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We point out the peculiar kinematics of zero-mass fields in two space-time dimensions 
by showing that the n-fold tensor product of one-particle representations of the Poincar6 
group for n/> 2 contains a countable infinity of discrete, zero-mass representations. We 
relate this result to the well-known "bound" states in every charge sector of the fermion 
Fock space. 

1. Introduction 

In the early days of quantum field theory the existence of a massless boson 
(photon) as a bound state of free massless fermions (neutrino) was expected to be a 
general fact, independent of dimension [1 ]. By now it is clear that two-dimensional 
quantum field theory of massless particles is special for kinematical reasons, since 
there are five mass-zero orbits of the connected component of the Poincar6 group 
in R 2 . 

It is known that there is no scalar, free massless boson field in two dimensions 
[2]. On the other hand, there do exist zero-mass scalar particle states in the Fock 
space of a free massless fermion field (see ref. [1 ] and footnote 10 of ref. [3] ). 

Coleman has pointed out that this situation is a result of the two-dimensional kine- 
matics. 

In sect. 2 we analyze the problem of the existence of massless scalar "bound"  
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particles in a group theoretical  setting. It is shown that any n-fold, n />  2, tensor 
power of  a one-particle representation of  the Poincar6 group with mass zero has 
not only a continuous mass spectrum starting at the two or more particle threshold 
(zero in this case), familiar for four-dimensional space-time dimensions, but  also an 
extra, discrete contr ibut ion to the mass spectrum at zero mass, corresponding to a 
countably infinite, orthogonal direct sum of one-particle representations. These re- 
suits are independent of  statistics. The intuitive explanation is that the set of  n- 
particle momenta for which the particles travel " together"  (with the same speed) 
has non-zero measure in n-particle momentum space if and only if the masses are 
zero and space has dimension one * 

In sect. 3 we consider the Fock space 9" of  the free massless fermion field. We ex- 
plicitly identify the eigenspace c~ of  the mass operator  M with eigenvalue zero. cr~ 
decomposes as a direct sum of  unitarily equivalent subspaces, each one belonging to 
a different charge sector. It is shown that  the application of  the current on the vacu- 
um produces a single zero-mass boson state and contains no continuum contribu- 
tion. Since the algebra of  the currents is irreducible in every charge sector [4],  we 
conclude that higher powers of  the current on the vacuum produce the remaining 

countable infinity of  bosons, plus the continuum. 

2. Tensor products  of  one-particle representations 

The Hilbert space for a single, zero-mass particle of  helicity o is 

~ 1  = L 2 (IR\0, dkS/26o), 

where k s is the space component  of  the two-vector k = (co, kS) ,  co = IkSl. 

The ident i ty  component  of  the Poincar6 group, 9 I, consists of  two-dimensional 
translations, and proper,  homogeneous Lorentz transformations: 

( a ,A)x  = Ax + a ,  

where x , a  E IR 2, and 

x 0 cosh X + x s sinh X. 

Ax = ( x  0 sinh X + x  s coma X ) '  

- o o < X < o o .  

* Notice that existence versus non-existence of free massless scalar fields and massless particles 
in an n-fold tensor product of representations of the Poincar6 group as a function of space 
dimension s goes in the opposite direction. 
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In terms of light-cone variables, 

X+ = ½(X 0 +- xS) , (Ax)± = e±Xx± . 

The one-particle, unitary representation of 5~ I for helicity a has the action on 

9gl: 

g l  ,a (a, a ) f ( k )  = e ia "k eioX f (  A -  1 k) . 

This representation has two irreducible components,  corresponding to the values of 
the proper Lorentz-invariant sgn k s. 

Now consider the tensor product representation U 2 = U1, a ® U1, a2' on ~ 2  = 
~ 1  ® ~ 1 "  We ask the question: is there a subset of  non-zero ~dkSidkS2) measure cor- 
responding to total mass zero, namely 

0 = ( k  1 + k 2 ) ' ( k  1 +k2)  = 2 k  l ' k  2 

= 2(c~1co 2 - kSl/d2) = 2(I/~1/~21-/all/d2). 

The answer is yes, the subset sgn/dl/d 2 ~ 0, which occupies two quadrants of  the 
(kSl ,/~2) plane. Let us call these two quadrants K+, and the remaining two quadrants, 
where sgn kSlk~ <( 0, K . 

Note that K+ is the set of  two-particle momenta  where the particles have the 
same velocity. 

We may split 9~2: 

~ 2  = 9 ~ + ~ t ° -  , 

where c4g ± = { r E  ~ 2: support f C K± }. Then ~ + consists of eigenvectors of  the 
mass operator with zero mass, and ~ _ is the continuum subspace of the mass oper- 
ator. 

We may further split ~g+ into one-particle representations after choosing ap- 
propriate variables. These we take to be the spatial component  of the total momen- 
tum, 

then co = IkSl = co 1 + ¢o2, and the Lorentz-invariant ratio 

k l , _  _/dl 
o~ = 0(kSl ) + 0(-kS1) k 2 , -  k~ 

The old variables in terms of the new are 

k s 

/d 1 - 1 + a _  l ,  k~ l + a  
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- ~ < k S  < ~ ,  0 < ~ < ~ ,  

dk~ dk~ dk s da 

2w12~o 2 2w 2~" 

Thus, we may write 

- t td ]® 

(d÷) 
= ~ - t ® L 2  , 

and the action of  the group may be written 

U2, +(a, A)f(k,  a) = eik'aei(°+°')hf(A-lk, ~) ,  

i.e., 

U2,+=UI, o+o,® 1 . 

Clearly, any orthogonormal basis in the a Hilbert space reduces a splitting of  ~ +  
into a countable orthogonal direct sum of copies of  ~ 1, and of  U2, + into a direct 
sum of one-particle representations. 

It is very easy to check that zero mass and one-space dimension is the only case 
where a subset of  two-particle momenta with fixed total mass has non-zero measure. 
In all other cases, the two-particle Hilbert space has no discrete mass eigenstates. 

Note that identical particle symmetrization or antisymmetrization simply induces 
the symmetries f (k  s, a) = +-f(k s, a-1), and the phenomenon persists. 

If we go now to n particles, we can either proceed by pairwise reduction on the 
subspace of  functions having all spatial momenta of  the same sign, or we can argue 
directly that the set of  (k] ..... k s) corresponding to zero total mass is again of non- 
zero measure: 

0 = ( k  1 +.. .  + kn) 2 = ~ 2ki.k]c>sgnk~=sgn ~ for all i a n d ] .  
i<] 

The discrete, zero-mass states are, as for n = 2, the vectors supported at momenta 
where either all the particles travel to the right with the speed of  light, or they all 
travel to the left with the same speed. 

3. Zero-mass subspace of the massless fermion Fock space 

For convenience we use the box cutoff  of  the fermion field theory. The box cut- 
off  avoids infrared problems. In the infinite volume limit an analogous analysis is 
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possible if one allows for an infrared cut-off in the scalar potential (see below) ~ la 
Klaiber [6]. 

Let t~(x) be the massless fermion field in two space-time dimensions with box 
cut-off L 

@L ~ (eiK .xu(K)a(K) + e-iK'XUc(K)b*(K)) 4,(x) = 

27r 
K=(K 0 = IKI,K) , K =-~--(n-½),  Uc ='),Su , n E Z ,  

:t:]) 
The two-point functions of ~ are given by 

<~r(f)qJ*'(g)> = 8rr' ~ ~(K)g(K) (I) 
TK>O 

= (ff*(f)~k (g)>6rr, , r, T' = +1 T 

where the bar denotes Fourier transformation 

f(k) = ~---~ f d2x e-ik'xf(x) , 

and f(K) = f(IK 1, K). It follows from (1) that the one-partxcle and antiparticle Hilbert 
space decompose into direct sums of two spaces 

a a c~a ~ P = ~ P ~ P  , ~ = ~ + *  _ .  (2) 

Hence the Fock space C)rof the massless fermion field is isomorphic to the direct 
product of four factors 

9-- 7v+®TE ® 7a® 7 a ,  

where 7+ is the Fock space over ~ P, etc. In particular, 7 is isomorphic to the 
product of 7+ and 7_, 9=  9+ ® 9 _  where 7_+ = 7P ® 7 a. 

The light-cone combinations of the fermion current/u = :~k+Tu~k:, if+ = ~k*?0 

(0  1) ( 0 1) 
70 = , ,),1 = 

1 0 - 1  0 ' 

can be written in terms of a scalar field × = 4~_ + q~+, 

1 
q~r(x) = - -  ~ Ikl-1/2(e-ik'xc(k) + eik'xc*(k)) k =2_~ n (3) 

N / ~  "rK > 0 ' ' 
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]r = 1(]0 + 7-/"1), 1 d 1 
Jr(x) - X / ~  dx 0 ~br(x) +"L Qr"  

The c's are boson operators which are bilinear in the fermion operators 

[ 2n 
~ ( O ( r k ) [ b * ( K ) b ( K  + k) - a*(K)aO¢ + k)] c(k) : i ~ - ~ l  ) 

+ O(K(k - tc))a(k - ~¢)b(~)). 

and Qr are the light cone combinations of  the charge operators: 

Qr = ~ (a*(K)a(K) -- b*(K)b(K)). 
r r> 0 

(4) 

The representation of the boson field ~b decomposes according to the charge struc- 
ture of ~r, [Qr, ¢] = 0. Furthermore in every charge sector the representation is 
Fock [4]. Notice that Cr and Qr act only in a non-trivial manner on 5r r. 

Now we are prepared to state the following 
Theorem: Let ~rr, r = +-1, be the fermion Fock space over the Hilbert space 

~ p  ~ ~ a .  By the natural injection they can be considered as linear subspaces of 
the fermion Fock space 5 r. Let M be the mass operator on 5 r. Then the space crL = 
5 r + .  ~ r  is the eigenspace of M with eigenvalue zero. The spectrum of M on the 
orthogonal complement c~1 is absolutely continuous. Furthermore ct~ is the direct 
sum of unitarily equivalent subspaces in the different charge sectors 

~r= • % m  , '=)~= ~ C~nm , C~nm = ~r+,n ~ ~ - , n  , 
n, m n. rn 

Qr 5rr, n = n 5rr, n , n integer.  

Proof: c~ is an eigenspace o f M  2 for the point eigenvalue zero: The square of  the 
mass operator is defined by 

M2 = P20 - P~I, Pu = ~  Ku(a*Oc)a(K) + b*(tc)b(K)), # = O, 1,  
K 

and essentially self-adjoint on the set of  states with finite modes. Every element of  
5r+ can be approximated by  a finite linear combination of the states 

~I a*(ri)b*(K'e)~2 , I, L finite sets K i > 0 ,  K 'e > 0 ,  
iEI 
e~L 

and since on those states PO equals P1 the mass operator vanishes. A similar argument 
holds for 5 r .  We leave to the reader the exercise of showing the converse statement. 

9L is a direct sum of unitarily equivalent subspaces: in ref. [4] unitary operators 
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U r have been constructed mapping ~Tr, n onto Yr, n- 1" On the other hand, i fQ r 
(restricted to 5rr) has the spectral decomposition Qr = ZnezPr, n then 5rT, n = 
Pr, n~:r. Hence the statement follows. 

In order to relate the results of this section with the group theoretical analysis we 
compute the wave function in the two-fermion subspace of the Fock space generated 
by the current Jr from the vacuum, 

j T ( f l a  = 1 ~ Bl~ '  + ~ I, ~ + K')~*(~)b*(~')a. 
r(K'+K)> 0 

K'K>0 

Hence the wave functions do have their support in K+. They are however quite spe- 
cial, in fact they are constant along the straight lines K + K' = constant in the g, K' 
plane. Notice that the wave function o f j+( f )~  and j_ (f)~2 have support in the first 
and the third quadrants respectively. The reader might convince himself that the 
wave function in the two-particle fermion space which belongs to a s ta te  l]N=lJr(fi), 
N >  2, do in general depend on the sum and the difference of the momenta. We 
should like to emphasize however that not every bilinear expression in the fermion 
field maps the vacuum into a discrete zero mass state of the two-particle subspace. 
Consider for instance the scalar Wick monomial 

: i ~ : ( f ) =  * • ~*_ , : ~ + ~ _ . ( D + :  ~ + : ( O  

which does not commute with Qr, r = +-1. The two-particle wave function of this 
operator is 

2"~--ff f(K 1 K2)(O(K1)O(--K 2) O(--K1)O(K2)), + + 

and obviously in the subspace of the two-fermion subspace belonging to the contin- 
uous spectrum of the mass operator (second and fourth quadrant in the ~1, K2 
plane). 

Finally, we should like to comment on footnote 10 of ref. [3]. Coleman has 
noticed that the amplitude ( :~_(X)J r ( f ) )  of the discrete eigenstate jr(f)~2 with 
respect to the Wick polynomial :$qJ: vanishes. Our analysis shows the basic reason: 
one vector belongs to the continuum part of the mass operator, the other of the 
point spectrum. On the other hand, the amplitude (: $*$r:(X)Jr(f)) does not vanish. 
In fact the two-point function of : $*$+ :(x) is singular for x ~ 0 (for easy com- 
parison with ref. [3] we use the infinite volume formalism [5]) 

, (1;(x 1 )2 
~ + ~ + . ( x ) . ~ + ~ + : ( o ) > =  ~ ° - x ] - i 0  . 

However the field : ~*~+ : (x) which creates scalar, massless boson particles out of 
the vacuum is not a scalar field! 
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