observation distance 1.6A.
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Figure 2.6 — Bistatic scattering from a resistive and conductive half planes

(n = 0.5 - 55), E-polarization

Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.



8.
™
1 n=05+j1 E-pol
2 impedance half plane
o o, =120° p=1614
+
gl
(o]

.S0

MAGNITUDE Ez
1.00 1

0.50

P

120.00 180.00  240.00

¢ (degrees)

"
+

r— —

“hoo  60.00 30000  360.00

Figure 2.7 — Bistatic scattering from an impedance half plane (n = 0.5 +j1),
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Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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Figure 2.8 — Bistatic scattering from a resistive and conductive half planes

(n = 0.5+ j1), E-polarization

Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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Figure 2.9 — Bistatic scattering from an impedance half plane (n = 0.5 - j1),
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Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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Pigure 2.10 — Bistatic scattering from a resistive and conductive half planes

(n = 0.5 — 51), E-polarization

Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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Figure 2.11 — Bistatic scattering from an impedance half plane (n = 0.5 + ;0.5),

E-polarization

Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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Figure 2.13 — Bistatic scattering from an impedance half plane (n = 0.5 - ;0.5),
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Pattern of the total electric field due to a plane wave source.

Angle of incidence equals 120°, and observation distance 1.6A.
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CHAPTER III

THE EXTENDED SPECTRAL RAY METHOD

When one considers multiple edge diffraction the usual methods of self-consistent GTD
130] or slope diffraction [14. 15 fail if one edge lies in the transition region of the other. In
this case the field impinging on tke latter edge is non-ray optical. The approach employed to
overcome this major problem is in the use of the Extended Spectral Ray Method (ESRM).
The ESRM is a generalization of the Spectral Theory of Diffraction (STD) introduced
by Rahmat-Samii and Mittra {19, 20, 21]. In accordance with the STD a field can be
represented as an integral or “sum” of spectral plane waves, a formulation discussed by
Clemmow [31]. Tiberio et. al. {13, 17| noted that the integral of the field diffracted by an
edge is of the same form and can be thus interpreted as an infinite sum of inhomogeneous
plane waves which clearly have a ray representation. This interpretation is the basis of the
ESRM and allows the treatment of each of the inhomogeneous plane waves independently
via known procedures.

As an example, when considering double diffractions, the field incident on the second
edge is first written as an integral of inhomogeneous plane waves. Assuming these plane
waves have aslowly varying spatial pattern, the diffraction of each of them at the second edge
amounts to multiplying the integrand by the known plane wave diffraction coefficient after
its analytic continuation in the complex plane. The resulting integral can be subsequently
evaluated via standard asymptotic means. By invoking reciprocity, it will be seen that a
similar procedure can be applied to the computation of higher order diffraction fields.

In order to gain a geometrical interpretation of the ESRM as it relates to our problem,

let us assume a plane wave is incident upon the configuration in figure 3.1. The integral for

29
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the singly diffracted field by the impedance wedge at Q; can then be written as

6,60 = | Fla,6)e e 5.1)

whose asymptotic evaluation for large kp gives
46,6, ~ DI6,6.) = 02
N7 2
In the above ¢, and o are the incidence and observation angles, respectively. Both
are measured with respect to the common wedge face as shown in figure 3.2. In addition,
F is a known spectral function, D is the wedge diffraction coefficient and C denotes the
steepest descent path of the integrand. When the field in (3.1) is incident onto @, then
é = 0 and the integral in (3.1) can now be thought as an infinite sum of inhomogeneous
plane waves propagating towards @». These plane waves form as angle of —a with respect
to the common face at @; and from geometrical considerations we find that they must be
incident at @, with a local angle of @ when measured with respect to the common face at
@. Through analytic continuation it is clear that the diffracted field at @; due tc each
(—ikpa

\/Tih’ where p2 is the far zone observation distance

inhomogeneous plane waves is D(¢2, a)
measured with respect to Qo and ¢ is the observation angle measured with respsct to the
common wedge face at Q. Incorporating this into the diffraction integral in (3.1) gives the
double diffracted field from @ to Q: as

e—jkp e—jkw cos ¢

(6,60) = [ Flas0r.0)e =2 9

\//E
where we have used the relation p; = p + wcos ¢s so that the phase of ugl 1s referenced to
Q:. Note also that the factor e=7%¥<°s2 in the integral simply accounts for the propagation
delay of each of the spectral plane waves incident at Q.

As will be discussed later, the integral in (3.3) is amenable to a uniform asymptotic
evaluation with considers all integrand poles that may be near the integration path. Fur-
thermore, we note that although the ESRM was discussed above in relation to the double
diffraction mechanism, it will be seen that its application is easily extended to higher order

mechanisms.
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Figure 3.1 — Multi-edge ray path on a double wedge.

Figure 3.2 — Local angle notation of a doubly diffracted ray
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The diffraction coefficient D(é2, a) mentioned above can be in a uniform or non-uniform
form. Clearly for far zone diffraction, the simple non-uniform form of D(¢2,a) is sufficient
and applicable to our case. However, for near zone field calculations, the uniform diffraction
coefficient must be employed. This will inevitably require the introduction of Fresnel inte-
grals within the integral of (3.3). As a result the integrand term F(a,¢,)D(¢2,a) may not
be slowly varying and thus requiring a more careful evaluation of the expression for ud than
that considered in this work. It should further be noted that the accuracy of expression
(8.3) for the double diffracted field is directly dependent on the accuracy of D(o2,a) and
its derivatives near the saddle point(s) through the steepest descent path C. Clearly, if the
exact integral representation of D(02,a), as derived from (3.1) and (3.2), is substituted in

(3.3), the resuiting expression for ud, will be exact.



CHAPTER IV

SCATTERING FROM RESISTIVE, CONDUCTIVE AND IMPEDANCE STRIPS

The coefficients for the double and triple diffraction mechanisms are derived in this
chapter for a resistive strip using the Extended Spectral Ray Method described in chapter
III. These terms rigorously acccunt for surface wave interactions which may in some cases be
dominant for various materials. It is of particular interest to try to model a thin dielectric
strip using a resistive strip. Due to the nature of the formulation, once the coefficients for
the resistive strip are known it is easy to solve for the conductive strip since the currents
are uncoupled/22]. As mentioned in chapter I, the resistive (conductive) strip, like the half
plane, is associated with the electric (magnetic) current. As a consequence of this fact the
impedance strip is just the summation of the prior results for the resistive and conductive
cases.

The geometry of a strip is shown in figure 4.1. The incident field is normal to the plane
of the plane of the strip and the impedances on both the top and bottom surfaces are equal.
Throughout this chapter the phase reference is assumed to be at the left edge (Qy).

Numerical results for all three types of strips are presented and compared with moment

method solutions.

Primary Edge Diffraction

Chapter II presented the uniform edge diffraction coefficients for resistive, conductive,
and impedance half planes. However, when one is concerned with plane wave incidence and

far zone observations, the non-uniform solution is sufficient. Evaluating (2.2) non-uniformly

(%)
o



Figure 4.1 — Geometry of a strip
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J /2_71' T 1 .
E* é, =2 /2 JT Jkp cos & {1: L 5)(1 + : }
(¢, ¢0) o \ kp ‘ cos@ +cosd, L MV (1= cosp)(1 + cos o)
: (4.1)
- K. (8) K- (60)e7; y20.

The only new variable introduced in (4.1) was the phase factor r which equals zero for
primary diffraction from @, and —w(cos 0, - cos &) from Q. Note that (4.1) is equivalent
to (2.7).

Equation (4.1) is applicable to impedance strips. Within the braces, the terms not
multiplied by n are associated with a resistive strip while the rest are associated with a

conductive one.

Double Diffraction Mechanism For a Resistive Strip

The second order diffracted field is that which is diffracted from edge Q(Q;) after
diffraction from Q;(Q2). As shown in figure 4.2 there are four mechanisms associated with
this phenomenon. In evaluating their contribution we must also consider the existence of
possible surface waves in addition to the ray field components. A traditional approach
would have been to repeatedly employ the uniform edge diffraction coefficient in (2.7)-(2.9)
or in (2.25)-(2.28) with the incident field being the one diffracted from the previous edge.
However, such a procedure requires that all incident fields be ray-optical , a condition which
is obviously not satisfied when the argument of the transition function is small. For the
second order mechanisms this occurs for near grazing incidence (¢, near 180°). In that case
the second edge will be in the transition region of the first and thus one must resort to an
alternative procedure for evaluating the second order fields.

As discussed earlier, the evaluation of the second order fields will be based on the
principles of the ESRM (Extended Spectral Ray Method). The procedure to be followed is
similar to that employed by Tiberio et. al.[26] for evaluating the second order diffraction
by a perfectly conducting wedge. In short, the incident field to the second edge (4.2)
is interpreted as a sum (integral) of inhomogeneous plane waves. Each one of these plane

waves can then be treated individually. This implies that its far zone contribution to double
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Tigure 4.2 — Double diffraction ray inechanisins of a strip.



(M)
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diffraction can be accounted for by simply multiplying- its spectral strength with the non-
uniform diffraction coefficient using complex angles of incidence. The total doubly diffracted
field is subsequently found by summing (integrating) the contributions of all inhomogeneous
plane waves. However, in the case of the resistive strip, when performing the integration it
is necessary to also consider the effect of the surface wave pole which adds substantially to

the complexity of the problem.

The exact integral representation of the field incident to edge @ after diffraction from
Q1 is given by
-J sin

E =2 — 2 K (a)K.(¢,)e TR cos(®) 4o
T 5(0) COS @ — COS P, (@)K (90)e (4.2)

From (4.2) we have a complex plane wave diffracting from @; at an angle a. Therefore, in
accordance with the ESRM we must have a plane wave incidence at Qs at an angle —a. At
the second edge we may invoke reciprocity and have a plane wave incident at an angle @3
(see figure 4.3) and diffracted at a complex angle —a. By following the ESRM procedure
we automatically prevent the false occurrence of a double surface wave pole in the double

diffraction integrand. Equation (4.2) is evaluated non-uniformly to yield

J 2 iz _. sin(e/2)
=L T Y e (Co) Ko ().
E 27r\/kpeJ e cosa+cosozh+°( a)K-(¢2) (4.3)

The integrand of (4.2) can now be multiplied by (4.3) to give the doubly diffracted field

from edge Q; to @2 and then to the observer. We obtain

V2 eT/4 ik - sinz(%)K+c(a)f\'+c(‘a)

E3 (62, 60) = - : :
1162 ¢0) ar? ko Jso) [cosa + cos g,)[cos & + cos ¢y

' (4.4)
. K+ (¢0)K+ (¢2)e—1kwcosada’

where the integral can be evaluated asymptotically via the steepest descents method (SDP).

Before proceeding to do so, it is convenient to subdivide the integrand to a sum of simpler
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Figure 4.3 — Plane wave field incidence and diffraction at a complex angle —a on edge Q:



components. Straightforward use of trigonometric identities gives

E31(62,60) =

\/‘FK?(éc)KJr((Dg)ej%e"jk”/ 1
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2 ¢ ; v
647 cos % cos 2} v kp

~

. sec(a ~ %
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— sec(
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R

. E_ka cosa g

Each one of the four terms composing the integrand in (4.5) is clearly associated with
three poles located at oy = 7 = 0,. a2 = 7 = d2, and ap,y = —0 (surface wave pole).
Furthermore, we recognize that the first non-vanishing term associated with the SDP evai-
uation of (4.3) is the same for all integrand terms. Thus one needs only to evaluate the
integral for one of the integrand terms and then multiply by 4. Using the results given in

Appendix C we obtain that

d ’/_1_
E3, (02, 00) & =j —

-2 —tkw —gkp |
™ RZ (0)age ™e | 7w
‘ (4.6)

| A{1 - Fgp(kway)} + B{1 - Fgp(kwas)} ~ C{1 - Fgp(kwas)}]

where

a; =2cos’ %3 (4.7)
ap =2cos” o2 (4.8)
2
6
a3 =2sin® - (4.9)
-1
(a2 = a1)(as - 1) 410
-1
B = 4.11
(o1~ a)(es @) 1)
-1
c= (4.12)

(a1 = a3)(az — a3)
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and
Ef\(62,0) = Dy (02,0) < 02
VP
Equation (4.6) is the second term and first non-zero one of the Maclaurin series expansion.
The final result for the doubly diffracted field in (4.6) contains a factor of one-half to account
for the grazing incidence at the second edge.
As a check of this bistatic solution for the double diffraction from a strip, we evaluate

the case corresponding to a perfectly conducting strip (7 — 0). As 7 goes to zero we find

that

ag — o, (4.13)

Ao a =0) =2 (4.14)
and

K- (a) — V2sin(a/2). (4.15)

Substituting these values in (4.6) gives

_4sin £ sin %2— ekwe=ike [ o

ES (00, 00) ~j- __ e {1 = Fuolk
217 (02, 00) =7 3 75 Ve { (2= al){ kp (kway)}
1 1
‘m{l - Fgp(kwas)} - 5{1 - FKP(I”U“IS)}} (4.16)
o sin%sin &2 rkw ik
~j < 2 —— {Fgp(kway) — Fxp(kwap)} (4.17)

2(as — a))rVkw  \Vkp

At edge-on incidence we have ¢, — 7, (a; — 0) and ¢2 — 7 — ¢ (i.e. only two mechanisms

exist), implying,

AN

-3 4 ~kp
jcoss  _n el 20
Ed T—0,7) X et R — Fgp(2kwsin —) 4.18
i ) 27 sin* %v kw V ko ( 2 (416

This is the same second order result as derived by Tiberio et. al. [13] for the perfectly

conducting strip.

Triple Diffraction Mechanisms For a Resistive Strip

As shown in figure 4.4 there are eight third order diffraction mechanisms to be consid-

ered. Four emanate from edge @ and each gives an equal contribution to the diffracted
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field. The other four emanate from edge @- and likewise are of equal strength. Each mech-
anism involves first a diffraction from @(Q2) to @2(@:) and then a subsequent diffraction
from Q1(Q1) to Q1(Q2) and back to the observer ( not necessarily backscattering). In ac-

&

cordance with the ESRM, an integral representation for the triply diffracted field from @,

1s

iy (6.0 = 1 / A Dui(~a,00)Ker(a) K- (6)e <) do
121\9: @y o V’E 5(0) cosa + cos o 21 yPojfrsc + (419)

Equation (4.19) can again be considered as a sum of inhomogeneous plane waves incident
on edge @ at a complex angle -a. In the case of third order diffraction each one of these
must first diffract from @Q; to Qi before returning to the observer (because of reciprocity
the incidence angle is now ¢). Clearly, this scenario corresponds to that of a second order
diffraction with plane wave incidence and far zone diffraction computed in the previous

section. Using the result in (4.6), equation (4.19) becomes,

sin 3 + o, a - ¢, .
* sec —) + sec{ K. (la)K.(o
{43[ (B22) + s 22| Ko ofa)K- (o)

e~ hw—jkw cos(a)

K. (80 K- (~a) K (a = O)as

kv kw
. [(az - al)l(as . a1){1 ~ Fgp(kway)} + o a2)1(as - (12){1 — Fip(kwap)}
1
e Pt

(4.20)

This integral is evaluated via the modified Pauli-Clemmow steepest descents method
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Figure 4.4 — Triple diffraction ray mechanisms of a strip.



(4.21)

to yield
R N \/‘_)_ T - w g ' [ >
Efy(6,90) = uin (6, 00) ~J—6We’3 /e gt (0)aiK-(00)K- (o)
1
[ 1 | 1 .
‘ ' (2 - (11)(03 - (11){1 - FKP(kwal)}T (al - ‘7)((13 - 2){1 - FKP(ka)}
1
+ e ag){l — Fgp(kwas)}
L Fup(kwas) - Fip (bwae)} o
s —o— {Fgplkwas wa
(@ — a0) KP KP 4 7
where
ay =2cos® %

The details of the evaluation are given in Appendix D.

(4.22)

Equation 4.21 includes a multiplicative factor of 4 (for the four diffraction mechanism

per edge) and one fourth to account for the double grazing effect.

As a check of this bistatic third order diffraction term we evaluate it for the perfectly

conducting case as was done for the double diffraction term. Letting n — 0 gives

‘or 6‘737/4 e—jka

, o)
Ef?lpc(‘?’éO) z]\/m on? 1\\/_ ln—sm 5

1 1
| ———{1 - Fgpl(k r ————{1 - Fgp(2k
[(2 — 01){ kp (kwap)}+ (o = 2){ kp(2kw)}
e—jkp
- {Fgp(kwas) — Fxp(kwayq)}
Je13r/4 -52 kws Tosin Z_)
V2(kr)3/ % w(2 - a)
. e~ Tko
- (Fgp(2kw) — Fyp(kwa1))(Fgp(kwas) - Fxp(kwa4))—\7_p— (4.24)
If we further let a; = 0,0, = 7 (edge-on incidence)
J 137/ 4 g= 32k g % , & eIk
1"1pc(¢’ ) 2\/§kwﬂ'3/2 (1 - FKP(2IC1.U cos 5))-\/——_](;_/) (425)
—jerin/e it sin ¢ (ko
v 1 — F ‘)k —_
o/ 2kwn?? (1 = Fip(2kw cos® 2)) 7

(4.23)

(4.26)

which is the same third order term derived by Tiberio et. al. [13] for the perfectly conducting

strip.
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Conductive and Impedance Strips

The double diffraction integral for a resistive strip was given in (4.5). To reformulate this
for the case of an impedance strip we would multiply the integrand in (2.2) by E*(-c, ¢,)
as defined in (4.1) giving

-1 /2x g Iko
d L . 1
E21(‘,D2;@o) = (27{)2 \V/ T}\- (Oo)h_((p2)674 \/_k_b_

1
) 1=y = cosa)(l = coso
v 5(0) COsSa — COS OO{ TN ( Coaa)( c° O)}

1
e {1(2)\ (1 1 — cos oy
s (1 (T~ cosa){T =~ cosoa))

K (o) K. (~a)e 2 g

This parallels the ESRM procedure used for the case of the resistive strip including the
implicit use of reciprocity in the formulation. The integrand is expanded using simple
trigonometric identities to place it in a form amenable to evaluation via the modified Pauli-
Clemmow method of steepest descent. The integral expression for the double diffraction

from an impedance strip becomes
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The terms associated with the electric currents are contained in the first set of brackets
also the second set contains the terms associated with the coupling of the currents. While
the third set of brackets contains the magnetic current contributions for a conductive strip.
The (=) is used to denote the independence of sign choice from the = set depending on
which double diffraction mechanism is analyzed.

One may rigorously show that after evaluation of all double ray mechanisms the coupled
terms will cancel as expected 22|, leaving us with the conclusion that the impedance strip
is just the superposition of resistive and conductive strips.

The evaluations of the double and triple diffraction mechanism for a conductive strip
do not have to be explicitly calculated as in the resistive case. In fact, since the integrand is
written such that a small argument approximation for sin a is invoked, it becomes apparent
that we can obtain the conductive strip coefficient from the resistive case. We find that the

double diffracted fields for the conductive and impedance strips can be written as

2 ‘bo ‘52 . ,
Eglconductive (¢2’ (,Do) - 47]- COS( ?) COS( 7)Eg1 (QQ’ ¢C‘) (4'28)
Egl impedance (é2’ ¢°) = Eglconducﬁue (02 ] ¢0) - Egl (¢2; ¢o) (4.29)

where EY, (92, 0,) is that of the resistive strip given in (4.6).
The triply diffracted field for the conductive and impedance strips can be also related

to that of the resistive strip. Particularly, it can be shown that

J

oS

)Efy1(8,60) (4.28)

(6, %0) + Efy;(9,60) (4.29)

, o
(6,80) = —8n° cos( =) cos(

-

Ed
121 o nductive

Ed c Yy — pd
1211’mpedance (¢’ ¢7o) Eulconduct‘ive

where E%, (6, 9,) is defined in (4.21).

Numerical Results

The sum of the fields due to the first, second and third order diffraction mechanisms was
found to yield a good approximation of the total (bistatic) diffracted field by the resistive
strip. In a series of patterns to be presented, the far zone field will be compared with
corresponding data via the moment method. The goal in these comparisons is not only

to validate the accuracy of the high frequency solution, but to also examine its inherent
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limitations as the strip width becomes small. Also of.interest is the verification that the

resistive strips are capable of simulating thin dielectric layers.

Figures 4.6 to 4.17 present a variety of backscattering patterns for resistive strip widths
ranging from 2\ down to A/8, with four figures corresponding to each strip width. Two
of these four figures refer to the case where 1f] = 2 and the other two to the case of
18] = .25 (see figure 4.5). Clearly, for the last choice of 4, the surface wave pole is near
the saddle point and may also be near one of the geometrical optics poles. Therefore, this
situation corresponds to a more severe testing of the solution. Finally, we recognize that of
the twc figures associated with a specific 16| and resistive strip width, one contains curves
with capacitive impedances and the other with inductive impedances. For the last case, no
surface waves exist and thus all higher order fields are simply due to surface ray diffraction.
However, when the impedance is capacitive. Im(f) > 0, the surface wave pole {-§) may be
captured during the detouring of the C contour to the steepest descent path. When this
occurs the higher order diffracted fields become dominant as can be verified by examining
the corresponding patterns in the 0° tc 20° region. We further verified the continuity of
the solution when the surface wave pole is just crossing the SDP contour. In any case, it is
clear that all backscatter patterns obtained via the high frequency solution are in complete
agreement with the moment method results for all values of 8, and for (resistive) strip

widths down to A/8.

The above examples examined the resistive strip in comparison with moment method
data for various widths and impedance values in great depth since the conductive and
impedance strip solutions are based on the resistive strip evaluation. Being consistent in
the checking of the coefficients, the  values are lvaried but only one set of strip widths (0.5))
are presented for backscatter patterns of conductive and impedance strips in comparison
to moment method data. Figures 4.18 and 4.19 show the backscatter patterns for |#] ~ 2
and |0 ~ 0.25, respectively. While figures 4.20 and 4.21 show the corresponding case for an
impedance strip. In all of the above cases the high frequency solution was in close agreement

with the numerical data.

Next we examine the capability of a resistive strip to accurately model a thin dielectric
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slab. For such a model, the resistivity of the strip is chosen to be

_.7. Zo

k= (4.30)

where 7 is the thickness of the slab and kr must be maintained very small. We selected,

€, = 4(1 — jtané),tan 6 = .1 (loss tangent), 7 = 4’\—0 and a strip width of 5A to correspond
to the strip used in [32] (moment method solution). It is shown in figure 4.22 that the high
frequency solution compared exactly with that given by Richmond 32]. As expected, the
resistive strip corresponding to the dielectric slab will always support a surface wave field
which is seen to be quite deminant for backscatter angles less than 45° .

To further examine the validity of the solution for the smaller strip widths, figure 4.23
presents the edge-on backscatter echo width as a function of the width of the strip(w). The
comparison with the moment method data [32] is excellent.

We now turn our attention to the bistatic case for a resistive strip. Again a series
of patterns are presented in figures 4.24 to 4.39 with ¢, (incidence angle) = 150° or 175°
and strip widths ranging from 2\ down to A/4. Furthermore, the curves on each figure
correspond to various impedance (or #) values which follows the same format discussed
for the backscatter patterns (see figures 4.6 to 4.17). The high frequency solution again
compares very well with the moment method data except near forward scattering when
the strip width is below A/4. This is probably due to the need for additional higher order

terms in the solution and also to errors associated with single precision arithmetic when

performing the subtraction of infinities.
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Figure 4.5 — Path of constant surface wave pole magnitudes (0.25 and 2) in relation to
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Self-Consistent Formulation For a Resistive Strip

Although the surface wave field magnitude attenuates to zero in the far field the multi-
diffracted surface rays do not. In fact, the sum of all the multi-diffracted surface ray fields
can be a significant portion of the total field pattern and can dominate the geometrical optics
multi-diffraction mechanisms. This section extends the “Self-Consistent GTD” technique
introduced by R.C. Rudduck(33! and Nan Wang {30! to include surface ray fields. The
original self-consistent approach accounts for the infinite number of multiple interactions
for geometrical optics diffraction from polygonal cylinders. This concept is used here to
account for the multiple interactions of the surface waves. The main assumptions to be
made are that the surface waves do exist and dominate higher order diffraction. This
approach will, of course, be more valid for wider strips.

We define four equivalent surface wave/ray fields impinging upon the edges of the strip
(figure 4.40). The backscatier field is then defined as the superposition of the primary
diffraction from the edges (figure 4.41) and.that contributed by the surface waves/ray(s)
evaluated via the self-consistent formulation. The equivalent surface waves are formed
by using the reflection and transmission coefficients defined by Maliuzhinets [1] and are
incident at the edges of the strip at the Brewster’s angle (/). By a simple matrix solution

the equivalent surface waves are defined.

1 c -Ct -C- C7 D(0,7 — ¢o,p = w)e ¥

0 1 -C- -C7 Cy| D27, 7 — ¢o,p = w)e I (4.33)
-Ct -C~ 1 0 Cy| D(0,¢,,p = w) J '
-C- -C* 0 1 Cy D(21,0,,p = w)

4
S.W. Contribution = Z C:D(¢,0,,p = oo)eﬂ"i

=1

where r; is the phase factor referred to edge @), D(®,¢,,p) is the uniform edge diffrac-

tion coefficient, and C* and C~ are the reflection and transmission coefficients using the
Brewster’s angle, respectively.

This solution is used to analyze the same 5\ resistive strip which was used in the
previous section (see figure 4.22) and is shown in figure 4.42. As expected, it matches the

moment method results except near edge-on incidence. This is not surprising since this 1s a
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this formulation we can infer from figure 4.42 that from 107 to 40” the pattern is dominated
solely from multiple surface wave diffraction and not from geometrical optics multi-diffracted

fields.
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Figure 4.40 — Lquivalent surface fields on a strip

/_
‘~——w

Figure 4.41 — Primary backscatter edge diffraction from a strip
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Comments

Explicit high frequency expressions were given for the diffraction by a resistive strip.
These included up to third order terms (primary, secondary and tertiary mechanisms) and
compared very well with numerical data. Particularly, our solution was found remarkably
accurate in the backscatter case down to strip widths of A/8 and down to A/2 near the
forward scatter region.

The derivation of the second and third order diffracted fields was based on the prin-
ciples of the Extended Spectral Ray Method (ESRM) and included the surface wave field
effects in a uniform manner. A new uniform first order diffraction coefficient derived in
chapter 2 which remains valid at the surface wave boundary was initially employed in a
self-consistent manner (along with reciprocity) for the diffraction analysis of the strip. The
(expected) failure of this approach then prompted us to consider a rigorous derivation of
the higher order terms via the ERSM, again in conjunction with reciprocity. However, we
have confirmed that when surface waves are supported multiple diffraction of surface rays
may (and did in this case) contribute significantly to the total field pattern. In fact, for
the case anaiyzed here the surface field contributions were dominate in comparison with
multiply diffracted geometrical optics fields.

Finaliy, we used the results for the resistive strip combined with the knowledge that
electric and magnetic current are uncoupled to give the diffraction coefficients for conductive

and impedance strips.



CHAPTER V

DIFFRACTION FROM AN IMPEDANCE WEDGE

The first section of this chapter presents the uniform solution for the diffraction by an
impedance wedge using the same approach employed in the analysis of the impedance half
plane in chapter II. The second section discusses a number of identities which are required
for casting the first order wedge diffraction coefficient in an alternate form. This form of
the diffraction coefficient involves only a single ratio of Maliuzhinets functions and will be

essential in the subsequent chapters for deriving the higher order diffraction terms.

Uniform Evaluaticn

A plane wave

IE{:;} — gik{zces o+ysinéo) (5.1)
1s assumed to be normally incident upon the isolated wedge shown in figure 1.2. From
Maliuzhinets[1] the integral representation of the diffracted field, repeated below, was (here
and in all subsequent references u will represent E, or H,)

s (do )

4 Sm(-n.) / [ \IJ(a +o - (P) ikp cos a

o= - ' &~ da,
1 2nmjU(® - ¢,) Jo cos(a—;¢) — cos( _¢no)

(5.2)

where C is the Sommerfeld contour as shown in figure 5.1, 2® is the external wedge angle
(@ = %), @ 1s the observation angle and &, is the incidence angle. Both ¢ and ¢, are
referenced to the “o” face of the wedge. In addition ¥(a) is the Maliuzhinets meromorphic
function defined as

U(o) = Vola+ @+ 2 — 1" )Wo(a - @ - 5 +07)¥,(a) (5.3)

88
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s Im(a)

C=T"+I"

Cspp = 1'+7t + I‘_,t

Figure 5.1 — Sonumerfeld contour appearing in equation (5.2).
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with

T T
\Iloz\IIQ(a-i-@-§+0+)‘I’®(°“q)+§”0‘) (5.4)

and again

(5.5)

)

PRy

where 7 is the normalized impedance and the % corresponds to the common (“0”) and outer

(“n”) faces of the wedge, respectively.

From [1] Wg is defined as

ol . / / L dudp }
(z)=e . 5
p 180 "1 cos(v — ) (56)

and until recently the evaluation of ¥4 was not available for any arbitrary wedge angle (®).

An alternate expression for the Maliuzhinets function (5.6) is [34]

Vo(z) = exp {‘% /:o scos(;lc(s’i—'lggn;(;@s) ds} (5.7)

and is seen that Wg(2) is an even function of 2. Some additional properties of the function

are cos{@}
Ve (2) = {¥a(5 )Vﬁ/ (5.8)
'-IJQ(—Z) =\D(>(Z), (5.9)
Ve (z") =5 (2), (5.10)

where the asterisk denotes the complex conjugate. From (5.8)-(5.10) we now observe that
the Maliuzhinets function can be determined throughout the entire complex plane from
a knowledge of its behavior in the strip 0 < z < %, y > 0. It is therefore sufficient to
confine our attention to the strip shown in figure 5.2. We will further limit our interest to
3 < @ <, corresponding to exterior wedge angles.

Due to the difficulty in evaluating the previous integral and the lack of accurate approx-
imations for any arbitrary wedge angle the Maliuzhinets results was of limited use. Only
recently have accurate approximations become available by Herman, Volakis and Senior
[25]. For small arguments

Vo (2) m 1 - 2#(57) (5.11)



9

—

N
/

Complex plane
Z=X+jy

Use Egs. (5.8)-(5.10)

NN

Outside Shaded
4 Region
2--/
Z ;
‘ﬂ/Z ‘44 ﬂﬁ /2 n X
24
41

Tigure 5.2 — Strip over which direct computation of W4 (:) is performed



with
§ = 0.04626 + 0.054® — 0.0078%2.

Tz v
Ug(2)  \/cos = exp (7) (5.13)

~ = 2.556343® — 3.259678®% + 1.659306%° — 0.3883548®* + 0.03473964°.

and for large arguments

(5.14)

These approximations yield less than two percent error when the imaginary part of z is
greater than 4 for the large argument and less than 4 for the small argument. If one desires
less than 0.5 percent error the large argument approximation in (5.13) can be used for
imaginary values greater than ten, however, for values less then ten a simple five point

numerical integration will give the desired accuracy

Vg (z) » exp{—%(uﬂv)} (5.15)
where ;
e=03 Z cosh[(0.3n — 0.15)z| cos[(C.3n — 0.15)y] — 1

(0.3n — 0.15) cosh{r(0.3n — 0.15)/2]sinh{2®{0.3n — 0.15)]

n=1

03 gi sinh[(0.3n — 0.15)2] sin|(0.3n — 0.15)y]
T =V,

= (0.3n - 0.15) cosh(r(0.3n - 0.15)/2]sinh[29(0.3n - 0.15)]

The above are clearly Reimann sums of the real and imaginary parts of the integral in (5.7).
All the variables of the Maliuzhinets formulation have been defined and are amenable
to evaluation. Now we are in a position to evaluate (5.2) in a uniform manner using the
approach used previously in chapter II for the case of the impedance half plane (also see
Appendix B).
Identification of the poles is the first task of the evaluation. The geometric poles are
easily identified as the zeros of the trignometric terms in the denominator of (5.2). They

are
o) = ¢ - ¢, (516)
=0+ ¢, (517)

az=-2nt + ¢+, (5.18)
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The surface wave poles are not as easily identified. Using the identity given by Maliuzhinets

. 3 . T(rxz Tz T
Uglz% (20 + =) = £sin (4@ ) e ol -5=9 (5.19)

the surface wave pole is now put in a trigonometric form. For the present case there are
two possible surface wave poles (one for each face) located at
ai=m 8"+ | (5.20)
as=-nmm—-r -0 +¢ (5.21)
In evaluating (5.2) the C contour may be deformed to the steepest descent path Cspp =
S(m) = S(==). In so doing it is clear from (5.16)-(5.21) that the possible poles to be enclosed
by C+ Cspp are aj,as,a3,c4 and as. The pole g corresponds to the incident field while
ag and ag refer to the reflected fields from the “0” and “n” faces of the wedge, respectively.
Finally, the poles a4 and as are associated with the surface wave fields on the “o” and
“n” faces, respectively. Clearly for 0 < ¢,¢, < nr, the poles a; and a4 can only cross
S(), while a3 and e can only cross S(—). Meanwhile o) can cross either S(r) or S(—7).
Furthermore since a2 are real, the crossing occurs through the saddle points whereas
in the case of ays, which are usually complex, the crossing can occur anywhere along the
length of §(£m).

Based on the discussion in the above paragraph the total field can be expressed as

s _pGO | pSW 1 Sin(gng) / ‘I’(a+®_¢) ko cos a
ET =E - E ‘ 2mrj ‘I’(q) - ¢0) S(x)-S(-x) az¢ d)o) ¢ o (522)

cos(=%) - cos( 22

E®0 is the geometrical optics field given by

EGO — gk C05(¢-°"0)u0(7‘. — ¢ - ¢01) _ \I)((I) + o) (ko cos(¢60)

Up\T — b — ¢o
v@- o) e
(5.23)
(=3P + B5) .k cos( -
_ J p cos(—2nm+9+do) (7 = 207 + 6 + &,
where u(z) is the unit step function and E5" is the surface wave field given by
inf %o
ESW _ oy — a5> sin(%2)
2csc< o 53 - 5
\I’+ a4+ - ¢ ko co |
|89 ot - ane+ o ssnlen) 5.24
cos( =) — cos 22
‘Il+(a5 +®-9)

(ko cos ag to(m + aps — gd(|ass|)sgn(ars))

cos(%n;‘z) — cos %‘3
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with gd(z) is the Gudermann function and ag;, o the real and imaginary parts of the poles

as defined above.

The SDP integral in (5.22) corresponds to the diffracted field by the impedance wedge
whose uniform evaluation requires a consideration of all poles a; through aj which may
be near the SDP path. In the next section we present an alternate uniform evaluation of
the diffraction integral to account for the discontinuities of the surface wave boundaries
associated with ES" as well as those real boundaries associated with E¢C. The method
described in Appendix B which was used for the impedance half plane is to be used here

by considering each pole individually.

Formulation

In accordance with the formulation in Appendix B the diffracted field in (5.22) can be

expressed as

E'(é , ) D( é )e‘jkp 1 sin Qng {/ K ( ¢) —jkpcns(r—a)da
0,90) = 0,00 —- = T " «, €
Vi 2y (@ = o) Uspy
+ Y Ap/ sec (a____— it 2 W) g~ Tko cos(m —a) gy
p=1,2,4 S(r) 2 (5.25)
_ / KB(a,é)e-jk’J cos(m+a) da
§(-r)
_ Z Bp/ sec (a oyt 7r> ¢~ kv cos(r+a) da}
=135 S( —7!') 2
where K4 p(a,¢) are non-singular functions
‘ Y(a+ P - d) a-a,—Tm
Ka(a,0) = ~ - Apsec(——F—) (5.26)
cos(%—é) - cos(‘%) pﬂ%,'! 2
V(a+®-9) a—ay+m
Kp(a,¢) = po — — Z B, sec(——zp——) (5.27)
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Evaluating the integrals in (5.25) gives

1 sin @ 27r

; I _‘.7
Do~ prgm=ag\ 1°

~ {(KA(n,as) ~ Kp(-7,4))

{Z A, \/mcos )

oo cos p
Frpl£(~/2kp cos 32)? 1
pot35 cos £ Kp
where
nU(® -0
Alzg ( e ) Pg,.-(al—ﬂ')
<« sin T
__n9(®+¢
Ay = T éno P2r(a2 - )
esc(242%)
Ag=n - _In VT (ay+P— @) Por(Re{ay} —7)
cos(a——4n¢) - cos‘% rl
By =-A1-{1- Pyr(a; —m)}
_ n‘p(—3®+¢o) :
B; = 5—:}—&0—‘ : PZr(Gs +7)
ag-ag
csc
Bs ( 2n ) ‘Il+(as—l-<I’—¢)-P2,,(Re{a5}+7r)

%o

cos(ﬁ%‘b-) —cos &

and Py is the unit rect function (27 wide).

Numerical Results

(5.28)

(5.31)
(5.32)

(5.33)

(5.34)

Figures 5.3 to 5.6 show the bistatic patterns for a series of external wedge angles. The

incidence angle is 30°, observation distance is 1.6\, and the impedance on both faces of the

wedge are equal. In figures 5.3 and 5.5 the material is inductive (n = 0.5+ 55, 0.5+;1) and

does not support surface waves which is evident since the field tends toward zero on the

“n” face. However, the material for figures 5.4 and 5.6 is capacitive (n = 0.5 -5, 0.5 — j1)

and does support surface waves. In this situation the surface wave contribution becomes

stronger as the wedge approaches a full plane and as the reactance decreases the surface

wave contribution decreases since the material is less capacitive.
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Non-Uniform Evaluation

In chapters VI and VII the ERSM will be used to compute multi-edge diffraction from
impedance double wedge structures. Using this procedure a non-uniform first order coeffi-
cient is required in which a simple steepest descent approach can be utilized; however, the
form of the result must be in the proper form to facilitate calculations for muiti-diffraction

mechanisms. The primary diffraction integral is

. i de
d _J Sin n —kp cos a
u$(8,6o) ——m/‘: ek

SDP
. 3.35
| WlatT+®-9) - Y(a-1+2-9) }
cos(@) - cos(%") cos(@) - cos(%")

where Cspp is the steepest descent path (see figure 5.1) obtained after the deformation of
the Sommerfeld contour.

Equation (5.35) can be rewritten in a form whose utility will be essential when consid-
ering the evaluation of the double diffraction integral having a vanishing integrand at the

saddle point. Such a form is obtained by introducing the identity

Y(a+ 2 —7) = Cla,67,67,n)¥(a + %’5 '

Y

-+
5
~—
—_
(42}
w
[=2)
~—

where

« fa—r+bT

) sin( a—t? ) cos( =T cos( 23t

Sin )
C=Cla,8%,0™,n) = 2\ I _ ) | T ). .
T (S (55 con( 25 cos( ) 2

When (5.36) is substituted in (5.35) we obtain

2rn

fos)= |
1 1

. {cos(%) - cog(c‘;) Cos(f—néo) _ COS(a-;)

sin(¢—:)Con(a -9) }da.
)

5.38
cos(”——"”f‘») - cos(‘% (5-38)
In the above, we also made use of the relations
C=1+(C-1
+(C-1), (5.39)

+ 0 V1 =an(S e R
Cla,87,07,n) l—sm(n)Co(a,ﬁ .8 ,n)—sm(n)Co,,(a), (5.40)
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= -25{sin(ﬁ) —sin( %) — 2sin() cos(2) + Sin(r__;&i) + sin( %)}

Con(a e - ~ (5.41)
o sin(25= “)sin("‘;i‘ )cos(‘””;;‘q )cos(“éi )
and
sin( £2) sin(%)
cos(2EZ) — cos(22)  cos(2T) — cos(£2) (5.42)
5.42

sin(%){cos(r?o; —cos(2)  cos(Z ‘f")l— cos( ) }

-

The first order asymptotic evaluation of (5.35) corresponds to the diffracted field from

an isolated wedge whose non-uniform form (valid in the far zone) is

T Bk [ V(r+F -0) W(—H';—"—w}
U ! mr — o 4o
io.0 -'”l\/ kP ("F — @) cos(=2) — cos(%2)  cos(=2) - cos(d%)
(5.43a)
or from (5.7)

uf(6,92) = L /—0_ e ¢Ig °1n(é)q}(_¢ +_T¢T ™)

(5.43b)

1 1 sin(22) Con(-¢)
)

‘ {cos(’—r—ff—o) cos(2) - cos(T=22) - cos(2) - cos(TX2) — cos(

3o

Since we are primarily concerned with far field patterns, a uniform primary diffraction
coefficient is not required. If we were, however, interested in such a coefficient, then the
approach discussed in the previous section of this chapter will be directly applicable for its

derivation. Note that (5.43a) can be directly obtained from (5.28) by simply letting p — co.



CHAPTER VI

ISOLATED IMPEDANCE DOUBLE WEDGE STRUCTURES

Interest in diffraction from material coated structures has prompted the investigation
of geometries such as those of impedance strips, thick half planes, inserts in a full plane
and convex polygonal cylinders. All of the above structures have a generic double wedge
structure in which one face is common to both wedges.

The geometry of the isolated double wedge having external wedge angles of nr at Q
and mn at @ is shown in figure 6.1. In this chapter only the interactions between the edges
at @1 and @2 will be considered since the outer faces do not intersect. This restriction
will be removed in chapter VII. The resulting solution will therefore be directly applicable
to geometries such as the thick impedance half plane and impedance insert. Up to triple
diffraction mechanisms will be included in the solution, and it will be seen that these are
sufficient to accurately evaluate the scattering by double wedges having a common face of
width as small as %. The primary diffraction mechanism was presented in chapter V.

Throughout our analysis @ will be our phase reference point and all local angles will
be measured With respect to the common (“0”) wedge face. In addition, ng, n; and 74 will
denote the normalized impedances of the common face, the outer (“n”) face at Q; and the
outer (“n”) face at Q. respectively.

Prior work in this area has been for the case of a perfectly conducting double wedge
configuration which included only the primary and doubly diffracted mechanisms [26]. In
this chapter we will present uniform diffraction coefficients up to and including third order

mechanisms associated with the impedance double wedge and in which the contribution

of the surface waves are rigorously included. The coefficients for the double and triple
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Figure 6.1 - Isolated double wedge geometry
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diffraction mechanisms are derived by using the Extended Spectral Ray Method and thus
remain valid even when one edge lies in the transition region of another. This method was
described in chapter III. Of particular importance in this derivation is the use of (5.43b)
for the purpose of simplifying the Maclaurin series expansion associated with the modified
Pauli-Clemmow steepest descent asymptotic evaluation of the integrals similar to the pro-
cedure in chapter IV. Without these, the evaluation of the derivatives of rather complex
functions would be required.

Some calculations for the scattering by thick perfectly conducting and impedance half
planes have recently appeared in the literature [27,28], and are therefore of interest for the
purpose of verifying our solution.

Most other high frequency techniques become extremely unmanageable beyond the
triple diffraction mechanism; therefore, we conclude this chapter with the derivation of the

quadruple diffraction ray mechanism in order to demonstrate the versatility and relative

ease to extend our high frequency solution via use of the ESRM.

Double Diffraction Mechanism

Starting with the geometry in figure 6.2, we will explicitly derive the bistatic second
order mechanism from @; to @2 via the ESRM. The integrand of (5.38) may be considered
as an infinite sum of complex plane waves which are launched from @, at an angle —a. A
simple geometrical argument now shows that plane waves forming a local angle —a at Q;
will form a local angle a at @, as demonstrated in figure 6.2. Thus, the complex plane
wave launched from @ at an angle —a will be incident at Q- at an angle a. Clearly, the
diffracted field from @, due to a plane wave incident at an angle o and diffracting at an

angle ¢ is (see (5.43b))

1 27 _ _ a ¥(-a+ %+ )
Jkp Jkw cos a =
ul(a, ¢9) = 5 Icp oF e si m (= 4y)
(6.1)
. { ! _ 1 o _sin(52)Com(-0) }
cos(’iimﬂ) ~ cos( ) cos(%z) — cos( %) cos(%—) - cos(%&)

after invoking reciprocity and when its phase is referenced to Q. In this case w is the width

of the common wedge face.
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VAN

Figure 6.2 — Double diffraction mechanism from an isolated double wedge structure



106

In accordance with the above argument, the basic integral representing the far zone
doubly diffracted field from @; to Q: is obtained by multiplying the integrand of (5.38) by

(6.1) to give

-1 lor . .
d (. =~ ik g7
u21(¢2,¢u) 47r2mn\/ kpe ‘I’(%—d’o)‘l’(m—;‘ " %2)

/ e‘jkw°°5“sin(g)sin(3)¢(a + 2y U (-a +
5(0) n

m 2 2

s(“f") —cos(2) cos(® %) cos(2)  cos(=%) - cos( 22
1 1 sin( %) Com(—a)
{COS(—:ﬂ) —cos(Z)  cos( ‘:’2) — cos(Z) cos(T£2) - cos(%:)}

The first term of the asymptotic expansion of this integral about the saddle point is zero.
Therefore, we must employ a higher order expansion to obtain a non-zero approximation
of the integral. As a result, higher order integrand derivatives must be computed. Such a
computation is rather simple for the integrand in (6.2) because of the appearance of the
product of sines. Clearly, this is the primary reason for preferring (5.38) and (5.43b) over
(5.35) and (5.43a).

Equation (6.2) is in a form suitable for a uniform evaluation via the modified Pauli-
Clemmow approach. It is further of importance tc note that such an evaluation must
account for the presence of the geometrical optics poles as well as the surface wave pole(s).

Details of the evaluation are similar to those for the case of the resistive strip given in

Appendix C. We find that the doubly diffracted field from Q; to @, is

u‘gl (¢21 ¢0) =

e W (T )
mk(mn)® Vw o (T - ¢,)¥ (T — ¢62)
- aya203[A{1 — Fgp(kway)} + B{1 - Fxp(kwas)} + C{1 — Fxp(kwas)}]

. { 1 1 sin( 22) Con(0) )}

— _ ( n
cos(T) — cos(

-¢ +¢ ¢
1-cos(%572) 1 - cos(™=22) £e
. { 1 ~ 1 . sin(%)Com(O) }e‘j"'
1- cos(%) 1- cos(%z) cos(Z) - cos(qin) 2

(6.3)
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where

a; =2cos’ %2 (6.4)
2 =2cos” 072 (6.5)
a3 =2sin’ g (6 of common face) (6.6)

-1
A= 6.7
(o2~ ar)(es o) 67

-1
B= 6.8
(o1~ aa)las — o) 69

-1
C= (6.9)

(a1 = as)(a2 — a3)

where Fgp is the UTD transition function discussed in chapter II. By using the Clemmow
identity (2.18) in uf, we can automatically account for the contribution of the surface wave
fields in the formulation. Furthermore, in (6.3) r = —wcos ¢ and a factor of one half was
also included to account for grazing on the common wedge face.

Equation (6.3) represents the coefficient for the doubly diffracted field when the incident
wave impinges first upon @Q; and then diffracts to @,. If we were concerned with the
reciprocal diffraction mechanism from Q; to @i, (6.3) is still valid provided the following

substitutions are made : r — —wcos¢,, do — T — @,. @3 > T — by, m — n, and n — m.

Triple Diffraction Mechanism (two vertices)

The ray geometry of the triple diffraction mechanisms to be considered in this section
is shown in figure 6.3.
In accordance with ESRM, an integral representation for the triply diffracted field from

@, to @2 and back to Q is
‘ —jkweosa . (&
u"li21(¢1 ¢o) = / € i sm(_)ugl(a;d’o)
§(0) n

~ 27n
'{COS( 1 _ 1 (%) Conl(@) )}da

+¢ —¢ r— é
T22) — cos(2) cos(=F) = cos(2)  cos(T=2) - cos(Z

(6.10)
where ud, (a, 8,) is the doubly diffracted field incident at @ and is given in (6.3) with p = w.
We also note that in deriving (6.10), reciprocity was invoked for the final diffraction at @

toward the far zone point. Therefore, the integrand of (6.10) can again be interpreted as
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Figure 6.4 — Spectral plane wave with angle —a at @, has an angle a at Q.
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an infinite sum of complex plane waves incident (diffracted) at Q; making a local angle of
—a with the common face and diffracted (incident) at a local angle ¢. We note that this
choice of Ta is consistent with our geometrical interpretation illustrated in figure 6.4.

Replacing u¢, in (6.10) by (6.3) (without the 0.5 grazing factor) gives
a Yo+ F +m)

; —Jkw cos o
ufa1 (6, 60) =A /5(0) ek sin(— )sm(m)—w—

n T—C!

' { -2sin T N Com(0) }
11— cos(==2)I[1 - cos( =2)]  cos(%) — cos()

. { 1 B 1 _ sin(£) Con(a) | }
cos(=2) — cos(2) cos(”;nd’) —cos(2)  cos(EZ2) - cos(2)
a2{A{1 — Fgp(kwa;)} — B{1 — Fxp(kwas)} + C{1 — Fxp(kwas)}|da
(6.11)

where _ '
e~ Tkw o —3kp q;(

~2n%k(mn)ny/up VU (
{ 1 1 _sin(%2) Con(0) }

LS
é a)as
2

(6.12)

1-cos(T522) 1 - cos(™222)  cos(Z) - cos(22)

Equation (6.11) must now be uniformly evaluated via the modified Pauli-Clemmow ethod
of steepest descents while accounting for the presence of the surface wave and geometrical
optics poles. The details of this procedure are similar to those of the resistive strip given

in Appendix D and the result is
]2\/—6 ]2’“"67 L ‘112( +m) (5 + )

Uiy (4,60) = (kyr)fw(nm) n VP V(T — )Y (F - 0)¥(F)
. :;{E%‘:: [A{1 = Fxp(kway)} + B{1 - Fxp(kway)} + C{1 — Fxp(kwas)}]

- [Fgp(kwas) — Fgp(kwayg)] - e

(6.13)
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where a factor of 41 was included to account for grazing on the common wedge face and

ay = 2cosz(§).

Also the value of r is zero when referring to the case of triple diffraction emanating from
Q1, as discussed above.

When considering the contribution of the triply diffracted field emanating from Q- as
shown in figure 6.5 , (6.13) is still valid provided ‘the transformations ¢, = 7—d,, ¢ — 17—,

m — n, and n — m are made in addition to setting r = —wjcos & +~ cos @,).

General Double Wedge Applications

The thick half plane and the impedance insert in a full plane, shown in figures 6.6 and
6.7, are two examples of double wedge structures whose outer wedge faces do not intersect.

The thick impedance half plane is composed of a double wedge structure in which both
wedges have an external angle of 1.57.

Figures 6.8 and 6.9 present backscatter patterns for the thick perfectly conducting half
plane for both E and H incidences, respectively. The thickness of the half plane is varied
from 0.95A down to 0.01A and in all cases we find that the patterns are nearly identical
to those presented in {27] where the Angular Spectrum Method (ASM) along with the
Generaiized Scattering Matrix Formulation (GSMF) was employed. We note that even for
a thickness of 0.01) the two approaches give nearly identical results and particularly for the
H-incidence where the contribution of the multiply diffracted fields is significant. Bistatic
patterns for the perfectly conducting thick half plane are shown in figures 6.10 and 6.11,
again for both polarizations and a similar set of thicknesses as before. The agreement with
the ASM-GSMF still holds remarkably well.

Figures 6.12 to 6.15 presents backscatter patterns from a thick impedance half plane
with E-incidence for n(= n, = n; = n3) = .25, 4, 2+ ;2 and 2 - 52, respectively and for
various thicknesses ranging from 0.01A to 0.4)\. Again, all patterns corresponding to the first
three impedances are in agreement with those computed via the ASM-GSMF (28] except
for some differences corresponding to the case of n = 0.25. We remark that this discrepancy

1s probably due to the inherent approximation associated with the solution given in [28].
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Figure 6.5 — Triple diffraction mechanism from an isolated double wedge structure at Q.
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Figure 6.6 — Thick half plane geometry

Figure 6.7 — Impedance insert in a fuil plane geometry
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Finally, we note that although all face impedances in the above examples were kept the
same, our formulation can certainly account for any arbitrary set of face impedances.

The impedance insert in a full plane is a special case of a double wedge configuration
composed of two wedges each having external angles of 2& = r. Just like the thick half plane
above, each face of the impedance insert configuration can be defined separately. However,
for the examples to be presented, the outer sides of the insert will have equal impedance
values. Figure 6.16 shows a bistatic pattern for an impedance insert in a ground plane with
H-incidence. The impedance insert width was 1.6\ and the source was located just over
the surface of the ground plane (¢, = 1°). The normalized impedances of the insert were
—7.25,7.25, and .25 and the results compare favorably with the moment method solution
as well as a similar high frequency solution given in [35].

Figures 6.17 and 6.18 present the effects of varying the outer side impedances while
holding the insert impedance constant (n, = 2—751). In each case three E-incidence patterns
are given corresponding to n; = n2 = 0.001, 10, and 1000. We should note, of course, that
the same patterns will correspond to H-incidence but with n; = n, = 1000, 0.1, and 0.001,
respectively. The backscatter patterns shown for insert widths of 1\ and 0.5X reveal that the
surface wave interactions are noticeable at grazing aspects for the H-incidence particularly
when the outer faces are perfectly conducting (n; = n2 = 0.001). A similar observation also

holds for the bistatic patterns given in figures 6.19 and 6.20 with incidence at 45°.
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Figure 6.8 — Backscatter fromn a perfectly conducting thick half plane. E-polarization

Half plane widths are 0.01A. 0.05A 0.1A. 0.25A. 0.45A and 0.75A
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Figure 6.9 — Backscatter from a perfectly conducting thick half plane. H-polarization

Half plane widths are 0.01A. 0.05A 0.1A. 0.25A. 0.45X, 0.75A and 0.95A
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Figure 6.10 — Bistatic pattern from a perfectly conducting thick half plane.

E-polarization. with an angle of incidence o, = 60*

Half plane widths are 0.01A. 0.05A 0.25A. 0.45A. 0.75A, and 0.95A



Echo Widith / wavelength (dB)

Angie (cegrees)

Figure 6.11 — Bistatic pattern from a perfectly conducting thick half plane.

H-polarization. with an angle of incidence o.. = 60*

Half plane widths are 0.01A. 0.05A 0.25A. 0.45A. 0.75A. and 0.95A



118

Echo Width / wavelength (dB)

Oy
+

&1
T

o)

N4

S — ' ' R ' " ‘ 4
270 240 210 180 150 120 33

Argle (aqegrees)

Figure 6.12 — Backscatter from a thick impedance half plane. E-polarization. with

normalized impedance n = 0.25,

Half plane widths are 0.01A. 0.1A 0.2X. 0.3A. and 0.4\
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Figure 6.13 — Backscatter from a thick impedance half plane, E-polarization, with

normalized impedance n = 4.

Half plane widths are 0.01A, 0.1 0.2X, 0.3), and 0.4A
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Figwre 6.14 — Backscatter fram a thick impedance half plane, E-polarisation, with
normalized impedance n = 2 + ;2.

Half plane widths are 0.01A, 0.1A 0.2X, 0.3X, and 0.4A
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Figure 6.15 — Backscatter from a thick impedance half plane, E-polarization. with

normalized impedance n =2 - ;2.

Half plane widths are 0.01A, 0.1X 0.2X, 0.3X, and 0.4\
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Tigure 6.16 — Bistatic pattern from an impedance insert. H-polarization. with an-angle

of incidence o, = 1.

The insert impedances are ., = —;0.25. n. = j0.25 and n, = 0.25.

The outer impedance is 7 = 0 and the width of the insert is 1.6A
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Figure 6.17 -— Backscatter from an impedance insert. E-pol. Insert Impedance is constant

at 7., = 2 — j1. Insert width is 0.5\

The outer impedances are n; = 1000. n; = 10 and n; = 0.001.
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Figure 6.18 — Backscatter from an impedance insert. E-pol. Insert Impedance is constant

at 7, = 2 - j1. Insert width is 1A

The outer impedances are 7, = 1000. n; = 10 and n; = 0.001.
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Figure 6.19 — Bistatic pattern from an impedance sert. E-pol. Insert Impedance is

constant at 7, = 2 - jl.o. = 45", Insert width is 0.5A.

The outer impedances are n; = 1000. n; = 10 and n, = 0.001.
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Figure 6.20 — Bistatic pattern from an inpedance insert. E-pol. Insert Impedance is

constant at 1. = 2 - jl. o, = 453 . Insert width is [A.

The outer impedances are n; = 1000, 7, = 10 and n; = 0.001.



127

Using the approximate but simple formulas for the Maliuzhinets function given in chap-
ter V, a final set of curves is presented next. These depict the scattering by the double
wedge configuration in figure 6.1 as a function of the external wedge angles at Q; and
Q. Particularly, figures 6.21 and 6.22 presents three backscatter curves corresponding to
n=m= 15,125 and 1. Results for both E and H (E incidence with inverse impedance)
incidences are included where the common face impedance is n, = 0.5 — 70.25 and the other
outer face impedances are perfectly conducting. Bistatic curves for E and H incidences are
ziven in figures 6.23 and 6.24 for a double wedge having a uniform impedance of n = 0.25.
It 1s noted that the chosen incidence angle of ¢, = 1.3 degrees is near grazing and therefore
this situation corresponds to a more severe testing of the uniformity (and validity) of our

results near the forward scattering region.
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Figure 6.21 — Backscatter from an impedance double wedge with varying external angles

(m = n). E-polarization

The common face has an impedance of 7, = 0.5 - j0.25 and width of 0.5\.

The outer face impedances are perfectly conducting.
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Figure 6.22 — Backscatter from an impedance double wedge with varying external angles

(m = n). H-polarization

The common face has an impedance of . = 0.5 = j0.25 and width of 0.5,

The outer face impedances are perfectly conducting.
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Figure 6.23 — Bistatic pattern from an impedance double wedge with varying external

2
)

angles (m = n). E-polarization. 0. = 1.

All faces have an impedance of n, = 0.25 and the common face has a width of 0.5A.



10.00

0.00

-10.00

-
+

-20.00

-30.00

Echo Width / wavelength (dB)

e

150,00 210,00 27000

S
ANGLE (DEGREES)

T

~40.00

Figure 6.24 — DBistatic pattern from an impedance double wedge with varying external

LY
¥

angles (m = n). H-polarization. o = 1.

All faces have an impedance of n, = 0.25 and the common face has a width of 0.5A.
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Higher Diffraction Mechanisms Using The ESRM

This section derives the quadruple diffraction mechanism for the isolated double wedge
shown in figure 6.25. The purpose of going through this exercise is to show that it is easy to
keep invoking the triple mechanism calculation described in Appendix D combined with the
prior order coefficient to get the next higher order term. Most analytic approaches become
unmanageable beyond the third order. The derived diffraction coefficients via the ESRM
are easy to derive but long which is of no consequence with the use of computers.

The incident field impinges on Q) and the diffracted field emanates from Q- in this
analysis. Using the same approach as the triple order ESRM evaluation we can write the

quadruple integral equation as

d _J —kweosa - @ 4 V(o + 2 + 1)
uv (02,00} = 2rm /S(o) e sin ‘n;"m(a;%) T 51
1 1
cos (:,¢._,> — cos (%) cos <—-ﬁr::°) - cos (%) (6.14)

where uf,; was defined in (6.13). The evaluation of (6.14) using the modified Pauli-
Clemmow steepest descent evaluation is similar to that described in Appendix D. For triple
and higher order mechanisms, only the observation geometrical optics pole and the surface

wave pole have to be accounted for.



Figure 6.25 — Quadruple diffraction ray mechanism of an isolated double wedge



After repeating the ESRM process the quadruple mechanism is

u;iV (¢21¢0) =

B W W ) )
(V2 [ v IO F IV - an)¥(F
alagae eIk

(a3 — a4)(a3 — ag) 8
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1 ~ 1 _ sin 22 Con(0) (6.15)
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1 1 sin %Com(O) 1
1 - cos <r—:>1> 1 - cos <%2) cosfm—~cos%%J

[ 2sinZ  Com(0) }
1[1—(:05%]2 l-cosZ

[ 2sin 2 Cuu(0) )

'Ul—cosﬁ]QTl—cos";f

where 5
2 @o
a; = 2cos oX

a2 = ag = 2,

YA
a3 = 2sin 7

— 2?3

as = 2cos 5

and r is the same phase factor as for the double diffraction case. All other variables have
been defined in (6.13). The change in coefficient form from the double to triple diffraction
is repeated (as expected) for the change in form from the triple to quadruple diffraction.
This pattern is repeated for higher order mechanisms .

By including this coefficient in the isolated double wedge formulation cne can easily

check if the first three diffraction ray mechanisms are sufficient to account for all scattering

effects.



CHAPTER VII

CONVEX CYLINDRICAL POLYGONS

In this chapter we remove the restriction requiring the outer sides of the double wedge
not to intersect. Now the range of the external wedge angles (2®) can be such that 1 <
m < 2,1 < n < 2 and thus we can consider the scattering by any polygon whose adjacent
sides form a convex shape. The strip is a special case of a polygon whose adjacent sides
have zero included angles, and fits in the general framework of this analysis. Its scattered
field is given later.

We will consider the far-zone scattered field by a polygon to include the contribution of
all primary, double, and triple diffraction mechanisms. The primary and double diffraction
mechanisms are the same as discussed in the previous chapter provided all parameters of
the given expressions are applied to the local geometry of each wedge and double wedge
forming the polygon. However, the contribution of the triply diffracted fields will include
not only that caused by the interaction of two wedge vertices as discussed earlier, but also
that due to interactions involving three wedge vertices as illustrated in figure 7.1. These last
mechanisms have not yet been considered and thus expressions for their contribution are
developed in the next section. The procedure used is, of course, parallel to that employed

for the evaluation of the triply diffracted field associated with two wedge vertices.

Triple Diffraction Mechanism (three vertices)

This triple diffraction ray path is shown in figure 7.1. An incident wave on Q, generates
spectral waves diffracting at an angle —a and propagating toward Q,.;. Using the same

logic as in the double diffraction analysis we can invoke reciprocity and have an incident
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wave impinge upon Q1 and diffracted at a local angle a. The field diffracted at Q,.1 is, of
course, the doubly diffracted field given in (6.3) . After diffraction from Q,+; a spectral wave
may now propagate towards and diffract at Q. before returning to the observer. Since we
are concerned with the far field we can again invoke reciprocity and have an incident wave
impinge upon Qn+2 at an angle ¢, which will in sequence generate spectral waves diffracted
at an angle —a. Finally, the spectral waves will impinge at Q,.; at a local angle & or 2 — o
depending on the chosen face of reference. Thus an integral representation for the triply

diffracted field is

d _J I NI V(o + 2 +7)
uja1 (¢, 60) o /5(0) € sin( p)um(.@ @, d,) WE -9
T 7.1
{ 1 ~ 1 ~ sm(%)CoP(a) }da (7.1)
cos(752) ~cos(%)  cos(Z3%) - cos(2)  cos(Z3%) ~ cos(2)

where pr is the external wedge angle at (Qn.2) while, as before, nr and mr correspond to
the external wedge angles at the first (Q,) and second (Qn+;) vertices, respectively. We
further note that in the above, uf, (@, ¢,) is given in (6.3).

Substituting for ud, gives

dtaloes=a [ omeein o 2 0t E )

. { ~2sin £ | Com(0) }
(1 — cos( T2 ][] — cos(T=Mx)] T cos( L) — cos( ™2)
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Ty _ a -0y _ a Toay _ 4
5-) —cos(%)  cos| 5-) —cos(%)  cos( 52) — cos(
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(7.2)
where . .
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n

1 — cos(

Equation (7.2) can now be uniformly evaluated using the modified Pauli-Clemmow

method of steepest descent while accounting for the presence of the surface wave and geo-
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where

g O
a5 = 2sin’( n2' 1); (7.5)

in which 6, is associated with the surface connecting @+, and Qp4+o. In addition r =

—wy cos(0) — w) cos(,) with ¢,6,, w), and ) as defined in figure 7.2.

Cylindrical Polygen Application

In this section we will explore the accuracy of the previously developed coefficients.
Particularly, the sum of the contributions from all possible first, second, and triple order
mechanisms will be used in predicting the scattered field by impedance polygons. The
results will then be compared with corresponding moment method data. It is, of course,
expected that as the sides of the polygon become smaller, the higher order mechanisms will
become more significant and therefore the accuracy of our third order solution will decrease
when fourth order mechanisms are of importance. The examples considered in this section
are the triangular and square cylinders whose sides have equal length and impedances.
Their geometries are shown in figure 7.3.

Backscatter patterns are presented in figures 7.4 to 7.9 for the triangular cylinder whose

sides vary from 1\ down to 0.25\. These pattern are with E-incidence and correspond to
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Figure 7.1 — Triple diffraction mechanismn involving three vertices.
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Figure 7.2 — Geometry of triple diffraction mechanism involving three vertices.



Figure 7.3 -- (a) Equilateral triangular and (b) square cylinders.
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either n = 2472 (inductive) or n = 2—;2 (capacitive). As seen, our high frequency solution

agrees remarkably well with the moment method for cylindrical sides as small as %

A set of bistatic patterns were also calculated and compared with moment method
results. The conclusions are similar to those given for the backscatter case. It is also
important to note that in these examples an edge of the cylinder may lie in the non-ray
optical region of another edge. In such a situation the diffraction coefficients generated via
the ESRM approach are still valid, where as those obtained via the self consistent GTD

method [30] would not be applicable.

The backscatter patterns shown in figures 7.10 and 7.11 correspond to a square cylinder
with a normalized impedance of n = 4, side length of 1A and E-incidence. A mechanism to
mechanism comparison reveals that the backscatter pattern is primarily a first order effect.
However, for bistatic cases in which the direction of incidence is almost parallel with a face
of the square, the higher order terms are significant. This is illustrated in figures 7.12 to
7.14 along with moment method results. The pattern due to primary diffraction matches
the moment method data only near the backscatter direction. It is further seen to have
several discontinuities most of which are compensated only after inclusion of the double
diffraction effects. The rest of the discontinuities are associated with the triple diffraction
mechanisms and particularly those involving three vertices. Thus, they are seen to vanish

when the triply diffracted field is also included.

We conclude that overall, the agreement of our analytic solution with the moment
method data is quite remarkable. Furthermore, although the considered polygons had
equal impedances on all sides, it should be noted that our formulation is applicable for any

convex polygon with arbitrary side impedances.

Impedance Strip

The impedance strip is a special case of the polygonal cylinder (both wedges have
2® = 2r) and is included here for completeness purposes. Prior work for an impedance
strip with differing impedances on each face was developed for the special case of edge-on
incidence only [36]. This limitation is overcome in the present formulation. The scattered
field by an impedance strip was previously found in chapter IV via the ESRM. However, in

that case the impedances on the top and bottom of the strip had to be equal.
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Figure 7.4 — Comparison of backscatter from an equilateral triangular cylinder

(E-polarization) with moment method results. (1A in length per side). n =2 — 2

The impedances on all faces are equal
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