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The quadratic variation of functionals of the two-parameter Wiener process 
of the form f (W(s, t)) is investigated, where W(s, t) is the standard two- 
parameter Wiener process and f is a function on the reals. The existence of the 
quadratic variation is obtained under the condition that f’ is locally absolutely 
continuous and f” is locally square integrable. 

1. INTRODUCTION 

Let [W(s, t): (s, t) E R+7, R+2 = [0, co) x [0, co), be the standard two- 
parameter Wiener process defined on a complete probability space (Q, F, P), 
i.e., a Gaussian stochastic process with EW(s, t) = 0 and EW(s, t) W(s’, t’) = 
Min(s, s’) Min(t, t’). We shall also assume, as we may do without restricting the 
generality, that W(s, t; UJ) is sample path continuous, i.e., for each w, W(.; U) is a 
continuous function on R+“. Let F,$ , (s, t) E R+2, be the u-field generated by 
the random variables [W(U, 0): 0 < u ,< s, 0 < z, < t] and augmented by the 
P-null sets in F. 

In order to define the quadratic variation of a two-parameter process we need a 
notation for rectangles and also the notion of the increment of a process over a 
rectangle. Suppose (s, t) and (s’, t’) are in R+2. Ifs < s’ and t < C, ((s, t), (s’, t’)] 
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TWO-PARAMETER WIENER PROCESS 631 

will denote the rectangle (s, s’] x (t, t’]. S imilarly one can define [(s, t), (s’, t’)] 
and KS, t), (s’, f)) in an obvious manner. Now given A = ((s, t), (s’, r’)] as above, 
the increment of a two-parameter process Y(s, t), (s, t) E R+s, over A is 

Y(A) = Y(s’, t’) - Y(s, t’) - Y(s’, t) + Y(s, t). (1) 

DEFINITION 1. Let J7 = [(St , t,); i = 1,2 ,..., m, j = 1, 2 ,..., n] be a partition 
of the rectangle T = [(a, b), (c, d)] with (a, b) = (si , ti) and (c, d) = (s, , tn) 
and si , tj increasing. Let Dii = ((si , tj), (Si+i , ti+r)] and 

m-1 n-1 

Q”K n) = c c Y2(W 
i--l j-1 

Then Q2(Y, n) is called the quadratic variation of Y over II. 
Throughout this paper we shall use the following without further explanations: 

(i) T will always indicate the rectangle [(a, b), (c, d)] with a > 0, b > 0. 

(ii) Let [urna: m = 1, 2,...; n = 1,2,...] be a double sequence of real 
numbers. Then lim(m,n)ym amp, = ii means that given E > 0, there exists 
M > 0 such that 1 umn - ii 1 < E whenever m, n 3 M. An obvious modification 
should be made when umn’s are not real numbers. 

(iii) Let [D,,: m = 1,2,...; rz = 1, 2,...] be a double sequence of partitions 
of T with 

II,, = [(sp, tin]: i = I, 2 ,..., K(m); j = 1, 2 ,..., v(n)]. 

We shall always assume that /I II,,,, (1 = Max&(s& - sim), (tj”+i - tj*)] ---f 0 as 
(m, n) + co. ‘Furthermore we shall drop the superindices m, n and we shall 
identify K(m), I by m, n, respectively, when no danger of confusion arises. 

DEFINITION 2. The quadratic variation of Y over T, Qr2( Y), is the limit of 
Q2( Y, I&&), in some sense, as (m, n) + 00 if it exists. 

The purpose of this paper is to study the quadratic variation of the two- 
parameter Wiener functionals of the form Y(s, t) = f( W(s, t)), where f is a 
function on the reals. In [l], Cairoli and Walsh obtained a two-parameter 
version of the Ito formula for C4 functions. It is easy to see that one can drive the 
quadratic variation of f(W(s, t)), for f~ C4, from their formula. Our result, 
Theorem 3, says that if f’ is locally absolutely continuous and if f” is locally 
square integrable then 

Qr”(fP’)> = ss, Kf’)2P’(u, 4) + W”WW +I du dv 

in probability. 

6831614-I I 
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In our way of searching for Qra(f(IV)), we shall encounter several types of 
summations (see formulas (3)-(6)); th e are worth studying by themselves. Our y 
results concerning the limit behavior of these summations are proved in Section 2 
and summarized in Theorems 1 and 2. r 

Lemmas 1 and 3 are generalization of results given in Wong and Zakai [6]. 
For the informations used in this paper concerning the sample path properties 
of the multiparamater Wiener process we refer the reader to Orey and Pruitt [3] 
and Zimmerman [7]. Finally we may advise the readers to consult Wang [5] for 
the most recent results on quadratic variation of functionals of one-parameter 
Wiener processes. 

2. SOME PRELIMINARY RESULTS 

Let Y be adapted to FSt . Define 

i=l j-1 

m-1 n-1 

Tl-1 n-1 

(3) 

(5) 

(6) 

where DC, = ((Q t tj>, (St+1 , tj+l)l, ffij = ((0, tJ9 (Q , t&l, & = ((Q , Oh 
(~i+r, t,)] and ] D,, 1, 1 Hii I, ] Kij 1 denote the area of the corresponding rectangles. 

LEMMA 1. Let EY2(s, t) < M, f or all (s, t) E T where M is a constant. Then 

@$a -w(y, Km> - WY, KwJ12 = 0. (7) 

Proof. By (3) and (5), 

WV, Knn) - NY, Grbn)12 
m-1 n-1 

= E C C Y2(si p tj) [W(Dii)” - 1 Dij I]” (8) 
i=l j-1 

+ EC C C C Y(Si r tj) Y(s 9 9 te) [VDij>” - I Dij II W’(DmJ2 - I Dw II 
(W#(D.d 
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Clearly, for (i, j) # (pi, q) 

EY(s, , tj) Y(s, , WW,,)” - I D, IlCW%,Y - I Q, II = 0, 

and 

EY2(s, , t~)[W(D~j)” - 1 Dii 11’ < ME[W(D,i)2 - j Dii 11” 

= m I Dij I2 < 244II17,m II I D,j I* 

Hence the left-hand side of (8) ’ IS d ominated by 2M 1 T 1 /I 17,, 11 which concludes 
the proof. 

LEMMA 2. Let the process y be uniformly integrable on T. Then 

(9) 

Proof, Let 

yi&, t) = Y(s, t) if 1 Y(s, t)] < N and = 0 otherwise, 

where N Cs a cohstant to he determined latet. Let YN(s, t) = Y(s, t) - YN(s, t). 
Now by uniform integrability qf Y, we can choose N big enough such that 

m-1n-1 

E I B(YN, Znn) - R(YN ~,wJl G 1 C E I YN(si, tj)I ElY(Dij)2 + I Dii II i=l j=l 

< 2 I T I (syT E I Y”(s, t)l -=c i+. s. 

For this fixed N pick 8 < c/4N2 I T 1, then by Lemma 1, II 17,, II < 6 implies 
that 

and we are through. 

LEMMA 3. Let the process Y be continuous in L@, P) for all (s, t) E T, i.e., 

t,,,jjrc, iI E I Y(s’, t’) - W, t)l = 0 whenever (s, t) E T. 

Then 

$,T,, E I W’, %m> - ,J; W, 4 du dv I = 0. 
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Proof. Define Y,&, t) = Y(si , tj) for (s, t) E Dij . Then 

E 1 R(Y, nm) - j,, y(f4 w> du dv 1 d j jT E I Ym,(u, v) - Y(u, w)I du de, --f o 

as (m, n) -+ co. For Y(s, t) is&(L), P)-continuous and T is compact. 

LEMMA 4. Let f e&(R), then the process [f (W(s, t)), (s, t) E T] is uniformly 
integrable and is continuous in L,(O, P). 

Proof. Since f E L,(R) the uniform integrability follows easily by observing 
that 

as IV-+ a~ For f E Cam the continuity off ( W(s, t)) in L&Z?, P) follows immediately 
by applying the bounded convergence theorem. For the general case, f ELI(R), 
there exist a sequence of functions, [f,,]zn=l , in Corn such that f,, converges to f 
in L,(R). Hence 

E If(W’, t’)) -f(W, t))l GE If(Ws’, t’)) -fn(Ws’> f>)l 

+ E If4 W(s’; t’)) - fn( W(s, t))l 

+ E I fn(W, t)) - f (Ws, t))l 

G E I fnW(s’, t’)) - fn(Ws, t))l 

+ 2(2nW1’2 llfn - f llL,(R) . (10) 

Now given E > 0, there exists an 71 such that 2(2vab)-l12 11 fn -f I/ < 4~. But 
fn E Corn, therefore when (s’, t’) is sufficiently close to (s, t) the right hand side 

of (10) is smaller than E. Q.E.D. 

Since we are mainly interested in the processes of the form [f(W(s, t)), 
(s, t) E T], we summarize our results and state it in the following theorem. 

THEOREM 1. Let f ELI(R). Then 

(,,,!~$m E 1 Nf ( W), Knn) - j jr f VW, 4) du dv [ = 0 (11) 

(ml,& E 1 B(f (W nm,) - j jTf (Ww 4) du de, 1 = 0. (12) 

Furthermore, we have convergence in probability in both (1 I) and (12) i f f  E LyC(R). 
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Proof. Only the last statement needs justification. Now since 

P[l qs, 91 z N f or some (s, t) E T] < P[ sup 1 W(s, t)] > N] 
o<s<a O<Kd 

(13) 
< 16 P[I W(c, d)( > N] + 0 

as N -+ co where the last inequality can be found in either [3, or 71. This 
enables us to restrict our attention to a compact set and use the result for 
f E L,(R) to conclude the proof. 

THEOREM 2. Let f E L,(R), then 

Furthermore, wk hwe convergence in probabiZity in both (14) and (15) iff E L?(R). 

Proof. Since f~ L,(R), by Lemma 4. f(W(s, t)) is continuous in L&2, P) 
and this enables us to adopt the argument given in Lemma 3 to show that (14) 
holds true. To show (15), first, we assume f~ Cm and then at the end we shall 
indicate how one could remove this assumption. 

m-1 n-1 
= z zl ELf’(W(Sd 3 5)) IWHi,)’ w(&,)2 - stt5 I Di, I]“] (16) 

+ CCC C EV(W(st 7 tj)> ftWts 9 7 ta)) W(Jfi5)2 We - s&5 I Dtj II 
W)+hm) 

x wvba)2 wL42 - %A ,I ha Ill 

q = I + II. 
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Since f~ C’,,-, there exists a constant M such that 1 f(x)1 < M for all x E R. 
Also note that 1 Hij / 1 Kij 1 = sitj 1 D, /. Thus we have 

m-1 n-1 

as (nz, n) + co. Here C is a constant which does not depend on m and n. From 
now on we shall use such a C to represent a “universal constant” in the sense that 
it does not depend on m and n but it may vary from place to place. 

To prove that I1 also goes to zero, it suffices to discuss the summation in II in 
the following three cases: (i) p > i and q > j, (ii) p > i and q = j, and (iii) 
p > i and q < j. For other cases follow ‘by symmetry. 

Case (i). This portion of II is zero because [W(Hw)2W(K,,)2 - s& 1 D, I] 
is independent of all other factors within the big bracket and it has mean zero. 

Case (ii). In this case a fairly straightforward computation yields that 

Hence 

15’5’ E1 E[..*] j < Cl~H,,II-0, as (m, n)-+ co. 
i=l j=l z-i+1 

Case (iii). In this case we also let the reader to verify that: 

Now since 1 Ki, / 1 Hi, I = sit, j Dig 1 < cd I D, 1 and 
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Thus, 

Taking the corresponding sum of I’, we get 

m-1 n-1n-1 3-l m-1 n-1 m-1 n-1 

2 2 ;i ,cl 
I’ < 4MWY2 II Km II c c c c I Hi, I I K,, I I Dig I 

id I=1 p=1 q=1 

< c II zn, II -+ 0, as (m, n) -+ co. 

By a similar argument the relevant sum of II’ also tends to zero as (m, n) -+ 00. 

Now let us use A and 8 for the rectangles ((0, 0), (si , te)] and ((Q+~, 0), (sp , tJ], 
respectively. Sincefis uniformly continuous (f~ Corn), given e > 0 one can find 

6(e) such that ] f(x) - f(y)1 < E whenever I x - y  1 < 8(e). Then 

I WW(si > G)f(Wp 7 4WVi~)2 - I Hi, IKWKia)2 - I &, I)11 
= I -?Tf(W% P tj)Xf(w(d u @I + w(Ki3) -ftWtd u @))I 

x P’(K,)2 - I Hi, lPWd2 - I& 011 
= I E[..*; I JWi,)I < 61 + EC*.*; I ~&)I 2 811 
G ~JfW WV&J2 - I Hi, I I) E(I WKiJ2 - I Kc, I I) 

+ 2M2E(I WHd2 - I Hi, I I) ELI JWd2 - I Kc, I I; I WJi=ip)l 3 61 
< 4cM I Hi, I 1 Ki, I + 4M2 I Hi, l[E[W(KiJ2; I W(&q)l 2 s] 

+ I Ki, I RI W&d 2 811 
< 46~1 I Hiq I I &g I + 4(3”“) M2[ Htq I I &q I J’l”[l J+‘(Kiq)I 3 a] 

+ 4M21 Hi, I I f&g I J’[I JJ’(&)I 3 81 
< 4~Ml Hi, I I Ki, I + 12M21 Hi, I I Kig I p1’2[l ~&)I >, 61, (17) 

where W((d u 0) = dee W(4) + W(0). s ince W(Ki,J2 - ] KiQ ) is independent 

of f(W(s, , t,))f(W(d U O))(W(Hi,J2 - I Hi, I) with mean zero, the first 
equality holds and the upper estimate for E[ W(Ki,J2; ) W(K,,J 3 S] is obtained 
by using Schwarz inequality. Now it is clear that the very right hand side of (17) 
can be made smaller than CE j Hi, I 1 Kip j f  or sufficiently large WI and n. There- 

fore, 

m-1 n-lrn-1 j-1 m-1 A-lrn-1 n-1 

,r; z1 :i igl 
III’ G Ce 1 C C C I Hii I I Kg, I I Hi, I I J&q I 

i=l j-1 p=1 9-l 

< C-E. 
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Thus we can conclude that 1 C(j( W), I7,,J - S(f(W), II,,,,)] converges to zero 
in L,(Q, I’), hence in L,(Q, P), for f E Cow. For the general case, f  E&(R), we 
know that there exist [fn: 11 = 1, 2,...] in Coa with 11 fn -f jir,(R) + 0 as n -+ GO. 
Then it is easy to see that given E > 0, one can find an N such that 

and 

@I C(fhw)> am) - C(fW), 4nnN < 69 

m S(fNW), Km) - S(fv7, an41 < f7 
where N does not depend on m and n. This is sufficient to carry out the proof. 
Finally to get the convergence in probability for f  EL?(R), one can follow the 
proof given in Theorem 1. 

3. MAIN RESULT 

Before stating our main result in the following theorem we need the notion of 
the maximal function. We shall only give the definition here and we refer the 
reader to Stein [4] for the properties of this function which will be used in this 
work. 

DEFINITION 3. Let f  be a real valued function on R. Then 

is called the maximal function off. 

THEOREM 3. Let f be a real valued function on the reals such that f’ exists and 
is locally absolutely continuous and let f n E L,(R). Then 

- 11 T [(f’)’ (JQ, 4) + ova (Wu, $>I du &J I = 0. (18) 

Furthermore, we have convergence in probability i f f  ” E L?(R). 

Proof. We claim that 
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where (fw)(Dj,) is deli ne m d * f ormula (1). Once we prove this, then 

E ) QrYW), LJ - ,J; W2 V’h w)> + ~4f”>2 VW, 411 au & j 

-t E 15’ t1 i(f)’ (w(%, 4)) VU2 - /lr (f’12 (w(% WI> dU dW] 1 
i=l 1-l 

+ E / mfl 5’ [(f”)” (W(sj , tf)) W(HiJ2 W(Kii)2 
i=l j-1 

- j-Jr Mf”>2 VW, 4) du d”] j 

= La, + Kn, + Irr,, - 
By Theorem 2, 

($r& III,, = 0. (20) 

Furthermore, since for all x E R 

If’WI = /f’(o) + ~zf”(t) dt 1 Q If’P)l + (I x IF2 IV” 11~s~ . (21) 

Now an easy argument shows that there exist constants MI and &I, such that 
for all (s, t) E T, 

EKf’)2w(s~ 9ll G MI 9 W')*VW, t))l G M2 - (22) 

It follows that (f’)2(W(~, t)), (s, t) E T, is uniformly integrable. Hence by 
Lemmas 1 and 2, 

,,l$IW I& = 0. . --t (23) 

To see how I,, also goes to zero, note that 

=El&nI +El%nI> (say>. 
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By (21) and our assumption that f" EL,(R) and an easy computation, 
E[( f ‘f”)2( W(s, t))], (s, t) E T, is bounded by a constant and we obtain 

[ 

m-1 n-1 
W,n)2 = E 1 1 (f If’? W@i 7 ~1) [W&i) W4,) WG,Y is1 j-1 I 

G c II Km II - 0, as (m, n) ---, co. 

On the other hand the identity a2 - b2 = (a - 6)2 + 26(a - b) gives us 

m-1 n-1 

m-1 n-1 m-1 n-1 

-6 E c c [-.I” + 2 E C C W(.W(si , tj)) W(&) 
is1 j=l j=l j-1 

+ f “( w(si P Q)) w(Hij) w(Kii)12 , ]1'2E[x1 2 [---]211/2 (24) 

where E Cy=yT’ CyIil [...I is the expectation given in (19). Hence, clearly 
E 1 A,, j -+ 0 as (m, n) + co. Consequently I,, goes to zero and (18) holds 
true. 

It remains only to establish (19). Observe that, 

(f W(Qj) = [f (V% 9 4) + w&j) + Y&) + YQj)) 

- f ( w(si 9 tj) + w(Hi?) + w(Kij))] 

+ [f (w(si , tj) + w(Hij) + w(Kij)) 

- f ( w(% 9 tj) + w(Hij)) - f ( Tsi 9 4) + w(Kij)) + f ( w(si t tj))] 

= S&i + tij . (25) 
Now for fixed w E Q using mean value theorem we obtain 

K-i, - f ‘( wi 3 4)) Jvii)l” 
= w(B*j>2[f ‘(w(si 9 tj) + w(Kj) + w(Kij) + etjw(Djj)) - f ‘( w(si P tj)] 

< cw(Dij)2[w(Hij u Kij)2 + w(Dij)2][Mf “]2(w((si 9 tj))7 
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where 1 Bij(w)l < l.‘Hen&z 

< C If” /I;,(R) I T I II Km II - 0, as (m, n)-+ co. (26) 

where the last inequality follows from the fact that \l[Mj]llt~) < CIlfllL2z(s) . 
To handle eii , note that 

< 2E [I W(Hi,)( 1 W(Ki,)I i’W(Hr)’ Jo’Wl”‘i’ [(f”)2 (W(Si , tj) + U f w) 

+ (f”J2 (w(s, I, q>N du 4~1 

+ (f”)2 (iy(s;,, tj))] ‘ifu dw] 

< C Ilf” II~L,(R).E[~(~~~)~ w(KiiJ21 G C I Hij I I & l G C I Di, I- (27) 

By an easy argument, now, we can assume f to be of compact support. Since 
f”(x) exists almost everywhere, by Hobson [2], p. 370, we know 

lim [f(~+r+s)-ff(X+S)-ff(X+y)+f(X)IITS =f”(X> (*,s)-0 
a.e., (28) 

where (r, s) -+ 0 means I r ( + 1 s I + 0. Applying Egorov’s theorem, we have 
uniform convergence in (2$) ‘on a set G with m(Gc) as small as we please. Here 
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m(Gc) is the Lebesgue measure of the complement of the set G with respect to 
the support of the function f. Now given c > 0, we can choose G and 8 such that 

IIfflIGC IlL,(R, < E> (29) 

If@ + y + s) -f(x + $1 -f(x + y) +-f(x) -.f”(X)yS I -=c E i ys I, (30) 

x E G, ) Y 1 + ) s / < 8 and I,, is the indicator function of Gc. Furthermore, 
using Schwarz inequality, we can find y such that j Hij J + ] Ktj ) < y implies 

EIY(Hz~)~~LT.~) (I w(H~)ll < E I Hij I 

and 

m-1 n--l 

+ E[[*.*12; Jf’(si 9 fj) $ Gl + E[[***12; I W(Hij)l + I W(&)I 3 811. (31) 

By the same argument as the one given in (27), the sum corresponding to the 
second term on the right is no greater than, 

m-1 la-1 

by (29). Similarly, the third term on the right is no greater than 

m-1 a-1 

& z1 Cllf"ll e L (R) WWid2 hod V&N w&d2 bo,(i w(~id)1 G CE~> 

when (1 If,,,, I/ < Min(r/(c - a), y/(d - b)), by (31). Now by (30) it is obvious 
that the first term on the right is also bounded by CE. Consequently for suffi- 
ciently large m and II, 

m-1 n--l 

zl zl & -.f”(Wt , 4)) WWi,) JVG~II” d Cc. (32) 

Now (32) and (26) imply the truth of (19) as we claimed. 
For the case f” E L?(R), we refer the reader to the proof of Theorem 1. 
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Remark 1. Theorem 3 does not hold true in that generality, for it is not hard 
to see that Lemma 4 fails. However, one can impose more conditions either on 
the function f or on the partitions l7,,,, in order to achieve the same result. 

Remark 2. A generalizatjon of, Theorem 3 also holds true, by a standard 
limiting argument, for the case when T is a region in the positive plane that could 
be “exhausted” by rectangles. 
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