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Abstract:

The computation of the surface wave field parameters on a grounded
and an ungrounded permeable dielectric slab is discussed. A summary of
the exact surface wave field theory is first presented. This is then
followed by an approximate theory based on sheet and impedance boundary
conditions. For the last case explicit expressions are derived for the

propagation constant.



|. EXACT SURFACE WAVE THEORY

1. Dielectric Slab
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& = relative permittivity

m = relative permeability

Figure 1. Geometry of the dielectric slab.

(a) E;.case (even mode)

Assume the following surface wave fields exist in regions | and II

satisfying the wave equation (an et time dependence is assumed and

suppressed throughout):
| {
E,=Be " cosh (9,Y)

oY
Ey=Ae™e 2 )

with



2 2 2 2
g1=-k0n;er-f2, gz=-ko-f2.

From Maxwell's equations we now find that the corresponding tangential

magnetic fields are:
[

dE X
ey = 08 sy /gy
O, 9
H::=-}'V:aa_;=nge © 2/(anb)

The propagation constants f, g4 and go and the ratio A/B can be found via

the application of the boundary conditions requiring continuity of E, and H,

aty =t. We find that

9ot
Ae ~ =Bcosh(g,t)

and
9t .
Amg,e ~ =-g,Bsinh(g.1).

By dividing equations (6) and (7) we further find that

P = g4 tanh(g4t) + mgo =0
which is the characteristic equation for the E, case even mode. We may

now use equation (3) to eliminate g4 and g» so that P is a function of f

only. In so doing, we find that



P=,/—k:‘;r'qer-f2 tanh(t,/ -kin;er-fz)+n}\/-k2-5 =0

which can be solved numerically to find the propagation constant f. If we
write f as

f=a+jb,
where a and b are real, then a can be identified as the attenuation constant
of the surface wave (1). In addition, if we let v denote the phase velocity
of the surface wave then

)
where c is the speed of light. The computer program [1] in Figure 2 can be

used to find the roots of P and thus determining the propagation constant f.

(b) H,.case (even mode)

We now assume that the following H, field exists in regions | and Il
| i
H,=Be x cosh(g,y)

I fx 9
e

with g4, go and f again satisfying equation (3). Using Maxwell's equations

we also find that the corresponding tangential E field is given by

(10)

(11)
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The determination of the propagation constants can be again accomplished
via the application of the boundary conditions requiring continuity of the

tangential electric and magnetic fields. We find that

'gzt
Ae ~ =Bcosh(g,t)

and
9ot .
Aeg,e =-g,Bsinh(g,t),

giving
P = g4tanh(g4t) + e,go =0

which is the dual of (8). By using (3), (19) can be written as a function of f

only. We note that the computer program given in Figure 2 is still

applicable for the solution of (19) by simply interchanging the values of m,

and ey.

(c) E,case (odd mode)

Assume the fields



EIZ -Be™ sinh(g,y)

I ix 9
EZ =Ae e

with g1, go and f again satisfying equation (3). The Hy field is found by

.4 O i« /

Hx=-m —5§-=g1Be COSh(g1Y) UW"J:"J)
3E" Y

H!!=-ﬁ S==ghe™e  /jumy

By demanding continuity of the tangential fields at y = t we now find that

95! .
Ae ~ =Bsinh(g,t)

9ot
Amg,e  =+Bg,cosh(g,!)

giving
P = g4coth(g4t) - mgo =0

which can be solved numerically to find the propagation constant f in

conjunction with (3).

(d) H,.case (odd mode)

Assume the fields
| x .
H, =Be “sinh(g,y)



I ix 9
HZ =Ae e

with g4, go and f satisfying (3). The tangential E fields are given by

EL =-g,B o™ cosh(g,y) /(jweoer)

£l - g,Ae™e 2/ (we)
Following the same procedure as before, we obtain the characteristic
equation

P =g coth(g1t) - e,gp = 0
which can be used to compute f in conjunction with (3).

A graphical solution of equations (9), (19), (26) or (31) is illustrated
in Figure 3 [2]. As seen a solution of equations (9) and (19) always exists
for t £ 0. However, a solution of (26) and (31) can only be possible for

larger values of t. Thus, when we refer to surface waves one generally

assumes the existance of even modes.

2. Grounded Dielectric Slab
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Figure 4. Geometry of the grounded dielectric slab.

(@) Ej.case
Only the odd mode can be supported by this geometry since they are
the only modes satisfying the boundary condition E; =0 aty = 0. Thus, the

solution given in section 1(c) is applicable to this case since d = 2t, where

d is the thickness of the ungrounded slab.

(b) Hycase
Only the even mode can be supported in this case since it produces a
vanishing tangential E field (Ey) aty = 0. Thus, the solution given in

section 1(b) is applicable here.
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ll. APPROXIMATE SURFACE WAVE THEORY

1. Dielectric Slab
If we assume the dielectric slab shown in Figure 1 has a very small
thickness d = 2t we can then model it by coincident resistive and

conductive sheets associated with a resisitivity

- ]Z
R= 2 (32)
kd(e - 1)
and a conductivity
-jY
R*=——, (33)
kd(m- 1)
respectively. In the above Z, = 1/Y is the free space intrinsic impedance.
It is know that these sheets can support a surface wave field [3] of
the form (C is a constant)
Ey"
sw( = Cexp(-jk xcosq,) (34)
H, m

depending on whether an E, or H, excitation is assumed. The parameters

de m are found from diffraction theory to be given by

1
A=,
g, =sin (he)’ hy=2R/Z =2RY, (35)

11



and
. '1(h ) . * *
gp=Sin \"m/; hm=2R /Y0 = 2R Z0
Clearly, the resistive sheet supports a surface wave only with E,
excitation, whereas the conductive sheet suports a surface wave only with
H, excitation.
From (34), one easily identifies the propagation constant g =

jkocosq, , of the surface waves associated with the resistive and

conductive sheets. As before, if we write g = a + jb, then a is the

attenuation constant of the surface wave and is easily found from a

knowledge of dem- A computer program [10] for evaluating g, given the

parameters h, and h_ is shown in Figure 5.

2.  Grounded Dielectric Slab
Assuming that the ground plane is coated with a very thin dielectric
layer of material, it can then be modeled as an impedance surface.

Employing transmission line theory, we find that the surface impedance of

this plane is given by

12



Z =] Z\/_E-r tan(ko‘/;;;r t) -Zh,

where t is the thickness of the coating and h is the normalized impedance
relative to the free space intrinsic impedance Z,.

The impedance plane can support a surface wave of the form

SW
E; .

swf =C exp(-jk xcosq,)
HZ m

depending on whether an E, or H, excitation is assumed. The parameters
de,m are found from diffraction theory [3] to be given by

g = sin“1(1/h)
and

qm =sin"1(h) .

The similarity of (35) - (36) with (39) - (40) should be noted. It
should be further noted that a surface wave cannot be supported on an
impedance surface for all values of h. The condition that a surface wave is

supported by the impedance surface is [5]

- Re(q) + gd(llm(q)!) sgn(lm(q)) >0

13
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where gd(x) = cos'1{1/cosh(x)} is the Gudermann function and g can
denotes g, or g, as given in (39) - (40). Thus, in the case of E, excitation
it is necesary (but not sufficient) that h be capacitive whereas in the case
of H, excitation it is necessary that h be inductive. We remark that h, in
(35) is always capacitive and h_ in (36) is always inductive.

The propagation constant of the surface wave is again given by

g=a+jb=jk cosq,

m

and from (39)

ik 1- (1) forE, case
g=

. 2

jko\/'l -h forH, case

If we write
1/(Zh) E, case
R.+jX. =
s s Zh H, case
we find that

a =Re(g = Im(ko\/1 +X R 2sts)

and

b = Im(g) = Re(ko\/1 +X Rl 2XSRS)

14



The attenuation of the surface wave power per unit length can now be

written as

L=20 log( eax) =8.69a dBmetker (47)

and Figure 6 shows the constant L (loss) contours as a function of Rs and
Xg [6].
The definition (44) can also be employed for the parameters he and hyy

appearing in (35) and (36). In that case (47) will also be applicable for the
computation of the surface wave power loss in an ungrounded dielectric

slab.

15
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100 C SURFACE WAVES ON LOSSY DIELECIRIC SLAB.

200 COMPLEX OGT, BGT, EFR, EP2,F, FE, FF, FGG, FS

300 COMELEX Gl,G2,Gl2,GM1,@12,GS1,GS2,GT1 ,GT2
400 COMPLEX MUR,MU2,P, PP, SGT
500 DATA EO,00/8.85418533677E-12,1.25663706144E-6/
600 DATA PI,TP/3.14159265359,6.28318530718/ |
700 C DM = SLAB THICKNESS, METERS.
800 C UR,ER = RELATIVE PERMEABILITY AND PERMITTIVITY OF SLAB.
900 C TDE,TDM = ELECIRIC AND MAGNETIC LOSS TANGENTS.
1000 C FGC,FMC = FREQUENCY IN GIGAHERTZ, MBGAHERTZ.

1100 C ID = SLAB THICKNESS / SKIN DEPTH.

1200 C NE = NUMBER OF NEWION-RAPHSON ITERATIONS.
1300 C DBE,VCE = ATTEN CONST AND PHASE VEL FOR SURF WAVE WITH PERP FOL.

1400 2 FORMAT(IX,1I5,8F12.5)

1500 5 FORMAT(1HO)

1600 DM=.025

1700 . TM=DM/2.

1800 ER=d.

1900 UR=1.

2000 TDE=.1

2100 TOM=.0

2200 NAX=20

2300 FMC=300.

2400 FGC=FMC/1000.

2500 WAV0=300./FMC

2600 DL=DM/WAVO

2700 BETO=TP/WAV0

2800 " OMEG=TP*FMC*1.E6

2900 EPR=ER*CMPLX (1. ,~TDE)

3000 EP2=EO*EFR

3100 MUR=UR*QMPLX (1., ,~TIM)

3200 MI2=MIR*J0

3300 GS1=-OMEG*OMEG*U0*EQ

3400 GS2=-OMEG *OMEG*MJ2*EP2

3500 GML=QMPLX(.0,BET0)

3600 GM2=CSQRT (GS2)

3700 ALP2=REAL (GM2)

3800 DEL=,0

3900 DD=.0

4000 IF (ALP2.LE..0)Q0 D 12

4100 DEL=1./ALP2

4200 DD=DM/DEL

4300 12 CONTINUE -

4400 BET2=AIMAG (GM2)

4500 TR=TP*IM/WAVO

4600 Gl=(MUR*EPR-1.) *TK*TK/ (MUR*TM)

4700 FP=GML* (1.~.5*G1*G1/GS1)

4800 F=FF

4900 C

5000 DO 60 N=1,NAX

Figure 2. Computer program for surface wave parameters.



5100

5200

5300
5400
5500
5600
5700
5800
5900

6000

6100
6200
6300

6400
6300

6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500

20

60
62

FS=F*F

GL=CSQRT (GSL~FS)
G2=CSQRT (GS2-FS)
GL2=G1#G2
AL2=CABS(G12)

" IF(A12,LE..0)G0 D 100

GT2=G2*TM

FGT=CEXP (GT2)

QGT= (BGT+1./EGT) /2.

SGT= (BGT-1./BGT) /2.

GTL=GL*™M -
P=G2*SGT/CGT+MIR*GL

FGG=F/ (GL2*QGT)

PP=-FGG* (MUR*G2*(GT+GL *SGM*GTz/OGT)
ALP=REAL (F) -
BET=ATMAG (F)

VC=BETO/BET

AP=CABS(P)

WRITE(612)N,ALP,VCIAP
F=F-p/PP

FE=F

NE=N

IF(N.LT.3)Q0 T 60
APP=CABS(P/ (F*PP))

IF (APP.LT..0001)G0 T 62
QONTINUE

QONTINUE -

WRITE (6,5)

' ALPE=REAL (FE)

VCE=BETO/AIMAG (FE)

DBE=8.686*ALPE

WRITE (6 ,2) NE, FMC, DL, DD, DBE, VCE

100 CONTINUE

CALL EXIT
END

Figure 2. (continued)
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COMPLEX FUNCTION HEE (ETA,IUD,SBO)

Cl|| NEW VOLAKIS VERSION

100

200
300

~

Figure 5.

COMPLEX ETA,ETAl,CJ

DATA SRT2,FPI,CJ/1.414213562,12.56637061, (0.,1.)/
DATA PSIPI2,PI/.9656228,3.14159265/
ETA1=SBO/ETA

IF(IUD.EQ.1)ETA1=SBO*ETA

RE=REAL (ETA1)

AE=AIMAG (ETAl)

REP=RE+1.

REM=RE-1.

AA=,5* (SQRT (REP*REP+AE*AE) +SQRT (REM*REM+AE*AE) )
BB=. 5% (SQRT (REP*REP+AE*AE) -SQRT (REM*REM+AE*AE) )
SGN=AE/ABS (AE)

RAA=AA*AA-1.

IF (RAA.LT.1.E-6)RAA=0.

HEE=ARSIN (BB) +CJ*ALOG (AA+SQRT (RAA) ) *SGN
HEE=.5*PI-HEE

GO TO 300

ETAM=CABS (ETA1)
ETAA=ATAN (AIMAG (ETAl) /REAL (ETAl) )
ETAM2=ETAM*ETAM

SA=SIN (ETAA)

CA=COS (ETAA)
F1=ETAM2-1.+SQRT ( (ETAM2-1.) **2+4 , *ETAM2 *SA*SA)
F1=F1/ (2.*ETAM2)

IF(F1.LT.0.)F1=0.

HEER=ASIN (SQRT (F1))

SHEER=SIN (HEER)

CHEER=COS (HEER)

IF (CABS (ETA1l) .GT.1.)GO TO 100

HEEI=CA/ (ETAM*CHEER)

HEEI=ALOG (HEEI+SQRT (ABS (HEEI*HEEI-1.)))
IF(ETAA.LT.0.)HEEI=-HEEI

GO TO 200

HEEI=SA/ (ETAM*SHEER)

HEEI=ALOG (HEEI+SQRT (HEEI*HEEI+1.))

HEE=CMPLX (HEER, HEEI)

RETURN

END

Computer program for the computation of 6 = sin”1 (Im)or6 = sin”1 ().
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Graphical solution of the characteristic equation for the slab waveguide.
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