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The functional capabilities of the brain are formally characterizable in terms of a finite system along with a 
memory space which it can manipulate. Two types of learning are possible: ( 1) modification-based learning, asso- 
ciated with alternate realizations of the finite system; (2) memory-based learning, associated with the assimila- 
tion, manipulation, and retrieval of memories. Constructive models which fulfill these conditions and which at 
the same time operate on the basis of molecular information processing principles have certain general features. 
We describe these features in terms of two interfaced submodels, the first for the finite system and the second for 
the memory space. The finite system may be realized by networks of neurons in whieh the specificity of enzyme 
molecules controls the nerve impulse. Such a realization is amenable to modification-based learning mediated by 
processes analogous to those of natural evolution and selective theories of antibody synthesis. The memory space 
is realizable by networks of neurons in which the conformation of dendritic receptor molecules controls the nerve 
impulse. In this case certain neurons firing in response to an external input undergo sensitization at the dendrites 
and in such a way that they are koadable and later callable by reference neurons, thereby allowing for reconstruc- 
tion or manipulation of the firing pattern associated with this input. The overall construction makes a large num- 
ber of biochemical, anatomical, physiological, and psychological predictions which are either testable or in good 
agreement with fact. 

1. Introduction 

The third quarter of the twentieth century 
has seen dramatic advances in both molecular 
biology and in the information sciences. The 
biologists, on the one hand, have elucidated 
the fundamental mechanisms of heredity and 
reproduction. The information scientists, on 
the other, have developed concrete computing 
and communication devices, along with gen- 
eral theories about the design, limits, and 
capabilities of such devices. The extent to 
which these two developments influenced one 
another is a historical question, one which 
we cannot iscuss here (cf. 
1974). The connection itself, 
more than historical interest: 

of information transfer 
nature. 

The deep connection and complementarity 
of molecular biology and information science 
cannot but raise the hope that the concepts in 
these two fields, once joined, could lead to an 
understanding of the biological information 
processor par excellence, viz. the higher ner- 
vous system and brain. Indeed, there is 
increasing, though highly controversial evi- 
dence that individual molecules do play a 
crucial role in learning and memory (Cohen, 
1970; McConnell and Shelby, 1970; Hyden 
and Lnnge, 1971; Ungar, 1973). The 
of experimental work in this area is e 

so~bisticated use of 1; 
atior science to inter 
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One difficulty is undoubtedly that the 
brain is complicated. Its behavior is too intri- 
cate to describe in detail, at least in each indi- 
vidual case; but the details are too interesting 
to wash away with statistics. What can be 
done, however, is to characterize the capabili- 
ties of the brain, e.g. its capabilities for com- 
puting some class of functions (in the mathe- 
matical sense). Then we can construct models 
with these capabilities which operate on the 
basis of information processing principles 
derived from molecular biology. In order to 

operate on a natural, economical basis such 
models must have certain very general design 
features. These necessary design features are 
thus predictions about the brain. 

We begin ‘with a review of the experimental 
work in the area; characterize the capabilities 
and the information processing principles; 
then consider the models and their predic- 
tions. 

2. Types of experiment; types of theory 

-The experimental work on the relation 
between macromolecules and brain function 
is of course enormous (for book length dis- 
cussions, see, e.g. John, 1967; Byrne, 1970; 
Ungar, 1970; Gibbs and Mark, 1973). How- 
ever, it is perhaps useful, at the very bsgin- 
ning, to classify this work on the basis o:l the 
type of relation which is being studied. 

(i) Molecular biology of nerue cells. These 
studies are directed towards elucidating the 
characteristics of nucleic acid and protein 
synthesis in nerve cells (e.g., Hjrden, 1967a; 
Hyden and Lange, 1971), the transport of 
materials in the cells (e.g. Weiss, 1970), and 
more generally the structure and function of 
the nerve cell and its constituents at the mo- 
lecular level (cf. Schmitt, 1970). 

(ii) Biochemical correla 
memory. These studies are direct 
elucidating changes in nucleic ac 
tein during the processes of memory acquisi- 

tion, consolidation, and learning. Many of the 
studies have been based on tracer techniques 
(e.g. Glassman, 1969); others on the effect of 
various pharmacological agents on long and 
short term memory (e.g. Agronoff et al., 
1966, 1967; Barondes and Cohen, 1967; 
Agronoff, 1970; Barondes, 1970). Such 
experiments involve a combination of bio- 
chemical, physiological, and psychological 
technique. 

(iii) Transfer and spmifk protein studies. 
These studies have been directed, in the first 
case, to the possibility of transferring 
acquired information from one part of the 
organism to the other or from one part of the 
brain to the other by transferring specific 
chemical agents, primarily nucleic acids (e.g. 
Albert, 1966; McConnell, f 970; McConnell et 
al., 1970). In the second instance they have 
been directed to determining whether changes 
in protein specificity accompany learning or 
memorization (Hyde);.; P967b) and also 
whether specific protc:rls are capable of 
effecting specific behaviors1 changes (Ungar, 

interpret aspect 0 
neurobiology (cf. B 

The theoretical 
haps been even m 
mental work. Thus we must &o classify this 
(again at the expense of great simplification) 
on a typological basis. 

(i) Regulative theories. What might be 
called regulative theories hold that what 
chslnges in learning and memory are the regu- 
latory properties erve cells, e.g. the quan- 
tity of chemical e ies available for synaptic 
transmission (e.g. Bennett et al., 1970), or the 
amount of synthetic machinery in the cell (cf. 
Lehninger, 1970). These theories do not 
assign any specific role to nucleic acid and 
protein, but only claim that 
teristics of the nerve cell h 
basis. A seeming i 

at the learning and memo 
could be understood in terms of networks of 
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modifiable nerve cells, the major contribution 
of the molecular description being to under- 
stand the underlying basis of the modifica- 
tions. It should be pointed out that some 
workers in the field feel that all the molecular 
and biochemical correlates of learning are 
incidental byproducts or prerequisites of 
functions which can be understood, or at least 
described, solely at the cellular level. 

(ii) Specificity theories. What might be 
called specificity theories make the claim that 
specific molecular changes are concomitant to 
learning and memory. There are a number of 
such theories, including theories based on 
enzyme induction (e.g. Smith, 1962), on the 
relationships between specific proteins and 
particular dendritic p:athways (e.g. Wngar, 
1973), on the developmental specificity of 
the nervous system (e.g. Mark, 19?4), to men- 
tion only a few. There are also a number of 
theories which hypothesize some kind of 
reverse transcription, i.e. storage of informa- 
tion in nucleic acid sequence. 

(iii) Conformational theories. What lmight 
be called conformation theories are based on 
the idea that nerve impulses are capable of 
causing conformational changes in membranes 
(e.g. McConnell, 1970), protein molecules 
(Neumann, 1974; Rosen, 1974), or nucleic 
acids (Katchalsky and Neumann, 1973), and 
that information is stored in these conforma- 
tional changes. 

The above brief survey is necessarily 
sketchy and selective. We should also point 
out that regulative, specific, and conforma- 
tional models are not mutually exclusive, and 
also that all molecular models must be inter- 
faced with the paramount fact of the electri- 
cal activity of nerve cells. Indeed, it is this 
interfacing which is the main difficulty (cf. 

tent, 1972). 

ning and memory 
awn from network, a 

mata, computer theory, and artificial intelli- 
gence (cf. Conrad et al., 1974). ln general, 
however, these models derive from our expe- 
rience with conventional information process- 
ing devices, and therefore ignore and are not 
even suited to deal with the molecular nature 
of biological systems. A better way to develop 
such models is to start with the already exist- 
ing concepts of automata and computer 
theory, but then to alter rhem so that .they 
are suitable for dealing with molecular proces- 
ses, taking as an assumption that the brain is 
in fact a molecular information processing 
device (Conrad, 1972b, 1973a, 1974f). 

The simplest formalization of automata 
and computers and the one which has had the 
most impact on b~in theory is the Turing 
scheme (or machi;re, cf. Fig. 1). This is a 
finite automaton (or system with finite sets of 
states, inputs, and outputs p~lus state and out- 
put transition rules) along with a tape which 
it can mark and move. Such a scheme is 
universal if it can read and follow any particu- 
lar rule encoded in the sequence of markings 
on the tape. (Any general purpose computer 
is universal in this sense.) Also, the scheme 
may include some abstraction of the environ- 
ment, so that the inputs tu the automaton 
include both the markings on t e tape and the 
states of the environment. 

What makes the Turing scheme particularly 
interesting is the picture which apparently 
motivated its formulation (Turing, 1936; 
Minsky, 1967). Turing imagined a person 
working an a.rithmetic problem on a note pad. 
The person can read any symbol on the pad, 
rewrite this symbol act i:lg to his state of 
mind, move to a neigh ng square on the 
pad, and change his st f mind according 
to some rule. The Turing scheme is no more 
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A 

Fig. 1. Turiw rhemo. Tha tieme consirtr of an 
automaton, A, along witi a tape which it can move 
and ov~rite. Small I&ten (a and b) are tap rym- 
bob and E tk l xtem,al environment. ‘IVu automaton 
reads the tape eymbol, either rewrites thh symbol or 
mom to a new tape p&t&n. rrd changes ita state 
accordingly. By daiw an cxtcrarl rcrvimnmunt we 
allow it to record l xterraal event3 and include the par- 
ribility of adaption to the outride world. Mcmory- 
ba8ed learning involves we of Lhe tape for recording 
and manipulating information. In modifiiation-hued 
learning the rub ming the next state and output 
khafior of the automaton itself changeq i.e. we 
replace A by A’. The Turing mwhine in a process. not 
a’real machine. Itr importance lies in the simplicity 
with which it formalizes psychological pmcesseq and 
the compkknm with which it formalixes algorithm& 
procerr. Wtth the add&&n of the external environ. 
mcnt WC can also formrliu nonalgorithmic informa. 
tion p-. viz. evolutionary w T)n 
Turing rbcme thus provides connptuJ boundary 
conditions for constructing concrete brain mod&. 

Not all information processes are algorith- 
mic, however. For example, evolution based 
on chance variation and natural selection is 
certainly of a quite different nature. Thus we 
cannot mume that all psychological pn>cesses 
are algorithmic. Nevertheless, we can still 
characterize these pm within the frame- 
work of the Turing scheme; for this scheme 
remains a vJid abstraction of psychologim! 
processes whether or not these are algorithmic 
(Conrad, 19xd). 

The main psychological process we are 
interested in is learning, which rrjughly speak- 
ing we can regard as change in a system’s 

behaviour which either makes that behavior 
more adapted to the given environment or 
allows it to adapt to noIre1 envxonments. The 
Turing formalization allows for three types of 
leaming: 

(1) Inherent copobifity of t’te automaton. 
In this case the learning is based on the com- 
putational capability of the automaton, but 
without using the tape. For example, the 
automaton may be bo designed that interac- 
tion with the environment drives it into u 
state appropriate to the future behavior of the 
environment. 

(2) Memory-based leaning. In this case the 
automaton is allowed to use the tape. For 
example, it may record environmental events 
on the tape and use these records to control 
its future behavior; or it may use the tape to 
increase its problem solving power. Memory- 
based learning includes pwmmability from 
input (if the automaton is universal and a 
more suitable rule is encoded on its input 
We). 

(3) Modificatbn-based leurnhg. In this case 
automaton A is replacd by automaton A’, 
where A’ is more fit to the environment. 

npes (1) and (2) are both basically algo- 
rithmic (in the sense that dcfinik rules are 
being followed). Actually, both involve mem- 
ory and in principle differ only if the tape 
(storqqe area) is in some way potentially un- 
bounded. From the practical standpoint, how- 
ever, it is to be expecti that the dhtinction 
would retain validity even in the finite case. 
Typo (3) is not algorithmic since it involvc?s 
the replacement of one process by another. 

The above point is critical. The Turing 
scheme, no matter how convenient as a for- 
malism, ib just that, viz. a process and not a 
real machine. The problem of brain modeling 
is thus to construct realizations which on the 
one hand have all the functional capabilities 
of the brain (e.g. as formalized with Turing 
schemes) and at the same time operate on the 
basis of biological principles YIP generate 
predictions which conform to the facts. In tile 
cafz of type (3) iearning the realization 
changes, but not according lo the rule which 
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is embodied in the realization (as opposed to 
e.g. chance variation and selection). 

There are, of course, many concrete realiza- 
tions which have sufficient functional capabil- 
ities (essentially all digital computers). All of 
these share one fundamental feature in com- 
mon. They are built out of a finite set of 
fixed components (or canonical automata) 
which are linked together and set appropri- 
ately so that they embody any particular rule. 
MoreBver, this linkage and setting process 
may be done in a definite, algorithmic way 
(see, e.g., Conrad and Dal Cin, 1972). The 
most well-known example, from the stand- 
point of neuroscience, are networks of formal 
neurons, such as the McCulloch-Pitts net- 
works (McCulloch and Pitts, 1943; Arbib, 
1965; cf. Fig. 2). These are, of course, the 
extreme abstractions of real neurons, i.e. com- 
ponents which fire when the sum of their 

Y 

0 excltatary dendrltic input (0 or 1) 

8 inhibftcvy dendrltfc input (0 or -1) 

) axonic output (0 or 1) 

0 threshold 

Fig. 2. McCulloch-Pitts formal neuron. The neuron 
fires when the sum of the excitatory and inhibitory 
inputs exceeds the threshold. The automaton of the 
Turing scheme can always be simulated by a properly 
constructed network of formal neurons. The impor- 
tance of th!e McCulloch-Pitts model is that it shows 
that one can embody the most co.mplex automata 
behavior in networks of neurons which are the 
extreme abstraction of real neurons. Piowever, such 
networks are generally unece omieal in terms of 
number of neurons and inamenable to gradual trans- 
formation of function with gradual transformation of 
structure. This is generally true for structurally pro- 
grammable systems, i.e, systems in wbi~~ the transi- 
tion fun&ions are encoded in the network connec- 
tivity and initial state of a set of canonical COYn- 

ponents (or canonical base automata). 

excitatory and inhibitory inputs exceeds some 
threshold. Indeed, this is why the McCul- 
loch-Pitts model has played such an impor- 
tant role in brain theory; it showed, for the 
first time, that one could in principle do all 
one needed (except for memory manipulation) 
with what McCulloch called the most impov- 
erished version of a neuron (cf. Rosen, 1969). 

I will call systems of the above type struc- 
turally programmable (since the rule which 
generates their behavior is encoded in the net- 
work structure and initial automata settings in 
an effective way). The difficulty with struc- 
turally programmable systems is that they are 
very uneconomical in comparison to the brain 
(in terms of number of elements, cf. Minsky, 
1967) and therefore uneconomical as regards 
processes of type (1); but even more impor- 
tant, they are not amenable to gradual trans- 
formation of function with gradual transfor- 
mation of structure (Conrad, 1973a, 1974a), 
and therefore do not allow for learning pro- 
cesses of type (3) (Conrad, 1972a; cf. also 
Minsky, 1961; Bremermann et al., 1966). Fur- 
thermore, formalized nerve network models 
do not incorporate a tape (or memory space) 
device in any naturaI .vay, and therefore 
exclude learning processes of type (2). 

These difficulties are not necessary, how- 
ever. In fact, one can construct structurally 
nonprogrammable computers with general 
powers of comput 
time conform to the 
the brain. These mod 
nate, more general concept of information 
processing in which we modify the rule exe- 
cuted by the system by modi 
tions performed by the elem 
nents rather than by mod 
linkage of these components (Co 
c). For example, imagine that we wa& a con- 
tractor to build houses suitable for different 
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tal basis of evolution, since genetic changes 
ultimately appear as changes in the primary 
structure and therefore function of protein. 
Furthermore, because of the folding proper- 
ties of proteins slight changes in primary 
stnrcture are often concomitant to only slight 
changes in three dimensional structure and 
therefore function, thus allowing t.he orga- 
nism to adapt to the environment in a step by 
step fashion. 

4. Molecular control of the nerve impulse 

4.1. The selection circuit model 

Now we can turn to the properties which 
the brain would have to have in order to sup- 
port gradual transformation of funstion on 
the bwis of the molecular process indic&ed 
above (and therefore modification-basr-d 
learning) and at the same time support powers 
of computation equivalent to that of a finite 
automaton. The basic idea is that individual 
molecules - the components amenable to 
gradual transformation of function - control 
the nerve impulse. To this end we introduce a 
more complex formalization of the neuron, 
one which captures the geometrical asymme- 
tries and membrane nonhnearities of the real 
neuron. In this new formalization (to be 
called the enzymatic neuron, see Fig. 3) the 
zffect of each dendrkic input at any particu- 
lar locus on the cell surface is determined by a 
Freighting function which depends on the geo- 
metry of.the neuron, the conductivity proper- 
ties of the membrane, and on the activity of 
other dendrites. The neuron also carries pop- 
ulations of molecules or molecular aggregates 
(to be called excitases) which catalyze events 
leading to impulse formation under suitable 
degrees of excitation. Thus, the enzymatic 
neuron fires if the pattern of dandritic inputs 
produces a suitable degree of excitation at 
any locus which is in fact occupied by such an 
excitase. 

Tht? question arises: how can the br 
know in advance (and witho& computation, 

0 excitatory dendrltic input (xi = 0 or 1) 

inhibitory'dendritlc input (xi = 0 or -1) 

> axonic output (y = 0 or 1) 

% 
= vrefghting coefficient of input x, at region j 

Sj E excitase molecule in region j 

Fig. 3. Enzymatic neuron. The neuron fires whenev’er 
the weighted sum of the excitatory and inhibitory 
dendritic inputs (of which only two are shown) 

excites a region of the cell surface at which exoitase 
enzymes are located. The weighting coefficients make 
it possible to work with formal neurons which reflect 
the complex morphological and conductivity proper- 
ties of real neurons. In principle each such coefficient 
could also be written as a function of tbe pattern of 
dendritic firing itself, The particular patterns of firing 
to which the neuron responds depends on the 
excitase molecules which it contains. By adding or 
deleting excitase molecules which bind at differe,nt 
places on the cell surface it is possible to increment or 
decrement this set of patterns by a single member and 
therefore to gradually modify the function performed 
by either individual enzymatic neurons or networks 
of enzymatic neurons (independence property). In 
general such networks are very efficient, because each 
neuron is a multithreshold element and 
much less of a gross averaging device than the 
loch-Pitts neuron (cf. Fig. 2). Enzymatic 
are not structurally programmable because they are 
not constructed from a canonical set of components 
which can be linked together in different ways to per- 
form different functions. instead the co 
thenl~lv~s are changed, by changing the complement 
of excitases which they carry. 
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which is infeasible) which excitases will do 
the job (e.g. locate themselves in the right 
places)? The tinly possibility is by trial and 
error evolution, analogous to evolution by 
variation and natural selection. But this is 
possible only if the brain contains some kind 
of artificial selection system which tests and 
evaluates excitase’species and (on the basis of 
this evaluation) stimulates the production of 
transforming nucleic acid which code for 
these species. Furthermore, the tissue trans- 
formed must be essentially interchangeable 
with the original tissue, otherwise the weight- 
ing coefficients would be difterent and the 
favored excitases would not haqe the same 
function (cf. Fig. 4). Thus the sine qua non 
properties of the model are: 

(i) Redundancy. The brain consists of 
various types of local networks of which there 
are many interchangeable replicas of each 
type. 

(ii) Specificity. Each local network con- 
tains (enzymatic) neurons whose firing is con- 
trolled by excitase molecules.. These enable 
the neuron to fire in response to specific pat- 
terns of inputs, e.g. to be a multithreshold 
element. Each such excitase molecule (or mo- 
lecular aggregate) is capable of binding at a 
specific region of the cell surface, and cata- 
lyzes events leading to impulse formation if 
the particular pattern of inputs results in a 
high degree of excitation at that point on the 
cell surface. 

(iii) Selection circuits. The brain contains 
circuits which test and evaluate the function 
of local networks and which control the pro- 
duction of culturable excitases on the basis of 
this evaluation. The nucleic acids whose pro- 

/ 

---_ 
EXTERNAL INPUT 

L------ .--_- 

I 
ANATOMICALLY EQUIVALENT LOCAL NETUORKS 

(Process inputs on the basis of 

transformable. excitase-controlled neurons) 

-- 
l 

- 

L 
I--- 

--___-___- 
I 

OUTPUT EVALUATOR 

(Evaluates consegwnces of 

the output of fndividual loca! networks1 

I i 
L 

I 

GROWTH CONTROL 

(Controls pattern 3f production 

of transforming RNA In local networks 

on the basis of 

information from tlk obtput evaluatori 

~____ 

-I- 

-~-- 

Fig. 4. Flow of information in the selection circuit 
model. The basic idea is that the brain contains a 
system for selectively culturing nucleic acids which 
code for molecules fexcitases) capable of controlling 
the nerve impulse (cf. Fig. 3). External inputs are pro- 
cessed independently by local networks which are 
essentially interchangeabfe as regards connectivity 
and weighting coefficients of corresponding neurons. 
The output of each such local network has conse- 
quences for the organism, e.g. in terms of pleasurable 
or paincul experience. The output evaluator assigns a 
fitness valu+ to each local network on the basis of 
these consequences and trmsmits this information to 
the growth control, which in turn transmits signals 
back to the local networks w ich either stimulate or 
inhibit the production of exportable RNA capable of 
transforming neighboring networks. Advantageous 
excitases associated with especially fit local networks 
(or tissues) thus spread to neighboring networks, 
where they have the same function because of the 
~~terc~.~~~eabi~ity property. The selection circuit 
scheme accounts for modification-base 
learning based on rapid acq~~~tio~ of 
rna~ipL~at~o~ of memories. lit is much 
than n&Ural ev~~~tjo~ r3cause the selection circuits 
(i.e. e-valuation and. gi-owth con ) allcw for very 
intense selection on the basis of trarily small dif- 
ferencc-a in fitness. 
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pr0petiyjZ * The cuhurable excitase “genes” 
either pre-exist in small numbers, in which 
case they (but not their distribution) are 
inherited (germ line type theory}; or they 
arise from somatic processes, in which case 
they are not heritable at all (somatic mutation 
type theory); or from a combination of germ 
line and somatic mechanisms. 

The operations of the selection circuits 
require certain control (e.g. inducible) enzy- 
mes, The distinction between control and 
excitase enzymes is important for interpreting 
experiments on protein changes accompany- 
ing learning (in particular the experiments of 
Hyden, 1967b, cf. section 5). The selection 
circuit model makes a large number of pre- 
dictions about the brain, including predictions 
about the conditions under which chemical 
transfer of learning is possible, the effects of 
ablation, the specificity of brain structure, the 
dynamical properties of neurons (Conrad, 
1973b, 1974b,d)r. These are also described in 
a later section, after we pay proper attention 
to the problem of memory. Here, however, 
we r’.: 1st point out the deep analogy between 
th 5 ‘_’ s vary and selective theories of antibody 
pro ,uction and immunity (cf. Jerne, 1955). 
We also point out that the number of excitase 
molecules which such a system can try out in 
the first twenty years of life is enormous - in 
fact, with only mild assumptions it comes to 
much more than all the genomes that could 
have been tried out in human e;iolution (cf. 
Conrad, 1974d). 

4.2. Canformationa,! model of memory and 
memory-based learning 

It is fairly simple to show that networks of 
exeitase based neurons have ail the computa- 
tional capabilities of conventional formal 
neural nets (and therefore finite automata), 
but at the same time are amenable to gradual 
tranformation of function (Conrad, 
cf. also .Schwabauer, 1976). After 

74d; 
the 

MCC ch-Pitts networks are just a special 
case w more general enzymatic network. 

However, the mode? does not allow for com- 
puting as wide a class of functions as a Turing 
system. This is because it does not account, 
for memory acquisition, manipulation, and 
retrieval, or for forms of learning in which it 
is potentially possible to consummate the 
learning process in a single trial (e.g. classical 
conditioning or instrumental learning, cf. 
Miller, 1967). Thus it cannot account for pro- 
cess (ii), i.e. memory-based learning. The lat- 
ter is the type of learning for which present 
day computers are most suited and on which 
virtually the whole field of artificial intelli- 
gence is based (cf. Feigenbaum and F’eldman, 
1963; Bremermann, 1973; Josephson, 1974). 

The main difficulty is that the computer 
has an addressable memory9 i.e. each bistable 
element can be accessed and switched by spe- 
cifying its location in an array (cf. Fig. 5a). 
This makes it possible to avoid mixing up (or 
superimposing) memories because each ele- 
ment is uniquely accessed by activating two 
lines. This simple scheme is not economic,al 
and in fact not even feasible in networks of 
neurons (because of their converging inputs 
and diverging outputs, cf. Fig. 5b). Never- 
theless, there is compelling evidence that the 
brain, like the computer, does not suffer 
serious problems of memory superposition. 

There are a number of schemes which sat- 
isfy the above requirements, but the follow- 
ing is the simplest and gives the most direct 
account of the psychological, physiological, 
anatomical, and biochemical facts (Conrad, 
1974e, 1975a,b). 

(i) Certain neurons (to be called primaries) 
undergo sensitization at the dendrites when 
firing in response to external inputs; 

(ii) The sensitized primaries are modified 
(“Ioaded”) by other neurons (to be called 
reference neurons) and in such a way that 
they fire in response to the future firing of 
these reference neurons. 

The firing of a reference 
structs the original pattern of p 
because it only fires those ~e~~~~s 
dendritic connections were 
loading process (see Figs. 6 au 
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(a) 

0 bistable element 0 call body 

s--- dendritic input 

axonie output 

Fig. 5. Superposition problem. In an addressable computer memory (a) each bistable element is uniquely accessed 
and switched by activating two lines. There is no problem of superposition (admixing new and old memories) 
because information can be stored and retrieved from individual elements without switching other elements. This 
is not possible in highly interconnected neural networks (b), since in general no single neuron is uniquely accessed 
and “switched” by activating two axonic inputs. In this case the states of the network are associated with pat- 
terns of neural firing and the problem of memory is to retrieve such patterns under appropriate circumstances, 
e.g. by altering dendrites in such a way that the pattern can be reconstructed in the absence of the original input. 
In generai, however, alterations associated with new memories cannot be separated from those associated with old 
memories, resulting in superposition. For a simple solution to the superposition problem see Fig. 6. 

lem of memory superposition is avoided 
because each reference neuron loads and 
“calls” at most one pattern of primary activ- 
ity. These patterns may be arbitrarily com- 
plex (e.g. associated with complete scenes) 
with no extra requirement cx! the number of 
reference neurons. Moreover, if the reference 
neurons are activated for loading in temporal 
sequence, the memory structure may be 
ordered according to time. If primaries are 
also capable of loading reference neurons, 
these can be activated by content, e.g. by a 
small part of original scene. Also, the scheme 
allows for rememorization on the basis of tbe 
same mechanism as memory acquisition and 
retrieval. This is important because rememori- 

any given time and whether they will be acti- 
vated for loading or caliing? This correspon 
in the c:tse of any realization of the Turing 
scheme, to the question : what controls the 
movemem of the Turing automaton on the 
tape and what it does to the tape? The answer 
here is that this is determined by the transi- 
tion functions built into the automaton. In 
the case of the reference neuron scheme, the 
transition functions must also be built into 
what corresponds to the automaton, e.g. into 
the enzymatic neural nets, except that in this 
case the decision process is much more com- 
plicated. Since we know that any transition 
functions can be built into such networks we 
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F g. 6. Ikferrncc neuron rolu!Ln Ic, the superposi- 
ti ,n problem. The nct*c.~rk b the same as the net- 
work of Fig. 5th;. except thot rcfersnce neurons are 
::lded. A.!: new uonk outpulr and dendritic inputs 
9~~ distinguished by dotted lines and the neuronsare 
labeled (Il.1 = reference neuron j, Pj = primary neuron 
j). When primaries fire in response to an external 
input their dendrites become sensitized, i.e. assume a 
condition which allows them to be opened up by the 
reference neuron which fires immediately thereafter. 
In this case we say that primaries firing in response to 
the external input are loaded by the reference neuron 
and that the later firing of this reference neuron 
results in a call to these primaries, For example, sup- 
pose that the external input results in the firing of PI 
and P4 and that Ri fires immediately thereafter. Then 
RI loads and is capable of later calhng Pi and Pq. 
There’ is no problem of memory superposition 
because each reference neuron is associated with at 
most one memory. The complexity of the stored 
memory (i.e. the number of primary firings. it 
involves) is limited’only by the number of reference 
to primary contacts (see Fig. 8) and the memory 
capacity by the number of available reference neu- 
rons. Reference neurons may activate reference neu- 
rons, in which case memories are stored and retrieved 
in temporal order, or they may be loaded by some of 
the primaries which they themselves load. S pri- 
mary to reference contacts (not shown in dia- 
gram) allow for access by content and the formation 
of associative structures through rememorization un- 
der the control of other primaries (see Fig. 7.). Peri- 
odic rememorization under thecontrol of the original 
reference neuron also allows for stabilization of the 
memory trace, which means that the s&e 
for both long and short term memory on the basis of 
the same fundamental mechanism. 

the reference to primary loading and calling 
processes must be mediated by temporal pat- 
terns of pulses (i.e. by codes). In this case the 
dendrite must contain a number of indepen- 
dent switching elements (which we identify 
with receptors), with the switching involving 
conformational changes at the molecular 
level. The theory imposes a number of func- 
tional requirements on the receptors. The 
most important of these are: 

(i) The conformation records the occur- 
rence of impulses or particular impuls’e 
sequences. 

(ii) A regulation site controls the compe- 
tence to be loaded by the incoming pulse or 
sequence of pulses, e.g. switches the molecule 
into the loadable state when an antidromic 
process is set up by the initial input. A fixia- 
tion process, which follows loading, prevents 
the receptor from being unloaded by new 
input sequences. 

(iii} The receptor must have an active site 
capable of catalyzing events leading to im- 
pulse formi~tion. 

The justification for the reference neuron 
scheme (and also the switching mechanisms 
which it iimplies) ultimately derive from iits 
biological consequences. Again we defer these 
to the next section. Here, however, we should 
point out that the model allows for the stabil- 
ity of the memory trace by rememorization- 
mediated duplication of molecular conforma- 
tions; for once the receptors are loaded, the 
same apparatus responsible for this loading 
can be used for other receptors in the same 
dendrite. In other words, reference neurons 
can periodically reload those primaries which 
respond to them. This is important, for it. 
means that the model is capable of accounting 
for long, short, and very short term memory 
in term.5 of a single mechanism, ~tb the only 
difference being that short term reference 
neurons do little or no 
memories can thus be trans 
to long term storage 
the control of long te 
principle, they could also be ~simi~ated 
d,irectly into long term storage. 



129 

) lpallrariiiizz+z::zr:_jEGIIITE.J 
Fig. ‘7. Flow of information in the reference neuron scheme. The primary system of neurons includes all those 
neurons which fire in response to an external input. Some of these are primaly neurons proper, i.e. become sen- 
sitized when they fire and in such a way that they can be loaded and later called by neurons of the reference 
system. Neurons of the primary system (not necessarily primary neurons proptzr) may also load and subsequently 
call reference neurons, allowing for accessing of a complete memory in response to only some of the features of 
the original input. All “loading” and “calling” inputs are represented by dotted lines. The scheme requires J sys;- 
tern of supervisory neurons to control the accessing of the reference neurons. For example, suppose that tbe 
supervisory system inhibits primary to reference inputs. Then reference neurons will activate one another in 
sequence, with resulting time ordered acquisition or recall. A second possibility is that the level of inhibition is 
decreased and control is given to the most highly excited reference neuron. This results in the content ordered 
structure. The third possibility is that more than one reference neuron is allowed to fire but some of the lower 
level neurons which mediate the connections between these reference neurons and primaries are suppressed. En 
this case it is possible to rememorize the resulting pattern of primary excitation under the control of still another 
reference neuron, thereby producing an associative structure. Rememorization provides the fundamental and 
general mechanism of memory manipulation in the reference neuron scheme. 

4.3. Interfaced model and interpretation brain 
structures 

The selection circuit model, with its enzy- 
matic networks, accounts for the ability of 
the brain to compute the class of functions 
computable by finite automata, and to com- 
pute them with high efficiency. The reference 
neuron scheme adds to this the capability of 
rapid memory acquisition, manipulation, and 
retrieval. Moreover, the memories may be 
“scenic” memories, with the complexity lim- 
ited only by the number af primaries reach- 
able by reference neurons and by the pattern 
recognition abilities of the system. 

The interfaced model is schematized in Fig. 
8a. The topology of the dia 

found in the cerebral cortex (cf. Fig. 8 
where macroneurons of the inner five layers 
send apical dendrites into the outer, horizon- 
tal layer. The input itself comes pri 
from the more interior regions of th 
and the output is channeled into the 
matter, or inner layer of axons. The macro- 
neurons themselves c * t of a number of 
complexly interconnec types, perhaps the 
most prominant of which, from the stand- 
point of their apical dendrites, are the-py 
midals. Thus it is reasonable to suppose that 
these correspond to primaries. The cortex also 
consists of numerous mi~ro~eu~o~s. Since 
these have short axons and short dendrites, 



(4 

P - prinury ncumn - W@n 

R - rafecnncc neuron 2-----_ dendrite 

L-party line neumn @ 
microneuron 

I 

II - VI 

1 

2 

3 

b) 

outer, herlrontal 1aJer 

fnner laiierr 

small pyramfda1 ccl? with epics1 dendrites 

mfcroneumn 

b'ga pyramidal cell with apical dendrftel 

Fig. 8. Party line principle and histology of the cerebral cortex. (a) is the same as the simple network of Fig. 6, 
except for the addition of a party line (for economizing reference to primary contacts) and also some small, 
modulating neurons. The amount of neural tissue is minimized if the party line runs up and then horizontally 
along the top layer, thereby allowing easy access to upreaching dendrites of the primaries. The resulting organiza- 
tion provides an interpretation of the structure of the cerebral cortex. This is indicated in (b), which is a compo- 
site of rat and mouse Golgi preparations. The outer, horizontal layer corresponds to layer I of the cortex and the 
primaries correspond to pyramidals and other large cells of the inner five layers (not all of which are represented 
in (a)). The key point is that the (apical) dendrites of these large cells in fact extend into the horizontal layer. The 
cortex is also interspersed with microneurons (also schematically indicated in (a)), whose processes are too short 
to contact reference neurons and which therefore could not be the basis of memory in the reference neuron 
scheme. However, their iarge numbers (in humans), small size, and modulating role make them excellent candi- 
dates for excitase based neurons of the selection circuit system. The selection circuit centers (evaluation system, 
growth control), the supervisory system, and probably the reference neurons are presumably located iu more 
ancient regions of the brain (as learning and memory predate the great expansion of the cortex). Notice that the 
use of p&y lines allows a single primary dendrite to be contacted by more than one refs,*ence neuron, so that 
neural codes’ must be used to distinguish the calls from these different reference neurons. This is why it is neces- 
sary to identify dendritic alterations with con rmation changes of individual receptors. (Fig. 8(b) relabeled from 
Chang, 1951, by pen&sion; cf. also Eccles, 1953. for more detailed identification of structures.) 

1967a), and also because of a likely ontoge- 
netic relation of ghal cells to cells of the im- 
mune system, it is reasonable to suppose that 

the actual site of transformation and 
that the transferred RNA is excitase RNA. 
The growth control, which regulates the pro- 
duction for ex of, excitase nucleic acid, 
and also the ut evaluator would be 
expected to be located in phyla 
more ancient regions of the brain. 

Notice that it is the apical dendrites which 
serve as the “tape”, i.e. as the locus of the 
conformational changes which form the phys- 
ical basis of the memory trace. The remainder 
of the system, including the neurons to which 
these apical dendrites belong, correspond to 
the Turing automaton. 

s~rnil~ i~~er~~~tatio~ 
~~~~~~1~1~~) but with 
structure is now the 
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Purkinje ceil circuit (cf. Llinas and Hillman, 
1969). The branching of numerous granule 
cells gives a “T”-structured (parallel fiber) 
output into which the dendrites of large Pur- 
kinje cells extend. The Purkinjes, which give 
rise to the anly output, receive input (basi- 
cally one-to-one) from climbing fibers and 
also external input {through the granule cells 
and therefore parallel fibers) from offshoots 
of an inner layer of horizontally running 
mossy fibers. These are thus the natural can- 
didates for primaries, while granule cells, 
because of their large numbers and parallel 
fiber output are the natural candidates for the 
reference neurons. Actually the outpAts ram- 
ify only about two mm, implying that stor- 
able and retrievable primary patterns would 
have to be fairly localized. Higher in the phy- 
logenetic scale the basic circuit is complicated 
by the addition of new types of interneurons, 
including Golgi cells (in the granular layer) 
and also outer stellate and basket cells. Like 
the Purkinjes, the Golgi ceils extend dendrites 
into the parallel fibers. Given their wide input 
and inhibitory influence on the granule cells, 
they are reasonable candidates for super- 
visory neurons (for the relation between inhi- 
bition and supervision see Fig. 7). Any neuron 
of the cerebellum is potentially excitase con- 
trolled, including primaries. However, s&hate 
and basket interneurons, with their relatively 
short processes and inhibitory, modulating 
input on the Purkinjes are especially likely 
candidates for such control. The high homo- 
geneity (and therefore the potential high 
redundancy) of the cerebellum is compatible 
with ati indeed a precondition for the selec- 
tion circuit scheme. This potential redun- 
dancy is actually increased by the relative 
localization (in comparison to the cerebral 

above 

ments of th=r. theory and structures of the 
cerebral torte:’ and cerebellum should be 
regarded as tentative and subject to experi- 
mental test. It is important that not all orga- 
nismi or all parts of the brain which support 
learning and memory necessarily support both 
a reference neuron and selection circuit 
mechanism. Clearly :;he two mechanisms can 
operate independently and in some cases over- 
lap in function. In general, the selection cir- 
cuit mechanism is better for learning pro- 
cesses which require fine adjustment of motor 
control or sensory perception, The refererice 
neuron mechanism is better for rapid associa- 
tion of appropriate responses with appropriate 
stimuli (e.g. classical ‘trial and error and instru- 
mental learning), or any type of learning or 
problem solving which depends gn time:order- 
ed, content-ordered., or associative dPk strut- 
tures (cf. Fig, 9). The cerebral cortex, with its 
pattern recognition, associative, and motor 
control functions would be expected to com- 
bine both types of learning, with the refer- 
ence neuron mechanism subserving the fortna- 
tion and manipulations of associations, 

associations between very different 
sense modalities, and the selection circuit 
mechanism adjusting firing patterns induced 
by the environment or concomitant to motor 
actions. Pm the case of the cerebellum the 
main function is apparently modulation of 
motor f;lnction (cf. Precht, 1974). The expec- 
tation therefore is that the selection circuit 
mechanism is especially important for fine 
tuning firing patterns and that the reference 
neuron mechanism low5 for an extremely 
short term memory and 
calculation (cf. Conrad, 1 
which the central nervo 
simple could not be exp 
mechanisms. Thus a car distinction must 
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Fig. 9. Interfaced model. The diagram illustrates the 
flow of information in the combined scheme. The 
reference neuron mechanism (left) is responsible for 
storage and retrieval of manipulable memories, theee- 
fore for rapidiy acquired memory, storage and 
retrieval of reference ‘memories for’reafference, asso- 
ciative processes such as classical conditioning and 
instrumental learning, formation of more general data 
structures (i.e. time-ordered, content3-orclered, and 
associative structures) and imaginative processes 
involving restructuring of memory through rememo- 
rizai:x. The selection circuit mechanism (right) is 
responsible for learning through gradual transforma- 
tion of function in individual, enzymatirc neurons or 
networks~of such neuromr, therefore for perceptual 
(or pattern recogn%ion) and motor control (or pat- 
tern generation) learning and &ore generally for 
learning of information processes in which the high 
efficiency of enzymatic nets is critictt. If the prim 
enzymatic neurons interact (or, in w;;f7e cases, 
identical) it is possible to gradually modify the fning 
patterns under the control of a given reference neti- 

out disturbing the previouaiy developed 
uion data structure. The two schemes are 

thus cocmplementary, although potentially indepen- 
dent anti to some extent capable of overlapping func- 
tion. 

5. ictiws of the theory 

The selection circuit and reference neuron 
schemes make a number of predictions. In 
what follows we describe the most important 
or testable of these. 

5.1. Chemical tnacl molecular predictions 

Excitase nucleic acrd can be used to transfer 
learned behavior from o ism to organism, 

but with t6vo provisions: 1) the learning must 
be modification-based and not memory-based; 
2) the tissue between which the transfers take 
place .must be essentially interchangeable. The 
second condition is consistent with the fact 
that, interorganism transf~ers are in general 
only weakly effective or of disputed effec- 
tiveness (since, such interchangeability would 
be the exception). It is also consistent with 
the fact that intraorganisn~ transfers (from 
hemisphere’ to hemisphere) seem to be much 
more effective (Albert, 19G6; cf. Quarton, 
1970). The effectiveness of transfers should 
also increase with le of training period, 
since this allows for a 1 and more adapted 
papulation of excitases. is also seems to be 
the case (McConnell et al., 1970). Condiitions 
(1) and (2) are extremely restirictive and may 
therefore account for some of ihe discrepancy 
of result and discrepancy of i!onclusion sur- 
rounding transfer studies. 

Since the selection circuits rAust ultimately 
stimulate or inhibit the prod tion of excitase 
nucleic acid, their action mu e mediated by 
enzymes whose activity or concenltration 
changes during the learning process. As 
already mentioned, this is consistent with ob- 
servations on specific changes in nuclear pro- 
tein accompa,nying learning ( en, 1967b). 

&hibition of nucleic acid protein syn- 
thesis would certainly be expected to inter- 
fere with or “block modification-based learn- 
ing. Such inhibitors will also affect m,emory- 
based learning because they prevent the syn- 
thesis of loadable receptor molecules. The 
main predictions are: 1) inhibitors will have a 
marked effect on assimilation into long term 
memory since receptor mdlecules in dendrites 
contacting long term reference neurons are 
periodica!Iy reloaded and therefore in short 
supply; 2) they will have no marked or irn- 
mediate effect on assimilation into short term 
memo because previously la 
molec s will ‘continually bee 
for reuse. The p 
key result of th 
viz. that protein and nucleic acid inhibitors 
affect assimilation into long but not into 
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short term memory (cf. Barondles, 1970; 
Agronoff, 1973). 

long as they are isolated from the weighting 
coefficients. 

5.2. Anatomical and deveiopmercfal predic- 
tions 

The selection circuit scheme requires 
redundancy and therefore implies a distrib- 
uted character for modification-based leam- 
ing. The reference neuron scheme, when inter- 
faced, must also be redundant, from which it 
follows that memory and memory-based 
learning also have a distributed1 property. 
However, individual memories should also be 
accessible by stimulating specific: brain loci, 
viz. reference neurons, suitable F,rimaries, or 
supervisory neurons. Thus the model is con- 
sistent with the dual distributed 2nd localized 
character of the memory trace i cf. Lashley, 
1929; Penfield and Perot, 1963). 

The selection circuit scheme requires inter- 
hangeability of mutually transformable tis- 

sue and therefore at least statistical homoge- 
neity in the structure of such tia’ue. Thus the 
theory predicts that the brain is not plastic as 
regards any anatomical propczties which 
affect the weighting coefficients, at least in 
parts of the brain which operate on the basis 
of the selection circuits. Aside ,Frorn this ho- 
mogeneity requirement, however, the details 
of structure are entirely arbitr.m; for once 
there is enough connectivity, any function 
can be implemented by int:*oducing the 
appropriate excitases. 

Since the accumulation of modification- 
based learning requires the accumulation of 
excitases and exeitase nucleic a’zid, the leam- 
ing process must be accompanied by increas- 
ing metabolic support. Since 
are the presumed site af 

would assume 

plastic ~b~ges in the 

The reference neuron scheme also requires 
no particular details of connectivity, other 
than numerous reference to primary and pri- 
mary to reference neuron contacts. The 
scheme is not affected by plastic changes at 
the synapse, e.g. in response to increased 
demands for firing, the only restriction being 
that such plastic changes do not affect the 
weighting coefficients of excitase based neur- 
rons. 

The general conclusion is thus that plastic 
changes in the brain are allowable so long as 
they are isolated from the weighting coeffi- 
cients, but not otherwise. This is important, 
for it may account for the very diverse reports 
on plasticity versus specificity in the brain. 

The theory makes general anatomical pre- 
dictions in the sense that it requires the exis- 
tence of selectipn circuits (including evaiua- 
tion and growth control centers and connec ’ 

tions between the growth control and local, 
excitase governed networks) and also the exis- 
tence of reference neuron circuits (including 
reference and primary neurons, with a defi- 
nite, preferred topology for ref to pri- 
mary contacts). Possible specif omical 
correlates of the theory have already been 
described in terms of functional intcrpreta- 
tions for the structure of the cerebral cortex 
and cerebellum. The identification of the 
horizontal layer of cells in the cerebral cortex 
with party lines suggest that lesions cutting 
across this layer would have effects on Ihe 
integrity of memory and the ability to assimi- 
late msmories integrating ifferent sense ILO- 

dalities (assuming the number of 
sufficient to override redundancy in 
ence to primary contacts). The predic 
effects of undercutting are describ 

e 
capable of re 



ing to specific patterns of input and therefore 
are potentiiy multithreshokl elements. Ac- 
cording to the reference neuron scheme, the 
dendrites of neurons which function as pri- 
ma&s are senGtizabl& and ,mcdifiable. Unfor- 
tunately, I, however, it sq&n~ .difficult to test 
these features of the- model directly, in part 
because of the difficulty of defining the input 
to neurons in the brain-and in part because of 
the difficulty of recordingfrom the microneu- 
Tons. 

The anatomical redundancy and arbltra- 
riness of the details of connectivity in both 
schemes imply that the rate of both modifica- 
tio.n-. and memory-based learning should 
decrease with cortical ablation. This is con- 
sistent with the so-called mass action laws of 
LashEtey (192%). However, lesions to either the 
selec%ion circuits themselves (i.e. the growth 
control or evaluation ~system) or to the super- 
visory s$tem in the reference neuron scheme 
should have radical effects on the learning 
process. 

The theory gives a fairly simple account 
(on the basis of the reference neuron scheme) 
of classical conditioning and instrumental 
learning. For example, suppose that primaries 
firing in response to ringing are loaded by 
some reference neuron. Soon thereafter pri- 
maries firing in response to food (and there- 
*fore Innately associated with, salivation) are 
loaded by a second reference neuron. If the 
food is important to the organism, the super- 
visory system causes the second reference 
neuron to be loaded by the’primaries called 
by the first, thereby, establishing an associa- 
tive structure. -Instrumental (or classical trial 
and error) learning is explainable in the same 
way, except that the response is glot innate. 
This mechanism allows for one exposure 
learning, the correct direction of association, 

s (since the number of new 
9 with .each repetition), 

extinction (since sensitized reference neurons 
are not reloaded by primaries which they do 
not call), ’ interference (since multiple 
bindings ,m the decision maki 
more difficult for the supervisory 

also accounts for the importance of motiva- 
tion since the probability of forming an asso- 
ciation depends on the number!of suplervisory 
neurons activated by the supervisory system 
and also on the decision to reactivate the or&- 
nal reference neuron. These are all fundamen- 
tal ~properties of classical conditioning and 
instrumental learning (cf. Miller, 1967). 

The mechanism described above implies 
that undercutting the region associated with 
the conditioned stimulus (e.g. ringing) should 
prevent binding to the response (e.g. saliva- 
tion), but that such binding would not be 
affected by vertical cuts. The reason is that 
primaries associated with ringing must load 
the reference neuron associated with saliva- 
tion, which Wolves a vertical connection and 
no significant horizontal contacts are required 
in this case. This prediction agrees with exper- 
iment (cf. Campbell, 1965). Also, notice that 
the ease with which the stimulus is lbouncl to 
the response depends on the number of pri- 
maries in the stimulus region which contact 
reference neurons which themselves contact 
primaries in the response region. The meeha- 
nism is thuo consistent with and suggests an 
explanation for constraints on learning which 
apparently play an important role in some 
organisms. 

Any memory scheme should be compatible 
with the well known principle of reafferance 
(that changes arising from the organism’s own 
movements are subtracted from changes in 
the environment or, in some cases, from anti- 
tip anges in the environment, cf. Van 
Ho Mittelsttit, 1950; MacKay, 1962). 
This is clearly the case with the reference 
neuron scheme, since this provides a simple 
(perhaps the simplest) mechanism for a&ess- 
ing a reference scene either for comparison to 
current input or for computation prior to 
such comparison. However, the computations 

ence neuron 

inhibition or excitation of ~~rn~,~ neurons 
resulting from the superposition of the refer- 
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ence pattern of excitation with the environ- 
mentally induced pattern and also the way in 
which these patterns are coded info the hotor 
outputs. 

Perhaps the most important psychological 
feature of the theory is the distinction 
between modification- and memory-based 
learning. Situations involving one of these 
types of learning will lead to very different 
experimental conclusions than those involving 
the other, and at all levels of analysis, ranging 
from the chemical to the behavioral. Classical 
conditioning and instrumental learning, as 
well as their generalizations, belong to the 
memory-based category. However, the same 
effect could in many cases be achieved by 
modification-based learning, except that it 
would be very unlikely for this to arise in one 
exposure. Modification-based learning is bet- 
ter for motor control and perceptual learning, 
as previously discussed. The two types of 
learning may operate by themselves, but they 
may also contribute to a single learning pro- 
cess. For example, an association may be 
learned rapidly by the memory-based mecha- 
nism, but then the pattern recognition or 
motor control elements of this association 
may be gradually perfected by the modifica- 
tion-based mechanism. The two systems are 
thus complementary (cf. Fig. 9). 

6. Conclusions 

The problem of brain is particularly ame- 
nable, indeed perhaps only amenable, to the 
constructive method of analysis. This meth- 
od depends first on the characterization of 
function and then on the economical design 
of systems which perform this function. In 
the present case we characterized function in 
terms of the Turing scheme, i.e. a finite 
automatic an 
lates. The selection circ 

ron scheme adds to this the memory space 
capability, thereby giving the interfaced 
model the capabilities of a bona fide (molecu- 
lar) computer. 

Actually, we have something more than an 
ordinary computer, for an 
does not have the gradual 
erty; nor are conventional neural networks of 
reasonable size sufficiently powerful to 
handle the global memory structures which 
are so easy to assimilate and retrieve in the 
reference neuron scheme. 

The question may arise as to the criteria for 
an “economi33l” construction. Clearly the 
construction must be highly amenable to phy- 
logenetic evolution, i.e. likely to &rise and 
predominate in the course of Darwinian com- 
petition. In the case of the brain this means 
that th.e constructions should not involve im- 
probable patterns of connectivity, unreason- 
able metabolic requirement, or biological pro- 
cesses which are not already used or derivable 
by gradual modification from other processes 
which the organism already uses. The selec- 
tion circuit scheme fulfills the 
for the connectivity is arbitrary 
arbitrary are only the enzymes which exploit 
this connectivity. Similarly, the connectivity 
of the reference neuron scheme is arbitrary 
within certain broad constraints. Neither 
scheme makes unreasonable metabolic 
demands and both of them operate on the 
basis of ubiquitous molecular principles, viz. 
specificity (in the case of the excitases of the 
selection circuit scheme) and conformation 
change (in the case of the receptors of the 
reference neuron scheme). The se1 ion cir- 
cuit sehemc also involves elements a regu- 
lative theory (e.g. enzyme induction or other 
control over enzyme activity) to me 
action of the selection circuits on th 

dels on a neu 
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from thermodynamic equilibrium and that 
ihe nerve impulse is essentially a manifesta- 
tion of triggered return to equilibrium (cf. 
Hodgkin, 1964). In the selection circuit 
model I ‘we: :‘re@r& the excitase as being 
involved in the triggering @ocess, I which 
therefore alloGs the ,trigger to be- modifiable. 
In the reference neuron scheme the trigger 
depends on the dendrite-bound receptor mo- 
lecule, so that it is controllable. Such control- 
lability and- modifiability does not contradict 
the classical picture of impulse propagation 
and-neurotransmission derived from studies of 
the peripheral nervous system, nor are they 
contradicted by their nonoccurrence in the 
peripheral nervous system (for their informa- 
tion processing function depends entirely on 
larger systems of ~circuitry in the brain). The 
neuron concept developed here is thus in 
some sense a generalization of the classical 
concept.* The ultimate justification for this 
generalization derives from the experimental 
accuracy of its consequences, which so far 
have excellent agreement with the knop?l 
facts. The same cannot be said for the nar- 
rower concept. To date this has been incapa- 
ble of accounting for the main fact, via. the 
ability of the brain to learn and remember. 
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