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ABSTRACT

ELECTROMAGNETIC SCATTERING FROM LARGE PLANAR PLATES OF
ARBITRARY SHAPE

by
Kasra Barkeshli , Arindam Chatterjee and John L. Volakis

The problem of electromagnetic scattering from large planar plates of arbitrary shape
and resistivity is formulated using an improved conjugate gradient solution method.
The method employs the discrete convolution theorem and Fast Fourier transform
to achieve higher efficiency and accuracy over previously reported results. The accu-
racy of the technique is confirmed by comparison with measured data and patterns

available based on alternative formulations for a variety of targets.
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CHAPTER 1

Introduction

The problem of electromagnetic scattering from large conducting and resistive
plates is of considerable interest in electromagnetics as they constitute simple but
nevertheless important components in man-made structures. Although they have
been studied at a wide frequency range, experience with various numerical and
asymptotic methods of solution as well as comparison with measured data reveals
that there is a serious difficulty in predicting the scattering behavior of plates at
grazing incidences where the edge currents and corner diffraction mechanisms are
significant. Also, in the case of numerical methods, computer memory requirements
play a major role in choosing the efficient method of solution.

This report presents a technique to solve the problem of scattering from large
planar plates iteratively using the conjugate gradient (CG) method. The conjugate
gradient method is an iterative solution technique and has recently been found use-
ful in electromagnetic applications ([1],(2],[3], [4],[5] and [6]). It is shown that the
CG method in conjunction with the Fast Fourier Transform (FFT) is an efficient
and in many instances the viable alternative to direct methods where the memory
requirement for large targets becomes prohibitive.

The CGFFT method was initially implemented by employing the analytical ex-



pression for the Fourier transform of the free space Green’s function to carry out the
convolution integrals appearing in the pertinent integral equations [4],(7]. The ele-
ments of the dyadic Green’s function were subsequently formed by carrying out the
differential operations in the transform domain. This approach assumes an infinite
domain for the Green’s function as the Fourier transform is defined over the whole
space (—00,+00). Thus—as far as the Green’s function is concerned—the finiteness
of the target’s physical extent is not accounted for. As a result, unless a large FFT
pad with extended zero elements is used, the method suffers from aliasing errors.
This problem is more serious for the TM cases where the surface current density
exhibits high spectral content due to edge singularity effects. It is the experience of
the authors that a pad of at least three times the size of the target is often needed
to get acceptable results for TM cases at oblique and close to grazing incidences.
This makes the method inefficient in terms of both computer memory and speed
particularly for monostatic computations since the solution must be repeated for
each incidence. To alleviate this difficulty an alternative approach in handling the
Green’s function is taken resulting in improved accuracy and a substantial increase
in speed. Here the problem is explicitly formulated in terms of discrete convolution
of the current density with a discrete integral function of the Green’s dyadic. In this
case, the Fourier transform properly accounts for the finite domain of the Green’s
function, thus, avoiding aliasing.

The piecewise constant expansion functions were used with point-matching al-
though a provision for incorporating piecewise linear or sinusoidal (roof-top) basis
functions has also been kept.

An interacfive Fortran code was developed based on this study which can handle

a wide variety of targets with irregular symmetries. This is done by approximating



the target as a polygon with the coordinates of its corners specified by the user.
This report is divided into two parts. The first part describes the formulation
of the problem in terms of both continuous and discrete Green’s functions. This is
followed by an evaluation of the performance of the two formulations. The second
part is a user’s manual for the computer program including sample test cases for

reference purposes.



CHAPTER II

Formulation

2.1 Integral Equations

Consider a thin inhomogeneous non-magnetic plate of resistivity # illuminated
by a plane wave Ei as shown in Figure 2.1. The integral equation for the unknown

surface current density J is given by
Ei(r) = n(r)I(r) + jkZ / I(r) - (r;r')ds’ (2.1)

where Z denotes the free space impedance, k = (27/)) is the free space wave number

and I denotes the electric dyadic Green’s function in unbounded space given by([4]

() = {1+ %};VV}G(r; ) (2.2)
with
e—jklr - rll
G(r;r') = (2.3)

dr|r — |
in which r and r’ denote the observation and integration points, both on the plate’s

surface. The explicit form of T is

(1 + -1_3_2) li
k? 0z k? 0z0y
r'= 1 &

1 & o/
T (1+§'a?) G(r;r) (2.4)



Thus equation ( 2.1) represents a set of coupled integral equations:

. 1 9 1 &
Bi(z,y) = ﬂ(xay)Jz(x,y)—[(l‘*'pa Dt mmmll (29)

. 1 1 &?
Ey(‘tv y) = ﬂ(x,y)Jy(-’"'ay) k2 aya -1+ ( k2 a_yg)ny] (26)
where II is the electric vector Hertz potential given by

I(r) = —jkZ /,J(r')G(r; r')ds’- (2.7)

The integral in ( 2.1) is a convolution and can therefore be evaluated by invoking
the convolution theorem. Introducing the spectral frequencies f, and £, and Fourier

transform pair

g=Fj} <=3 (2.8)

with
Uat)= [ [ ga,pe2 ez + b doay, (29)
9(z,y) = /_ : /_ : §(fer £, 27 (e + fy) g g, (2.10)

and employing the convolution theorem, the above system of equations can be for-

mally written as
E' =nd+jkzF YT 5} (2.11)
The above equation can now be efficiently solved via the conjugate gradient method.

The description of the CG method and the algorithm used in this study are available
in [1],[7].

2.2 Continuocus Convolution

In a traditional implementation of the CGFFT method, the current density is

expanded in terms of a subsectional surface basis function ¥ as

M-1N-1

z y) = Z Z Jmn - ‘i’mn(z’y) (212)

m=0 n=0
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Fig.2.1. Geometry of a polygonal plate illuminated by a plane wave.



where
‘i’mn(zy y) = ‘-I'(z —Tm,Y — yn)a (2'13)
T ) 0
U(z,y) = Vel , (2.14)
0 Yy(z, )

and ¢, and ¢, are the expansion functions in the x and y directions, respectively.

The Fourier transform of the current density vector is thus given by (Appendix I)
i=3.% (2.15)

where J is the discrete Fourier transform of the sampled current. Similarly, the

Fourier transform of the dyadic Green’s function is expressed as

1- 13 (-f.f,) | -
NECSENCE0 P, 216)

(—fzfy) (1 - f:)

L |1}

with

e—jkOVz +y ~ 1

RV e = G(fs fy) = —F=——=,
vzt +y ko [f2+ f2 -1

in which f; and f, are the spectral frequencies and use has been made of the following

G(z,y) = (2.17)

relationship for the partial derivative

W) s jonti(se)- 219

Equations ( 2.16) and ( 2.17) constitute analytical expressions for the free space
dyadic Green’s function. Substituting these into ( 2.11) and testing the resulting

equation at discrete points (point-matching), the following expression is obtained
E.'j = f),'jJ.'j +]kZ.7'-.l{(f‘ . 5) . j} . (2.19)

where the subscript ij denotes the value of the quantity at the point (z;,y;) on

the plate. It should be noted that to perform the Fourier transformation implied



by ( 2.11), an FFT pad twice the size of the plate must be employed. In general,
however, a much larger pad is required when the analytical transform of the Green’s
function is used. To comply with a standard size FFT pad, we must choose N’ = 27,
where v is any integer and N’ > 2N —1 > Nnyquist With N reperesenting the number

of elements/unknowns. Thus,
72 logy(2N — 1)+ (2.20)
in which p is referred to as the order of the FFT pad.

2.3 Discrete Convolution

The use of analytical expressions for the Fourier transform of the Green’s func-
tion developed in the previous section assumes the entire space as the domain of the
Green’s function. Since the finiteness of the structure is not accounted for in this ap-
proach, aliasing errors are inevitable. For TM scattering, this necessitates the use of
prohibitively large FFT pads in order to achieve reasonable accuracy. This approach
also suffers from difficulties associated with the numerical handling of the known ring
singularity of the transform of G*. By employing the discrete Fourier transform of
the Green’s function defined over an area twice the domain of the scatterer, alias-
ing is avoided (provided the required sampling criterion is satisfied). This leads to
substantially more accurate results and faster convergence. More importantly, the
results are insensitive to the FFT pad provided it is at least twice the plate size.

In the new method, the integral equation is put into a discrete convolutional

form for direct application of the discrete convolution theorem. Substituting for the

!The singularity corresponds to the circular ring f2 + f7 = 1 in equation ( 2.17).



current expansion in the integral on the right hand side of ( 2.1) yields
/,[Z Imn - Umn(2,9)] - D(z,y;2',y')ds’ (2.21)

which upon interchanging the order of summation and integration, may be written
as

> Jma / Una(z',y) Tz, y;2',y)ds’ - (2:22)

Introducing ( 2.22) into ( 2.1) and applying point-matching yields the system of

equations
Ei,'j = T],’jJ,‘J‘ + jkOZO Zl'::'u : Jmn ' (223)
The dyadic function E
_ Tz Ezy
== ¢ (2.24)
g gw
is the new discrete kernel whose elements are given by
":;z = (1 + -];56_2,2)/ G(:c,y; ', y’)"/’z(z’ — T,y — yn)ds'
k% 0y?’ Jomn (zw)=(ziy;)
= 2 / G(2,4: 2,9 )0y(¢' = Zm, ¥ = yn)ds’
k2 0z0Y Jomn (z9)=(ziv;)
iyj:: = _15 z _/ G(.’L‘, Y ', yl)¢z(z’ - a:,,.,y’ - yﬂ)d‘s’
k% 020y Jomn (@w)=(ziy;)

b= (+53.3) [,..... G(z,4;2',y")y(2' — Tm, ¥’ — Yn)ds’

(z9)=(=i\y;)

(2.25)
where o,,, is the incremental surface element corresponding to the mnth cell on the
plate (zp, —Af <z< a:,,.+Af , y,.—%" <y< yn+-A-2"). Obviously, the convolutional
nature of the operation is preserved once the above functions are evaluated at the
appropriate field points. Applying the discrete convolution theorem in ( 2.23) now
yields

Ei; = ni;Ji; + jkoZeDFT-{E - 3} - (2.26)
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In the above, Z denotes the discrete Fourier transform of Z and its accurate eval-
uation is a key to the success of the formulation. To calculate these elements, it is
noted that in the discrete sense, the partial derivatives may be carried out by finite
difference formulae. In particular, using a 3-point difference formula, we obtain the

relation (see Appendix I)

a% (z) <= jorf,Sinc(xf,A2)5(f.) (2:27)

which may be considered as the discrete counterpart to ( 2.18). Using ( 2.27) o may

be expressed as

= (1 = 27 £ Sinc(n fAz)]?) —(27)?f, f,Sinc(r f-Az)Sinc(r f,Ay) ;
- —(27)2f, f=Sinc(x f,Ay)Sinc(r f-Az) (1 - (27 f,Sinc(x f,Ay)]?) 7
(2.28)

where £ is the discrete Fourier transform of the sequence
e—jlc\/:):2 + 42 ;
mn = — a3
¢ Lm,. 4m /2T + 2
/Z'm"l'“ /!ln"’Ag“ [ ]kV Tl + y
Yn

4T+ 2

—_—ds (2.29)
Note that in ( 2.27) and ( 2.28),
Sinc(z) = sin(z)/z (2.30)

It is noted that ¢ has an integrable singularity when y,, = y, = 0, which corresponds
to the self-cell interaction. This term can be evaluated analytically using various

approximations as stated below.

Approximate integration: An approximate integration of the self-cell term yields|8]

Ll 8Y
{Aa:ln|ta.n(4+ tan Ax)l

1
2
r 1 Az . AzAy
Ayln|tan(= + = tan™' —)| - ~ 2.
+Ayln| tan(7 + 5 tan Ay)| k=)t (23

} |~

oo ~
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Taylor series expansion: expanding the integrand in a four-term Taylor series ex-

pansion
IR 1 Gk GRR)
~=11= - . 2.32
% (1 jkR + 5 5 (2.32)
The integral can then be expressed as
1 KR Ex
600 o ir (11 - ]kIz - 313 + ]'614) — y:-%l (233)
where
L = /}-ds =zln(y + R) + yIn(z + R)
R
L, = /ds = AzAy
3 y
L = /Rds: ’yR+” Iny + R) + Y ln(z +R)
— 27, xsz_
L = [Ras=Z
Circular disk approximation: Using a circular disk approximation
Ll
So = '[) o dxr ¢
= %e—jkr"/zsmc(-’f—;—o) (2.34)

ro = JAzAy/~

Figure 2.2 shows a comparison of these for the square cells (Az = Ay = A) of
different sizes. As seen, they all give values that are essentially indistinguishable for

A <0.1A
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The remaining terms {mn are evaluated numerically using Guassian quadrature
integration. The solution of ( 2.26) via the CG method will be referred to in the

report as the CGDFT method.
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CHAPTER III

Results

The above formulations were employed to compute the scattering by a number
of plates. In this chapter, a sample of numerical results some of which are compared

with available measured data or results based on alternative formulations are given.

3.1 Comparison with measured data

Figure 3.1 shows the radar cross section for a rectangular conducting plate il-
luminated by E and H polarized plane waves. The edge-on behavior of a plate of
constant width (b = 2)) and varying length (2\ < a < 2.5)) is given in figure 3.2 with
the electric field aligned with the shorter side. The results obtained are compared
with measurement data reported by Hey and Senior(9]. It should be noted that the
CGFFT method employing the continuous transform of the Green’s function was
found inadequate for an accurate prediction of the edge-on scattering behavior[4].
This is clearly demonstrated in Figure 3.3 where we compare the RCS of a square
plate (of side 2)) as computed by the CGDFT method with p = 1. It is found to be
in good agreement with the corresponding measured data.

Since plates of arbitrary shape may be modeled as polygons, circular and tri-

angular plates can also be treated just as easily. Figure 3.4 gives the radar cross

14
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section of a circular plate of radius a with ka = 5. These results agree well with the
Sommerfeld-Macdonald approximation for close-to-normal incidence angles. How-
ever at oblique incidences, this approximation breaks down. Table 3.1 provides a
comparison with measured data[10] of the e&ge-on backscatter as computed with the
CGDFT as a further testament of the method’s accuracy at close-to-normal inci-
dences. Also, in figure 3.5 backscatter RCS data for an equilateral triangular plate
of side 2\ are compared with the corresponding measured data. The agreement is
clearly good considering a possible small inaccuracy in the measurements due to
alignrhent difficulties.

The scattering characteristics of geometrically complex targets may also be sim-
ulated by approximating the target by a polygon of n sides. This is illustrated in
Figure 3.6 where the plate has been modeled as a polygon of 8 corners. The near-
grazing (conical) azimuthal scattering pattern of this target is shown in Figure 3.7.

Resistive plates are considered next. In practice conducting surfaces are replaced
with resistive cards for cross section reduction purposes. By defining  as a function
of position, different resistivity tapers may be treated. As an example, the resistivity

can be expressed by a nonlinear function

n(2,y) = e+ (ne = nc) [(%ﬂ)’ + (h'—y-l_/g—"l)ﬁ] (3.1)

where 7. and 7, may be considered as the resistivities at the center and the edges of
a rectangular plate, respectively and 7. and , denote the tapers in the correspond-
ing directions. Figure 3.8 shows the effect of uniform and non-uniform (parabolic)
resistive tapers on the monostatic cross section of a 2\ x 2 plate. The parabolic

resistivity profile is shown in figure 3.9.
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3.2 Efficiency

It was mentioned in the introduction that applying the traditional approach (us-
ing the analytical expression for the transform of the Green’s function) requires a
large FFT pad to reduce aliasing effects and characterize the weakly singular behav-
ior of G in the vicinity of the ring 2+ f = 1. Figure 3.3 illustrates the convergence
of the far zone scattered field for a square plate as the size of the FFT pad is pro-
gressively increased. Also shown is the improved result using the method presented
here. It is noted that a pad of at least 3 times the number of unknowns is needed
to obtain acceptable results with the traditional method and although the general
behavior of the backscattering cross section approaches that of the correct result,
the convergence to the measured value is not clear near grazing incidence even with
higher order pads. On the other hand, the new method gives a reasonable prediction
using a FFT pad of order 1.

In an earlier work [11], the vectorizable nature of the CGFFT algorithm was
explored by identifying the major processes involved in a given iteration. Since in
the CG algorithm a considerable amount of computation time is spent in operations
which exhibit no data recurrence at a particular point in the iteration, these oper-
ations may be vectorized to increase the speed of calculations. This is particularly
the case for the FFT which is a highly vectorizable algorithm and plays a major
role in the speed and efficiency of the optimized code. In this study both scalar
and optimized FFT routines (available on the IBM 3090’s ESSL library) were used.
Sample timing information are given in Tables 3.2 and 3.3. When the data from
both of these tables are combined, one observes an overall speedup of more than 60

times over the scalar implementation using the continuous transform of the Green's
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function. It should be noted that a vectorization of 97% is observed when employing

the vector FFT routine.
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Scattering from a Perfectly Conducting Square Plate
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Figure 3.1: Backscattering pattern of a 2Ax2) square plate
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E-Polarization Edge On RCS for a Rectangular Plate
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Figure 3.2: E-polarization edge-on RCS for a rectangular plate
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Convergence of the CGFFT solution
for a square conducting plate
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Figure 3.3: Convergence of the CGFFT solution for a square conducting plate
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Backscattering pattern of a circular plate (ka=5)
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Backscattering pattern of a 2X2 triangular plate
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Figure 3.5: Backscatter pattern for an equilateral triangular plate of side 2A
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Figure 3.7: E-Polarization Conical (6, = 80°) backscattering pattern of the test plate
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Effect of Resistive Tapering

on Monostatic Scattering of a Plate
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Figure 3.8: Effect of resistive tapering on the monostatic scattering of a 2x2 A2 square
plate
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ka | radius(a) | Measured values | Calculated values

1.0 | 0.1592 -7.696 -8.653
1.5 0.2387 -6.383 -6.274
2.7| 0.4297 -5.229 -3.099

Table 3.1: Comparison between measured and calculated values at edge-on incidence
(E-pol.) for a circular disk.
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Green'’s function

FFT Pad order

Time (in ms) per iteration

Relative speedup

Discrete 1 65.49 20
1 65.62 19.96
Analytical 2 291.21 4.5
3 1310.62 1

Table 3.2: Relative speedup between algorithms employing the Analytical and the
Discrete transform of the Green’s function.

Green’s | FFT Pad | Time(in ms) per iteration || Vector
Function order | Vectorized | Non-vectorized || Speedup
Discrete 1 65.49 216.26 3.30
1 65.62 215.75 3.28
Analytical 2 291.21 840.34 2.89
I 3 1310.62 3597.12 2.75

Table 3.3: Speedup between vectorized and non-vectorized code.




CHAPTER IV

Conclusions and Future Work

T‘he formulation discussed here may be easily extended to cylindrical structures
with a minor modification of the dyadic Green’s function and the incident field
expressions. It should be noted that the problem is simplified for TM case where
the longitudinal current component is the only unknown and only a single integral

equation is to be solved.
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CHAPTER V

Users’ Manual

This chapter describes the significance of the various input variables in the
CGFFT code and explains the procedure for running the program. It is the inten-
tion of the authors that the reader be fully acquainted with the CGFFT code after
reading this manual. The program can be run in either interactive or non-interactive
mode. The interactive mode is designed to help make the task of the inexperienced

user easier. The interactive mode of running the program will be described first.

5.1 Input variables

5.1.1 Target geometry generation

The CGFFT code is capable of performing scattering computations for targets
of irregular symmetries (this will be shown later). The user can generate a target
of his/her own choice by specifying the co-ordinates of the corners of the target.
The program prompts for the target choice on the screen by printing the following

message:

**SCATTERING FROM THIN CONDUCTING PLATES*x*

SPECIFY THE TARGET

30
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1: RECTANGULAR PLATE
2: CIRCULAR DISC

3: TRIANGULAR PLATE
4: POLYGONAL PLATE
5: TEST CASE

ENTER THE TARGET NUMBER:

Option 5 includes a few special targets which were generated for testing purposes.
It should be emphasized here that these targets could just as well be generated
using the ‘TARGET # 4: POLYGONAL PLATE’ choice. On entering the target
number, the program assigns the inputted value to the variable ‘NTARG’. Inputting
a number less than 1 or greater than 5 evokes the response ‘WRONG TARGET!
TRY AGAIN...". If the target number specified was between 1 and 4, the program

asks the user about the
TARGET CENTER AND ENCLOSURE LIMITS: X0,YO0,XL,YL

The target center should be the point of symmetry for symmetrical targets and a
convenient point (from which it is easier to calculate the corner co-ordinates) near the
center point for asymmetrical ones. ‘X0,YO’ are the input variables for the target
centér. The enclosure limits are the length and breadth of the target specified by the
variables ‘XL,YL’. For non-rectangular targets, the enclosure limits are specified by
the dimensions of the largest rectangle that would just fit the geometry. The next

message printed by the program is
SAMPLE DENSITIES:UPLX,UPLY

The number of samples per wavelength desired by the user can thus be specified.

If the sampling is low, aliasing errors occur whereas oversampling results in high
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memory requirement. The optimum number of samples per wavelength can thus
only be decided by trial and error but the authors have found that 20-25 samples per
wavelength (for large targets of sides 2 wavelengths long) give reliable results. The
variables ‘UPLX,UPLY’ specify the sample densities. The target geometry specifi-

cation is now complete except for the order of the FFT pad.
FFT PAD OF ORDER:

The discrete Fourier transforms are carried out by a radix 2 FFT routine. The
sampling interval and the size of the FFT pads are chosen so that the Nyquist
criterion in both the spatial and frequency domains as well as the requirements of
linearity in the convolutions are satisfied. Thus, the period N’ of the array to be

transformed is chosen so that
N’=2":N'>NNW,,.-,¢,N'>2XN-1 (5.1)

where N is the number of unknowns and v is an integer. In practice 4 is chosen

according to the rule

72 logy(2N — 1) + 5 (52)

where p is an integer setting the order of the FFT pad dimension to ensure adequate
frequency sampling in the spectral domain when performing the inverse transform
operation. The array elements beyond the scatterer’s physical range are set to zero.

For computations using the discrete Green’s Function, the pad should be of order
1 whereas for calculations with the analytical Green’s Function, the pad order is lim-
ited only by the size of the memory and time considerations (the authors have found
that a pad order exceeding 3 is too time-consuming without yielding a significant

improvement in the results).
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For target numbers 1, 3 and 4, the program asks for the coordinates of the corner-

points:
ENTER THE COORDINATES OF EACH CORNER SEQUENTIALLY:

The only thing to remember here is that the co-ordinates of the points should be
entered such that the points are arranged in either clockwise or counter-clockwise
fashion. For target number 2 (a circle), the program asks the user for the radius of
the circular target.

For option number 5 (test cases), the geometry is automatically generated since

the parameters are specified within the code.
GEOMETRY DISPLAY? 1)YES 2)NO

In order to make sure that the geometry generated is correct, it is recommended that
the user check the geometry before plunging into the CGFFT calculations. Entering
‘1’ in response to the above message, the geometry appears in the form of asterisks in
a grid of dots. The entire target is actually modelled as a matrix where the asterisks
indicate the target points(‘l’) and the dots signify zeroes.

The user may continue with the calculations or modify the geometry or exit from

the program at this point depending on the response to the message:

1) CONTINUE 2) MODIFY GEOMETRY 3) EXIT

5.1.2 Resistivity taper specification

The plate’s resistivity may be specified externally or internally by setting the
variable ‘TPR’ to a real value (TPR> -2.0). If a value of -1.0 is selected, the

plate is assumed to be perfectly conducting and calculations involving resistivity are
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omitted. A non-negative value for TPR denotes the taper in the x and y directions

as indicated in equation ( 3.1).

RESISTIVITY TAPER(REAL):
-2.) RESISTIVITY VECTOR READ EXTERNALLY
-1.) PERFECTLY CONDUCTING PLATE
0.) UNIFORM
1.) LINEAR

2.) PARABOLIC

The variables ‘ETC’ and ‘ETE’ read in the resistivity values at the center and the
edge of the plate, respectively. For non-symmetrical targets, it is advisable to read

in the resistivity values externally.

5.1.3 Scattering pattern computations

This section enables the user to specify the range of the 6 and ¢ angles, the
polarization angle 1, the type of scattering calculations( monostatic or bistatic),
the basis function, the Green’s function (Analytical or Discrete) and the tolerance

desired.
TETA & PHI

The program asks the user the initial § and ¢ angles for which the scattering

computations are to be done. The code accepts both positive and negative values

for 8 and ¢.
POLARIZATION ANGLE : 0.)H [HZ=0] , 90.)E [EZ=0]

If H-polarization scattering calculations are desired, 0. should be entered. This

sets ¢ to 0. For E-polarization computations, % should be set to 90.
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1)BISTATIC 2)MONOSTATIC(BACKSCATTERING) COMPUTATIONS

For bistatic calculations, 1 is to be inputted. Entering 2 causes the program to

carry out monostatic (backscattering) computations.
1)ELEVATION 2)AZIMUTH CUT

In order to find out the elevation pattern, the user should input 1. For azimuthal

pattern calculation, 2 should be entered.
INITIAL & FINAL ANGLES AND INCREMENT

The user can substantially decrease the computation time by specifying the initial
and final angles so as to exploit the symmetry inherent in the chosen target. A note
of caution for the inexperienced user:even though the initial and final angles are real,

the input for the angle increment expects an integer.
BASIS: 1)CONVENTIONAL DFT 2)SURFACE PULSE 3)ROOF-TOP

The user can employ either of the three basis functions for scattering computa-

tions. However, in this code the surface pulse basis has been only incorporated.
1)DISCRETE OR 2)ANALYTICAL TRANSFORM OF THE DYADIC G

The user can employ either the Discrete or Analytical transform of the Dyadic
Green’s function. As discussed in Chapter 2, the analytical transform was employed
in the original version of the code. It is present as an option but its use is not

recommended due to its associated inefficiency.

MAX & MIN NO. OF ITERATIONS:ITMAX,ITMIN & TOLERANCE
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The user can specify the maximum and minimum number of iterations. However,
it is recommended by the authors that the maximum number of iterations be kept

to a reasonable value (say, 100) and the minimum number kept to 2. The tolerance
value specified by the authors during running the program was .035 (3.5%). It is left
to the user to tailor the values of ITMAX,ITMIN & TOLERANCE’ according to

his needs.

5.2 Output

The information about the number of iterations and the tolerance achieved for
each angle is displayed on the screen. In this way, the angles for which convergence
was not achieved can be identified. The values for the scattering computations are

stored in a data file in such a way that the data can be easily plotted.

5.3 Sample problems

A sample problem is presented in this section to allow the user a better insight
into the running of the CGFFT code. In the problem solved here, the backscattering

pattern of a polygonal plate is computed using the discrete transform of the dyadic

Green’s function.

**SCATTERING FROM THIN CONDUCTING PLATES**

SPECIFY THE TARGET

1: RECTANGULAR PLATE
2: CIRCULAR DISC
3: TRIANGULAR PLATE

4: POLYGONAL PLATE



S: TEST CASE

ENTER THE TARGET NUMBER:

4

TARGET CENTER AND ENCLOSURE LIMITS: X0,Y0,XL,YL

0. 0. 2. 2.

SAMPLE DENSITIES:UPLX,UPLY

25.5 25.5

FFT PAD OF ORDER:

1

ENTER THE COORDINATES OF EACH CORNER SEQUENTIALLY:

CORNER #1:

-2.232 0.0

CORNER #2:

CORNER #4:

1.088 -0.809

CORNER #5:

1.451 -0.309
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CORNER #6:
1.451 0.309
CORNER #7:
1.088 0.809
CORNER #8:
0.5 1.0
CORNER #9:

-0.5 1.0

GEOMETRY DISPLAY? 1)YES 2)NO

2

1) CONTINUE 2) MODIFY GEOMETRY 3) EXIT

1

TETA & PHI

90. 90.

POLARIZATION ANGLE : 0.)H [HZ=0] , 90.)E [EZ=0]

90.

1)BISTATIC 2)MONOSTATIC(BACKSCATTERING) COMPUTATIONS

2

1)ELEVATION 2)AZIMUTH CUT

38
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INITIAL & FINAL ANGLES AND INCREMENT

90. 270. 3

BASIS: 1)CONVENTIONAL DFT 2)SURFACE PULSE 3)ROOF-TOP

2

1)DISbRETE OR 2)ANALYTICAL TRANSFORM OF THE DYADIC G

1

MAX & MIN NO. OF ITERATIONS:ITMAX,ITMIN & TOLERANCE

150 2 .035

In the non-interactive mode of running the above program, the input values are
stored in a file and the program reads from it. This mode is faster than the interactive

mode.



APPENDICES

40



41

APPENDIX A

Spectral Domain Considerations

A.1 Fourier Transform of the Current Density

The Fourier transform of the current density vector is defined as

(fef) = [ 3(a,)e7i20 U+ i) dzay. (A1)

Substituting for the current expansion ( 2.12)in the above,

3= [ Tl ¥malay)e 20U+ Sz

= S [ [ Gpnle)e U Sl azy(a2)

and noting that

Ymn = /_ ” /_ " (@ = Tmyy — ya)e I 2o+ fi¥) dray

= JeI2m(fz%m + fy¥n) (A.3)
equation ( A.1) reduces to
I=9(f.,f,) - T Ipne 327 (feTm + fytn) (A4)

with the summation on the right hand side defined as the discrete Fourier transform
of J:
3= Y Jpne 27 (feZm + fyta). (A.5)
mn
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Thus, the desired relationship between the continuous and discrete Fourier trans-

forms of the current density vector is

~

i=¥.7 (A.6)
A.2 Discrete Differentiation and its Transform

Numerical differentiation of a discrete function can be carried out by calculating

finite differences at a number of points. A 3-point finite difference formula is given

by
% (e = L& %E)A—mg(z.- ) A7)
with its transform
. ¢ Az o, £ Az
g-g = .?i(f,:)e_ﬂ,rsz A—;mﬁﬁ (A8)
which can be further reduced to
dg . . -
3 &= —j2rf,Sinc(r f,Az)G- (A.9)

More accurate expressions may be derived by using higher order difference for-

mulae. For the 5-point case,

_89(zi+ Az) — g(x; + 242) 4 g(g; — 382) _ gg(z; — 42)

dg
() 12Az

0z

(A.10)

and the corresponding result is

9

Em = —j27rf,[§5z’nc(1rf,Az)—-}Sinc(&rszm)]“q'- (A.11)



43

APPENDIX B

Listing

This appendix provides a listing of the computer program PLTCGF developed and

used in this study.



Print file "pltcgf"” Page 1

DESCRIPTION OF THE PROGRAM

THIS PROGRAM COMPUTES THE CURRENT DENSITY AND THE RADAR SCATTERING
CROSS SECTION OF PLANAR PLATES OF ARBITRARY SHAPES MODELED BY
POLYGONS. ALSO, SEVERAL SPECIFIC GEOMETRIES ARE TREATED SEPARATELY
INCLUDING RECTANGLES, TRIANGLES AND CIRCLES.

KASRA BARKESHLI
RADIATION LABORATORY
EECS DEPARTMENT
UNIVERSITY OF MICHIGAN
JULY 1989

COMPILATION PROCEDURE:
..MTS (WITH VECTORIZATION)

Jede o gk ok ek e e ok ok ok ok e o ok ok ok ok Rk Kk e ok ok ok ok ok ok Rk e o ok ok o kR R ek ok ok ok ok ok kK o ok ok ok ok
NOTICE: FOR VECTORIZATION ON THE IBM-3090, THE FOLLOWING STATEMENT
AND SIMILAR ONES IN THE SUBSEQUENT SUBROUTINES MUST BE UNCOMENTED

WITH THE '@’ SYMBOL POSITIONED IN COLUMN 1.
e Ty T T e S e Y S T L ]

@PROCESS DIRECTIVE (’*VDIR')
PROGRAM PLTCGF

$ RUN NEW:FORTRANVS SCARDS=PLTCGF PRINT=~LIST SPUNCH=-LOAD
PAR=OPT (3) VECTOR(LEVEL(2) ,REPORT)
$ RUN -LOAD+NAAS:NEW.ESSL+*FORTRANLIB

. .APOLLO WORKSTATIONS
$ ftn pltcgf

$ bind pltcgf.bin -b pltcgf.obj
$ pltcgf.obj

PARAMETER DESCRIPTION

. .GEOMETRY
NTARG.......... creceereana TARGET NUMBER
X0,¥0...o0iivinnnnnns cevees TARGET CENTER COORDINATES
XL, YL. ..ot enenonnnnnns TARGET ENCLOSURE
UPLX,UPLY......covvveeeenns NUMBER OF UNKNOWNS PER WAVELENGTH IN
X AND Y DIRECTIONS
MX,MY............. ceeeesnen NUMBER OF UNKNOWNS IN X AND Y DIRECTIONS
NX,NY....oiiiiiiiiieinnnnns FFT PAD SIZE IN X AND Y DIRECTIONS
IPAD.....oiiiiinnnnnancnnas ORDER OF THE FFT PAD
ITAG. . iiviiiiiinnnnnnnnnas INTEGER ARRAY CONTAINING THE ADDRESSES

OF THE ACTUAL POINTS ON THE TARGET

ETA........ ettt RESISTIVITY
ITAP.....cciiiiinnnennnas . .TAPERING PARAMETER:
0) UNIFORM RESISTIVITY
1) LINEAR TAPER
2) PARABOLIC TAPER
3) RESISTIVITY VECTOR READ EXTERNALLY

. .PATTERN COMPUTATION

O0.0000000000000000000000000000000000000 QQOQOOO00O0QOQOQO0000000000000000

TETA,PHI.......ccoiieinunnn SPHERICAL ANGLES OF INCIDENCE
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=2 S POLARIZATION ANGLE:
0 )H POLARIZATION HZ=0
90)E POLARIZATION EZ=0
ISCAT. . i i it iiiiiennneannn PATTERN COMPUTATION FLAG:
1) BISTATIC
2)MONOSTATIC (BACKSCATTERING)
ICUT . .t i ittt iitnenenannnns NUMBER OF BISTATIC PATTERN CUTS
ANGI,ANGF,INC.............. INITIAL AND FINAL ANGLES AND INCREMENT

B METHOD OF GREENS FUNCTION EVALUATION:
1)DISCRETE TRANSFORM
2) ANALYTICAL TRANSFORM

IBASE. .. .civereeenoanncanns TYPE OF BASIS FUNCTION FOR CURRENT EXPANSION:
1) CONVENTIONAL DFT
2) SURFACE PULSE
3) ROOF-TOP (NOT AVAILABLE)

.ITERATION

ITMAX, ITMIN,TOL............ MAXIMIM AND MINIMUM NUMBER OF ITERATIONS
AND ITERATION TOLERANCET

...CGFFT VARIABLES

Bt it ittt EXCITATION (INCIDENCE) FIELD
1 2 UNKNOWN CURRENT DENSITY
2 RESIDUAL VECTOR
SEARCH VECTOR
- ¥ THE INTEGRO-DIFFERENTIAL OPERATOR AND
ITS FOURIER TRANSFORM
2 P SPECTRAL DOMAIN WORKING AREA
. .TIMING
BGTIME, INTIME,ENTIME....... BEGIN, INTERMEDIATE AND END TIMES

QOQOOQO0OQ0QQO00000000000000000000000000000000

PARAMETER (MXT=128,MYT=128, NXF=256, NYF=256)

PARAMETER (MT=MXT*MYT , MTI=2*MXT*MYT, NTF=NXF *NYF, NTF I=2 *NXF *NYF)
INTEGER ITAG (MT)

INTEGER*4 IT(3)

REAL X(MT), Y (MT),RES (MT)

COMPLEX GXX (NXF, NYF) ,GXY (NXF,NYF) , GYX (NXF,NYF) , GYY (NXF, NYF)
COMPLEX JS (MTI),E(MTI),A(MTI),R(MTI),P (MTI)

COMPLEX ZT (NTFI),AT(NTFI),W(NTF)

COMPLEX XJ

CHARACTER*2 FILE(2)

COMMON /DIM/MX,MY,NX,NY,NT,MG,MGI,DX,DY,DS

DATA TPI/6.28318530717959/,20/376.991118/,%XJ3/(0.,1.)/

DATA FILE/'jx’,’'3Jy’/

... TARGET GEOMETRY SPECIFICATION

Qo0

WRITE (6, *)

WRITE (6, *) ' **SCATTERING FROM THIN CONDUCTING PLATES**’
1 WRITE (6, *)

WRITE (6, *) ' SPECIFY THE TARGET:’

WRITE (6, *)

WRITE(6,*)'1l: RECTANGULAR PLATE’

WRITE(6,*)"2: CIRCULAR DISK'’
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W wn

[eXeXe]

1000
2000

(e XeXeXeKe!

WRITE(6,*)’3: TRIANGULAR PLATE’
WRITE(6,*)’4: POLYGONAL PLATE’
WRITE(6,*)’5: TEST TARGETS'
WRITE (6, *)
READ (5, *, ERR=1) NTARG
IF ((NTARG.GE.1) .AND. (NTARG.LE. 4) ) THEN
WRITE (6, *) ' TARGET CENTER AND ENCLOSURE LIMITS: XO0,YO0,XL,YL’
READ (5, *, ERR=1) X0, Y0, XL, YL
ELSEIF (NTARG.EQ.5) THEN
WRITE (6, *)’TEST CASES’
WRITE(6,*)’6: TARGET # 1’
WRITE(6,*)’7: TARGET # 2'
WRITE(6,*)’8: TARGET # 3'
WRITE (6,*)’9: TARGET # 4’
READ (5, *, ERR=1) NTARG
ENDIF
IF ((NTARG.LT.0) .OR. (NTARG.GT.9) ) THEN
WRITE (6, *) ' WRONG TARGET! TRY AGAIN...'
GO TO 1
ENDIF
WRITE (6, *)’ SAMPLE DENSITIES:UPLX,UPLY’
READ (5, *) UPLX, UPLY
WRITE (6, *)’'FFT PAD OF ORDER:'
READ (5, *) IPAD
CALL GEOMTR (NTARG, X0, Y0, XL, YL, UPLX, UPLY, IPAD, ITAG, X, Y)
WRITE(6,*)’1l) CONTINUE 2) MODIFY GEOMETRY 3) EXIT'
READ (5, *) IRES
IF (IRES.EQ.2) THEN
GO TO 1
ELSEIF (IRES.EQ.3) THEN
GO TO 600
ENDIF
IF ( (MX.GT.MXT) .OR. (MY.GT.MYT) .OR. (NX. GT NXF) .OR. (NY.GT.NYF) ) THEN
WRITE (6, 2)
WRITE (6, 3) MX, MY, NX,NY
WRITE (6, 4) MXT, MYT, NXF NYF
GO TO 600
ENDIF
FORMAT (/, ’**REQUIRED ARRAY DIMENSIONS EXCEED THOSE SPECIFIED.')
FORMAT(’ REQUIRED : MXT=’,I3,’ MYT=’,I3,’ NXF=',I3,’ NYF=',13)
FORMAT (! SPECIFIED :’,4(5X,I3),/,’MODIFY DIMENSIONS & RERUN.')
NT=NX*NY

. .RESISTIVITY PARAMETERS

WRITE (6, *) 'RESISTIVITY TAPER (REAL):’

WRITE(6,*)’ -2.) RESISTIVITY VECTOR READ EXTERNALLY'
WRITE(6,*)’ -1.) PERFECTLY CONDUCTING PLATE’
WRITE(6,*)’ 0.) UNIFORM’

WRITE(6,*)’ 1.) LINEAR’

WRITE(6,*)’ 2.) PARABOLIC’

READ (5, *) TPR

INDX=0

IF (TPR.EQ.-2.) THEN

..READ THE RESISTIVITY VALUES FROM AN EXTERNAL FILE

OPEN(11,FILE='rest.in’)
DO 2000 J=1,MY
DO 1000 I=1,MX
INDX=INDX+1
READ (11, *) RES (INDX)
CONTINUE
CONTINUE

Page 3
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c

CLOSE(11)
ELSEIF (TPR.EQ.0.) THEN

C...GET THE RESISTIVITY VALUE FOR THE UNIFORM CASE

o]

3000
4000

C

C..

c

(e XeXeXeKe!

aoaaan

WRITE (6, *) 'ETA=’'
READ (5, *) ETA
DO 4000 J=1,MY
DO 3000 I=1,MX
INDX=INDX+1
RES (INDX)=ETA
CONTINUE
CONTINUE
ELSEIF (TPR.GT.0.) THEN

.GET THE RESISTIVITY TAPER AND SAVE

OPEN(10,FILE='rest.out’)

WRITE (10, *) 'RESISTIVITY TAPER’

WRITE (10, *)MX, MY

WRITE (10, *) (I, I=1,MX)

WRITE (10, *) (J, J=1,MY)

WRITE (6, *) ' ETA (CENTER), ETA(EDGE)’

READ (5, *) ETC,ETE

WIDTHX=XL/2.

WIDTHY=YL/2.

DO 6000 J=1,MY

DO 5000 I=1,MX
INDX=INDX+1
AC1=ABS (X (INDX) -X0)
AC2=ABS (Y (INDX) -Y0)
RES (INDX) =
+ ETC+ (ETE~ETC) * ( (AC1/WIDTHX) **TPR+ (AC2/WIDTHY) **TPR)
WRITE (10, *) RES (INDX)
CONTINUE
CONTINUE
CLOSE (10)
ENDIF

.PARAMETERS FOR SCATTERING PATTERN COMPUTATIONS

WRITE (6, *)’TETA & PHI'

READ (5, *) TETA, PHI :
WRITE (6, *) 'POLARIZATION ANGLE : 0.)H [HZ=0] , 90.)E ([EZ=0]’
READ (5, *) PSI

WRITE (6,*)’1) BISTATIC 2)MONOSTATIC (BACKSCATTERING) COMPUTATIONS’
READ (5, *) ISCAT

WRITE(6,*)’1) ELEVATION 2)AZIMUTH CUT’

READ (5, *) ICUT .
WRITE (6, *) ' INITIAL & FINAL ANGLES AND INCREMENT'

READ (5, *) ANGI, ANGF, INC

.THE SURFACE BASIS FUNCTIONS TO BE INCORPORATED

WRITE (6, *) 'BASIS: 1)CONVENTIONAL DFT 2) SURFACE PULSE 3)ROOF-TOP’
READ (5, *) IBASE

.THE METHOD OF GREENS FUNCTION EVALUATION

WRITE(6,*)’1)DISCRETE OR 2)ANALYTICAL TRANSFORM OF THE DYADIC G’

Page 4
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READ (5, *) IG
CALL GREENS (GXX, GXY,GYX,GYY, IG, IBASE)

. .ITERATION PARAMETERS

oo NoNoKe]

WRITE (6, *) 'MAX & MIN NO. OF ITERATIONS:ITMAX,ITMIN & TOLERANCE’
READ (5, *) ITMAX, ITMIN, TOL

.INITIAL GUESS (OF ZERO)

O0O0000

DO 6 I = 1,MGI
JS(I) = (0.,0.)

6 CONTINUE

OPEN (UNIT=3,FILE='sigmal’)

WRITE(3,7)
7 FORMAT (’ INPUT DATA.’,/,’"SIGMAQ"')
10 CONTINUE
WRITE(6,15) TETA,PHI
FORMAT (’/ ANGLES OF INCIDENCE: TETA=',F5.1,’ , PHI=',F5.1)
ITER = 0

-
w

. .INCIDENT FIELD AND ITS NORM

Qoo

CALL INCIDE(E,TETA,PHI,PSI, X,Y)
ENORM = VNORMX (E)

- e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - -~ - - — -~ - -

. .CGFFT ZEROTH ORDER RESIDUAL CALCULATION

eXoNoNoNe]

CALL OPERAT(A,-1,JS,TPR,RES, 2T, GXX, GXY, GYX, GYY, AT, W, ITAG)
DO 20 I = 1,MGI
R(I) = A(I)-E(I)
P(I) = (0.,0.)
20 CONTINUE
30 CONTINUE

RESET TIME
CALL TIME(0,PR,RES,RC4,RC8)
..CGFFT MAIN ITERATION LOOP

CALL OPERAT(A,1,R,TPR,RES, 2T, GXX, GXY, GYX, GYY, AT, W, ITAG)
B = 1.,/VNORMX(A)
DO 40 I = 1,MGI
P(I) = P(I)-B*A(I)
40 CONTINUE
CALL OPERAT(A,-1,P,TPR,RES, 2T, GXX, GXY, GYX, GYY, AT, W, ITAG)
T = 1./VNORMX(A)
DO 50 I = 1,MGI
R(I) = R(I)+T*A(I)
JS(I) = JS(I)+T*P(I)
0 CONTINUE

aQaQaoaowm
[}
]
]
[
]
]
[}
]
]
]
[}
]
|
1
]

.. .TOLERANCE CHECK
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C
ITER = ITER+1
C COMPUTE RELATIVE RESIDUAL ERROR
RSS = SQRT (VNORMX (R) /ENORM)
IF ((RSS.LE.TOL) .AND. (ITER.GT.ITMIN)) THEN
WRITE (6,400)
ELSE IF(ITER.GE.ITMAX) THEN
WRITE (6,500)
ELSE
GO TO 30
END IF
FORMAT (5(1X,G12.5))

o

CPU TIME FOR THIS ANGLE OF INCIDENCE

CALL TIME(26,PR,RES,RC4,RC8)

.. .SCATTERING CALCULATIONS

QOO0 O00Qo0

IF (ISCAT.EQ.2) THEN
CALL SCATER(SIG,JS,TETA,PHI, X,Y)
IF (ICUT.EQ.1) THEN
WRITE(6,180) TETA, ITER,RSS, SIG
WRITE (3,200) TETA, SIG
TETA=TETA+INC
IF (TETA.LE.ANGF) THEN
GO TO 10
ENDIF
ELSEIF (ICUT.EQ.2) THEN
WRITE (6,180)PHI, ITER,RSS,SIG
WRITE(3,200)PHI,SIG
PHI=PHI+INC
IF (PHI.LE.ANGF) THEN
GO TO 10
ENDIF
ENDIF
ELSEIF (ISCAT.EQ.1) THEN
WRITE (6, *) ITER,RSS
c
C...FOR BISTATIC CASE, SAVE THE CURRENT DENSITY
C
DO 110 I=1,2
Ll=(I-1) *MG
OPEN(I,FILE=FILE(I))
WRITE(I,*)’TITLE'
WRITE (I, *) MX, MY
WRITE(I,*) (J,J=1,MX)
WRITE (I, *) (K,K=1,6MY)
DO 70 L=1,NT
W(L)=(0.,0.)
70 CONTINUE
DO 80 L = 1,MG
W(ITAG(L)) = JS(L+L1)
80 CONTINUE
DO 100 K=1,MY
L2=(K~1) *NX
DO 90 J=1,MxX
WRITE (I, *)CABS (W(L2+J))
90 CONTINUE
100 CONTINUE
CLOSE (I)
110 CONTINUE
IANGI=ANGI
IANGF=ANGF
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IF (ICUT.EQ.1) THEN
DO 150 I=IANGI, IANGF, INC
TETA=I
CALL SCATER(SIG,JS,TETA,PHI,X,Y)
WRITE(6,180) TETA,SIG
WRITE (3,200) TETA, SIG
150 CONTINUE
ELSEIF (ICUT.EQ.2) THEN
DO 160 I=IANGI, IANGF, INC
PHI=I
CALL SCATER(SIG,JS,TETA,PHI,X,Y)
WRITE (6,180)PHI,SIG
WRITE (3,200)PHI,SIG
160 CONTINUE
ENDIF
ENDIF
WRITE (3, *)'END OF DATA.'
CLOSE (3)
CLOSE (9)
WRITE (6, *) ' SCATTERING COMPUTATIONS COMPLETED’
WRITE (6, *) ' ANOTHER TARGET? 1) YES 2)NO’/
READ (5, *) IRES
IE(IRES.EQ.1)GO TO 1
WRITE (6, *) ' NORMAL TERMINATION.'
180 FORMAT (’ ANGLE=' ,1X,F5.1,2X, ' SIGMAO=" ,F9.3)
200 FORMAT (F5.1,2X,F9.3)
300 FORMAT (I14,1X,G13.4)
400 FORMAT (’ CONVERGENCE ACHIEVED.’) .
500 FORMAT (’/ ITMAX EXCEEDED; CONVERGENCE CRITERION NOT MET.’)
600 STOP
END

c
c * TARGET GEOMETRY SPECIFICATIONS *
c

SUBROUTINE GEOMTR (NTARG, X0, Y0, XL, YL, UPLX, UPLY, IPAD, ITAG, XT, YT)
INTEGER ITAG(*)

REAL XT(*),YT(*),XC(10),Y¥YC(10)

CHARACTER*1 ITARG(256,256)

LOGICAL TAG,TRITAG

COMMON /DIM/MX,MY,NX,NY,NT,MG,MGI,DX,DY,DS

TAG=.FALSE.

IF (NTARG.EQ.1) THEN

. .RECTANGULAR PLATE
ELSEIF (NTARG.EQ.2) THEN

. .CIRCULAR DISK

QOO0 Qa0

WRITE (6, *) 'ENTER THE RADIUS:'’
READ (5, *) RAD

ELSEIF ( (NTARG.EQ.3) .OR. (NTARG.EQ.4) ) THEN
IF (NTARG.EQ. 3) THEN

. .TRIANGULAR PLATE

[eNeXe]

NC=3
ELSEIF (NTARG.EQ. 4) THEN

. .POLYGONAL PLATE

[eNeXe!

WRITE (6, *) 'NUMBER OF CORNERS:’
READ *,NC
ENDIF
NT=NC-2
WRITE (6, *) 'ENTER THE COORDINATES OF EACH CORNER SEQUENTIALLY:'
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30

10
20

eNeXoXe]

DO 30 I=1,NC
WRITE (6, *)'CORNER #’,1I
READ (5, *) XC (I),YC(I)
CONTINUE
ELSEIF (NTARG.EQ. 6) THEN
XL=3.
YL=2.
X0=1.5
Y0=0.
C1=SQRT(3.)
ELSEIF (NTARG.EQ.7) THEN
XL=4.
YL=2.
X0=2.
YO0=0.
C1=SQRT(3.)
C2=1.+C1
ELSEIF (NTARG.EQ.8) THEN
XL=3.5
YL=2.
X0=1.75
Y0=0.
Cl=2.5
ELSEIF (NTARG.EQ.9) THEN
XL=2.5
YL=2,
X0=,25
Y0=0.
C1=SQRT(3.)
C2=Cl/2.
ENDIF
XL2=XL/2.
YL2=YL/2.
XSTRT=X(0-XL2
YSTRT=Y0-YL2
MX=XL*UPLX
MY=YL*UPLY
NX=2** (INT (ALOG (2 . *MX) /ALOG(2.) ) +IPAD)
NY=2** (INT (ALOG (2. *MY) /ALOG(2.) ) +IPAD)
DX=1./UPLX
DY=1./UPLY
DO 20 J=1,NY
DO 10 I=1,NX
ITARG(I,J)="."
CONTINUE
CONTINUE
INDX=0
DO 60 J=1,MY
Y=YSTRT+(J-0.5) *DY
Ll=(J-1) *NX
DO 50 I=1,MX
X=XSTRT+(I-0.5) *DX
L=L1+1

...TARGET # 1 RECTANGLE

~ IF (NTARG.EQ.1) THEN
TAG=.TRUE.

- - ——— - - - - - - - - - - - - - - - - - - - S = - - - - . - - - - - - -~ - - - - - -

...TARGET # 2 CIRCULAR DISK

ELSEIF (NTARG.EQ.2) THEN

IF( (SQRT((X-X0)**2+(Y-Y0)**2)).LT.RAD )TAG=.TRUE.
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QOO0 0

[eXeXeXeKe!

eNoNoNoXe]

[eXoNoNeXe]

(oNoNe]

QOO0

..TARGETS # 3 AND 4 TRIANGLE AND POLYGON

ELSEIF ( (NTARG.EQ.3) .OR. (NTARG.EQ.4) ) THEN
DO 40 K=1,NT

IF(

+ TRITAG (X, Y,

+ XC(1),¥YC(1),XC(K+1),YC(K+1),XC(K+2),YC(K+2))

+ ) TAG=, TRUE.

CONTINUE
..TARGET # 6
ELSEIF (NTARG.EQ. 6) THEN
IF(

+ (X.LE.Cl) .AND. (ABS(Y) .LE.X/C1)

+ .OR.

+ (X.GE.C1) .AND. (((X-C1l) **2+Y**2) ' LE.1.)

+ ) TAG=.TRUE.

. .TARGET # 7
ELSEIF (NTARG.EQ.7) THEN
IF( (X.LE.Cl).AND.(ABS(Y).LE.X/Cl)

+ .OR.

+ (X.GE.Cl) .AND. (X.LE.C2) .AND. (ABS(Y) .LE.1.)

+ .OR.

+ (X.GE.C2) .AND. (((X=-C2) **2+Y**2) LE.1.) )TAG=.TRUE.

..TARGET # 8
ELSEIF (NTARG.EQ.8) THEN
IF( (X.LE.Cl).AND. (ABS(Y).LE.1l.)
+ .OR.
+ (X.GE.C1) .AND. (((X=C1l) **2+4Y**2) LE.1.) )TAG=.TRUE.
. .TARGET # 9
ELSEIF (NTARG.EQ.9) THEN
IF( ((ABS(Y).LE.C2).AND.(Y.GE.C1l*(ABS(X)~.5)))

+ .OR.

+ ((X.GE.0.) .AND. (Y.LE.C2)

+ <AND. (((X-.5) **2+Y**2) LE.1.)) )THEN
TAG=.TRUE.
IF((X.LE.0.) .AND. (ABS(Y) .LE.DY/2.) ) THEN

TAG=.FALSE.
ENDIF

ENDIF

ENDIF

..TAG ASSIGNMENT

IF (TAG) THEN
ITARG(I,J) =’ */
INDX=INDX+1

ITAG (INDX) =L
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XT (INDX) =X
YT (INDX) =Y
TAG=.FALSE.
ENDIF
CONTINUE
CONTINUE

...TOTAL NUMBER OF 'NONZERO’ ELEMENTS

WRITE(6, *)

WRITE (6, *)'XI= ' ,XSTRT+0.5*DX,’ XF="',X,’ MX= ',MX,’ NX= ',NX
WRITE(6,*)’YI= ', YSTRT+0.5*DY,’ YF=',Y,’ MY=',MY,’ NY=',NY

WRITE (6, *)
MG=INDX
MGI=2*MG
WRITE (6, *) ' GEOMETRY DISPLAY? 1)YES 2)NO/
READ (S, *) IRES
IF (IRES.EQ.1) THEN
DO 70 J=NY,1,-1
WRITE(6,80) (ITARG(I,J), I=1,NX)
CONTINUE
FORMAT (128 (1X,Al))
ENDIF
WRITE (6, *)
WRITE(6, *) ' TARGET GEOMETRY SPECIFICATION COMPLETED.’
RETURN
END

*x
*

OO0

IDENTIFYING A POINT IN THE INTERIOR OF A TRIANGLE SPECIFIED BY
ITS CORNERS

*
*

LOGICAL FUNCTION TRITAG(X,Y,X1,Yl,X2,Y2,X3,Y3)
TRITAG=.FALSE.

21 = (X - X1) * ( ¥2-Y1 ) - ( X2-X1 ) * (¥ =-Y1)
22 = (X3 - X1) * ( ¥Y2-Y1 ) - ( X2-X1 ) * ( Y3 -Y1 )
23 = (X =-X1) * (¥Y3-¥Y1 ) - ( X3-X1 ) * (¥ -Y1)
24 = ( X2 - X1) * ( ¥Y3-Y1 ) - ( X3-X1 ) * ( Y2 -Y1)
25 = (X - X2) * ( ¥Y3-Y2 ) - ( X3-X2 ) * (¥ =-Y2)
26 = (X1 - X2) * ( ¥Y3-Y 2) - ( X3-X2 ) * ( Y1 -Y2 )
IF(

(21*z2 .GE. 0.0) .AND. (23*Z24 .GE. 0.0) .AND. (25*26 .GE. 0.0)
) TRITAG=.TRUE.

RETURN

END

Cc * EVALUATION OF DYADIC GREEN’S FUNCTION AND ITS FOURIER TRANSFORM

*

SUBROUTINE GREENS (GXX, GXY, GYX, GYY, IG, IBASE)

REAL*8 AUX1(20000),AUX2(20000)

REAL*8 DX2D,DY2D,DFX,DFY,FX,FY,DERX,DERY,CXX,CXY,CYY,DBSINC
REAL*8 TPID,TPI2D,S

COMPLEX XJ,XJK,MYCSQR,FCT

COMPLEX GI,GO0,GX,GY,GO0SELF,GONSLF

COMPLEX GXX (NX,NY),GXY (NX,NY) ,GYX (NX, NY) , GYY (NX, NY)
INTEGER N (2)

COMMON /DIM/MX,MY,NX,NY,NT,MG,MGI,DX,DY,DS

DATA PI/3.141592653589793/,TPI/6.28318530717959/

DATA TPI2/39.47841760435747/,TPI2D/39.47841760435747D0/
DATA FPI/12.56637061435917/,20/376.991118/

DATA TPID/6.28318530717959D0/

DATA XJ/(0.,1.)/,XJK/(0.,6.28318530717959)/
FCT=XJ*Z0/TPI/NT

DS=DX*DY

DX2=DX/2.
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DY2=DY/2.

DX2D=DBLE (DX2)
DY2D=DBLE (DY2)
DFX=1.D0/DBLE (DX*NX)
DFY=1.D0/DBLE (DY*NY)
NXH = NX/2+1

NYH = NY/2+1

DO 2 J=1,NY
DO 1 I=1,NX
GXX(I,J)=(0.,0.
GXY(I,J)=(0.,0.
GYX(I,J)=(0.,0.
GYY(I,J)=(0.,0.
CONTINUE
CONTINUE

~

- - - = - G = W - - - — - — . - . W WD . = = > . - - - - - - - - - - - - - - - - —

...DISCRETE GREEN’S FUNCTION

QOO0

IF (IG.EQ.1) THEN
N(1)=NX
N (2)=NY
RHO=SQRT (DS/PI)
RBOUND=RH0
DO 20 J=-MY+1,MY-1
IF (J.LT.0) THEN
JQ=NY+J
ELSE
JQ=J
ENDIF
ETA=J*DY
ETAP=ETA+DY2
ETAM=ETA-DY2
DO 10 I=-MX+1,MX-1
IF(I.LT.0)THEN
IP=NX+I
ELSE
IP=I
ENDIF
PSI=I*DX
PSIP=PSI+DX2
PSIM=PSI-DX2
R=SQRT (PSI**2+ETA**2)
IF (R.GT.RBOUND) THEN
GO = GONSLF (R)
ELSE
GO = GOSELF (PSIP,ETAP) + GOSELF (PSIM, ETAM)
+ - ( GOSELF (PSIP,ETAM) + GOSELF (PSIM,ETAP) )
ENDIF
GXX (IP+1,JQ+1) = GO / FPI
GXX (IP+1,JQ+1) =FCT*GXX (IP+1, JQ+1)
10 CONTINUE
20 CONTINUE
o] CALL SCFT2(1,GXX,1,NX,GXX,1,NX,NX,NY,1,1.0,AUX1,20000,AUX2,20000)
C CALL SCFT2(0,GXX,1,NX,GXX,1,NX,NX,NY,1,1.0,AUX1,20000,AUX2,20000)
CALL FFTNDM(GXX,N,2,-1)
DO 40 J=1,NY
IF (J.LE.NYH)FY=(J-1) *DFY
IF (J.GT.NYH)FY=(J-NY-1) *DFY
DERY=FY*DBSINC (TPID*FY*DY2D)
CYY=1.D0-DERY*DERY
DO 30 I=1,NX
IF (I.LE.NXH)FX=(I-1) *DFX
IF(I.GT.NXH)FX=(I-NX-1) *DFX
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DERX=FX*DBSINC (TPID*FX*DX2D)
CXX=1.D0-DERX*DERX
CXY=-DERX*DERY

GYY (I, J)=GXX(I,J)*SNGL(CYY)
GXY (I, J)=GXX(I,J) *SNGL (CXY)
GYX (I, J)=GXY(I,J)

GXX (I, J)=GXX(I,J) *SNGL (CXX)

30 CONTINUE

40 CONTINUE

C

o e e e L L L e D e LEL e L Lt Lt e
C

C...ANALYTICAL TRANSFORM OF THE GREEN’S FUNCTION

C

ELSEIF (IG.EQ.2) THEN
DO 60 J=1,NY

IF (J.LE.NYH) FY=(J-1) *DFY

IF (J.GT.NYH) FY= (J-NY-1) *DFY

CYY=TPI2D* (1.D0-FY*FY)

DO 50 I=1,NX
IF (I.LE.NXH)FX=(I-1)*DFX
IF (I.GT.NXH)FX=(I-NX-1) *DFX
CXX=TPI2D* (1.D0-FX*FX)
CXY=-TPI2D*FX*FY
S=FX*FX+FY*FY-1.D0
GI=2.*TPI*MYCSQR(S)
IF (CABS (GI) .LT.1.E-20)GI=1.E-10
GXX(I,J)=FCT*SNGL (CXX) /GI
GXY (I,J)=FCT*SNGL (CXY) /GI
GYX(I,J)=GXY(I,J)
GYY(I,J)=FCT*SNGL (CYY) /GI

50 CONTINUE
60 CONTINUE
ENDIF

...BASIS FUNCTIONS

(e XeNoNeXe!

DO 80 J=1,NY
IF(J.LE.NYH)FY=(J-1) *DFY
IF(J.GT.NYH)FY=(J-NY-1) *DFY
DO 70 I=1,NX
IF (I.LE.NXH)FX=(I-1) *DFX
IF(I.GT.NXH)FX=(I-NX~-1) *DFX
IF (IBASE.EQ.1) THEN
ELSEIF (IBASE.EQ.2) THEN
GXX (I, J)=GXX(I,J) *PWCNST (DX, FX) *PWCNST (DY, FY)
GXY (I,J)=GXY(I,J) *PWCNST (DX, FX) *PWCNST (DY, FY)
GYX (I, J)=GYX(I,J) *PWCNST (DX, FX) *PNCNST (DY, FY)
GYY (I, J)=GYY (I, J) *PNCNST (DX, FX) *PWCNST (DY, FY)
ELSEIF (IBASE.EQ.3) THEN
GXX(I,J)=GXX(I,J) *PWSINE (DX, FX) *PWCNST (DY, FY)
GXY (I, J)=GXY (I, J) *PWCNST (DX, FX) *PWSINE (DY, FY)
GYX(I,J)=GYX(I,J) *PWSINE (DX, FX) *PWCNST (DY, FY)
GYY (I, J)=GYY(I,J) *PWCNST (DX, FX) *PWSINE (DY, FY)
ENDIF
70 CONTINUE
80 CONTINUE
RETURN
END

C
C * GONSLF *
C

COMPLEX FUNCTION GONSLF (R)
COMPLEX GFREES, XJK
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[eXoXe]

Qo

Q00

[oXeoNeoXe]

COMMON /DIM/MX,MY,NX,NY,NT,MG,MGI,DX,DY,DS

DATA TPI2/39.47841760435747/,XJK/(0.,6.28318530717959)/
GFREES (R) =CEXP (-XJK*R) /R

GONSLF=TPI2*DS*GFREES (R)

RETURN

END

GOSELF

COMPLEX FUNCTION GOSELF (X,Y)

COMPLEX XJK

COMMON /DIM/MX,MY,NX,NY,NT,MG,MGI,DX,DY,DS

DATA TPI2/39. 47841760435747/ XJK/(O /6. 28318530717959)/
X2=X*X

Y2=Y*Y

X3=X*X2

Y3=Y*Y2

XY=X*Y

R2=X2+Y2

R=SQRT (R2)

ALX=ALOG (X+R)

ALY=ALOG (Y+R)

Gl=X*ALY+Y*ALX

G2=DS

G3=XY*R/3.+(X3*ALY+Y3*ALX) /6.

G4=XY*R2/3.

GOSELF=TPI2* (G1-XJK*G2-TPI2/2.*G3+XJK*TPI2/6.*G4)
RETURN

END

TRANSFORM OF THE SURFACE PIECEWISE CONSTANT EXPANSION FUNCTION *

REAL FUNCTION PWCNST (D, F)
DATA TPI1/6.28318530717959/
C=TPI*F

PWCNST=SNSINC (C*D/2.)
RETURN

END

TRANSFORM OF THE OVERLAPPING SINUSOIDAL EXPANSION FUNCTION

REAL FUNCTION PWSINE (D,F)
DATA TPI/6.28318530717959/
C=TPI*F
Cl=TPI*TPI*(1.-F*F)
IF (C.EQ.0.) THEN
PWSINE=1,
ELSE
PWSINE=2 . *TPI* (COS (C*D)-COS (TPI*D))/ (D*C1*SIN(TPI*D))
ENDIF
RETURN
END

INCIDENT FIELD

@PROCESS DIRECTIVE (’*VDIR')

SUBROUTINE INCIDE (E,TETA,PHI,PSI,X,Y)

REAL X(*),Y(*)

COMPLEX E(*),XJ,PHASE

COMMON /DIM/MX,MY,NX,NY NT, MG, MGI, DX, DY, DS

DATA PI/3.141592653589793/,TP1/6. 28318530717959/ 20/376.991118/

DATA XJ/(0.,1.)/

STE = SIN(TETA*PI/180.)
CTE = COS(TETA*PI/180.)
SPH = SIN(PHI*PI/180.)

CPH = COS(PHI*PI/180.)
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SPS = SIN(PSI*P1/180.)
CPS = COS(PSI*PI/180.)
RX = TPI*STE*CPH
RY = TPI*STE*SPH
E0=20
EX = E0 * ( CPS*CTE*CPH - SPS*SPH )
EY = E0 * ( CPS*CTE*SPH + SPS*CPH )
C*VDIR IGNORE RECRDEPS
DO 10 I=1,MG
PHASE = CEXP ( XJ * ( RX*X(I) + RY*Y(I)) )
E(I) = EX * PHASE
E(I+MG) = EY * PHASE

10 CONTINUE
RETURN
END
c
C * EUCLEDEAN NORM CALCULATION *
c

REAL FUNCTION VNORMX (W)

REAL*8 SUM, AMAG

COMPLEX W(*)

COMMON /DIM/MX,MY,NX,NY,NT,6 MG, MGI,DX,DY,DS

SUM = 0.D0

DO 10 I = 1,MGI
AMAG = DBLE ( CABS ( W(I) ) )
SUM = SUM+AMAG*AMAG

10 CONTINUE

VNORMX = SNGL (SUM)

RETURN

END

C

C * INTEGRO-DIFFERENTIAL OPERATOR INVOLVING CONVOLUTIONS CARRIED QOUT *
C * IN THE TRANSFORM DOMAIN *
C
C

@PROCESS DIRECTIVE (’*VDIR')
SUBROUTINE
+ OPERAT (A, ISIGN, Z, TPR, RES, 2T, GXX, GXY, GYX, GYY, AT, W, ITAG)

INTEGER ITAG (*)

REAL RES (*)
COMPLEX XJ,A(*),Z(*),2T(*),AT(*),W(*)
COMPLEX GXX (NX,NY), GXY (NX,NY) , GYX (NX, NY) , GYY (NX, NY)
COMMON /DIM/MX,MY,NX,NY,NT, MG, MGI,DX,DY,DS, MT
DATA PI/3.141592653589793/,TPI/6.2831853071796D0/,20/376.991118/
DATA XJ/(0.,1.)/

- e > - — - - - — -~ — - - - - — - ——— - - —

. .FORWARD FOURIER TRANSFORM

CALL SPECTR(Z,2T,-1,W, ITAG)
I O

. .REGULAR OPERATOR

QOO0 00000

IF (ISIGN.EQ.-1) THEN
C*VDIR IGNORE RECRDEPS
DO 20 J=1,NY
L=(J-1) *NX
DO 10 I=1,NX
K=L+I
AT (K) =GXX (I, J) *2T (K) +GXY (I, J) *ZT (K+NT)
10 CONTINUE
20 CONTINUE
C*VDIR IGNORE RECRDEPS
DO 40 J=1,NY
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L=NT+ (J~1) *NX
DO 30 I=1,NX
K=L+I
AT (K)=GYX(I,J) *2T (K~-NT) +GYY (I, J) *2T (K)
CONTINUE
CONTINUE

.. .ADJOINT OPERATOR

ELSEIF (ISIGN.EQ.1) THEN

C*VDIR IGNORE RECRDEPS

50
60

DO 60 J=1,NY
L=(J-1) *NX
DO 50 I=1,NX
K=L+I
AT (K) =CONJG (GXX (I, J)) *2T (K) +CONJG (GXY (I, J) ) *ZT (K+NT)
CONTINUE
CONTINUE

C*VDIR IGNORE RECRDEPS

@ J
oo

QOO0 O0000

DO 80 J=1,NY
L=NT+(J-1) *NX
DO 70 I=1,NX
K=L+I
AT (K) =CONJG (GYX (I, J)) *2T (K-NT) +CONJG (GYY (I, J) ) *2T (K)
CONTINUE .
CONTINUE
ENDIF

. INVERSE FOURIER TRANSFORM

CALL SPECTR(A,AT,1,W,ITAG)
0 I

- — - - —— - - - - - - - - - - — - — - - - - - - — - - - — - - - - - ——

.. .CALCULATIONS FOR RESISTIVE PLATES

IF(TPR.GT.~-1.) THEN
IF(ISIGN.EQ.-1) THEN

C*VDIR IGNORE RECRDEPS

90
100

DO 100 J=1,MY
L=(J-1) *MX
DO 90 I=1,MX
K=L+I
A (K) =RES (K) *Z (K) +A (K)
CONTINUE
CONTINUE

C*VDIR IGNORE RECRDEPS

110
120

DO 120 J=1,MY
L=MT+(J-1) *MX
DO 110 I=1,MX
K=L+I
A (K) =RES (K-MT) *Z (K-MT) +A (K)
CONTINUE
CONTINUE
ELSEIF (ISIGN.EQ.1) THEN

C*VDIR IGNORE RECRDEPS

130

DO 140 J=1,MY
L=(J-1) *MX
DO 130 I=1,MX
K=L+I
A (K) =RES (K) *Z (K) +A (K)
CONTINUE
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140 CONTINUE
DO 160 J=1,MY
L=MT+ (J-1) *MX
DO 150 I=1,MX

K=L+I
A (K) =RES (K-MT) *Z (K-MT) +A (K)
150 CONTINUE
160 CONTINUE
ENDIF
ENDIF
RETURN
END
C
c * FOURIER TRANSFORM VIA FFT *
c

SUBROUTINE SPECTR(Z,2T, ISIGN,W, ITAG)
INTEGER N(2), ITAG(*)

REAL*8 AUX1(20000),AUX2(20000)

COMPLEX Z(*),2T(*),W(*)

COMMON /DIM/MX,MY,NX,NY,NT,MG,MGI,DX,DY,DS
N(1)=NX

N (2)=NY

- - — - " - - = - — - . =" . P WS = = S S = =S W - - - - - - - - - -

.. .FORWARD FOURIER TRANSFORM

(oo No N K]

IF(ISIGN.EQ.-1) THEN
DO 10 I = 1,2
C PRECONDITIONING IN SPATIAL DOMAIN
DO 15 II=1,NT
W(II)=(0.,0.)
15 CONTINUE
Ll = (I-1)*MG
DO 20 L = 1,MG
W(ITAG(L)) = Z(L1l+L)

20 CONTINUE
c CALL SCFT2(1,W,1,NX,W,1,NX,NX,NY,1,1.0,AUX1,20000,AUX2,20000)
C CALL SCFT2(0,W,1,NX,W,1,NX,NX,NY,1,1.0,AUX1,20000,AUX2,20000)

CALL FFTNDM(W,N,2,-1)
Ll = (I-1)*NT
DO 40 L = 1,NT

2T (L1+L) = W(L)

40 CONTINUE
10 CONTINUE
c

C
c
C...INVERSE FOURIER TRANSFORM
c

ELSE IF(ISIGN.EQ.1)THEN
DO SO I =1,2
Ll = (I-1)*NT
DO 60 L = 1,NT
W(L) = 2T (L1l+L)

60 CONTINUE
C CALL SCFT2(1,W,1,NX,W,1,NX,NX,NY,-1,1.0,AUX1,20000,AUX2,20000)
c CALL SCFT2(0,W,1,NX,W,1,NX,NX,NY,-1,1.0,AUX1,20000,AUX2,20000)

CALL FFTNDM(W,N,2,1)
Ll = (I-1)*MG
DO 70 L = 1,MG
Z(L1+L) = W(ITAG(L))

70 CONTINUE
50 CONTINUE
END IF

RETURN
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c
c
c

10

QOO

QO

e NeoNe]

END

ROUTINE FOR COMPUTATION OF FAR ZONE SCATTERING COEFFICIENT *

SUBROUTINE SCATER(SIG,JS,TETA,PHI,X,Y)
REAL X(*),Y(*)

COMPLEX JS (*),XJ,PHASE, SX,SY,NTETA, NPHI

COMMON /DIM/MX,MY,NX,NY,NT,MG,MGI,DX,DY,DS

DATA PI/3.141592653589793/,TPI/6.2831853071796D0/,XJ/(0.,1.)/

STE = SIN(TETA*PI/180.)
CTE = COS(TETA*PI/180.)
SPH = SIN(PHI*PI/180.)
CPH = COS(PHI*PI/180.)
RX = TPI*STE*CPH
RY = TPI*STE*SPH
SX = (0.,0.)
sy = (0.,0.)
DO 10 I=1,MG
PHASE = CEXP (XJ* (RX*X(I)+RY*Y(I)))

SX = SX + JS(I) * PHASE
SY = SY + JS(I+MG) * PHASE
CONTINUE

SX = DS*SNSINC (DX*RX/2.) *SNSINC (DY*RY/2.) *SX
SY = DS*SNSINC(DX*RX/2.) *SNSINC (DY*RY/2.) *SY
NTETA = CTE* (CPH*SX+SPH*SY)

NPHI =-SPH*SX+CPH*SY

SIG = PI*(CABS (NTETA) **2+CABS (NPHI) **2)
IF(SIG.LE.1.E-10)SIG=1.E-10

SIG = 10.*ALOG10 (SIG)

RETURN

END

SNSINC *

REAL FUNCTION SNSINC(A)
IF(A.EQ.0) THENM

SNSINC = 1,
ELSE

SNSINC = SIN(A) / A
ENDIF
RETURN
END

DBSINC *

DOUBLE PRECISION FUNCTION DBSINC (A)
REAL*8 A
IF(A.EQ.0.D0) THEN

DBSINC = 1.D0

ELSE

DBSINC = DSIN(A) / A
ENDIF
RETURN
END

SQUARE ROOT OF A SIGNED REAL NUMBER *

COMPLEX FUNCTION MYCSQR(A)
REAL*8 A
COMPLEX XJ

DATA XJ/(0.,1.)/

IF (A.GE.0D0) MYCSQR=SNGL (DSQRT (A) )

IF (A.LT.0D0) MYCSQR=-XJ*SNGL (DSQRT (-2) ).
RETURN

END
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* FFT ROUTINE FOR COMPUTATION OF N DIMENSIONAL FOURIER TRANSFORM *
* TASKS: 1)BIT REVERSAL 2) TRIGONOMETRIC RECURRENCE 3) TRANSFORM *
* ALL DONE IN THIS PROGRAM *

PARAMETER DESCRIPTION

DATA. .. ...t eennnnns A REAL ARRAY IN WHICH DATA ARE STORED AS IN

A MULTIDIMENSIONAL COMPLEX FORTRAN ARRAY
NDIM......oieeeennnnn DIMENSION OF DATA AND THE FFT
11 INTEGER ARRAY OF LENGTH NDIM
ISIGN. ...t evenaannns DIRECTION OF THE TRANSFORM:

-1 -FORWARD FFT

1 -INVERSE FFT TIMES THE PRODUCT OF
LENGTHS OF ALL DIMENSIONS

QOO0 000000000

SUBROUTINE FFTNDM (DATA, NN,NDIM, ISIGN)
REAL*8 . WR,WI,WPR,WPI,WTEMP, THETA
DIMENSION NN (NDIM) ,DATA (*)
NTOT=1
DO 10 IDIM=1,NDIM
NTOT=NTOT*NN (IDIM)
10 CONTINUE
NPREV=1
DO 80 IDIM=1,NDIM
N=NN (IDIM)
NREM=NTOT/ (N*NPREV)
IP1=2*NPREV
IP2=IP1*N
IP3=IP2*NREM
I2REV=1

- . - - " - . = - - . - A W - . . - = S T = - - - - - - - - " - - - - . - - - . . - - -

...BIT REVERSAL SECTION

oXoNoXoXe]

DO 40 I2=1,IP2,IPl
IF(I2.LT.I2REV)THEN
DO 30 I1=I2,I2+IP1-2,2
DO 20 I3=I1,IP3,IP2
I3REV=I2REV+I3-I2
TEMPR=DATA (I3)
TEMP I=DATA (I3+1)
DATA (I3)=DATA (I3REV)
DATA (I3+1)=DATA(I3REV+1)
DATA (I3REV) =TEMPR
DATA (I3REV+1)=TEMPI
20 CONTINUE
30 CONTINUE
END IF
IBIT=IP2/2
1 IF ((IBIT.GE.IP1) .AND. (I2REV.GT.IBIT) ) THEN
I2REV=I2REV-IBIT
IBIT=IBIT/2
GO TO 1
END IF
I2REV=I2REV+IBIT
0 CONTINUE

.. .DANIELSON-LANCZOS FORMULA

QOO

IFP1=IP1
2 IF(IFP1.LT.IP2) THEN
IFP2=2*IFP1
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THETA=ISIGN*6.28318530717959D0/ (IFP2/IP1)
WPR=-2.D0*DSIN(0.S5DO*THETA) **2
WPI=DSIN (THETA)
WR=1.D0
WI=0.D0
DO 70 I3=1,IFP1,IPl
DO 60 Il=I3,I3+IP1-2,2
DO 50 I12=I1,IP3,IFP2
K1=I2
K2=K1+IFP1
TEMPR=SNGL (WR) *DATA (K2) -SNGL (WI) *DATA (K2+1)
TEMP I=SNGL (WR) *DATA (K2+1) +SNGL (WI) *DATA (K2)
DATA (K2) =DATA (K1) -TEMPR
DATA (K2+1) =DATA (K1+1) -TEMPI
DATA (K1) =DATA (K1) +TEMPR
DATA (K1+1)=DATA(K1+1) +TEMPI

50 CONTINUE
60 CONTINUE
WTEMP=WR
C
C = rcemccecca e e e e — e —————
c
C...TRIGONOMETRIC RECURRENCE
C

WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI
70 CONTINUE
IFP1=IFP2
GO TO 2
END IF
NPREV=N*NPREV
80 CONTINUE
RETURN
END
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