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The functional capabilities of the brain are formally characterizable in terms of a finite system along with a
memory space which it can manipulate. Two types of learning are possible: (1) modification-based learning, asso-
ciated with alternate realizations of the finite system; (2) memory-based learning, associated with the assimila-
tion, manipulation, and retrieval of memories. Constructive models which fulfill these conditions and which at
the same time operate on the basis of molecular information processing principles have certain general features.
We describe these features in terms of two interfaced submodels, the first for the finite system and the second for
the memory space. The finite system may be realized by networks of neurons in which the specificity of enzyme
molecules confrols the nerve impulse. Such a realization is amenable to modification-based learning mediated by
processes analogous to those of natural evolution and selective theories of antibody synthesis. The memory space
is realizable by networks of neurons in which the conformation of dendritic receptor molecules controls the nerve
impulse. In this case certain neurons firing in response to an external input undergo sensitization at the dendrites
and in such a way that they are loadable and later callable by reference neurons, thereby allowing for reconstruc-
tion or manipulation of the firing pattern associated with this input. The overall construction makes a large num-
ber of biochemical, anatomical, physiological, and psychological predictions which are either testable or in good

agreement with fact.

1. Introduction

The third quarter of the twentieth century
has seen dramatic advances in both molecular
biology and in the information sciences. The
biologists, on the one hand, have elucidated
the fundamental mechanisms of heredity and
reproduction. The information scientists, on
the other, have developed concrete computing
and communication devices, along with gen-
eral theories about the design, limits, and
capabilities of suck devices. The extent to
which these two developments influenced one
another is a historical question, one which
we cannot discuss here {(cf. Burks et al.,
1974). The connection itself, however, is of
more than historical interest: for the mecha-
nisms of heredity and self-reproduction are
without doubt the fundamental mechunisms
of information transfer and accumulation in
nature.

The deep connection and complementarity
of molecular biology and information science
cannot but raise the hope that the concepts in
these two fields, once joined, could lead to an
understanding of the biological information
processor par excellence, viz. the higher ner-
vous system and brain. Indeed, there is
increasing, though highly controversial evi-
dence that individual molecules do play a
crucial role in learning and memory (Cohen,
1970; McConnell and Shelby, 1970; Hyden
and Lange, 1971; Ungar, 1973}. The amount
of experimental work in this area is extensive
and in many cases extremely sophisticated.
But what seems to be lacking is an equally
sophisticated use of the machinery of "afor-
matior: science to inferpret these experiments;
or, more apropos, any egual attempt to
develop information science concepts spe-
cifically suited to describing information pro-
cessing in molecular biologicai systems.
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One difficulty is undoubtedly that the
brain is complicated. Its behavior is too intri-
cate to describe in detail, at least in each indi-
vidual case; but the details are too interesting
to wash away with statistics. What can be
done, however, is to characterize the capabili-
ties of the brain, e.g. its capabilities for com-
puting some class of functions (in the mathe-
matical sense). Then we can construct models
with these capabilities which operate on the
basis of information processing principles
derived from molecular biology. In order to
operate on a natural, economical basis such
models must have certain very general design
features. These necessary design features are
thus predictions about the brain.

We begin with a review of the experimental
work in the area; characterize the capabilities
.and the information processing principles;
then consider the models and their predic-
tions.

2, Types of experiment; types of theory

“"The experimental work on the relation
between macromolecules and brain function
is of course enormous (for book length dis-
cussions, see, e.g. John, 1967; Byrne, 1970;
Ungar, 1970; Gibbs and Mark, 1973). How-
ever, it is perhaps useful, at the very begin-
ning, to classify this work on the basis of the
type of relation which is being studied.

(i) Molecular biology of nerve cells. These
studies are directed towards elucidating the
characteristics of nucleic acid and protein
synthesis in nerve cells (e.g., Hyden, 1967a;
Hyden and Lange, 1971), the transport of
materials in the cells (e.g. Weiss, 1970), and
more generally the structure and function of
the nerve cell and its constituents at the mo-
tecular level (cf. Schmitt, 1970).

(ii) Biochemical correlgtes of learning and
memory. These studies are directed towards
elucidating changes in nucleic acid and pro-
tein during the processes of memory acquisi-

tion, consolidation, and learning. Many of the
studies have been based on tracer techniques
(e.g. Glassman, 1969); others on the effect of
various pharmacological agents on long and
short term memory (e.g. Agronoff et al.,
1966, 1967; Barondes and Cohen, 1967;
Agronoff, 1970; Barondes, 1970). Such
experiments involve a combination of bio-
chemical, physiological, and psychological
technique,

(iii) Transfer and specific protein studies.
These studies have been directed, in the first
case, to the possibiiity of transferring
acquired information from one part of the
organism to the other or from one part of the
brain to the other by transferring specific
chemical agents, primarily nucleic acids (e.g.
Albert, 1966; McConneil, 1970; McConnell et
al., 1970). In the second instance they have
been directed to determining whether changes
in protein specificity accompany learning or
memorization (Hyder:. 1967b) and also
whether specific protoins are capable of
effecting specific behaviorai changes (Ungar,
1973). Transfer and specificity studies have
been the most controversiszl and difficult to
interpret aspect of biochemical and molecular
neurobiology (cf. Byrne et al., 1965

The theoretical work on the are: has per-
haps been even more diverse than the experi-
mental work. Thus we must slso classify this
(again at the expense of great simplification)
on a typological basis.

(i) Regulative theories. What might be
called regulative theories hold that what
changes in learning and memory are the regu-
latory properties ognerve cells, e.g. the quan-
tity of chemical entities available for synaptic
transmission (e.g. Bennett et al., 1970), or the
amount of synthetic machinery in the cell (cf.
Lehninger, 1970). These theories do not
assign any specific role to nucleic acid and
protein, but only claim that changing charac-
teristics of the nerve cell have a molecular
basis. A seeming implication of such theories

s thai the learning and memory processes

could be understood in terms of networks of



modifiable nerve cells, the major contribution
of the molecular description being to under-
stand the underlying basis of the modifica-
tions. It should be pointed out that some
workers in the field feel that all the molecular
and biochemical correlates of learning are
incidental byproducts or prerequisites of
functions which can be understood, or at least
described, solely at the cellular level.

(ii) Specificity theories. What might be
called specificity theories make the claim that
specific molecular changes are concomitant to
learning and memory. There are a number of
such theories, including theories based on
enzyme induction (e.g. Smith, 1962), on the
relationships between specific proteins and
particular dendritic pathways (e.g. Ungar,
1973), on the developmental specificity cf
the nervous system (e.g. Mark, 1974), to men-
tion only a few. There are also a number of
theories which hypothesize some kind of
reverse transcription, i.e. storage of informa-
tion in nucleic acid sequence.

(iii) Conformational theories. What might
be called conformation theories are based on
the idea that nerve impulses are capable of
causing conformational changes in membranes
(e.g. McConnell, 1970), protein molecules
(Neumann, 1974; Rosen, 1974), or nucleic
acids (Katchalsky and Neumann, 1973), and
that information is stored in these conforma-
tional changes.

The above brief survey is necessarily
sketchy and selective. We should also point
out that regulative, specific, and conforma-
tional models are not mutually exclusive, and
also that all molecular models must be inter-
faced with the paramount fact of the electri-
cal activity of nerve cells. Indeed, it is this
interfacing which is the main difficulty (cf.
Stent, 1972).

3. Information s;ience and molec?xlar infor-
mation science

Many models of learning and memory are
based on ideas drawn from network, autfo-
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mata, computer theory, and artificial intelli-
gence (cf. Conrad et al., 1974). In general,
however, these models derive from our expe-
rience with conventional information process-
ing devices, and therefore ignore and are not
even suited to deal with the molecular nature
of biological systems. A better way to develop
such models is to start with the already exist-
ing concepts of automata and computer
theory, but then to alter them so that they
are suitable for dealing witi: molecular proces-
ses, taking as an assumption that the brain is
in fact a molecular information processing
device (Conrad, 1972b, 1573a, 1974f).

The simplest formalization of automata
and computers and the one which has had the
most impact on hrain theory is the Turing
scheme (or machiie, cf. Fig. 1). This is a
finite automaton (or system with finite sets of
states, inputs, and outputs plus state and out-
put transition rules) along with a tape which
it can mark and move. Such a scheme is
universal if it can read and follow any particu-
lar rule encoded in the sequence of markings
on the tape. {Any general purpose computer
is universal in this sense.) Also, the scheme
may include some abstraction of the environ-
ment, so that the inputs {u the automaton
include both the markings on the tape and the
states of the environment.

What makes the Turing scheme particularly
interesting is the picture which apparently
motivated its formulation (Turing, 1936;
Minsky, 1967). Turing imagined a person
working an arithmetic problem on a note pad.
The person can read any symbol on the pad,
rewrite this symbol according to his state of
mind, move to a neighbgring square on the
pad, and change his state of mind according
to some rule. The Turing scheme is no more
than a formalization of this picture, i.e. the
forralization of a psychological process.
Moreover, it characterizes the widest class of
processes which the brain could reasonably be
expected to execute in an algorithmic way;
for, so far as is known, any computable func-
tion is computable within the framework of
the scheme (cf. Davis, 1958).
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Fig. 1. Turing scheme. The scheme consists of an
automaton, A, along with a tape which it can move
and overwrite. Small letters (a and b) are tape sym-
bols and E tho externsl environment. The automaton
reads the tape symbol, either rewrites this symbol or
moves to 3 new tape position, and changes its state
accordingly. By adaing an external environment we
allow it to record external events and incfude the pos-
sibility of adaption to the outside world. Memory-
based learning involves use of the tape for recording
and manipulating information. In modification-based
learning the rule governing the next state and output
behavior of the automaton itself changes, i.e. we
replace A by A’. The Turing machine is a process, not
a'real machine. Its importance lies in the simplicity
with which it formalizes psychological processes, and
the completeness with which it formalizes algorithmic
processes. With the addition of the external environ-
ment we can also formalize nonalgorithmic informa-
tion processes, viz. evolutionary proccsses. The
Turing scheme thus provides conceptual boundary
conditions for constructing concrete brain models.

Not all information processes are algorith-
mic, however. For example, evolution based
on chance vasiation and natural selection is
certainly of a quite different nature. Thus we
cannot assume that all psychological processes
are algorithmic. Nevertheless, we can still
characterize these processes within the frame:
work of the Turing scheme; for this scheme
remains a valid abstraction of psychologica!
pre.cesses whether or not these are algorithmic
(Conrad, 1974d).

The main psychological process we are
interested in is learning, which rughly speal:-
ing we can regard as change in a system'’s

behaviour which either makes that behavior
more adapted to the given environment or
allows it to adapt to novel environments. The
Turing formalization allows for three types of
learning:

(1) Inherent capability of the automaton.
In this case the leaming is based on the com-
putational capability of the automaton, but
without using the tape. For example, the
automaton may be so designed that interac-
tion with the environment drives it into a
state appropriate to the future behavior of the
environment.

(2) Memory-based learning. In this case the
automaton is allowed to use the tape. For
example, it may record environmental events
on the tape and use these records to control
its future behavior; or it may use the tape to
increase its problem solving power. Memory-
based learning includes programmability from
input (if the automaton is universal and a
more suitable rule is encoded on its input
tape).

(3) Modification-based learning. In this case
automaton A is replaced by automaton A’,
where A’ is more fit to the environment.

Types (1) and (2) are both basically algo-
rithmic (in the sense that definite rules are
being followed). Actually, both involve mem-
ory and in principle differ only if the tape
(storage area) is in some way potentially un-
bounded. From the practical standpoint, how-
ever, it is to be expected that the distinction
would retain validity even in the finite case.
Type (3) is not algorithmic since it involves
the replacement of one process by another.

The above point is critical. The Turing
scheme, no matter how convenient as a for-
malism, is just that, viz. a process and not a
real machine. The problem of brain modeling
is thus to construct realizations which on the
one hand have all the functional capabilities
of the brain (e.g. as formalized with Turing
schemes) and at the same time operate on the
basis of biological principles aid generate
predictions which conform to the facts. In the
case of type (3) ilearning the realization
changes, but not according to the rule which



is embodied in the realization (as opposed to
e.g. chance variation and selection).

There are, of course, many concrete realiza-
tions which have sufficient functional capabil-
ities (essentially all digital computers). All of
these share one fundamental feature in com-
mon. They are built out of a finite set of
fixed components (or canonical automata)
which are linked together and set appropri-
ately so that they embody any particular rule.
Moreover, this linkage and setting process
may be done in a definite, algorithmic way
(see, e.g., Conrad and Dal Cin, 1972). The
most well-known example, from the stand-
point of neuroscience, are networks of formal
neurons, such as the McCulioch—Pitts net-
works (McCulloch and Pitts, 1943; Arbib,
1965; cf. Fig. 2). These are, of course, the
extreme abstractions of real neurons, i.e. com-
ponents which fire when the sum of their

—)  excitatory dendritic input (0 or 1)
inhibitery dendritic input (0 or -1)

~e—————%  axonic output (0 or 1}

w threshold

Fig. 2. McCulloch—Pitts formal neuron. The neuron
fires when the sum of the excitatory and inhibitory
inputs exceeds the threshol¢. The automaton of the
Turing scheme can always be simulated by a properly
constructed network of formal neurons. The impor-
tance of the McCulloch—Pitts model is that it shows
that one can embody the most complex automata
behavior in networks of neurons which are the
extreme abstraction of real neurons. However, such
networks are generally unecgpomical in terms of
number of neurons and inamenable to gradual trans-
formation of function with gradual transformation of
structure, ‘This is generally true for structurally pro-
grammable systems, i.e. systems in which the transi-
tion functions are encoded in the network connec-
tivity and initial state of a set of canonical com-
ponents (or canonical base automata).
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excitatory and inhibitory inputs exceeds some
threshold. Indeed, this is why the McCul-
loch—Pitts model has played such an impor-
tant role in brain theory; it showed, for the
first time, that one could in principle do all
one needed (except for memory manipulation)
with what McCulloch called the most impov-
erished version of a neuron (cf. Rosen, 1969).

I will call systems of the above type struc-
turally programmable (since the rule which
generates their behavior is encoded in the net-
work structure and initial automata settings in
an effective way). The difficulty with struc-
turally programmable systems is that they are
very uneconomical in comparison to the brain
(in terms of number of elements, ¢f. Minsky,
1967) and therefore uneconomical as regards
processes of type (1); but even more impor-
tant, they are not amenable to gradual trans-
formation of function with gradual transfor-
mation of structure (Conrad, 1973a, 1974a),
and therefore do not allow for learning pro-
cesses of type (3) (Conrad, 1972a; cf. also
Minsky, 1961; Bremermann et al., 1966). Fur-
thermore, formalized nerve network models
do not incorporate a tape (or memory space)
device in any natural way, and therefore
exclude learning processes of type (2).

These difficulties are not necessary, how-
ever. In fact, one can construct structurally
nonprogrammable computers with general
powers of computation which at the same
time conform to the histological structure of
the brain. These models are based on an alter-
nate, more general concept of information
processing in which we modify the rule exe-
cuted by the system by modifying the func-
tions performed by the elementary compo-
nents rather than by modifying the inter-
linkage of these components (Conrad, 1974b,
¢). For example, imagine that we want a con-
tractor to build houses suitable for different
conditions. In the conventional pictuse we
wou!ld give him a certain canonical set of
building blocks and different blueprints. In
the new picture he would use the same blue-
print but we would supply different building
blocks. This picture, in fact, is the fundamen-
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tal basis of evolution, since genetic changes
ultimately appear as changes in the primary
structure and therefore function of protein.
Furthermore, because of the folding proper-
ties of proteins slight changes in primary
structure are often concomitant to only slight
changes in three dimensional structure and
therefore function, thus allowing the orga-
nism to adapt to the environment in a step by
step fashion,

4. Molecular control of the nerve impulse
4.1. The selection circuit model

Now we can turn to the properties which
the brain would have to have in order to sup-
port gradual transformation of furction on
the basis of the molecular process indicated
above (and therefore modification-bas~d
learning) and at the same time support powers
of computation equivalent to that of a finite
automaton. The basic idea is that individual
molecules — the components amenable to
gradual transformation of function — control
the nerve impulse. To this end we introduce a
more complex formalization of the neuron,
one which captures the geometrical asymme-
tries and membrane nonlinearities of the real
neuron. In this new formalization (to be
called the enzymatic neuron, see Fig. 3) the
affect of each dendritic input at any particu-
lar locus on the cell surface is determined by a
weighting function which depends on the geo-
metry of the neuron, the conductivity proper-
ties of the membrane, and on the activity of
other dendrites. The neuron also carries pop-
ulations of molecules or molecular aggregates
(to be called excitases) which catalyze events
leading to impulse formation under suitable
degrees of excitation. Thus, the enzymatic
neuron fires if the pattern of dendritic inputs
produces a suitable degree of excitation at
any locus which is in fact occupied by such an
excitase.

The question arises: how can the brain
know in advance (and witho.t computation,
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— excitatory dendritic input (xi =0orl)
—————+@  inhibitory dendritic input {x; = 0o0r -1}
———) axonic output (y = 0 or 1)

wij = weighting coefficient of input x; at region §

éj = pxcitase molecule in region j

Fig. 3. Enzymatic neuron. The neuron fires whenever
the weighted sum of the excitatory and inhibitory
dendritic inputs (of which only two are shown)
excites a region of the cell surface at which excitase
enzymes are located. The weighting coefficients make
it possible to work with formal neurons which reflect
the complex morphological and conductivity proper-
ties of real neurons. In principle each such coefficient
could also be written as a function of the pattern of
dendritic firing itself. The particular patterns of firing
to which the neuror. responds depends on the
excitase molecules which it contains. By adding or
deleting excitase molecules which bind at different
places on the cell surface it is possible to increment or
decrement this set of patterns by a single member and
therefore to gradually modify the function performed
by either individual enzymatic neurons or networks
of enzymatic neurons (independence property). In
general such networks are very efficient, because each
neuron is a multithreshold element and therefore
much less of a gross averaging device than the McCul-
loch—Pitts neurcn (cf. Fig. 2). Enzymatic networks
are not structurally programmable because they are
not constructed from a canonical set of components
which ecan be linked together in different ways to per-
form different functions. Instead the components
themselves are changed, by changing the complement
of excitases which they carry.



which is infeasible) which excitases will do
the job (e.g. locate themselves in the right
places)? The unly possibility is by trial and
error evolution, analogous to evolution by
variation and natural selection. But this is
possible only if the brain contains some kind
of artificial selection system which tests and
evaluates excitase species and (on the basis of
this evaluation) stimulates the production of
transforming nucleic acid which code for
these species. Furthermore, the tissue trans-
formed must be essentially interchangeable
with the original tissue, otherwise the weight-
ing coefficients would be different and the
favored excitases would not have the same
function (¢f. Fig. 4). Thus the sine qua non
properties of the model are:

(i) Redundancy. The brain consists of
various types of local networks of which there
are many interchangeable replicas of each

type.

(ii) Specificity. Each local network con-
tains (enzymatic) neurons whose firing is con-
trolled by excitase molecules. These enable
the neuron to fire in response to specific pat-
terns of inputs, e.g. to be a multithreshold
element. Each such excitase molecule (or mo-
lecular aggregate) is capable of binding at a
specific region of the cell surface, and cata-
lyzes events leading to impulse formation if
the particular pattern of inputs results in a
high degree of excitation at that point on the
cell surface.

(iii) Selection circuits. The brain contains
circuits which test and evaluate the function
of local networks and which control the pro-
duction of culturable excitases on the basis of
this evaluation. The nucleic acids whose pro-
duction is stimulated diffuse out of the iocal
ne. works in which they are produced to trans-
form adjecent networks of the same type (in
the fashion of an RNA virus). The function of
the excitase molecules is the same in these
new networks because the tissue structure snd
cellular properties are the same (redundancy
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EXTERNAL INPUT

!

ANATOMICALLY EQUIVALENT LOCAL NETWORKS

T ;> (Process inputs on the basis of
transformable, excitase-controlled neurons)

!

OUTPUT EVALUATOR

(Evaluates conseguences of
the output of individual local networks)

!

GROWTH CONTROL

{Controls pattern of production
of transforming RNA 1in local networks
on the basis of
information from t¥e output evaluator)

Fig. 4. Flow of information in the selection circuit
model. The basic idea is that the brain contains a
system for selectively culturing nucleic acids which
code for molecules {excitases) capable of controlling
the nerve impulse (¢f. Fig. 3). External inputs are pro-
cessed independently by local networks which are
essentially interchangeable as regards connectivity
and weighting coefficients of corresponding neurons.
The output of each such iocal network has conse-
quences for the organism, e.g. in terms of pleasurable
or painful experience. The output evaluator assigns a
fitness value to each local network on the basis of
these consequences and transmits this information {o
the growth control, which in turn transmits signals
back to the local networks which either stimulate or
inhibit the production of exportable RNA capable of
transforming neighboring networks. Advantageous
exaitases associated with especially fit local networks
(or tissues) thus spread to neighboring networks,
where they have the same function because of the
interchangeability property. The selection circuit
scheme accounts for modification-based learning, not
learning based on rapid acquisition of memories or
manipt.lation of memories. It is much more efficient
than natural evelution because the selection circuits
(i.e. evaluation and growth control) allew for very
intense selection on the basis of arbitrarily small dif-
ferenccs in fithess,
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property). The culturable excitase ‘“‘genes”
either pre-exisi in small numbers, in which
case they (but not their distribution) are
inherited (germ line type theory); or they
arise from somatic processes, in which case
they are not heritable at all (somatic mutation
type theory); or from a combination of germ
line and somatic mechanisms.

The operations of the selection circuits
require certain control (e.g. inducible} enzy-
mes. The distinction between control and
excitase enzymes is important for interpreting
experiments on protein changes accompany-
ing learning (in particular the experiments of
Hyden, 1967b, cf. section 5). The selection
circuit model makes a large number of pre-
dictions about the brain, including predictions
about the conditions under which chemical
transfer of learning is possible, the effects of
ablation, the specificity of brain structure, the
dynamical properties of neurons (Conrad,
1973b, 1974b,d). These are also described in
a later section, after we pay proper attention
to the problem of memory. Here, however,
we r: st point out the deep analogy between
th: .".cory and selective theories cf antibody
pro .uction and immunity (cf. Jerne, 1955).
We also point out that the number of excitase
molecules which such a system can try out in
the first twenty years of life is enormous — in
fact, with only mild assumptions it comes to
much more than all the genomes that could
have been tried out in human evolution (cf.
Conrad, 1974d).

4.2. Cenformationa! model of memory and
memory-based learning

It is fairly simple to show that networks of
excitase based neurons have all the computa-
tional capabilities of conventiocnal formal
neural nets (and therefore finite automata),
but at the same time are amenable to gradual
tranformation of function (Conrad, 1974d;
cf. also,Schwabauer, 1976). After all, the
McCulloch—Pitts networks are just a special
case of 2 more general enzymatic network.

However, the mode! does not allow for com-
puting as wide a class of functions as a Turing
system. This is because it does not account
for memory acquisition, manipulation, and
retrieval, or for forms of learning in which it
is potentially possible to consummate the
learning process in a single trial (e.g. classical
conditioning or instrumential learning, cf.
Miller, 1967). Thus it cannot account for pro-
cess (ii), i.e. memory-based learning. The lat-
ter is the type of learning for which present
day computers are most suited and on which
virtually the whole field of artificial intelli-
gence is pased (cf, Feigenbaum and Feldman,
1963; Bremermann, 1973; Josephsor:, 1974).

The main difficulty is that the computer
has an addressable memory, i.e. each bistable
element can be accessed and switched by spe-
cifying its location in an array (cf. Fig. ba).
This makes it possible to avoid mixing up (or
superimposing) memories because each ele-
ment is uniquely accessed by activating two
lines. This simple scheme is not economical
and in fact not even feasible in networks of
neurons (because of their converging inputs
and diverging outputs, cf. Fig. 5b). Never-
theless, there is compelling evidence that the
brain, like the computer, does not suffer
serious problems of memory superposition.

There are a number of schemes which sat-
isfy the above requirements, but the follow-
ing is the simplest and gives the most direct
account of the psychological, physiclogical,
anatomical, and biochemical facts (Conrad,
1974e, 1975a,b).

(i) Certain neurons (to be called primaries)
undergo sensitization at the dendrites when
firing in response to external inputs;

(i) The sensitized primaries sre modified
(“loaded™) by other neurons (to be called
reference neurons) and in such a way that
they fire in response to the future firing of
these reference neurons.

The firing of a reference neuron recon-
structs the original pattern of primary activity
because it only fires those neurons for which
dendritic connections were opened by the
loading process (see Figs. 6 and 7). The prob-
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Fig. 5. Superposition problem. In an addressable computer memory (a) each bistable element is uniquely accessed
and switched by activating two lines. There is no problem of superposition (admixing new and old memories)
because information can be stored and retrieved from individual elements without switching other elements. This
is not possible in highly interconnected neural networks (b), since in general no single neuron is uniquely accessed
and “switched” by activating two axonic inputs. In this case the states of the network are associated with pat-
terns of neural firing and the problem of memory is to retrieve such patterns under anppropriate circumstances,
e.g. by altering dendrites in such a way that the pattern can be reconstructed in the absence of the original input.
In general, however, alterations associated with new memories cannot be separated from those associated with old
memories, resulting in superposition. For a simple solution to the superposition problem see Fig. 6.

lem of memory superposition is avoided
because each reference neuron loads and
“calls” at most one pattern of primary activ-
ity. These patterns may be arbitrarily com-
plex (e.g. associated with complete scenes)
with no exfra requirement cn the number of
reference neurons. Moreover, if the reference
neurons are activated for loading in temporal
sequence, the memory structure may be
ordered according to time. If primaries are
also capable of loading reference neurons,
these can be activated by content, e.g. by a
small part of original scene. Also, the scheme
allows for rememorization on the basis of the
same mecpnanism as memory acquisition and
retrieval. This is important because rememori-
zation allows for general powers of memory
manipulation (e.g. recombination of different
memories, development of associative mem-
ory structures, including associative structures
associated with classical conditioning and
instrumental learning).

The question naturally arises: what con-
trols which reference neurons are active at

(

A
(b

dendritic input

axonic output

any given time and whether they will be acti-
vated for loading or caliing? This corresponds,
in the case of any realization of the Turing
scheme, to the question: what controls the
movemeni of the Turing automaton on the
tape and what it does to the tape? The answer
here is that this is determined by the transi-
tion functions built into the automaton. In
the case of the reference neuron scheme, the
transition functions must also be built into
what corresponds to the automaton, e.g. into
the er.zymatic neural nets, except that in this
case the decision process is much more com-
plicated. Since we know that any transition
functions can be built into such networks we
know that the system is capable of solving the
supervision problem so long as this problem is
solvable. Since the brain must contain either
software or hardware for such supervision, we
include this function explicitly in Fig. 7.

The reference neuron scheine requires a
considerable amount of neural tissue. This is
materially reduced if the system utilizes parvy
line organization (cf. Fig. 8a), in which case



128

F g. 6. Reference neuron solvtion to the superposi-
ti>n problem. The net»rurk is the same as the net-
work of Fig. 5(b}, except that rcference neurons are
2rided. A!l new axonic ovtpuls and dendritic inputs
»>c distinguished by dotted lines and the neurons are
labeled (R;= reference neuron i, P; = primary neuron
i). When primaries fire in response to an external
input their dendrites become sensitized, i.e. assume a
condition which allows them to be opened up by the
reference neuron which fires immediately thereafter.
In this case we say that primaries firing in response to
the external input are loaded by the reference neuron
and that the later firing of this reference neuron
results in a call to these primaries, For example, sup-
pose that the external input results in the firing of P,
and P4 and that R, fires immediately thereafter. Then
R; loads and is capable of later. calling Py and P.
There is no problem ‘'of memory superposition
because each reference neuron is associated with at
most -one memory. The complexity of the stored
memory. (i.e. the number of primary firings it
involves) is limited only by the number of reference
to primary contacts (see Fig. 8) and the memory
capacity by the number of available reference neu-
rons. Reference neurons may activate reference neu-
rons, in which case memories are stored and retrieved
in temporal order, or they may be loaded by some of
the primaries which they themselves load. Sueh pri-
mary to reference contacts (not shown in the dia-
gram) allow for access by content and ‘the formation
of associative structures through rememorization un-
der the control of other primaries (see Fig. 7). Peri-
odic rememorization under the control of the original
reference neuron also allows for stabilization of the
memory trace which means that the scheme accounts
for both long and short term memory on the basis of
the same fundamental mechanism.

the reference to primary loading and calling
processes must be mediated by temporal pat-
terns of pulses (i.e. by codes). In this case the
dendrite must contain a number of indepen-
dent switching elements (which we identify
with receptors), with the switching involving
conformational changes at the molecular
ievel. The theory imposes a number of func-
tional requirements on the receptors. The
most important of these are:

(i) The conformation records the occur-
rence of impulses or particular impulse
sequences.

(ii) A regulation site controls the compe-
tence to be loaded by the incoming pulse or
sequence of pulses, e.g. switches the molecule
into the loadable state when an antidromic
process is set up by the initial input. A fixa-
tion process, which follows lcading, prevents
the receptor from being unioaded by new
input sequences.

(iii) The receptor must have an active site
capable of catalyzing events leading to im-
pulse formation.

The justification for the reference neuron
scheme (and also the switching mechanisms
which it implies) ultimately derive from its
biological consequences. Again we defer these
to the next section. Here, however, we should
point out that the model allows for the stabil-
ity of the memory trace by rememorization-
mediated duplication of molecular conforma-
tions; for once the receptors are loaded, the
same apparatus responsible for this loading
can be used for other receptors in the same
dendrite. In other words, reference neurons
can periodically reload those primaries which
respond to them. This is important, for it
means that the model is capable of accounting
for long, short, and very short term memory
in terms of a single mechanism, with the only
difference being that short term reference
neurons do little or no reloading. Important
memories can thus be transferred from short
to long term storage by rememorization under
the control of long term reference neurons. In
principle, they could also be assimilated
directly into long term storage.
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PRIMARY 3YSTEM “{_‘;*_’_: ____ | REFERENCE SYSTEM

Fig. 7. Flow of information in the reference neuron scheme. The primary system of neurons includes all those
neurons which fire in response to an exteenal inpuf. Some of these are primary neurons proper, i.e. become sen-
sitized when they fire and in such a way that they can be loaded and later cailed by neurons of the reference
system. Neurons of the primary system (not necessarily primary neurons proper) may also load and subsequently
call reference neurons, allowing for accessing of a complete memory in response to only some of the features of
the original input. All “loading” and “calling” inputs are represented by dotted lines. The scheme requires a sys-
tem of supervisory neurons fo control the accessing of the reference neurons. For example, suppose that the
supervisory system inhibits primary to reference inputs. Then reference neurons will activate one anotfher in
sequence, with resulting time ordered acquisition or recall. A second possibility is that the level of inhibition is
decreased and control is given to the most highly excited reference neuron. This results in the content ordered
structure. The third possibility is that more than one reference neuron is allowed to fire but some of the lower
level neurons which mediate the connections between these reference neurons and primaries are suppressed. In
this case it is possible to rememorize the resulting pattern of primary excitation under the control of still another
reference neuron, thereby producing an associative structure. Rememorization provides the fundamental and

general mechanism of memory manipulation in the reference neuron scheme.

4.3. Interfaced model and interpretation brain
structures

The selection circuit model, with its enzy-
matic networks, accounts for the ability of
the brain to compute the class of functions
computable by finite automata, and to com-
pute them with high efficiency. The reference
neuron scheme adds to this the capability of
rapid memory acquisition, manipulation, and
retrieval. Moreover, the memories may be
“scenic” memories, with the complexity lim-
ited only by the number of primaries reach-
able by reference neurons and by the pattern
recognition abilities of the system.

The interfaced model is schematized in Fig.
8a. The topology of the diagram is the most
economical possible from the standpuint of
reducing the amount of neural tissue. Thus
the reference neurons send their outputs (via
party line neurons) through a horizontal layer
of “telephone wires” into which the dendrites
of the party line neurons dip. This arrange-
ment, which serves to maximize the number
or reference to primary contacts, is in fact

found in the cerebral cortex (cf. Fig. 8b),
where macroneurons of the inner five layers
send apical dendrites into the outer, horizon-
tal layer. The input itself comes primarily
from the more interior regions of the brain
and the output is channeled into the white
matter, or inner layer of axons. The macro-
neurons themselves consist of a number of
complexly interconnected types, perhaps the
most prominant of which, from the stand-
point of their apical dendrites, are the pyra-
midals. Thus it is reasonable to suppose that
these correspond to primaries. The cortex also
consists of numerous microneurons. Since
these have short axons and short dendrites,
they cannot possibly be contacted, in any
direct manner, by the reference neurons. Be-
cause of their large numbers and modulating -
roles they are more likely to be excitase’based
neurons of the selection circuit scheme,
though pyramidals and other macroneurons
could also be excitase based. Neurons of the
brain are typically closely associated with glial
cells. Since there is some evidence of transfer
of RNA from glial cells to neurons {Hyden,
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Fig. 8. Party line principle and histology of the cerebral cortex. (a) is the same as the simple network of Fig. 6,
except for the addition of a party line (for economizing reference to primary contacts) and also some small,
modulating neurons. The amount of neural tissue is minimized if the party line runs up and then horizontally
along the top layer, thereby allowing easy access to upreaching dendrites of the primaries. The resulting organiza-
tion provides an interpretation of the structure of the cerebral cortex. This is indicated in (b), which is 2 compo-
site of rat and mouse Golgi preparations, The outer, horizontal layer corresponds to layer I of the cortex and the
primaries correspond to pyramidals and other large cells of the inner five layers (not all of which are represented
in (a)). The key point is that the (apical) dendrites of these large cells in fact extend into the horizontal layer. The
cortex is also interspersed with microneurons (also schematically indicated in (a})), whose processes are too short
to contact reference neurons and which therefore could not be the basis of memory in the reference neuron
scheme, However, their large numbers (in humans), small size, and mcdulating role make them excellent candi-
dates for excitase based neurons of the selection circuit system. The selection circuit centers (evaluation system,
growth control), the supervisory system, and probably the reference neurons are presumably located in more
ancient regions of the brain (as leammg and memory predate the great expansion of the cortex). Notice that the
use of party lines allows a single primary dendrite to be contacted by more than one refe-=nce neuron, so that
neural codes must be used to distinguish the calls from these different reference neurons. This is why it is neces-
sary to identify dendritic alterations with confgrmation changes of individual receptors. (Fig. 8(b) relabeled from
Chang, 1951, by perinission; ef. also Eccles, 1953, for more detailed identification of structures.)

1967a), and also because of a likely ontoge-
netic relation of glial cells to cells of the im-
mune system, it is reasonable to suppose that
they are the actual site of transformation and
that the transferred RNA is excitase RNA.

Notice that it is the apical dendrites which
serve as the “tape”, i.e. as the locus of the
conformational changes which form the phys-
ical basis of the memory trace. The remainder
of the system, including the neurons to which

The growth control which regulates the pro-
duction for export of excitase nucleic acid,
and “also the output evaluator would be
expected to be located in phylogenetically
more ancient regions of the brain.

these apical dendrites belong, correspond to
the Turing automaton.

A similar interpretation is possible for the
cerebellum, but without party lines. The basic
structure is now the granule cell-parallel fiber-



Purkinje ceil circuit (cf. Llinas and Hillman,
1969). The branching of numerous granule
cells gives a “T”-structured (parallel fiber)
cuiput inte which the dendrites of large Pur-
kinje cells extend. The Purkinjes, which give
rise to the only output, receive input (basi-
cally one-sto-one) from climbing fibers and
also external input (through the granule cells
and therefore parallel fibers) from offshoots
of an inner layer of horizontally running
mossy fibers. These are thus the natural can-
didates for primaries, while granule cells,
because of their large numbers and parallel
fiber output are the natural candidates for the
reference neurons. Actually the outpiis ram-
ify only about two mm, impiying that stor-
able and retrievable primary patterns would
have to be fairly localized. Higher in the phy-
logenetic scale the basic circuit is complicated
by the addition of new types of interneurons,
including Golgi cells (in the granular layer)
and also outer stellate and basket cells. Like
the Purkinjes, the Gelgi ceils extend dendrites
into the parallel fibers. Given their wide input
and inhibitory influence on the granule cells,
they are reasonable candidates for super-
visory neurons (for the relation between inhi-
bition and supervision see Fig. 7). Any neuron
of the cerebellum is potentially excitase con-
trolled, including primaries. However, stellate
and basket interneurons, with their relatively
short processes and inhibitory, modulating
input on the Purkinjes are especially likely
candidates for such control. The high homo-
geneity (and therefore the potential high
redundancy) of the cerebellum is compatible
with artd indeed a precondition for the selec-
tion circuit scheme. This potential redun-
dancy is actually increased by the relative
localization (in comparison to the cerebral
cortex) of the primary patterns. Input from
the growth control could be mediated by
either mossy fibers or climbing fibers, but the
latter are more likely because of their local
excitatory influence and also because of their
collateral excitatory influence on stellate and
basket cells.

The above correlations between the ele-
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ments of the theory and structures of the
cerebral corte.’ and cerebelium should be
regarded as tentative and subject to experi-
mental test. It is important that not all orga-
nisin; or all parts of the brain which support
learning and memory necessarily support both
a reference neuron and selection circuit
mechanism. Clearly the two mechanisms can
operate independently and in some cases over-
lap in function. In general, the selection cir-
cuit mechanism is better for learning pro-
cesses which require fine adjustment of motor
control or sensory perception. The referer.ce
neuron mechanism is better for rapid associa-
tion of appropriate responses with appropriate
stimuli (e.g. classical trial and error and instru-
mental lecming), or any type of learning or
problem solving which depends on time-order-
ed, content-ordered, or associative data struc.
tures (cf. Fig. 9). The cerebral cortex, with its
pattern recognition, associative, and motor
control functions would be expected to com-
bine both types of learning, with the refer-
ence neuron mechanism subserving the forma-
tion and manipulations of associations,
including associations between very different
sense modalities, and the selection circuit
mechanism adjusting firing patterns induced
by the environment or concomitant to motor
actions. In the case of the cerebellum the
main function is apparently modulation of
motor function (cf. Precht, 1974). The expec-
tation therefore is that the selection circuit
mechanism is especially important for fine
tuning firing patterns and that the reference
neuron mechanism allows for an extremely
short term memory and work space for fast
calculation (cf. Conrad, 1976). Organisms in
which the central nervous system is quite
simple could not be expected to support both
mechanisms. Thus a careful distinction must
be made between modification and memory
based learning in experiments on such orga-
nisms. The distinction must also be made in
systems in which both schemes are available
since one or the other may be more important
in any ¢iven situation.
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Fig. 9. Interfaced model. The diagram illustrates the
flow of information in the combined scheme. The
reference neuron mechanism (left) is responsible for
storage and retneval of mampulable memories, there-
fore for rapldly .acquired. memory, storage and
refrieval of reference memories for reafference, asso-
ciative- processes such as classical conditioning and
instrumental learning; formation of more general data
structures (i.e. time-ordered, content-ordered, and
associative structures) and imaginztive processes
involving restrgcturmg of memory through rememo-
rizac.ion, The selection. circuit mechanism (right}y is
responsible for learning through gradual transforma-
tion of function in individual, enzymatic neurons or
networkséof such neurons, therefore for perceptual
(or patiern recognition) and motor control (or pat-
tern generation) learning and .nore generally for
leaiming of information processes in. which the hlgh
efficiency of enzymatlc nets s criticei. If *he pnmary
enzymatic neurons interact (or, in su.me cases, are
identical) it is posslble to gradually modify the firing
patterns under the control of a given reference new-
ron and without disturbing the previously developed
ceference Meuron data structure. The two schemes are
thus complementary, althougk potentially indepen-
dent and to some extent capable of overlapping func-
tion.

5. Predictions of the theory

The selection circuit and reference neuron
schemes make a number of predictions. In
what follows we describe the most important
or testable of these.

5.1. Chemical and molecular predictions

Excitase nucleic acid ¢an be used to transfer
learned behavior from organism to organism,

but with tévo provisions: 1) the learning must
be modification-based and not memory-based;
2) the tissue between which the transfers take
place must be essentially interchangeable. The
second - condition is consistent with the fact
that  interorganism transfers are in general
only weakly effective or of disputed effec-
tiveness (since such interchangeability would
be the ‘exception). It is also consistent with
the fact that -intraorganism transfers (from
hemisphere to hemisphere) seem to be much
more effective (Albert, 19536; cf. Quarton,
1970). The eifectiveness of transfers should
also inerease with length of training period,
since this allows for a lagger annd more adapted
population of excitases. This also seems to be
the case (McConnell et al., 1970). Conditions
(1) and (2) are extremely restrictive and may
therefore account for some of the discrepancy
of result and discrepancy of conclusion sur-
rounding transfer studies.

Since the selection circuits fiust ultimately
stimulate or inhibit the produétion of excitase
nucleic acid, their action must be mediated by
enzymes whose activity or concentration
changes during the learning process. As
already mernitioned, this is consistent with ob-
servations on specific changes in nuclear pro-
tein accompanying learning (Hyden, 1967b).

Thhibition of nucleic acid 4nd protein syn-
thesis. would certainly be expected to inter-
fere with or ‘block modification-based learn-
ing. Such inhibitors will also affect memory-
based leamning because they prevent the syn-
thesis of loadable receptor molecules. The
main predictions are: 1) inhibitors will have a
marked effect on assimilation into long term
memory since receptor mdlecules in dendrites
contacting long term reference neurons are
periodically reilvaded and therefore in short
supply; 2) they will have no marked or im-
mediate effect on assimilation into short term
memory because previously loaded rcceptor
molecules will continually become available
for reuse. The predictions correspond to the
key result of the bicchemistry of memory,
viz. that protein and nucleic acid inhibitors
affect assimilation into long but not into



short term memory (cf. Barcndes, 1970;
Agronoff, 1973).

5.2. Anatomical and developmental predic-
tions

The selection circuit schem2 requires
redundancy and therefore implies a distrib-
uted character for modification-based learn-
ing. The reference neuron scheme, when inter-
faced, must also be redundant, from which it
follows that memory and memory-based
learning also have a distributed property.
However, individual memories should also be
accessible by stimulating specific brain loci,
viz. reference neurons, suitable primaries, or
supervisory neurons. Thus the model is con-
sistent with the dual distributed ¢nd localized
character of the memory trace (cf. Lashley,
1929; Penfield and Perot, 1963).

The selection circuit scheme requires inter-
€hangeability of mutually transformable tis-
sue and therefore at least statistical homoge-
neity in the structure of such tissue. Thus the
theory predicts that the brain is 10t plastic as
regards any anatomical properties which
affect the weighting coefficients, at least in
parts of the brain which operate on the basis
of the selection circuits. Aside from this ho-
mogeneity requirement, however, the details
of structure are entirely arbitrary; for once
there is enough connectivity, any function
can be implemented by int'oducing the
appropriate excitases.

Since the accumulation of modification-
based learning requires the accumulation of
excitases and excitase nucleic azid, the learn-
ing process must be accompanied by increas-
ing metabolic support. Since tha glial cells are
are the presumed site of trahsformation, it
would be expected that these would assume
some of the increased metabolic require-
ments, especially as they are isclated from the
weighting coefficients. In fact, the number of
glial cells does increase in the course of devel-
opment and more markedly in enriched envi-
ronments (Bennett et al.,, 1970). In general
plastic changes in the brain are allowable so
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long as they are isolated from the weighting
coefficients.

The reference neuron scheme also requires
no particular details of connectivity, other
than numerous reference to primary and pri-
mary to reference neuron contacts. The
scheme is not affected by plastic changes at
the synapse, e.g. in response to increased
demands for firing, the only restriction being
that such plastic changes do not affect the
weighting coefficients of excitase based neur-
rons.

The general conclusion is thus that plastic
changes in the brain are allowable so long as
they are isolated from the weighting coeffi-
cients, but not otherwise. This is important,
for it may account for the very diverse reports
on plasticity versus specificity in the brain.

The theory makes general anatomical pre-
dictions in the sense that it requires the exis-
tence of selectipn circuits (including evalua-
tion and growth control centers and connec-
tions between the growth control and local,
excitase governed networks) and also the exis-
tence of reference neuron circuits (including
reference and primary neurons, with a defi-
nite, preferred topology for refegence to pri-
mary contacts). Possible specific anatomical
correlates of the theory have already been
described in ferms of functional interpreta-
tions for the structure of the cerebral cortex
and cerebellum. The identification of the
horizontal layer of cells in the cerebral cortex
with party lines suggest that lesions cufting
across this layer would have effects on the
integrity of memory and the ability to assimi-
late memories integrating different sense nio-
dalities (assuming the number of lesions is
sufficient to override redundancy in the refer-
ence to primary contacts). The predicted
effacts of undercutting are described further
on in this section.

5.3. Physiological end psychological predic-
tions

According to the selection circuit scheme,
transformabile neurons are capable of respond-
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ing to specific patterns of irput and therefore
are potentially multithreshold elements. Ac-
cording to the reference neuron scheme, the
dendr!tes ‘of neurons which function as pri-
maries are sensitizablz: and modifiable. Unfor-
tunately, -however, it ‘seems -difficult to test
these features of the model du'ectly, in part
because of the difficulty of defining the input
to neurons in the brain and in part because of
the difficulty of recording from the microneu-
rons.

The anatomical redundancy and arbitra-
riness of the details of connectivity in both
schemes imply that the rate cf both modifica-
tion- and memory-based ieaming should
decrease with cortical ablation. This is con-
sistent with the so-called mass action laws of
Lashﬁey (1949) ‘However, lesions to either the
selection circuits themselves (i.e. the growtn
control or evaluation system) or to the super-
visory system in the reference neuron scheme
should have radical effects on the learning
process.

The theory gives a fairly simple account
(on the basis of the reference neuron scheme)
of classical conditioning and instrumental
learning. For example, suppose that primaries
firing in response to ringing are loaded by
some- reference neuron. Soon thereafter pri-
maries firing in response to food (and there-
fore ‘innately associated with' salivation) are
ioaded by a second reference neuron. If the
food is unporbant to the organism, the super-
visory - system - causes the second reference
neuron to be loaded by the primaries called
by the first, thereby estabhshmg an associa-
tive structure. Instrumental (or classical trial
and error) learning is explamable in the same
way," except that the response is not innate,
This ' mechanism allows for one axposure
learning, the correct direction of association,
diminishing returns (since the number of new
loadings - decreases with each - -repetition),
extinction {since sens1t1zed reference neurons
are not reloaded by primaries which they do
not call), ‘and interference (since multiple
bindings make the decision making process
more difficult for the supervisory system). It

also accounts for the importance of motiva-
tion since the probabilily of forming an asso-
ciation depends on the number' of supervisory
neurons activated by the supervisory system
and also on the decision to reactivate the orjg-
nal reference neuron. These are all fundamen-
tal properties of ' classical conditioning and
instrumental learning (cf. Miller, 1967).

The mechanism - described above implies
that undercutting the region associated with
the conditioned stimulus (e.g. ringing) should
prevent binding to the response (e.g. saliva-
tion), but that such binding would not be
affected by vertical cuts. The reason is that
primaries associated with ringing must load
the reference neuron associated with saliva-
tion, which involves a vertical connection and
no significant horizontal contacts are required
in this case. This prediction agrees with exper-
iment (cf. Campbell, 1965). Also, notice that
the ease with which the stimulus is bound to
the response depends on the number of pri-
maries in the stimulus region which contact
reference neurons which themselves contact
primaries in the response region. The mecha-
nism is thus consistent with and suggests an
explanation for constraints on learning which
apparently play an important role in some
organisms.

Any memory scheme should be compatible
with the well known principle of reafferance
{that changes arising from the organism’s own
movements are subtracted from changes in
the environment or, in some cases, from anti-
cipated changes in the environment, cf. Von
Holst and Mittelstadt, 1950; MacKay, 1962).
This is clearly the case with the reference
neuron scheme, since this provides a simple
(perhaps the simplest) mechanism for adcess-
ing a reference scene either for coniparison to
current input or for computation prior to
such comparison. However, the computations
themselves (e.g. subtraction, anticipation) are
not determined or constrained by the refer-
ence neuron apparatus but are a matter of the
organization of the primary system, e.g. the
inhibition or excitation of primary neurons
resulting from the superposition of the refer-



ence pattem of excitation with the environ-
mentally induced pattern and also the way in
which these patteras are coded into the fotor
outputs.

Perhaps the most important psychological
feature of the theory is the distinction
between modification- and memory-based
learning. Situations involving one of these
types of learning will lead to very different
experimental conclusions than those involving
the other, and at all levels of analysis, ranging
from the chemical to the behavioral. Classical
conditioning and instrumental learning, as
well as their generalizations, belong {o the
memory-based category. However, the same
effect could in many cases be achieved by
modification-based learning, except that it
would be very unlikely for this to arise in one
exposure., Modification-based learning is bet-
ter for motor control and perceptual learning,
as previcusly discussed. The two types of
learning may operate by themselves, but they
may also contribute to a single learning pro-
cess. For example, an association may be
learned rapidly by the memory-based mecha-
nism, but then the pattern recognition or
motor control elements of this association
may be gradually perfected by the modifica-
tion-based mechanism. The two systems are
thus complementary (cf. Fig. 9).

6. Conclusions

The problem of brain is particularly ame-
nable, indeed perhaps only amenable, to the
constructive method of analysis. This meth-
od depends first on the characterization of
function and then on the economical design
of systems which perform this function. In
the present case we characterized function in
terms of the Turing scheme, ie. a finite
automaton and work space which it manipu-
lates. The selection circuit scheme, with its
enzymatic networks, is the implementation
of the finite automaton, with the provision
that it fulfill the extra functional requirement
of gradual modifiability. The reference neu-
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ron scheme adds to this the memory space
capability, thereby giving the interfaced
model the capabilities of a bona fide (molecu-
lar) computer.

Actually, we have something more than an
ordinary computer, for an drdinary computer
does not have the gradual modifiability prop-
erty; nor are conventional neural networks cf
reasonable size sufficiently powerful to
handle the global memory structures which
are so easy to assimilate and retrieve in the
reference neuron scheme.

The question may arise as to the criteria for
an ‘“economical” construction. Clearly the
construction must be highly amenable to phy-
logenetic evolution, i.e. likely to arise and
predominate in the course of Darwinian com-
petition. In the case of the brain this means
that the constructions should not involve im-
probable patterns of connectivity, unreason-
able metabolic requirement, or biological pro-
cesses which are not already used or derivable
by gradual modification from other processes
which the organism already uses. The selec-
tion circuit scheme fulfills the first criteria,
for the connectivity is arbitrary; what is not
arbitrary are only the enzymes which exploit
this connectivity. Similarly, the connectivity
of the reference neuron scheme is arbitrary
within certain broad constraints. Neither
scheme makes unreasonable metabolic
demands and both of them operate on the
basis of ubiguitous molecular principles, viz.
specificity (in the case of the excitases of the
selection circuit scheme) and conformation
change (in the case of the receptors of the
reference neuron scheme). The selection cir-
cuit scheme also involves elements ®f a regu-
lative theory (e.g. enzyme induction or other
control over enzyme activity) to mediate the
action of the selection circuits on the produc-
tion of exportable excitase nucleic acid.

Is it justifiable to base such constructive
models on a neuron concept which seems so
radically different from the classical concept?
The basic physical insight behind the Hodg-
kin-Huxley and subsequent models of the
neuron is that the neuron is a systam away
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from thermodynamic equilibrium and that
vhe nerve impulse is essentially a manifesta-
tion of triggered return to equilibrium (cf.
Hodgkin,  1964). In the selection circuit
model ' we >regard ‘the excitase as being
involved in the tnggermg process, . which
therefore allows the trigger to be modifiable.
In the reference neuron scheme the trigger
depends on the dendrite-bound receptor mo-
lecule, so that it is controllable. Such control-
lability and modifiability does not contradict
the classical picture of impulse propagation
and neurotransmission derived from studies of
the peripheral nervous system, nor-are they
contradicted by their nonoccurrence in the
peripheral nervous system (for their informa-
tion processing function depends entirely on
larger systems of circuitry in the brain). The
neuron concept developed here is thus in
some sense a generalization of the classical
concept. The ultimate justification for this
generalization derives from the experimental
accuracy of its consequences, which so far
have excellent agreement with the known
facts. The same cannot be said for the nar-
rower concept. To date this has been incapa-
ble of accounting for the main fact, viz. the
ability of the brain to leam and remember.
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