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Abstract

The scattering by the junction formed by two coplanar uniform impedance,
resistive, or dielectric half planes has been considered in the past. In this
report, we investigate the scattering by the junction formed by two tapered
resistive sheets. In particular, the exact E-polarization diffraction coefficient
for the junction of two coplanar linearly tapered resistive sheets is found by
application of the Kontorovich-Lebedev transformation. In addition, a Phys-
ical Optics diffraction coefficient for the junction formed by a metallic half
plane and a linearly or quadratically tapered resistive sheet for either E-
or H-polarization is presented. All diffraction coefficients are compared to
numerical results and the utility of each method is discussed.
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1 Introduction

Although the scattering from various material half planes in isolation have been
studied for over thirty years, the diffraction coefficient associated with the junc-
tion of two coplanar material half planes is a more recent development. Rojas[l]
employed the Wiener-Hopf technique to determine the diffraction coefficient by
two coplanar abutting impedance half planes. Ricoy and Volakis[2] utilized Gen-
eralized Impedance Boundary Conditions to study the diffraction from a dielectric
join for normal incidence and Bliylkaksoy et al.[3] used the Wiener-Hopf technique
to determine the diffraction of an obliquely incident plane wave from the junction
of two thin dielectrics. Biiylikaksoy et al.[4] also examined the diffraction by the
junction formed by an impedance and a resistive half plane. Senior[5] employed
the angular spectrum method to determine the diffraction coefficient for any com-
bination of coplanar abutting impedance, resistive, or conductive half planes. He
showed that the resulting coeflicient can be written as a product of the correspond-
ing half plane diffraction coefficients in isolation. Furthermore, Senior([6] treated
this case for skew incidence once again with the angular spectrum method.

All preceding analyses dealt with junctions having homogeneous electrical prop-
erties in either half plane. An exception is a solution presented by Yang et al.[7]
for the scattering by a resistive sheet whose resistivity linearly increased from the
origin. To do so, Yang et al.[7] solved the Helmholtz equation with the aid of the
Kontorovich and Lebedev transform|(8], hereafter referred to as the K-L transform.

This report is concerned with the investigation of the scattering by the junction
formed by two sheets whose resistivity smoothly increases with distance from the
junction. The E-polarization diffraction from the junction of two linearly tapered
resistive sheets will be found by an extension of the method employed by Yang
et al.[7]. This solution is verified by comparison with results based on numerical
simulations employing the method of moments. We also consider a Physical Optics
(PO) approximation of the E- and H-polarization scattering from the junction
formed by a metallic and a tapered resistive half plane. The slope of the taper is,
of course, important in assessing the validity limits of the PO approximation and
this is examined by comparison with numerical data.



2 Diffraction by a Linearly,Tapered Resistive
Sheet Junction

2.1 Formulation

Consider the case of two abutting coplanar resistive half planes in the y = 0 plane
illustrated in figure 1la. We are interested in determining the diffracted field by the
junction of these half planes when illuminated by the E-polarized plane wave

Ei — ée—ikpcos(d’—@,) (1)

(an e~*! time-dependence is assumed and suppressed) where k is the wavenumber,
(p, $) denote the normal cylindrical coordinates and @, is recognized as the angle of
incidence. Each of the resistive sheets forming the junction has a linearly varying
resistivity and satisfies the boundary conditions

ix B = o (2
ix (ixE) = ~R)[jx A" (3

where [ ]zzgt denotes the discontinuity in the value of the quantity above and

below the sheet. Also,

R(z) = Ri(z)= —al—Zzﬁkx <0
= Ry(z) = +a2—22—°k:c >0 (4)

is the resistivity profile of the half planes with Z, being the free-space intrinsic
impedance as illustrated in figure 1b. In (2) and (3), E and H denote total field
quantities and for E-polarization the corresponding total and scattered electric
fields will also be z-directed with the last defined as

E:(é, ¢) = Ez(ﬁ, ¢) - E;(éa ¢) (‘5)
The scattered-field satisfies the scalar Helmholtz equation
? 10 18 s
@+E_3f+£_28—¢5+1 E;(6¢) = 0 (6)

where ¢ = kp, and to find E!(¢,$) we must solve this equation subject to the
radiation and the boundary conditions (2) and (3). To do so, we first note that
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the boundary conditions are specified on the ¢ = 0 and ¢ = 7 half planes and
thus for a solution of (6), it is instructive to eliminate the p variable through a
convenient transformation. The K-L transform is suitable for our case since it will
be seen to completely eliminate the p dependence from the Helmholtz equation
and boundary conditions for the resistivity profile given in (4). For our purposes,
we denote the K-L transform pair as

F(u,9) = / 88 g ¢
flé,¢) = vF(v,d)e '”"sm(l/ﬂ’)H(l)(ﬁ)dV (8)

Z4 —100
and require the conditions lim¢_o f(¢,4) = 0 and Im[k] > 0 be satisfied to ensure
convergence of the integrals. To satisfy the requirement on f(¢,¢) as £ — 0, we
set

El(£,9) + foe* = [(¢9) (9)

where f, = E°(p = 0, ¢) and in accordance with the edge condition lim,_.o(pH,) =
0 it follows that f, = +1

In view of (9), (6) can now be rewritten as

o &, o
[528§2+§8_£+%7+£}f(€’¢) = ife (10)

and upon taking the K-L transform of both sides of this equation we obtain

2 0o .
[£§+V](%@ = i [ et

3 (11)

_ve
= 12—
sin(mv

This is a second-order differential equation in ¢ and can be readily solved in terms
of the transform variable ». We have

v X
e—lll 2

F(v,9). = i2m + Acos(¢v) + Bsin(¢v) 0< o<
= i2£§r;—:5 + Ccos(¢v) + Dsin(¢v) 7 < ¢ < 2m (12)

with the constants A,B,C and D to be determined from the boundary conditions
on either side of the junction. For this purpose it is convenient to first rewrite the
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boundary conditions (2) and (3) as

E(67%) = Ei(én) (13)
+) = iY"Rl(ﬁ) b=

rigrt) = R P )] (19

Ez(évo) = Ez(€$27r) (15)
_ YR -

B6D) =~ [ T ¢)L=% (16)

where R;2(£) denote the arbitrary resistivity function for the left and right half

planes. Specializing Ry 2(€) to the case of a linear taper as given in (4) and making
use of (1), (5) and (9) yields

fl&x*) = f(¢n7) (17)
+ _ al af b=t __ [ ,i€cos o 1§
flemh) = ig {540 ¢) = (e~ ) (18)
f(&,0) = f(é o) (19)
- _ 2 of - —i€cosgo _ it
60 = —igigee]  —(e - ) (20)
¢=2r
and upon taking their K-L transforms, we obtain
Fv,7*) = F(v,n7) (21)
a; |[OF p=r* o evE
Flor) = i [ Ggnd)] s
F(v,0) = F(v,2r) (23)
oF $=0 -
F(v,0) = —z—[a¢( ¢)]¢j2i2ysin(7ru) (1 —cos[(m—¢,)v]) (24)

which are compatible with the differential equation (11).

Application of (21) and (23) to (12) allows the elimination of two of the un-
known constants giving

F(v,¢) = i2ysei:€:y) + Ccos[(2r — ¢)v] + Dsin[2r —@)v] 0<d<n
= i2usei:1(7ju) + Ccos(¢v) + Dsin(¢r) 7 < ¢ <2r (25)



The remaining constants may be determined by enforcing (22) and (24) and in
doing so we obtain the solution

Flv,¢) = iQU:i:;:V) [1 ~ %{ cos [(m — ¢ — ¢,)v]
iy 2l =Ml =
+z,a2Vcos(¢f/) cos(d>,,1/)} 0<d<n
| sin(7v)
. €T3 1
= zzz/sin(m/) [1 - f{ cos (1 — ¢ — ¢,)v]
i 2811081
+ia21/cos [(2r S—in@rz;])cos(qﬁou) }] < $<or (26)

where ' = 1 4 aya50® + i(a; + ap)v cot(rv). We observe that the form of F(v, ¢)
in the region 7 < ¢ < 2r differs from that in 0 < ¢ < 7 by having 27 — ¢ in
place of ¢ and therefore it is sufficient to confine our attention to the case where
0<o<m.

From (7) and (9), we can express the K-L transform of the scattered field as

oo it
Bind) = Flvg)- [ ZHDd

i, T
6—11/7

= F(v,¢)—1i2

vsin(rv)
and upon taking the inverse transform of this, we have
1 i

B08) = -3 [ t{ sl =661

—100

cos [(m — @)v] cos [(7 — @o)v]

sin(7v)

cos(¢v) °°S(¢°V)}efv%H£”(kp)dv (28)

sin(mv)

+ia,v

+iagv

which is a complete representation of the scattered field. As a check, if we set
a; = a; =0, (28) gives
Bipd) = — [ cosln—6— )] “FHD (kp)dv

— _e—ikp cos(d+¢o) (29)



which is the known reflected field from an infinite metallic plate.
Of primary interest in this study is the far-field. In this case kp — oo and upon
replacing the Hankel function in (28) with its large argument approximation, we

find
EX(p,9) ~ \/;ri—pe‘“”‘%)D,w, 8.) (30)

where

De(¢a ¢o) = —% _i:; %—\{ Cos [(77 - ¢"— <ba)l/]

cos [(r — @)v]cos [(7 — ¢,)V]

sin(mv)

cos<¢u>cos<¢ov>}du

sin(7v)

+ia,v

+ia,v (31)
is the diffraction coeflicient for the linearly tapered resistive sheet junction.

If we allow a; — oo the left resistive sheet vanishes and the diffraction coeffi-
cient reduces to

1 i cos(x = g)v]cos [(7 — )4
2 J-io  cos(mv) — tagvsin(mv)

De(4, ¢o)

dv (32)

which is the result derived by Yang et al.[7] for a half plane in isolation whose
resistivity is linearly increasing away from the origin. Alternatively, if we set
az = 0 in (32), the resulting structure is a metallic half plane and as expected the
associated diffraction coefficient is

dv

D.($,4,) = -é ‘: cos [(r — ¢)o](c:,,)[(7r — 4,)y]
_ cos (%) cos (9’2—")
~ " Cos(6) + cos(#,) (33)

Clearly the results in (32) and (33) serve as a partial validation of the solution(31).




2.2 Special case: Metallic-Linearly Tapered Resistive Half
Plane Junction

As stated earlier, a particular case of interest is the diffraction by the junction
formed by a metallic half plane and a resistive half plane whose resistivity is linearly
increasing away from the junction. This corresponds to the case where a; = 0 and
az > 0 as shown in figure 1c and from (31) we obtain

Du(6, ) = 1 i sin(mv) cos (7 — ¢ — ¢o)v] + iagy cos(¢v)cos(¢ov)dy (34)

2 /)i sin(7v) + iaav cos(wv)

For the remainder of this section, we shall concentrate on this type of a configu-
ration. As a first step in evaluating the infinite integral of (34), we recognize that
(34) may be alternatively written as

1 fic cos(¢v) cos(gov)

De(¢,9.) = " 2J-ie cos(mv) dv
1 fie tan(mv)sin (7 — )v]sin[(1 — ¢,)v] )
2 Jico sin(7v) + tagv cos(rv) d (33)

The first term in (35) is the diffraction coefficient for the metallic half plane and
we can then infer that the second term is caused by the presence of the linearly
tapered sheet. Consequently we can express (35) as

D.(4,6) = D{(4,6,) + D(4,4.) (36)
where D(!) is given by (33) and

1 i tan(wv)sin (7 — ¢)v]sin (7 — @,)v]
2 J i sin(mv) + tagv cos(wv)

DP(4,4,) = v (37)
To evaluate the last integral, it is important to recognize that the integrand is
even and its behavior as v — 100 is

i tan(my)sin[(r — @)v]sin[(r — go)v] _ L iv(o-rteo) (38)

y—i00 sin(7v) + tagv cos(mv) B 2(1 + aqv)

Adding and subtracting this result from the integrand of (37) we obtain

ico e'($—7+¢0)
DO(p,¢) = —Lfe iy,
too [tan(mv)sin[(r—¢)v]sin[(r—go)v] |, e¥($—7+do)
+f0 [ sin(rv)+iazv cos(rv) + 2(14a2v) ]dl/ (39)



and it is recognized that the first integral is the tabulated exponential integral while
the second term is a rapidly convergent integral which can be evaluated numer-
ically. The diffraction coeflicient for the metal-linearly tapered resistive junction
can then be written as

.cos g cos $o

-4 ¢—n+do 1
- [t | ], (0)

sin(rv)+iazv cos(nv) 2(14azv)

where E;[ ] denotes the exponential integral defined in Abramowitz and Stegun[9],
and since the last integral is rapidly convergent, D.(¢, ¢,) can be readily evaluated
from this expression.



3 Numerical Verification

In the preceding section we derived the diffraction coefficient for the junction
formed by a metallic half plane and a resistive half plane having a resistivity which
is linearly increasing away from the join. In this section we present a numerical
validation of the analytical solution. The numerical simulation was achieved by
truncating the resistive cards at a finite distance away from the junction and for
the metallic half plane portion, a so-called killer-card was attached at the trunca-
tion point to suppress the diffraction from the end. The killer-card is essentially
a finite size tapered resistive card and for effective suppression of the undesired
edge diffracted field its resistivity is chosen to match that of the original half plane
at the attachment point and is then tapered away from the truncation point. Ini-
tially this tapering provides a gradual increase in the resistivity of the card which
becomes more rapid until the resistivity is very large.

After some experimentation, it was found that for E-polarization a suitable
resistivity profile for simulating the metallic-linearly increasing resistive half plane
junction is

10. 16
R(z) = 60.0Z [ffwoo] —40<e< 10
= 0.0 -10<z<0
= aynZ,z 0 <z < Tterm (41)

The first term of (41) is recognized as a 30\ killer-card and the second term is the
truncated metallic half plane. If we allow a; — oo in (41), a metallic half plane
is simulated and the suitability of (41) in modeling the metallic half plane portion
of the junction is demonstrated in figure 2 by comparison with the exact metallic
half plane diffraction coefficient. The right half plane (z > 0), which has a linearly
growing resistivity away from the junction, was truncated at the point where the
current was approximately 10 percent of its average value over the length of the
card. For example, figure 3a illustrates the resistivity profile(41) for a; = 1 where
the right-side card was truncated at e, = 20X. The resulting computed current
at edge-on incidence is illustrated in figure 3b and we observe that the termination
criterion given previously is satisfied. Furthermore, it is interesting to point out
that the current behavior near the junction, (z = 0), supports the observation
made previously that the diffraction coefficient may be written as the sum of the
metallic diffraction coeflicient and a correction term.

Figures 4-13 compare the backscatter pattern of the diffraction coefficient(40)
with corresponding numerical data for a variety of metallic half plane- linearly
tapered resistive half plane junctions. Each figure corresponds to a different re-
sistivity slope, 7a,, and as seen the derived diffraction coefficient agrees in all

9



cases with the numerical data. We observe that for large slopes, as expected, the
diffraction coefficient approaches that of the metallic half plane. When a; = 2, the
edge-on echowidth is about 10 dB below that of the metallic half plane and it is
within a decibel of the metallic half plane echowidth when a, = 10. For a; = 1,
the echowidth is down by 20 dB and for a; = 0.5 it is down by 30 dB. We remark
that the numerical simulation of the smaller slope tapers is rather difficult since it
requires Ty.rn, to be very large and the small discrepancies at edge-on in figures 4
and 5 are attributed to this problem.
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4 PO Approximation for Metallic Half Plane-
Tapered Sheet Junction

4.1 E-Polarization

Upon inspection of the boundary conditions for an E-polarized excitation it is
clear from (13)-(16) that the analysis for the solution of the scalar wave equation
in the K-L transform domain is useful only for the junction formed by two coplanar
linearly tapered resistive half planes. However, it has been suggested by Haupt
and Liepa[10] that the PO approximation is suitable for evaluating the scattering
from slowly varying tapered sheets. Herein, we examine the accuracy of the PO
approximation for the junction formed by a metallic half plane and a half plane
whose resistivity increases either linearly or quadratically away from the junction.

The PO current due to an E-polarized plane wave excitation can be readily
determined via the procedure followed by Haupt and Liepa[10]. Skipping the
details, we obtain

PO _ 2 sin ¢0 —tko cos por
J r) = 2Y:, - 42
( ) Z 1 +2)o sin d}oR(IE)e ( )

which is in agreement with the result of Haupt and Liepa[l0]. The associated
scattered field is then given by

E* =V (V . ﬁc) + k:ﬁe
= K
= —2Z°§/:: J, (ml) HW [kla: - :cll]dz' (43)

where £ H{[k|z—z'|] is the two-dimensional free-space Green’s function. To obtain
the far-zone field, we introduce the large argument approximation for the Hankel
function and this yields

- 2 . x
B~ f\/me'(k“"f)ﬂ(m) (44)

where the far-field coefficient is given by
ko[ PO ! —-s'kcosd:.t’ !
P98 = ~Zug [ PO () emkeort g (45)
with JFO(z") as defined in (42).
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To proceed with the evaluation of the integral in (45), we must first specify
the resistivity profile function, R(x), which appears in (42). For the metallic half
plane-linearly tapered half plane junction we have

R(z) = 0 —00<z<0
= Z,amz 0<z<o (46)

and when this is substituted in (42) and then in (45) we obtain the integral

1

dz

o et k[cos ¢+cos ¢a]a:l
/_oo 1 + 2Y, sin ¢, R(z")
= I—(¢7 ¢o) + I+(¢) ¢o) (47)

The functions I4(¢, ¢,) are given by

1(é, ¢5)

0 . ' ,
Loty = [ emsromsit g
= né(a)+— (48)
a
and

14(8, o) dz’

00 e-—ik[cou $+cos ¢o]xl
/0 1 4+ 27aysin oz’
= PePE, (iap) (49)

in which §(z) denotes the impulse function, @ = k[cos¢ + cos@,), and B =
L___. Consequently we may write P.(@, ¢,)

27aj sin g

P(b6) = -2 [2” sin uf(e) + 27502 4 —— 7B, iaf)| (50
4 «a Tag
which provides the far-field pattern due to the PO current and should be compared
with the exact diffraction coeflicient D, (¢, ¢,) given in the previous section
In figures 14-21, the far-field coefficient P.(¢, ¢,) is compared to the diffraction
coefficient(40) for various slope parameters, a,. For very gradual tapers (a; < 0.2),
the PO approximation is seen to be in excellent agreement with the rigorous diffrac-
tion coeflicient. However, for more rapidly increasing tapers, the PO approxima-
tion degrades, particularly at edge-on incidence. This is because the dominant
scattering contribution away from broadside emanates from the discontinuity in
the first derivative of the resistivity at the origin. Since this term is negligible for
gradual tapers, PO works well for small a; and fails for the more rapid tapers.
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If the dominant scattering is caused by discontinuities in the derivative of the
resistivity profile, we then expect the PO approximation to perform better for a
metal half plane joined to a quadratically tapered resistive half plane since the first

derivative is continuous at the junction. Let us for example consider the following
resistivity profile

R(z) = 0 —00<z<0
= Zobymz? 0<z< o (51)

Using the same procedure as before, we find that

Pe(¢’ ¢o) = _%Sin ¢o [7{'6(0) + &

| +i§ (P Ei(aB) + P Er(af) + ime™) ] a>0

k, . i
— sin b, lré(a) + =~

—7,'[3— (e“ﬁE.'(—aB) + e—aﬁEl(._aﬂ)-{—iﬂeaﬁ)

5 a<0 (52

where now § = m and « is the same as before.

Figures 22-27 compare the above PO approximation to numerical data obtained
by truncating the resistivity profile(51) and attaching a killer-card as done previ-
ously for the linearly varying sheet. Although it is difficult to numerically model
gradual tapers due to computational size limitations and floating-point accuracy
concerns, the numerical data indicates that the PO approximation is excellent up
to b, = 0.5. For larger b;, the PO approximation begins to fail for predictions
near edge-on incidence. As seen from figures 26 and 27, the deviation from the
numerical result which is our reference is quite substantial (more than 20dB) for
b2 > 1.
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4.2 H-Polarization

Let us now consider the scattering by the tapered resistive sheet junction illumi-
nated by the H-polarized plane wave

H' = ze77kocos(#=20) (53)

Unfortunately, for this illumination the analysis employed for E-polarization in the
case of linearly tapered sheets is not applicable for H-polarization. To demonstrate
this, let us examine the transition conditions for H-polarization. We have

OH, _OH, . _

56 = e (54)
%%:(g,m = iY,ER(z) [H. (¢ 9)in (55)
oH, 0H,

_(%(5’0) = _54{)—(6’2”) (56)
0H, . $=0

%_(f, 0) = —1YolR(z)[H.(¢, 9)]52n (57)

and it is obvious that the resistivity function which renders this condition inde-
pendent of ¢ is R(z) = Z,a;/€ which is not of practical interest. Thus, the K-L
transform does not provide a direct means to solve for the H-polarization difraction
from any useful taper.

At this point we are therefore forced to consider a PO approximation for the
scattering by a junction formed by two tapered resistive half planes. We find that
the PO current on a resistive plane is given by

f(:v) . 2Y, sin ¢,
~ "2Y,R(z) + sin 6,

e—ikcos¢oz (58)

which agrees with the result given by Haupt [9]. Using this in the radiation integral
we find that the far zone field is given by

- . 2 (ko X
B ~ x,/me(’"’ P4, 60)

oo

k ' - ! '
Pi(6,8) = Zigsing, / Jo(z')emtkoconss’ g (59)

—00

where

For the case of a junction formed by a metal half plane and a linearly tapered
resistive sheet, the above integral can be evaluated in a manner similar to that
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used for H-polarization to find
k. ) ; .
Pu(é,6) = gsind [n6(a) + = + e E, iaf) (60)

where as before o = k(cos ¢ + cos ¢,) and B = 22%_ If R(z) in (58) corresponds

27a,
to a junction formed by a metal half plane and a 2qu:sxdran:ically tapered resistive

sheet it follows that

P(6) = ind|nila) +

+i§— (e#Ei(aB) + e Ex(af) + iwe‘“”)l a>0

ko . 0
= ‘?smqb[rE(a) + =

—i—g— (e“ﬁE;(—a,B) + e_“ﬁEl(—aﬂ) + i7re°“6)

a<0 (61)

where now 3 = s,“,—”‘r% and a is the same as before.

To examine the validity range of the PO approximation for H-polarization we
again resorted to a numerical simulation of the corresponding junction. As in the

case of E-polarization the metallic half plane is truncated at = —10\ at which
point a killer-card is attached having the resistivity profile
16
R(z) = 20Z, (a’ '3*010) _ 40X <z < —10A (62)

The linearly or quadratically tapered half plane is simply terminated at z4e,, where
the current has dropped more than 90% of its average value over the range 0 < = <
Tterm. I'rom the patterns shown in figure 28-31 it is seen that the PO approximation
provides a reasonable simulation for a; < 0.7 when the resistivity profile of the left
half plane is linear. The inadequacy of the PO approximation is most apparent for
incidences near grazing to the metallic half plane. However, it should be noted that
the oscillatory behavior of the numerical result is characteristic to the numerical
model (see Herrmann(11]) and not to the junction itself. The correct pattern is
more likely to be the average line through the oscillations and the above statement
on the validity of the PO approximation was based on this assumption.

Figures 32-35 include H-polarization patterns for the diffraction by a junction
metal-resistive junction where the resistive half plane is now quadratically tapered
away from the junction. From these figure it follows that the validity of the PO
approximation is now extended up to b, < 2. Again the failure of the PO ap-

proximation is more pronounced for incidences near grazing to the metallic half
plane.
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5 Summary and Conclusions

In this report we examined the diffraction by junctions formed by tapered resis-
tive half planes. Particular emphasis was given to the case where the resistivity
of the half planes grows linearly or quadratically away from the junction. For
linear resistivities, rigorous analytical expressions were derived when the illumi-
nation was E-polarized, but unfortunately, we were not able to do the same for
H-polarization. In the case of H-polarization we resorted to a PO approximation
with emphasis on the metal-tapered resistive half plane junction. The accuracy of
this PO approximation was examined by comparison with data from a numerical
model where killer-cards were used to terminate the metallic half plane. It was
found that the accuracy of the PO approximation for H-polarization is acceptable
when the coeflicient of the linear taper is less than 0.7 and in the quadratic tapers
when the coefficient is less than 2. Essentially, by using a quadratic taper one
reduces the total length of the resistive card in achieving the same scattering as
that from a linear taper. The model and data provided in this report could be
used in making trade-off decisions in choosing a linear versus a quadratic taper.

Diffraction coefficients based on the PO approximation were also derived and
their accuracy was examined by comparison with the analytically derived coefh-
cient and that based on a numerical model. For E-polarization it was found that
the PO approximation is acceptable when the coefficient of the linear taper is less
than 0.2 and in the case of quadratic tapers when the coefficient is less than 0.5.

Since the validity of PO approximation is compromised only when there is
strong diffraction from the junction one may conclude that for low RCS design
tapers the PO approximation should be sufficient. However, it is possible to im-
prove upon the PO approximation by iterating on the exact integral equation in
the spectral or spatial domain. We have not pursued this as yet, but it would be
a worthwhile task to consider in the future.
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Figure la. Coplanar resistive halfplane geometry.
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Figure 1b. Resistivity profile for two abutting linearly tapered
resistive halfplanes.
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Figure 1c. Resistivity profile for a PEC halfplane linearly tapered

resistive sheet junction.
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Figure 2. Comparison of the E-polarization diffraction coefficients for

a PEC half plane as obtained from the numerical model and
its analytical expression.
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Figure 4. Comparison of the E-polarization diffraction coefficient for
a2=0.5 as computed from (39) and the numerical model.
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Figure 5. Comparison of the E-polarization diffraction coefficient for

ap=1 as computed from (39) and the numerical model.
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Figure 6. Comparison of the E-polarization diffraction coefficient for
a2=2 as computed from (39) and the numerical model.
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Figure 8. Comparison of the E-polarization diffraction coefficient for
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Figure 9. Comparison of the E-polarization diffraction coefficient for

ap=5 as computed from (39) and the numerical model.
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Figure 10.  Comparison of the E-polarization diffraction coefficient for
ap=6 as computed from (39) and the numerical model.
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Figure 11.  Comparison of the E-polarization diffraction coefficient for

ap=7 as computed from (39) and the numerical model.
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Figure 12.  Comparison of the E-polarization diffraction coefficient for
a2=8 as computed from (39) and the numerical model.
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Figure 13.  Comparison of the E-polarization diffraction coefficient for
a2=10 as computed from (39) and the numerical model.
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Figure 14.  Comparison of the PO and numerical E-polarization
backscatter echowidth for a metal-to-a linear resistive sheet
junction with a2=0.05 (see (46)).
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Figure 15.  Comparison of the PO and numerical E-polarization
backscatter echowidth for a metal-to-a linear resistive sheet
junction with a3=0.1 (see (46)).
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Comparison of the PO and numerical E-polarization

backscatter echowidth for a metal-to-a linear resistive sheet

junction with ap=0.2 (see (46)).
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Comparison of the PO and numerical E-polarization

backscatter echowidth for a metal-to-a linear resistive sheet

junction with a2=0.3 (see (46)).
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Figure 18.  Comparison of the PO and numerical E-polarization

backscatter echowidth for a metal-to-a linear resistive sheet
junction with a2=0.4 (see (46)).
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Comparison of the PO and numerical E-polarization
backscatter echowidth for a metal-to-a linear resistive sheet
junction with a2=0.5 (see (46)).
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Figure 20.  Comparison of the PO and numerical E-polarization
backscatter echowidth for a metal-to-a linear resistive sheet
junction with az=1 (see (46)).
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Comparison of the PO and numerical E-polarization
backscatter echowidth for a metal-to-a linear resistive sheet
junction with ap=2 (see (46)).
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Figure 22.  Comparison of the PO and numerical E-polarization
backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having by=0.5 (see (50)).
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Figure 23.  Comparison of the PO and numerical E-polarization

backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having ap=0.5 (see (50)).
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Figure 24. Comparison of the PO and numerical E-polarization

backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having b=0.7 (see (50)).
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Comparison of the PO and numerical E-polarization
backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having by=1 (see (50)).
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Figure 26.  Comparison of the PO and numerical E-polarization

backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having by=2 (see (50)).
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Comparison of the PO and numerical E-polarization

backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having by=3 (see (50)).
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Figure 28.  Comparison of the PO and numerical H-polarization
backscatter echowidth for a metal-to-a linear resistive sheet
Junction with ap=0.5 (see (46)).
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Figure 29.  Comparison of the PO and numerical H-polarization

backscatter echowidth for a metal-to-a linear resistive sheet

junction with a2=0.7 (see (46)).
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Figure 30.  Comparison of the PO and numerical H-polarization
backscatter echowidth tor a metal-to-a linear resistive sheet
junction with az=1 (see (46)).
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Figure 31.  Comparison of the PO and numerical H-polarization

backscatter echowidth for a metal-to-a linear resistive sheet
junction with ap=2 (see (46)).



Backscatter Echo Width (o/A) [dB]

Backscatter Echo Width (o/A) [dB]

20.0 E T T AR aam
E
10.0 _ —— PO Approximation
e Numerical Model
0.0 ¢
-10.0
200 f
-30.0
-40.0
-50.0
0.0 30.0 60.0 90.0 120.0 150.0
Angle (¢) [deg]
Figure 32.  Comparison of the PO and numerical H-polarization
backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having by=0.5 (see (50)).
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Figure 33.  Comparison of the PO and numerical E-polarization

backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having by=1 (see (50)).
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Figure 34.  Comparison of the PO and numerical E-polarization
backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having by=2 (see (50)).
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Figure 35.  Comparison of the PO and numerical E-polarization
backscatter echowidth from a metal-to-a quadratically tapered
sheet junction having by=3 (see (50)).



