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Wiener Process

NasroLLAH ETEMADI
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104
AND

Avert T. WanG

Department of Mathem'atics, The University of Tennessee, Knoxville, Tennessee 37916
Communicated by M. M. Rao

The quadratic variation of functionals of the two-parameter Wiener process
of the form f(W(s,t)) is investigated, where W(s,t) is the standard two-
parameter Wiener process and f is a function on the reals. The existence of the
quadratic variation is obtained under the condition that £ is locally absolutely
continuous and f” is locally square integrable.

1. INTRODUCTION

Let [W(s,t):(s,t) e R2], R.2 = [0, ) X [0, o0), be the standard two-
parameter Wiener process defined on a complete probability space (2, F, P),
i.e., a Gaussian stochastic process with EW(s, ) = 0 and EW(s, t) W(s', t') =
Min(s, 5') Min(2, #'). We shall also assume, as we may do without restricting the
generality, that W(s, ¢; w) is sample path continuous, i.e., for each w, W(-; w)isa
continuous function on R.% Let F;, (s, ) € R,2, be the o-field generated by
the random variables [W(u, v): 0 < # < 5, 0 < v < £] and augmented by the
P-null setsin F.

In order to define the quadratic variation of a two-parameter process we need a
notation for rectangles and also the notion of the increment of a process over a
rectangle. Suppose (s, £) and (s', #') are in R 2. If s <s" and 2 < ?', ((s, 2), (', )]
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TWO-PARAMETER WIENER PROCESS 631

will denote the rectangle (s, s’} X (2, ¢']. Similarly one can define [(s, #), (s, )]
and ((s, t), (¢, t')) in an obvious manner. Now given 4 = ({5, 1), (s, ¢')] as above,
the increment of a two-parameter process Y{(s, ), (s, #) € R,2, over 4 is

Y(A) = Y(s', ') — Y(s,¢') — Y(s, 8) + V{5, 2). (1)

DermvitioN 1. LetIT =((s;, t;);¢ = 1, 2,...,m,§ == 1, 2,..., #] be a pattition
of the rectangle T = [(a, b), (¢, d)] with (a, b) = (5;, ;) and (¢, d) = (s, t,)
and s; , ¢; increasing. Let Dy; = ((s;, ¢;), (5:41 , £;11)] and

m~1 n—1

QNY, ) = 3 ¥ Y¥Dy). @
i=1 jo1
Then QXY IT) is called the quadratic variation of ¥ over IT.
Throughout this paper we shall use the following without further explanations:

(i) T will always indicate the rectangle [(a, b), (¢, d)] with @ > 0, b > 0.

(i) Let [apu:m =1,2,..; n =1,2,...] be a double sequence of real
numbers. Then lim, »). @n, = @ means that given e > 0, there exists
M > Osuch that| a,, — d@| < ¢ whenever m, n == M. An obvious modification
should be made when a,,,’s are not real numbers.

(i) Let[M,,:m = 1,2,...;n = 1, 2,...] be a double sequence of partitions
of T with

O =™t = 1,2, k(m); 7 = 1, 2,..., v(n)].

We shall always assume that || IT,,, || = Max, ;{(s7%; — /), (f; — )] — O as
(m, n) — co. Furthermore we shall drop the superindices m, n and we shall
identify x(m), v(n) by m, n, respectively, when no danger of confusion arises.

DeriniTiON 2. The quadratic variation of Y over T, Q;Y), is the limit of
OYY, I1,,,,,), in some sense, as (m, n) — oo if it exists.

The purpose of this paper is to study the quadratic variation of the two-
parameter Wiener functionals of the form Y(s, ) = f(W(s, t)), where f is a
function on the reals. In [1], Cairoli and Walsh obtained a two-parameter
version of the Ito formula for C* functions. It is easy to see that one can drive the
quadratic variation of f(W(s, 1)), for fe C% from their formula. Our result,
Theorem 3, says that if f is locally absolutely continuous and if " is locally
square integrable then

O (W) = [[ W)W (w, 0) + wol s Y(W(w, ) d do
in probability.
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632 ETEMADI AND WANG

. In our way of searching for Q;3(f(W)), we shall encounter several types of
summations (see formulas (3)-(6)); they are worth studying by themselves. Our
results concerning the limit behavior of these summations are proved in Section 2
and summarized in Theorems 1 and 2. .

Lemmas 1 and 3 are generalization of results given in Wong and Zakai [6].
For the informations used in this paper concerning the sample path properties
of the multiparamater Wiener process we refer the reader to Orey and Pruitt [3]
and Zimmerman [7]. Finally we may advise the readers to consult Wang [5] for
the most recent results on quadratic variation of functionals of one-parameter
Wiener processes.

2. SoME PRELIMINARY RESULTS

Let Y be adapted to F,; . Define

m—1 n—1

B(Y, I) = 3, ) Y(si, ts) W(Dy)’, G

f=1 j=1

m—1 n—-1
C(Y, IT,.,) = 3 ), Y(s;, t;) W(Hy)* W(Ky)?, (4)

i=1 j=1

m—1 n—1

R(Y: Hmn) = Z Z Y(si’ ti) I Di:i l (5)

=1 j=1
m—1 n-1

S(Y, ) =Y. Y Y(si, t;) st | Dy |, (6)

i=1 j=1

where Dy = ((si5 ;) (Sira» )], Hy = (0, 8), (50, ta)ls Kis = (54, 0),
(S0 t)]and | Dy, |, | Hy; |, | Ky | denote the area of the corresponding rectangles.

LemMa 1. Let EY?(s, t) << M, for all (s,t) e T where M is a constant. Then

(
Proof. By (3)and (5),

mli}'gw E[B(Y, II,,,) — R(Y, Hmn)]2 =0. @

E[B(Y, Hmn) - R(Yv Hmn)]2

m-1 n-1

=E ) Y Y5, t;) [W(Dy)?:— | Dy 8)

i=1 j=1

FEYYY Y Y(si, 1) Y(s,, 1) [W(Dy)* — | Dy ] [W(qu)z — | Dy ]

(2.5)=(p.9)
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Clearly, for (4, §) # (9, q)
EX(Si ’ ti); Y(s,,‘ ’ tq)[W(l?ij)z - l Dii l][W(D:aq)2 - I Dm ]] = 0’

and
EYX(s;, t)IW(Dy): — | Dy I[P < ME[W(Dy) — | Dy |1
=2M|D; |2 <2M| I, ||| Dy |-

Hence the left-hand side of (8) is dominated by 2M | T'| || IT,,,,, || which concludes
the proof.

LEmMMA 2. Let the process Y be uniformly integrable on T. Then

Hm K| B(Y, Hyp,) — R(Y, 1) = 0. )

(m,n)->o0

Proof. Let
Yy(s,t) = Y(s,8) if | Y{(s, )] < N and = O otherwise,
where N is a constant to be determined later. Let YN(s, £) = Y(s, ) — Yy(s, £).

Now by uniform integrability. of ¥, we can choose N big enough such that

E|BYN, Do) — ROV T < S Y EJ YN, )] BIW(D, + | Dy}

i=1 j=1

<21T| sup E| Y1) <3e.
T

s.t)e

For this fixed N pick & < ¢/4N?|.T |, then by Lemma 1, || I, || < & implies
that
E|B(Yy,Il,,) — R(YN) IL ) < e,

and we are through.

LemMa 3. Let the process Y be continuous in L (2, P) for all (s,t)e T, i.e.,

CE\Y(,t)— Y(s, 1)) =0  whenever (s,t)eT.

lim
(s',2")(s,2)

Then

Jim  E|R(Y, ) — f fr Y(s,0) dudo| = 0.
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Proof. Define Y,,,(s,t) = Y(s;, t;) for (s,¢) € D;; . Then
E|\R(Y, II,.,) — ”T Y(u, v) dudv| < ”T E| Yo, v) — Y(u, 0)| du dv— 0
as (m, n) — 0. For Y(s, ) is L;(£2, P)-continuous and 7 is compact.

LemMa 4. Let feL(R), then the process [f(W(s, 1)), (s, t) € T] s uniformly

integrable and is continuous in L,(2, P).

Proof. Since feL,(R) the uniform integrability follows easily by observing
that

| fW(s, )| dP < mab) 22 [ | f(5)l dy—>0.

f[lf(W(s.t))I>N] 7@ >N

as N—>o0. Forfe Cythe continuity of F(W(s, 1)) inL (2, P)follows immediately
by applying the bounded convergence theorem. For the general case, feL,(R),
there exist a sequence of functions, [f,]7_, , in C;® such that f,, converges to f
in Li(R). Hence

E|f(W(s, t) — f(W(s, )| < E|f(W(S, ') — fu(W(S', )]
+ E | flW(s', £)) — fu(W(s, 1))]
+ E | fuW(s, £)) — F(Ws, 1))
S E|fW(s', ) — fu W, )]
+2Q27ab) 2| fu — flow - (10)

Now given ¢ > 0, there exists an » such that 2(2mab)~1/2|| f, — fI| < }e. But
fn € Cy®, therefore when (s, ') is sufficiently close to (s, #) the right hand side
of (10) is smaller than e. Q.E.D.

Since we are mainly interested in the processes of the form [f{W(s, 1)),
(s, ) € T'], we summarize our results and state it in the following theorem.

Tueorem 1. Let feL(R). Then

Jim l R(f (W), II,.,) — f fT F(Wiu, v)) du do [ =0 (11)
Jim E . B(f(W), H,r) — | fT F(W(u, v)) du do \ —0. (12)

Furthermore, we have convergence in probability in both (11} and (12) if f € LI°(R).
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Proof. Only the last statement needs justification. Now since

P[| W(s, )] = N for some (s, ) e T] << P[sup | W(s, t)] = N]
0<8<6
0<t<a

< 16 P| W(e, d)] = N]—0

(13)

as N — oo where the last inequality can be found in either [3, or 7}. This
enables us to restrict our attention to a compact set and use the result for
f€L,(R) to conclude the proof.

Tueorem 2. Let f e L(R), then

lim E‘S(f(W), 1) — | fT uof (W, ©) du do

(m,n)-

—0 (14
lim E'C(f(W), M) — ([ wef(Wa, v) du dv‘ —0. (15
(m,n)-> T

Furthermore, we have convergence in probability in both (14) and (15) if f € LI°°(R).

Proof. Since feL,(R), by Lemma 4. f(W(s, t)) is continuous in L,(£2, P)
and this enables us to adopt the argument given in Lemma 3 to show that (14)
holds true. To show (15), first, we assume f& C= and then at the end we shall
indicate how one could remove this assumption.

E[C(f(W), ILny) — S(F(W), ILp)P?

m—1 n—-1
[ S T £V, ) (WH WO — st | D n]

= Y ¥ E[f*(W(s, t;) [W(Hy)* W(Ky)? — sis| Dy 1) (16)

i=1 j=1

+ XXX LB (Wi, ) f(W(sy, 1) [W(H:)* W(Ky)* — sity | Dy 1]

(i.4)#(p,9)
X [W(HW)2 W(KW)2 — Sply i Dm l]]
=] 4 1II.
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Since fe Cy®, there exists a constant M such that | f(x}f < M for all xe R.
Also note that | H;; | | K;; | = s;t; | Dy |. Thus we have

m—1 n—1
I = Z Z BE[f3 (W (s, ;)] (sit; | Dis 1)?
dml =1
< 8MPcd? || 1Ly | mf Z | Dy | = C || Hpy |20,
=1 =1

as (m, n) — oo. Here C is a constant which does not depend on m and #. From
now on we shall use such a C to represent 2 “universal constant’ in the sense that
it does not depend on m and n but it may vary from place to place.

To prove that I7 also goes to zero, it suffices to discuss the summation in I7 in
the following three cases: (i) p > ¢ and ¢ > j, (i) p > ¢ and ¢ = j, and (iii)
p > iand ¢ < j. For other cases follow by symmetry.

Case (i). 'This portion of IT is zero because [W(H 2 W(K,,)* — sptq | Dyg ]
is independent of all other factors within the big bracket and it has mean zero.

Case (ii). In this case a fairly straightforward computation yields that
E[1l = 2| Ky [ | Hyg PE[f(W(si, $)) f(W (s, , 1)) WIK)?]
L CIKy || His P Ky | < C Dy [ (s911 — $9) | I |-
Hence
m—1 n—1 m—1
’ YY Y B[] ' L C| ]| ~0, as (m, n)— o.
=1 =1 p=i+l

Case (iii). In this case we also let the reader to verify that:

E[) =1 Hy || Kpq | [2] Dig PELf(W(si» 1)) f(W (55, )]
+ 4| Dig | ELf(Wis, , 1)) f(W(si , 1)) W(Kyq) W(H.,)]
+ BLf(W(s:, 1)) f(W(sy » t)AW(Hio)* — | Hig N W(Kyo)* — | Ky D]

Now since | Ky | | Hig| = sy | Dig | < cd | Dy, | and

LELF(W(si, 1)) f(W(sy » 2)) W(Hig) WK
< MPE[| W(H,p) W(Kyo)ll < M| Hy || Ky )2 < MP(cd)'1? | Dy, 12,
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Thus,
VE[ << AM¥cdP | Dig P2 | Hyj | | Koo | + 2M3% | Dyg | | His || Kipg |
+ | Hia‘ l I Km l l E[f(W(s, ’ t:i))f(W(sp ’ tq))(W(Hiq)2 - 1 Hiq |)
X (W(Ky)* — | Kig DI
=I'4+1I' 4 IIT'.

Taking the corresponding sum of I', we get

m-1 n~1 m—-1 j-1 m—1 n—1 m—1 n—-1
Y Y NI <AMMedy | Moull Y. Y Y, Y1 Hisl | Kpol | Dyl
i=1 j=1 p=i ¢=1 =1 j=1 p=1 ¢=1

<CHHmnH“‘>0, as (m) n)-—»oo

By a similar argument the relevant sum of II’ also tends to zero as (m, n) — co.
Now let us use 4 and @ for the rectangles ((0, 0), (s;, £,)] and (5,41, 0), (55, 2.)],
respectively. Since f is uniformly continuous (f € Cy®), given € > 0 one can find
8(e) such that | f(x) — f(»)] < e whenever | x — y | << 8(¢). Then
| ELF(W(si, ) F(W(sp s )W (Ho)® — | Hig NIW(K,) — | Kig I
= | E[f(W(s;, t))If (W4 U 0) + W(Ky,)) — f(W(4 V 6))]
X (W(Hf — | Hig NW(Ko)* — | Kio D]
= | E[ 5 | W(Ky)l < 8]+ B[+ | W(Ky)| = 9]|
< ME(| W(H ! — | Hy | [) B() W(Kyo)* — | Kig | 1)
+ 2MPE(| W(H,) — | Hiq | 1) B[] W(Kyo)* — | Kig | 1; | W(K)| = 8]
S 4eM | Hy | | Ky | + 4M? | Hy, [[E[W(K o) | W(Ky)| 2 9]
+ | Kig | P[| W(Kio)| > 9]]

< 4eM | Hyy || Kig| +403"2) MY Hyo | | Ky | PR[) W(Ky,)| 2> 8]
+ 4M? Hy | | Ky | P[] W(Kyg)| = 8]
S 4eM| Hy || Ky | + 12MP Hyg | | Ky | P2 W(qu)l 8}, an

where W(A U @) =% (1) 4 W(6). Since W(K,,)? — | K,, | is independent
of f(W(s;,t,))f(W(dv @) W(H,)? —|H,|) with mean zero, the first
equality holds and the upper estimate for E[W(K,,)?; | W(K,,)| = 8] is obtained
by using Schwarz inequality. Now it is clear that the very right hand side of (17)
can be made smaller than Ce | Hy, | | K, | for sufficiently large m and n. There-
fore,

m—1 n—-1 m—1 i—1 m~1 n—1 m—1 n—-1 }
Y Y Y YII'SCeY ¥ ¥ Y NHyl | Kyl | Higl | Kig
i=1 j=1 p=i ¢=1 =1 j=1 p=1 g¢=1

< Ce,
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Thus we can conclude that | C(f(W), IT,,,) — S(f(W), I1,.,,)| converges to zero
in Ly($2, P), hence in L,(2, P), for fe Cy*. For the general case, f€L,(R), we
know that there exist [f,: n = 1, 2,...] in Cp* with || f, — fli () — 0 as # — c0.
Then it is easy to see that given € > 0, one can find an V such that

E[| C(f(W), IL,,.) — C(f(W), I1.,))]] <,
and

B[ S((W), g) — S(F(W), ITa)l] <6,

where NV does not depend on m and ». This is sufficient to carry out the proof.
Finally to get the convergence in probability for f € L°“(R), one can follow the
proof given in Theorem 1.

3. MaiN RESULT

Before stating our main result in the following theorem we need the notion of
the maximal function. We shall only give the definition here and we refer the
reader to Stein [4] for the properties of this function which will be used in this
work.

DeFiniTION 3. Let f be a real valued function on R. Then

[Mf](x) = sup (1/f)f [f(»)] dy
>0 ly—zl<r
is called the maximal function of f.

THEOREM 3. Let f be a real valued function on the reals such that f’ exists and
is locally absolutely continuous and let {" € Ly(R). Then

lim E | QTz(f(W)) Hmn)

(m,n)>o
— [ 1P W ) + wol ") (W, o] dudo| =0. (18)

Furthermore, we have convergence in probability if f” € LI°°(R).

Proof. We claim that

m—1 n—1

lim E [z Y (WD) — (Wi, 1) WD)

i=1 j=1

— J Wi, 1) WEH) W] =0, (19)
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where (fW)(D,,) is defined in formula (1). Once we prove this, then
E| Qr(f(W), ) — [[| 1) (W(w, ) -+ uolf") (Wi, )] s do |

m-1 n—1

SE[Y L (WD~ (7F (Wi, 1) WD
— () (Wese, 1) W(H) WK
FE| T T (0P OFse, 1) WOG2— [ (0 (W o) du o] |
FE['T S [0 0¥, ) W2 R

— L uol(f")? (W(u, v)) du do] |

= dpp + IImn + IIImn .

By Theorem 2,
lim II1,, = 0. (20)

(m,n)->wo

Furthermore, since for all x € R

F@=|fO+ [ @] <IFOU+ 01w QD)

Now an easy argument shows that there exist constants M, and M, such that
for all (s, ) e T,
E[(f'P(W(s, )] < My,  E[(fY(W(s )] < M,. (22)

It follows that (f'(W(s,2)), (s,¢)e T, is uniformly integrable. Hence by
Lemmas 1 and 2,

lim II,, =0. (23)

(m,n)-»wo
To see how I,,,, also goes to zero, note that

m—1 n—1

T <E||'T T WOW0 — U Wi, 1) WD)

i=1 j=1

e 1) W) WP ||

m—-1 n—-1
+ ZE[ 3T (AW, ) WD) Wit W) |

i=l j=1

=E|Apn| +E|Bpnl,  (say).
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By (21) and our assumption that f”eL,(R) and an easy computation,
E[(f'f"Y(W(s, )], (5, t) € T, is bounded by a constant and we obtain

EBo)t = E [mz T (PR (WG, 1) (WD) W(H) W(Kl-,-)ﬂ

i=1 j=1
<C'”]]mn”_')o, as (m, n)~> 0.

On the other hand the identity a2 — 8* = (@ — b)? 4 2b(a — b) gives us

m-1 n—1

E| A | <E [ S Y (WD) — F'(WGsi, 1)) W(Dy)

i=1 j=1

— FUW(ss, 1)) W(H) W(K,-j)]z]

m-1 n-—-1

+2E [} Y S [ (WG, 1) W(Dy)

+ f(W(s;, 1) W(H ) W(K;)] [(fWXDy;)
— POV e, 1) WD) — (W, ) WCE) WD ||

SEY Y[P+2EY X (W s, b)) WDy

m—1 n-—-1 l’ m—1 n~1
=1 j=1 i=1 j=1

(W (s, 1) W) W(Ki»]?]mE [mz > [---]2]”2 24)

i=1 j=1

where EYIH Z::ll [-~] is the expectation given in (19). Hence, clearly
E|A4,,|— 0 as (m n) — co. Consequently I,, goes to zero and (18) holds
true. ' '

It remains only to establish (19). Observe that,

(fWYDy) = [f(W(s;, 1)) + W(H,;) + W(K,;) + W(D,,)
—f(W(s:, 85) + W(H,) + W(Ky))]
+ W, 1)) + W(H,) + W(Ky))
— F(Wisi, 1)) + W(Hy)) — f(W(s;, ;) + W(Ky)) + F(W(s; , 1))
=+ & (25)
Now for fixed w € £, using mean value theorem we obtain
[Lis — f/(W(si, 1)) W(Dy,)P? ,
= WD Wiss, 1) + WH,) + WK + 0,W(Dy) — f(W(s, 1)
< CW(DP[W(H; V Ky + WD, PIMf (W (s; , 1)),
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where | 0;(w)] < 1. Hence

m-1 n—1
EY Y [Ls—f(Wis, 1) WDy)P
=1 j=1
m—1 n—1
<C Y Y BIDG P+ (it — 1) + ti(sia — ) | Dy (1 1IMF N0
i=1 j=1
<C Hf” ”2LZ(R) l T ‘ H Hmn ” —0, as (m) n) — 0. (26)

where the last inequality follows from the fact that ||[[Mf]l2) < Cllfli2ta) -
To handle £,;, note that

E[£; — f"(W(s: , 1)) W(H,;) W(K;)P
W(H,;)
—E [ jo

E (| WEHL) | WK [

W(Ki,')

fo [F"(W(ss, ;) + u + 0) — f(W(s;, t;))] du d'v]z

IWH | Iw(K )

R AUCRAETERD
— [ (W(s: s 1) du dv]'

WH ) WK

<E[WEN WK [ [ P W)+t o

+ (" (Wse , )] du do]

[W{H )

=2E [] W(H )| | W(K)| (0 :

[W(K; )

[ EO e ) +u o)
+ (P (Wses )] i o]

< CUf e E[W(H,Y W(Kyf]1 < C|Hy| | Ky | <C| Dyl (27)

By an easy argument, now, we can assume f to be of compact support. Since
f"(x) exists almost everywhere, by Hobson [2], p. 370, we know

G [+ ) = f 49— fle + 1) +f@rs = () ae, (28)

where (r, s) —> 0 means | r | 4 | s | = 0. Applying Egorov’s theorem, we have
uniform convergence in (28) on a set G with m(G®) as small as we please. Here
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m(G°) is the Lebesgue measure of the complement of the set G with respect to
the support of the function f. Now given ¢ >> 0, we can choose G and 6 such that

I f"Tge eym <€ (29)
[fx+r+s)—flx+s) —fle+7)+ fx) — f(x)rs] <ejrs], (30)

2€G, |r|+|s| <8 and I is the indicator function of G¢. Furthermore,
using Schwarz inequality, we can find y such that | H;; | + | Kj; | < y implies

E[W(H ;P 15,.) (| W(H)|] <e| Hy |

and

BIW(K)Lis.e0 (| W(Ki)])] < €| Kis |

m—1 n—1
S BlEy — f Wi, 1) WH,) WP
=1 j=1
<Y T BT Wi, 1) € G, | WH) + | WK, < 9]

+ E[[]% W(si» ;) ¢ G] + E[[]% | W(H,5)| + | W(Ky)| = 8]]. (31)

By the same argument as the one given in (27), the sum corresponding to the
second term on the right is no greater than,

m—~1 n—

1
Y 2 Clf'Isllrym EIW(H)? WKy < Cllf e |lym < Ce,

i1 =1
by (29). Similarly, the third term on the right is no greater than

m—-1 n-1

Y 2 Clf legwy BIW(H ) 1o, (| W(HL))) W(Ki3)? Tl W(K5))] < Cet,
i=1 j=1
when || IT,,,, | << Min(y/(c — a), v/(d — b)), by. (31). Now by (30} it is obvious
that the first term on the right is also bounded by Ce. Consequently for suffi-
ciently large 7 and =,
m—1 n—1
2. 2 L&u— ' (Wisi, 1) W(H,) WK < Ce. (32)
=1 =1
Now (32) and (26) imply the truth of (19) as we claimed.
For the case f* € LI°°(R), we refer the reader to the proof of Theorem 1.
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Remark 1. Theorem 3 does not hold true in that generality, for it is not hard
to see that Lemma 4 fails. However, one can impose more conditions either on
the function f or on the partitions I7,,, in order to achieve the same result.

Remark 2. A generalization of Theorem 3 also holds true, by a standard
limiting argument, for the case when T is a region in the positive plane that could
be “exhausted” by rectangles.
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