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Abstract

When an S-shaped surface posseses no derivative discontinuities,
techniques such as the Geometrical Theory of Diffraction are not ap-
plicable. However, if the radius of curvature is relatively large at every
point on the surface, the physical optics approach may be employed.
In this report, we present a Uniform Physical Optics (UPO) solution.
The UPO solution remains valid at caustic regions associated with the
merging specular points approaching from either side of the inflection
point of the S-shaped surface. It is developed by approximating the
surface with a localized cubic expansion leading to exact expressions
in terms of Airy functions. In contrast to other solutions, the one
given here requires only knowledge of the stationary phase points and
the first two derivatives of the surface generating function at those
points. The validation of the developed P.O. solution is presented in a
companion report and based on results included in that report, recom-
mendations are outlined here for future improvements in the available
theoretical predictions of the scattering by S-shape surfaces.



1 Introduction

Of interest in this study is a characterization of the scattering by a class of
smooth surfaces possessing an inflection point at which the radius of curva-
ture is infinite (see Fig. 1). This belongs to a special class of convex-concave
surfaces and recently several asymptotic studies have appeared in the lit-
erature for an evaluation of the scattering by these surfaces. As can be
expected, these studies have concentrated on the evaluation of the scattering
in the nonspecular or shadowed region[1, 2] which is characterized as the re-
gion with no geometrical optics returns. Of particular concern has also been
the development of a uniform solution which remains valid in the transition
region (i.e. the region near the shadow boundary separating the specular
and nonspecular regions), and recently Pathak and Liang [3] presented such
a solution that overcomes the limitations of earlier uniform solutions [4, 5, 6].
All these asymptotic solutions are based on a physical optics approximation
of the surface current distribution and the aforementioned papers have only
been directed at the evaluation of the physical optics integral.

In the next section a simple uniform evaluation of the physical optics inte-
gral is presented which parallels that given in [3] but avoids the introduction
of the numerous geometrical parameters appearing in that solution. The so-
lution provided by UPO will be compared to an evaluation by the stationary
phase method. The final section will summarize this UPO formulation as
well as discuss its merits and anticipated region of applicability.

2 Uniform Physical Optics Approximation

2.1 H-polarization

Consider the two-dimensional S-shaped surface, shown in Fig. 1, described

by a function y = f(z) with f”(0) = 0. The surface is illuminated by the
plane wave

Hi — éejko(zcos¢o+ysin¢o) (1)

giving rise to the scattered field
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H' = -1 | 3(7) x V [HP (klp - 7'|] de (2)



where C' describes the surface contour in the zy plane, k, is the free space
propagation constant, H(*)(-) is the zeroth order Hankel function of the sec-
ond kind and J(p) is the induced surface current. As usual, 5’ = z'2 + y'§)
denotes the integration point and p = z& + yjj = p(& cos ¢ + §sin @) is the
observation point. For far zone observations, of primary interest here, we
allow p to approach infinity and (2) then simplifies to

, ~j(kp—m/4) , L
H® ~ __2- k € / [P % J e]ko(.'t cos ¢+y slnqﬁ)dzl (3)

where it remains to spec1fy or find the surface current density J(p). On the
basis of the physical optics approximation we set J(p) = J,,(p) = 27 x H,
with 7i being the upward unit normal to the surface y = f(z). Substituting
for

f = :l)——.f:f’((l)) (4)
1+ (f'(z))?
and noting that
dl = /14 (f'(z))%dz (5)

(3) reduces to

k. e—ilkor=/4) roo .
Hem —py 28— 1ot o ikolC2'+SF(a")] gt
/5, 7 i [f'(z") cos ¢ —sin @] e dz’  (6)

in which
S = sin ¢ + sin ¢, (Ta)

and

C = cos ¢ + cos ¢, (7b)

A non-uniform expression for the far zone scattered field is now readily ob-
tained by evaluating the integral via the stationary phase method. This
yields

—jlkop—m/4]
0 o~ s L -idars{f"(@a)}

&\ S
 [f'(ai) cos ¢ — sin g] oo+ (o)) (8)
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where z,; denote the two stationary phase points found from a solution of
the equation

cos ¢ + cos ¢,

/ C
fzsi) = TS sin ¢ + sin ¢, b=do

= —cot ¢, (9)

The stationary phase points x,; specify the specular points of the surface,
whose location depends on the angles of incidence and observation. For an
odd function f(z), 2,4 = —z4, and we observe that for 0 < 7 — ¢, < L
as m — ¢ decreases the specular points disappear. First, as * — ¢ decreases
the two stationary points coalesce to zero and since f”(0) = 0, (8) becomes
invalid. The ¢ angle at which this occurs is the shadow boundary (see fig. 1)
and for lower m — ¢ angles (shadowed region) there are no reflected fields as
defined in the classical geometrical optics sense. In the shadowed region the
stationary points specified by (9) become imaginary and the evaluation of
the integral in (6) must then be performed via the steepest descent method.
Nevertheless, in [1, 2, 3] the stationary phase method was still used in the
standard manner except that the contribution of the stationary point having
negative imaginary part was discarded because it results in a wave violating
the radiation condition. Based on this, the scattered field in the shadowed
or non-specular region is asymptotically given by

He o 0T [ (@)

cos ¢ _ Sin ¢ e‘j%a"'g{f”(zsi)}ejko[cxai'l'sf(xui)]

VP S|f"(zsi)l
(10)

on the assumption that Im(zs;) > 0. It can be shown that this result is
identical to that obtained via the steepest descent method.

To derive an expression for the scattered field which remains valid for
observations near the shadow boundary (transition region) we return to the
PO integral in (6). Since z,; is small in the transition region, the odd function

f(z) may be replaced by the first two terms of the Maclaurin series expansion,
ie.

f(z) ~ f'(0)z + L'G(O) . (11)

When this is introduced into (6) and the non-exponential portion of the
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integrand is replaced by its value at the saddle point we find

—i(ko—r/4) o
H’ ~ +2/ ;—; e——\/—l_’_ <% cos ¢ + sin ¢) /_oo e/’ =B2) 4z (12)

with
o = Ff"(0)S (13a)
6
and
B=—k[C+ f(0)S]=0 (130)

Noting now the identity
m(3c) M2 A {:I:(3a)—1/3,3} = /oo cos(az® + Bz)dz = %/w ei(0e*£62) gy
0 -0
(14)

we obtain

—j(kp—m/4)
H ~ 26———\/ﬁ—\/27rk0 (%cos¢+sin¢) (30)7/2Ai {~(3a)7/28)

—j(kp—m/4) ; ;
N 26 \/27T_ko (1 + cospcosd, + szn¢3zn¢o) (3a)'1/3Ai {—(3a)_1/3ﬁ}

sin ¢sing,

VP

where Ai(-) is the tabulated Airy function of complex argument.

It is clear that because of (11), expression (15) is valid only in the tran-
sition region and in fact it does not reduce uniformly to the results given in
(8) and (10) for observations in the deep specular or non-specular regions.
To ensure this, it is necessary to employ a more accurate expansion for the
odd function f(z). In view of the aforementioned uniformity requirements
we expand f(z) as

f(@)S = (C - B)z + az® (16)
with
_ []‘70‘5']“/(3332')]2
a= EEEETT A (17a)

(15)



and

%\/—3k35f”(x,,') Cxyi+ Sf(zy)] specular region
B = (170)

X

—5- 1/ =3k2S f"(z4i) [Cxsi + Sf(zs)] non-specular region

in which Re(zy) > 0 and Im(z,) > 0. When (16) is introduced into the
exponential portion of the integrand in (6), the result is again (15) with o
and f as given by (17). For these values of a and 3, (15) reduces uniformly
to (8) or (10) when in the deep specular or non-specular regions, respectively,
in addition to being valid in the transition region (for z,; — 0, the a and 3
values given in (17) reduce to those in (13)). To show that (15) in conjuction
with (17) reduces to (8) and (10) we must introduce the large argument
asymptotic representations of the Airy function [7]

Ai(—2) ~ 2\1/7_1_2_1/4 ej(gzslz‘f) +je_j(§’3/2+%) (18)

in the deep specular region and

Ai(z) ~ -l—z"1/4e_'§'23/2 (19)
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in the deep non-specular region. The asymptotic result given by (15) is,
therefore, valid everywhere with a and 3 as defined in (17). We remark that
this result is also comparable to the leading term given in (23) and (31) of
[3], but is written here in a much more simplified form.

2.2 E-polarization
Let us now assume that the S-shape surface is illuminated by the plane wave

Ei — éejko(xcos¢o+y sin o) (20)

The far zone scattered field is then given by

Z, [k, e~ilkor=m/4) . I
Es =22/ / A A —I\1 piko[z! cos p+y' sind] g
2 Vor g S xI@e e (21)



where Z, is the free space intrinsic impedance. When J(7') is again approxi-
mated by 2 x H' = 27 x §' xE/Z,, with 5* = — (& cos @, + § sin ¢,) denoting
the direction of incidence,we have

=j(kop—m/4) o . , ,
E°= 2HE S [f'(z) cos ¢, — sin @,] eklC=+S1 (N gy (29)
2 \/ﬁ -0

with S and C defined in (7). We observe that apart from the interchange
of ¢ and ¢, in the non-expenontial portion of the integrand and a change of
sign, (22) and (6) are identical and thus a uniform asymptotic expression for
the E-polarization scattered field is

R e‘j(kc«l’""'/4)

E* ~ ——z———ﬁ——\/%ka (% cos ¢, + sin d)o) (3a)"1/3Ai {—(3a)‘1/3,3}

=i(kop—m/4) ) )
" st \/27f_ko (1 + cosgcosd, + 3zn¢szn¢o) (3a)"/34i {—(3a)'1/3,6}

sin ¢psing,

N

The parameters a and f are again given by (17) and we remark that
the E and H polarization expressions are identical for all angles except for a
change in sign.

3 Example Computations

In this section we present examples where the UPQ solution is employed to
compute the scattering by a few S-shaped surfaces. This UPO solution is
compared to the usual non-uniform one based on the standard stationary
phase method.

The S-shape surfaces to be examined here are of the form
2 cT
y=J()= Aerfez) = —A /0 e dt. (24)
1.e, the surface is described by a scaled error function with the A and ¢
constants providing some control on the slope and height of the S-shape

surface. It is seen that for large z, f(z) ~ £A, depending on whether x is
positive or negative. Thus, the height of the S-shaped surface as described
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by (24) is approximately 24 whereas the value of ¢ provides a control on the
slope of the S-curve at the inflection point(see example curves in Fig. 2) It is
important to note that the S-shape curves obtained from (24) do not contain
any surface discontinuities and although this may not be true in practice,
it is essential for this preliminary study in assessing the effectiveness of the
UPO solution.

Figure 3 compares the uniform and non-uniform backscatter patterns for
a surface generated by (24) when A = -0.1 and ¢ = 6 at 5 GHz (As noted
earlier the E and H polarization patterns are identical.). It is seen, that
the agreement is quite good with the exception of the caustic region where
f"(z) ~ 0. Similar agreement is observed in Figure 4 where we compare
bistatic patterns corresponding to @, = 60 degrees for the same surface. In
all patterns, the UPO solution smoothly reduces to the stationary phase
solution when away from the shadow boundary.

4 Concluding Remarks

In this study, we presented a Uniform Physical Optics solution for scattering
by S-shaped surfaces. The accuracy of this solution was examined in a com-
panion report [8] where it was shown to be in good agreement with numeri-
cally generated data provided no whispering gallery mode effects are present.
It should be noted that the S-shaped surfaces examined in this respect were
continuously differentiable and must also be odd about the inflection point.
This is necessary for agreement between the numerical and physical optics
solutions for backscatter calculations near grazing. As demonstrated in 8]
the low echowidth observed in figures 3 and 4 for small 7 — ¢ occurs in spite of
the presence of high surface currents near the inflection point. This implies
that contributions from the surface currents on either side of the inflection
point generate cancelling effects. It was observed, however, that the cancella-
tion of these contributions can be easily disturbed when using, for example,
non-uniform sampling which results in artificially generated returns unless
the numerical discretization and associated current expansion are based on
higher order approximations. The numerical simulation employed in [8] was
unfortunately based on a pulse-basis expansion of the current and further-
more the S-shaped surface was discretized in flat segments causing additional
approximations in the simulation.



Although the above modelling approximations can be alleviated by ensur-
ing that uniform sampling is employed for the discretization of the S-shaped
curve, this is not the case when surface discontinuities are present. For arbi-
trarily located surface discontinuities, it is necessary to resort to non-uniform
sampling and unless higher order modelling of the surface and the current
is employed, the numerical results will not be of acceptable accuracy. This
is illustrated in Figure 5, where we compare the scattering patterns for the
same error function when discretized with uniform and non-uniform sam-
pling. In the case of non-uniform sampling , the surface was subdivided into
twenty small segments and each of these was discretized with different sam-
pling. It is clear from Figure 5, that substantial difference exists between the
backscatter patterns in the non-specular region.

To permit an accurate evaluation of the scattering (possibly non-PO)
by arbitrary S-shaped surfaces, one approach is to reformulate the integral
equation solution by introducing higher order basis and surface elements.
This will ensure continuity of the currents from one zone to another (i.e.
charges at the breakpoints between two segments are eliminated) resulting
in a more accurate prediction of the true surface current. The implementation
of this model is certainly a non-trivial task and it is recommended that it be
pursued as a followup task.
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