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Abstract

In this report we consider the scattering by an infinite resistive strip
grating subjected to an H-polarized plane wave incidence. An approx-
imate analytic solution is obtained on the assumption of a small width
strip array and this solution is verified by comparison with moment
method data. Following the proposed solution, equivalent complex
impedance and power loss formulae are derived and numerical results
are included.



Problem description

Consider the infinite array of resistive strips illustrated in Figure 1. The
strips occupy the zz plane, have a resistivity R, are of width w, and the
array period is 7. On the assumption that w < A, we are interested in
the reflectivity of the strip array when illuminated by an H-polarized plane
wave. That is, the incident field is of the form

E = (Zsin ¢p — g cos ¢0)Zoejk(fC°8¢o+y sin ¢o)
Hs’ — 26jk(a:cos¢o+ysin¢o) (1)

where k = 27/ is the free space wavenumber and Z, is the free space
intrinsic impedance.

Analysis procedure

A standard procedure for determining the reflected/scattered field by the
strip arrays is to first find the current on the periodic array of strips. Be-
cause the array is periodic, Floquet’s theorem requires that the current
distribution be also periodic for uniform amplitude illumination (except for
a phase factor). As a result, the computational domain can be confined
to a single period, thus, substantially simplifying the analysis. With this
understanding, an appropriate integral equation can be constructed by im-
posing the resistive transition condition and the aforementioned periodicity
requirements. For small strip widths, it is possible to arrive at a closed form
solution for the strip currents using the procedure described by Barkeshli
and Volakis [1]. Once the current is found, the scattered field is readily
evaluated. In accordance with Floquet’s theorem, this will be comprised of
a sum of discrete plane wave harmonics (Floquet harmonics), and thus of
interest is the evaluation of the amplitudes, phase and propagation charac-
teristics of these harmonics. When the period T' < A/2, which is the case
of most interest here, only a single reflected and transmitted harmonic is
possible.

Integral equation

Based on Floquet’s theorem, the current on the periodic array of resistive
strips satisfies the periodicity requirement

Jo(z 4 nT) = J,(z) eti*nTcos o, n=0,+1,+2,43,... (2)



where J,(z) is the current on the strip centered at the origin, and the phase
factor accounts for the delay or advance of the incident plane wave at the
nth strip. Thus, the total current on the strip array is given by the sum

Z J,;((L‘) e+jknTcos¢o
n=-00
which implies the scattered field representation

E;(ll? y - Z / J (SL‘ +jknTcos¢o

n=—co Y ~w/2
1 9?
).

It is convenient to introduce the periodic Green’s function

Ga,a\y)=-1 3 B (kfle-w—aTpe ) evmesse )

ﬂ_-—OO

We can then rewrite the scattered field in a more compact form as

s . w2 1 9 / /
Ei(z,y) = —JkZ/_w/2 z') (1 + pm) G(z,2',y)dz (4)

The sum (3) is very slowly converging but can be recast in a more compu-
tationally attractive form by noting that

o0 —Nk’-a’lyl

H (ky/a? 1y ) s ¢ day (5)

with the branch of the root such that Im (\/k2 - a"’) < 0. This expression

can be substituted into (3), and upon interchanging the order of integration
and summation we have

e I
G(z,2',y) = e — Z ein(atkeosdoll L 1o (6)

Next, on invoking the identity

Z etin(atkcos¢o)T _ on Z 6[(a + k cos )T + 27n) (7

n=-—0oo n=-00



where 6(z) is the usual Dirac function, we can express G(z,z’, z) by the sum

L& iVl
ﬁn:—oo Vk2—ﬂrzx

where £, = %T" + kcos¢y. Clearly, this expression converges faster than
that in (3).

Having a suitable expression for the scattered field, an integral equa-
tion for the current on a single periodic strip is now readily constructed by
imposing the transition condition

G(a,',y) = Hibn(e=2") ®)

E;(Cb,y = 0) + E;(IL‘,y = 0) = RJ,(.’II) (9)

for —w/2 < £ < w/2. On using (4) along with (8) into (9) we obtain

o RI(z) 1 & :
jkzcosdo _ z _ 2 zeJﬁ"z 1
sin goe 7 YT Y Lk - B2 (10)

n=-0oo

where

w/2
I, =/ / Jo(z') e3P dg'. (11)
—w/2
Equation (10) is an integral equation to be enforced over —w/2 < z < w/2
for a determination of the current J,(z). Below we consider two different
solutions of (10). One is based on a standard method of moments using
pulse basis and point matching whereas the other is an approximate analytic
solution which becomes more accurate as the width of the strip decreases.
The numerical solution of (10) has been considered by Sarabandi [1] and
will only be used here to evaluate the accuracy of the proposed analytic
approximation.

Approximate solution

Recently, Barkeshli and Volakis [2] considered the scattering by a narrow
groove in a ground plane, a problem closely related to that of scattering by
a single impedance and/or resistive insert and strip. Based on this study,
we conjecture that the current on a narrow strip can be represented by the

expression
2z 2 j kx cos ¢
Jx(l'):A 1- Tl)— e 0 (12)
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where A is a constant to be determined. Substituting this into (11) we get

2
W/ 1= _2_1: e](bcosqbo Bz’ dz’

w/Z

i AM( T) ”

in which J; denotes the first order Bessel function. Next, following Galer-

kin’s procedure we multiply both sides of (10) by /1 — (2(‘)—’)2 e~ikzcosdo and
upon integrating over the computational domain we have

w/2 w/2 2
sdeO/ \/1 - 21: d:c = A— [1 - (2_:1:) ] dz
w/2 w/2 w

- R

w/2 \/T _szcos¢oe]/3n-"" dz.
w/2

Carrying out the first two integrals and noting that the third is equal to
I, /A, it follows that

I

e Tw/4
A = sin ¢g 7 2 k2 ﬂ2 J2 o (14)
Z e xSt i ()

The sum in this expression is rapidly convergent, and A is thus easily com-

puted in spite of the infinite sum. Note also that the result (14) bypasses the

computation of the periodic Green’s function which is often troublesome.
The H, scattered can be found from the radiation integral, i.e.

w/2 0
Bay) = - [ L&) 500 )k
£ i V= FElyl fibnz

n_—oo

w/2 2
1- ”’ gikeosbo=pu)r’ g, (15)

w/2
From the identity (13) we then find that

@) =24 3 DT omRngene yz0 (16)

n=-—00



which is clearly an infinite sum of Floquet plane wave modes. However, in
the far zone only a few of these modes will be observed. The particular
ones are those modes for which §, < k, and for this inequality to hold, it is
necessary that

T T ,
—-X(1+cos¢0)<n< X(l-—cos%) (17)
The corresponding propagation angle for each of the modes is
cos™! (—- cos ¢y — %) y>0
¢ = (18)

21 — cos™! <— cos ¢y — %A) y<0

However, from (17) it is seen that if T < A/2 then only the zeroth mode is
present in the far zone. The propagation angle is ¢§ = 7 — ¢, for the y > 0
region and ¢§ = 7+ ¢ for the y < 0 region. As expected, these are the only
reflected and transmitted fields. The associated reflection and transmission
coefficient for each of the modes is given by

= — 1
RHn 2T ( 9)
and I
_ﬁ n 75 0
THn. = (20)
Iy
1- ﬁ n=20

with I, as given by (13). For T' < A/2, we can replace the periodic array
of strips by an equivalent planar resistive sheet which is associated with the
same reflection or transmission coefficient given above for the zeroth mode.
To do this we recall that the reflection coefficient for a resistive sheet is

I = __sindo (21)
sin ¢ + 2Req
0 7.
where R.q denotes the resistivity of the equivalent sheet. Upon equating
this to (19) we find that
Req 1 1
== — -1 22
Zo 2 (RHO ) (22)



This is the quantity plotted later in the results section, and it will be seen
that Req is essentially independent of the incidence angle ¢.

Another quantity of interest is the power dissipated in the resistive strips.
Noting that R in (9) has unites of Ohms/square, we have that the average
power dissipated in a length ! of an incremental strip of width dz is

dP = %W% da = %|J1|21Rdz (23)

From this and (12), we find that the average power dissipated per unit length
of a single periodic strip is given by

P 1 [ 21\ Rw

—== 1- (=) | dz = |A]*— 24

1 QR/_,,,/2< (2)) v= A 24)
In the next section we present some numerical computations of Ry, Txo,
Zeq/Zy and P/l defined respectively, in (19), (20), (23) and (24).

Solution Validation/Numerical Results

The analytic solution presented above for the scattering by a periodic strip
array is based on an approximate representation of the current distribution.
This approximation improves as the strip width becomes smaller, but its
accuracy limitations as the strip width increases still needs to be estab-
lished. To do so, we shall compare the reflection/transmission coefficients
based on our small width approximation presented above to the correspond-
ing quantities obtained from a moment method solution described in the
Appendix. For these computations we shall plot Ry, and Ty, as a function
of the ratio w/T for different values of the period T, incidence angle ¢,
and the resistivity of the strips R. We begin by looking at Figure 3a where
we plotted Ryq and Tyo for T = 0.2) and ¢y = 60° with R set equal to
zero or 100Q2/square. As seen, the agreement between the moment method
data and our small width approximation is excellent for the curves associ-
ated with both values of the resistivity. From the comparison in Figure 3b
it is also observed that the small width approximation remains valid even
when w/T =1 for T = 0.5A. That is, the presented approximate solution
is reasonably accurate for strip widths up to A/2. This conclusion is better
drawn from the current density comparisons given in Figure 4. It is seen
from the curves in Figure 4 that the current density amplitude as computed
by (14) is within 5-10% of the exact (moment method) values for w < \/4.



Moreover, (14) improves as the strip resistivity increases or the width de-
creases. This is important because in contrast, traditional moment method
solutions often run into numerical difficulties as the strip width decreases.
From the results presented thus far, it is therefore assured that the small
width approximation is suitable for calculations where the array period is
less than A/2 regardless of the strip width w and the value of R. Plots of
the reflection coefficient Ry, and the transmission coefficient Ty for small
values of T (i.e., T = 0.4, 0.3), 0.1X and 0.05)) are presented in Figures 5
and 6 as a function of w/T. The curves in these figures were computed using
the closed form small width approximation and their accuracy is assured on
the basis of the validation done earlier. A general observation from these
curves is that the reflection and transmission coefficients are both decreasing
as the resistivity of the strips increases. It is also apparent that different
choices for w and T can lead to better/optimum performance depending on
the design criteria.

Given the reflection and transmission coefficients and having validated
these, we can now proceed with the computation of impedance and power
loss parameters given in (23) and (24) respectively. The equivalent com-
plex resistivity Req is, of course, directly dependent on Ryo whereas P/l is
proportional to current density amplitude A. But, since Ryo = A (%%), it
also follows that the power loss is proportional to the reflection coefficient as
well. Not surprisingly, Req is nearly nearly independent of ¢, and this is il-
lustrated in Figure 7. Plots of R.q as a function of w/T are given in Figure 8
and it was found that the real part of R.q is independent of the period T but
a strong function of w/T and the strip resistivity. This is attributed to that
the reflected power is only a function of w/T and R, but not on the specific
value of T'. Also, from Figure 8b we observe that the imaginary party of Req
is capacitive and independent of the strip resistivity which is assumed real.
This is again not surprising since for real strip resistivities any capacitance
can only be a function of the strip size and separation.

Curves of P/l are presented in Figures 9 to 13. As before, these curves
are plotted as a function of w/T (strip width normalized to the period),
and each figure corresponds to a single value of the period T. For example,
T = 0.5\ for Figure 9; T = 0.3 for Figure 10; and so on. Each plot contains
four curves corresponding to four different values of the resistivity R, namely
R =0, 100, 200 and 300 ohms/square. The power loss for R = 0 is, of course,
the horizontal axis (i.e., it is zero). Generally, the power loss increases with
the resistivity for all values of w/T. However, this statement does not always
hold for all values of w/T as can be observed in Figures 9-11. It is clear,



for example, that the trend is reversed when w/T > 0.8 for T' = 0.2 in the

case of the equivalent impedance. This kind of trend reversal can actually

be traced to the formula given by (22). It would appear that the reversal

occurs when the phase of the reflection coefficient changes sign in which case
1

the growth of the term (m - 1) changes direction.

Approximate Solution for w/T =~ 1

The employed physical basis expansion given by (12) forces the current dis-
tribution to vanish at the edges of the resistive strip which is the natural
edge condition. However, as the separation distance between the resistive
strip vanishes (i.e. as % approaches unity), the appropriate edge condition
is to maintain current continuity between the adjacent strips. Clearly, the
chosen expansion (12) cannot satisfy this condition making it inappropriate
when % ~ 1. As aresult, we found that when % approaches unity, the calcu-
lated equivalent reactance via (22) is inaccurate and this is demonstrated in
Figure 14. Neither our aproximate formula (22) or the expression given by
Marcuvitz [3] are of acceptable accuracy as % approaches unity, and as seen
from Figure 14, the accuracy of these approximations deteriorates with de-
creasing period T. However, as demonstrated in Figure 15, the resistive part
of (22) continues to remain accurate when % ~ 1. This is important to con-
sider in developing a model for a more accurate evaluation of the equivalent
reactance/capacitance of the strip array. As noted earlier, the reactance of
the resistive strip array is independent of the resistivity R, whereas the res-
istive part of R.q is independent of the period. Consequently, in improving
the accuracy of the equivalent reactance, we need only consider the perfectly
conducting strip array. Babinet’s principle or the surface equivalence prin-
ciple can then be invoked to instead model the strip array as an array of
slits of width @ = T — w. Below we consider the scattering by such an array
in an effort to develop an improved formula for the equivalent reactance of
the array.

Referring to Figure 1, and in accordance with the equivalence principle,
the scattering by the array of slots in a ground plane can be formulated by
introducing magnetic currents over the extent of the slit. The field generated
by this (periodic) array of currents is given by

af2
H = —jkoY()l?yl 2M,(2") G(z,2") da' (25)

-a/2



with G(z,z') as defined in (8). On enforcing tangential magnetic field con-
tinuity and employing (25), we obtain the integral equation
) af2
eitorcondo — 93k Y, / M.(z') G(z, o) de’ (26)
—af2
To solve (26) for M,(2') while keeping in mind that @ — 0, we introduce
the representation

Mz(il?l) — Aejkoa:cos¢o (27)

which is a one-term pulse basis expansion. Upon substitution of (27) and
(8) into (26) we have
pikorcosdn _ 4 i kOYO sinc (2 a) gibas (28)

n=—00 Vk _ﬂ2

Subsequently, on employing Galerkin’s testing we obtain

1
A= (29)
akoYo i sinc? a,)

n=-00 V /32

The corresponding scattered field can now be evaluated from (25). We have
Hs _ koYoaA Z sine <n7r ) B—j Vv kg_ﬁ?'ejp"”
n=-o00 \% ko - ﬁr%
from which we can identify that the reflection coefficient of the zeroth order
node (n = 0) is given by

(30)

Aa
31
T sin ¢, (31)
where the first term of this expression is due to the reflected field from the
undisturbed ground plane. From (22), we now find that

Rpo=1-Y,

Req 1, 1
== — 1 2
Zo - 20 (RHO ) (32)
and it can be shown that
-1
Req _ sinc ( 22)
-7 2k
Z ] ’ n..z—:oo V - kO

n#0
Clearly, this result demonstrates that the impedance of a metallic strip array
is capacitive, as expected. Also for a = 0, the sum goes to infinity, implying
that Req = 0 for this case. Again this is an expected result.
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Conclusion

A closed form solution of the scattering by a resistive strip array was presen-
ted. The solution is based on the assumption that the width of the strips are
small and in particular it was found that the given formulae for the reflec-
tion and transmission coefficients are valid for w < 0.25\. This conclusion
was reached by comparing the results of the small width approximation with
moment method data.

Using the derived reflection and transmission coefficients we also presen-
ted equivalent impedance sheets for replacing the strip array and a formula
was given for the power loss in terms of the reflection coefficients. Several
plots were also presented which showed the dependence of the equivalent im-
pedance and power loss on the various parameters characterizing the strip
array. It was found that the strip array can be replaced by an equivalent
uniform impedance sheet (independent of incidence angle). The real part of
the impedance associated with this sheet is independent of the period and
its imaginary part is only dependent on the physical layout of the strips
(i.e. independent of the strip resistivity). It was shown that the real part
of the derived equivalent impedance remained accurate as the separation
distance between the strips approached zero. However, the accuracy of the
reactive part of the impedance deteriorated as the strips’ separation distance
decreased and for that case a different (more accurate) formula was derived.
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Figure 1. Geometry of the resistive strip array.



reflected field
= RyoFE!

(a) original array of strips

~.

ok L L lalh i Lhla thlalalh il lalalh Ta lo TR LR Le TR Ta L TR T L T TR T TR T TR T Th TR T h 1) alh IR TR IR TR TR LR TR Th ]

Zo Req

(b) equivalent planar sheet model

Figure 2. Replacement of the strip array by an equivalent resistive sheet.
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