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MOTT TRANSITION OF THE ELECTRON-HOLE LIQUID IN Ge*
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A treatment is given of the Mott transition of a gas of excitons in
equilibrium with electron-hole droplets in Ge. We find that transition
occurs near ~4K. We can come to no firm conclusion whether the Mott
transition is a first-order transition separate from the liquid-gas
transition, as has been suggested.

In recent years there has been considerable We write the free energy per unit volume as:
interest in the properties of the electron-hole f = f (n ,T) + f (n ,nt~,T) (2)
plasma in optically excited Ge.

1’2’3 It is tot p p cx cx
known that the plasma condenses into liquid where f and f refer to the plasma and
droplets when the density is sufficiently high p ex
and the temperature is sufficiently low. The excitons, respectively. For the plasma:
gas which is in equilibrium with the liquid is
throught to be a mixture of excitons, whereas at f~(n~~T)= fe°~p~T)+ fh°(np~T) + (~)
sufficiently high densities the gas should be
completely ionized. In this paper we propose to fexch ) corr,n +f tn).(~ pgive an approximate theoretical description of
the transition between the ionized plasma and Here, f °(n ,T) is the free energy of a non-
the exciton gas. This transition is similar in e P
nature to the transition from metallic to insu- interacting gas of electrons, fh°(mpT) is the
lating behavior in solids which was first free energy of a non-interacting gas of holes,
described by Mott.4 exch

A good deal is now known about the phase f (n ) is the exchange energy of the plasma,
diagram of the electron-hole system, both corr
experimentally6’8 and theoretically7~2. For f (np) is the correlation energy of the
example, the gas-liquid critical temperature plasma.
(T~6.5 K) and density (n~ 8 x 1018 crn3) have The quantities f °(n ,T) and f °(n ,T) are

e p h p
been measured6 and several calculations have calculated by numerical integration of standard
appeared710. formulae of classical statistical mechanics.

We now consider a calculation of the phase The exchange and correlation energy are taken to
diagram of the system consisting of a mixture be independent6 of T. For the exchange energy
of an electron-hole plasma and a gas of excitons. we use the zero temperature result of Vashishta,
We treat the excitons as composite particles, et.al.,’~3
i.e., as a species distinct from the electrons exch
and holes. For each temperature, the chemical ~‘ (n ) = -0.92711~ n ~ . (~3)

p p
potential of the system is calculated as a
function of the total density of particle pairs For the correlation energy, we use the tabulated
n = n + n (n = density of particle pairs in results of Vashishta, et.al.,13 for n > 0.03,

tot P ex P and a Wigner-type formula,
the plasma, n = density of excitons). The

ex
corr A 1ij3

phase diagram then follows from a Maxwell con- f (n — / n
struction. B±n1 3 p

In ~ur model for the plasma in Ge the p
conduction band has four equivalent valleys, for n <0.03. A and B are chosen to match
with longitudinal mass mel= 1.58 m, and smoothly with the tabulated results at n = 0.03.
transverse mass m = 0.082 m (m is the bare The free energy of the excitons is

et
electron mass). There are two hole bands with
masses mH_ 0.3147 m and mL= 0.0112 m; the exciton I’ (n ,nt

0t,T) = f °(n ,T) + (6)cx ex ex ex
mass is f ~(n ,T) + n EB(ntt,T)

m = ‘m + mHm]~\l/3 ( mJ~m]~\2/3 (1) cx cx ex
cx ~. el mH+mLI ~met + m}~+mL) Here f °(n ,T) is the free energy of a clas-

e ex
It is convenient to measure lengths in units sical van der Waals gas of particle of mass mexof the exciton Bohr radius. Energy is measured and f ~(n,T) is the first quantum correction

in units of twice the exciton Rydberg and mass ex
in units of the optical reduced mass. given by
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2 partially included in (12), and the errors may
3/2 n

______________ not be serious for a global picture of the phase
f ~(n ,T)=

1— ex1/2 3/2 diagram.cx cx 32 (kT) mex At low densities (and low temperatures)

where the gas consists entirely of excitons one
EB(ntt,T) is the binding energy of the exciton can use the results of collision theory to find

taking into account the effects of screening as ~ This shift is given by’4
discussed below. All interaction effects other
than the effect of the plasma on the binding = - -~— - 100. ~ (13)

menergy of the excitons are neglected. ex
For a system of fixed total density at where a and a are, respectively, the scattering

length and polarizability of the exciton. If
f (n ,n ) = f + f (8) there are few excitons, one can find the bind-

tot cx p p cx ing energy by computing the eigenvalues of the
Bethe-Salpeter equation2 which takes into

temperature T we minimize account the effects of the plasma:
with respect to x, where x = n /n . In this

p tot
way, we find the free energy of the system and C Cp(k) = ~.k2 cp(k) + $ ~ v(k-k’) (lu)the values of n and n as functions of n . (2ict)3p cx tot

The chemical potential of the system is cp(k’) (1 - f(k’) -

then given by

~tot= Of/en = ~i ~n /On + ~t On /On Here v(k) is the Fourier transform of the
p p tot cx cx tot

screened Coulomb potential, f(k) is the Fermi
+ On /On E + fl OH /On , (9) distribution function, m is the reduced mass,

cx tot B cx B tot
and cp(k) is the center of mass wavefunction.

where -‘ and .i are derivatives of f and The potential v(k) is given by
p cx p

f with respect to n and n , respectively. v(k) = 1-iite2/(k2 + x2) (15)cx p cx
Now using the fact that n + n = fl~

0~’ we can
cx p

write (9) in two equivalent forms: and X, the inverse screening length, is given bystandard (temperature dependent)formulas for
screening by a gas of free electrons and free

= + n ~ /On (10) holes. We solve Eq. (11+) variationally. The
tot p cx B tot

solution of the B-S equation for T = 2° is shown
= + E + n bE /Ont0t . (11) in Figure 1.

tot cx B cx B
The central physical quantity in our 0.0

calculation is EB. As we will see the nature of
the Mott transition dependsvery sensitively on
EB~which is, unfortunately, hard to calculate. 02
Note that we cannot take EB to be independent 10.4of n as a simple application of the Motttot /0
criterion shows.

4
We now discuss estimates for EB. To this E/E(0)

end we introduce an auxiliary quantity, C, which -0.6
is the binding energy of an exciton relative to
its awn continuum, i.e., relative to the

-0.8 /(renormalized) band edge. Note that this is notthe same as EB~which is measuredwith respect
‘a

to the band edge at n = 0. If we consider the
p

I I I I
exchange and correlation to give rise to a —1.0 I

“rigid” shift of the bands6, we can write: 0 2 4 6 8 10
n x io~

E =C+~i , (12)
B xc

where t is the exchangeand correlation part Figure 1 The exciton binding energies Cxc as a function of density for T — 2
of ~. It has beenshown “ that for small n~ The density is in dimensionless units and

(in the Debye-Huckel limit) the shifts in C and � (n=0) = U. 15 mev (Ref. 16). Curve A is

~ cancel, leaving EB independent of n . Our the result of a Bethe-Salpeter calculation,P
theory does not have the correct limiting and curve B are the scaled results of
behavior: because of the assumptions implicit Ref. 15. For interpolations I and 2, see
in Eq.(2) we do not attain the Debye-Huckel text.
limit. Nevertheless the renormalization is
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Another way to find C at high densities is liquid transition, but as a shoulder on the
to make use of the measuredvalues of the ioni- curve.
zation energy of donor states in Ge. Compton
and Davis’

6 have measuredthe ionization energy I I I

of donor states in antimony-dopedGe for

6.6 x io-~ cm’~< n < 2 x iO’~ cn~’. The

donor state is analogous to the exciton state
and by scaling the measured results in appro-
priate dimensionless units (which takes into 1(K)
account the different screening and differentdonors : ~

massesin our case) one can estimate the
exciton binding energy. The results obtained
in this way (the curve labeled B in Figure 1) 2
are quite similar to the solution of the B-S
equation at high densities. --

One can interpolate betweenthe low density
and high density limits to obtain C for all 1012 1O”~ 1014 i~’~ 1016 iO’7 1018
densities. Unfortunately, since we have no n (cm3)
reliable values at intermediate densities, the
choice of an interpolating function is somewhat Figure 3 Phase diagrams corresponding to
arbitrary. We have calculated the phasediagram
for several choices of interpolating functions, the two choices of exciton binding energy
The curves labeled 1 and 2 in Figure 1 are two shown in Figure 1.
representative choices of C, and the associated
EB are shown in Figure 2.

1.0

-0.4
0.8

EB/EB(O) II~ I ntot 0.4—0.8 ,I’

/ 0.2
-1.0 /

11111111 0
0 2 4 6 810 0 2 4 6 8

nxlo4 T(k)

Figure 2 The exciton binding energy EB as Figure 4 The concentration of excitons

a function of density. The units are the along the co-existence curve as a function
same as in Figure 1.. For interpolations of temperature. The curve labeled 1
1 and 2, see text, refers to the portion of the phase diagram

on the far left in Fig. 2. The other

branches have a very small exciton
For the gas-liquid transition we find

Tc= 7.50 and n= x lO’~ cm3. This is concentration.

independent of the choice of exciton binding
energy since the gas is completely ionized in Our results should be compared to those of
this region. ref. 11 and 12 where the classical limit is very

The shape of the phasediagram at densities carefully investigated. Unfortunately, these
much less than n depends on the particular authors adopt a rather arbitrary interpolationc
choice of the exciton binding energy. The for the function corresponding to our C, and
curve labeled No. 1 in Figure 3 is the phase obtain only a phase diagram corresponding to
diagram which we obtain when we use the binding case 1. The major point of our calculation isthe extreme sensitivity of the phasediagram to
energy curve No.1. In this casethe Mott
transition appearsas a first order phase � or We believe that in view of the
transition which is separate from the gas-liquid complexity of the theoretical probeim no firm
transition, with a critical temperature of 8.50 conclusion can be drawn about the nature of E

14 —3
and a critical density of 10 cm . The B
concentration of excitons along the co-existence for intermediate densities.
curve is plotted as a function of T in Figure 14. We feel that the question of the existence
With binding energy No. 2 we obtain the phase of a first order transition in this systemwill
diagram label No. 2 in Figure 3. In this case have to be settled by experiment. To our knowl-
the Mott transition does not appear as a first edge the only relevant experiment to date is that
order phase transition separatefrom the gas- of Thomas, et.al.,’7 who detect what may be the
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beginning of a “shoulder” of type 2. Thus the

question remains open.
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