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NON-PLANAR, NON-LINEAR OSCILLATIONS OF A BEAM 
II. FREE MOTIONS 
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Steady and unsteady free motions of compact beams with fixed ends are examined. 
It is found that in certain situations planar motions are unstable to out-of-plane perturba- 
tions and whirling motions occur. In resonant cases these whirling motions are of the 
beating type, whereas in non-resonant situations they have a steady-state behaviour. 

1. INTRODUCTION 

In a companion paper [I], steady-state non-linear motions of a simply supported compact 
beam subject to time-harmonic plane forcing were examined. Amplitude-frequency plots, 
and associated stability zones, were given for two force levels, for both in-plane and out-of- 
plane response, the major emphasis being placed on the latter, in view of the relatively 
little information known about them. Here, free motions of the beam are treated. 

The items of prime interest are slowly changing motions. General studies of these have 
been given by Agrawal and Evan-Iwanowski [2], using an extended version of the Krylov- 
Bogoliubov-Mitropolski (KBM) method. It should be noted that the diversity of fields in 
which non-linear models arise has led to a diversity of methods of approach to the category 
of problem. StaniSic and Euler [3] recently presented an extension of Struble’s technique. 
Rehfield [4] developed a perturbation method for handling both free and forced vibrations. 
Kabakow [5] gave a general version of the method of multiple-time-scales for multi-degree- 
of-freedom systems which overcame the problem of small divisors (as it frequently is called in 
physics works). Nayfeh, Mook and Sridhar [6] also presented general information on multiple- 
time-scale methods. Here a KBM method is used for unsteady motions. In particular, the 
version employed by Gilchrist [7] will be closely followed. 

2. EQUATION OF MOTION 

The beams to be treated are symmetric, slender, and compact: that is, moments of inertia 
about two perpendicular axes in the cross-section (the axes of symmetry) have close values. 
Under these circumstances, torsional and longitudinal frequencies are considerably higher 
than bending ones, and the shortening effects due to torsion may be neglected. In passing, 
it should be noted that thin-walled sections have also been the subject of recent attention 
(see references [8-l 11). 
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When longitudinal inertia and Poisson effects are neglected, and large deformations are 
taken into account only through use of Green’s strain measure in the longitudinal direction, 
the fundamental equations of motion are equations (5) and (6) of reference [I]. With the 
forcing functions and damping taken to be zero, these equations are 

where 

I 1 
c,rr + -j$ W.,,,, - B~‘fi,,,) - 3fi,,, j” K6.s)’ f (O,Jzl ds = 0, 

0 

s = z/L, r = (t/L) a, ii = u/L, k = v/L, 

(2) 

Y = IxxlL p = Eo/& I,,= * y2dA, 
JI 4, = IS 

x2 dA, 
‘4 A 

I is time, a comma stands for a partial derivative, E is Young’s modulus, A is cross-sectional 
area, p denotes density, L is the length of the beam, u and v are the displacement components 
of a point on the neutral axis, in the x, y-directions-the symmetry directions-respectively, 
a0 is any initial strain (constant) that may be present and E,, is the strain in the first buckling 
mode, i.e., for buckling in the xs-plane, E,, = Z,,,7c2/AL2. The displacement component in the 
z-direction, w, does not arise here. In arriving at equations (1) and (2) it was eliminated through 
use of a third equation of motion, on neglecting longitudinal inertia. 

For simply supported ends the following trial solutions are adopted 

li = 2 sin mrrs /$(T), (3) 
m=l 

6 = $ sin nxs~,(t). (4) n=l 
Substituting equations (3) and (4) into equations (1) and (2), and using Galerkin’s method 
gives 

d2 5, 
~+LnL2+ (5) 

where 

d2 vn 
-p + PY” 48 + (6) 

P,, = ha’ m2 n4(m2 + fi), P,,” = ha2 n2 x4 (yn2 + p), h = I,,,,/Ad’, a = d/L, 

and d is the depth of the beam (the maximum dimension in the xs-plane). 
The possibility of multi-mode interactions is exhibited by equations (5) and (6). Here the 

only item that will be pursued is one that is felt to be of common occurrence, namely, one 
mode in each plane dominating. With m and n denoting the dominant modes in the xs-, 
and ys-plane, respectively, equations (5) and (6) reduce to 

d2 &,,/dt2 + PX, t,,, + (m’ 7r4/4) (m2 ti + n2 1:) 5, = 0, (7) 

d2 n,/dz2 + Pyn I], + (n2 7r4/4) (m’ ri + n2 r& II. = 0. (8) 

Steady-state, harmonic motions in the xs-plane can be investigated by assuming 

5, = A,, cos 07, % = 0, (9) 

where A,.,, is an amplitude, and w denotes frequency. Substituting equations (9) into equation 
(7) generates a Duffing equation, which is handled here by the method of harmonic balance. 
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The frequency-amplitude relation is 

&,(PX, - w’) + (3m4 7r”/l6) Al,,, = 0. (10) 

The existence of motions satisfying equation (10) is problematical, until their stability 
when subjected to perturbations has been investigated. Two types of perturbation must 
be considered, namely, ones in the x$-plane (= in-plane), and ones in the ys-plane (= out-of- 
plane). Upon letting 

5, + 5, + 56. m=l,2,. . ., (11) 

% -+ f/-n + v:, n=1,2 , -1.) (12) 
where &,, and qn as are given by equations (9), it can be shown that equations (5) and (6) yield, 
after considerable algebra, 

d2 tJ/dz’ + (AXj + E,, cos z) <; = 0, j=l,2,..., (13) 
d2 q;/dz” + (A,, + E,,~ cos z) q; = 0, j=1,2 3 -.., (14) 

where now z = 2wz and 

A,j = P,j/4P,, + [ 1 - 3m2 P,,/2( 1 + 26jJ j2 Px,] Exj, 

E Xj = ((1 + 26j,,,)m2,j2n4 A$,,/[8P,j + (1 + 26j,,,)m2j2n4 AZ,]) A,j, 

A yj = P,j/4P,, + (1 - 3m2 Pyj/2j2 P,,) &,I, 

eyj = [m2j2 x4 Az,/(SPyj + m2j2 x4 A:,,,)] A,,, 

6 denoting the Kronecker delta. 

(15) 

(16) 

(17) 

(18) 

Equations (13) and (14) are Mathieu equations and so exact information regarding stability 
is available. However an approximate scheme will be used here, since the ensuing results are 
better suited for comparisons with the approximate response information given by equation 
(10). The scheme, which is described fully in reference [ 11, hinges around expansions in powers 
of characteristic exponents. It yields, for the first Mathieu instability zone (the only one con- 
sidered in the sequel), 

A,, = % + +s,j, *. ., (19) 

where r stands for either x or y. Equation (19) corresponds to straight lines in the &A-plane, 
and these are denoted by AC and AE in Figure 1. Shaded areas in that diagram correspond to 
stable motions. As has been shown by Stoker [12] for the Duffing equation, points on the 
boundary between stability and instability regions correspond to orbitally stable motions: 

Figure 1. Approximate Mathieu stability boundaries. 
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that is, if such a motion is subject to a small disturbance, the subsequent motion differs 
only slightly in amplitude and frequency from the original. 

Equations (15) and (16)-and (17) and (18)- are straight lines in the Ed-plane. The stability 
associated with points in the A,, o-plane can be established from the location of the point 
of intersection of these straight lines, and the results are as follows. Consider first the case 
j = m. The modes 5, are always orbitally stable: that is, a perturbation Si just leads to a 
5, motion with a different amplitude. When m = 1, ,j = 2, 3, . ., it is found that [i motions 
do not excite t2, &, . ., motions, in that [;, <;, . . ., do not grow. Similarly, it is found that 
4, motions (m = 2) do not excite the &, 15,. . ., modes, nor the t, mode. In contrast, & motions 
are generated. The pattern procedes, with the possibility of t4, t5 modes growing when 
m = 3. Identical results can be argued for motions and perturbation in the ys-plane. A point 
of interest is that these conclusions do not depend on the value of p (provided it is less than 
one) : i.e., they are independent of the initial strain state. 

Out-of-plane perturbations will now be considered. In this case the results do depend on 
the value of p, which is taken here to be zero. Consider first the situation where m -j = 1. 
From equations (17) and (18) and the stability chart, it can be shown that q; perturbations 
grow only for ~1 > 1. For y < 1, the motions in the xs-plane are stable to out-of-plane pertur- 
bations. For y = 1, orbital stability prevails. For out-of-plane modes other than the first, 
i.e., j= 2, 3, . .., it is interesting that whirling can occur for y < 1, provided y > 1 /j’. Consider 
now the second mode in the xs-plane: i.e., m = 2. 11; perturbations grow only if y > 16. 
r]; motions may grow for y > 1, but not for y < 1, and so on. The above results could have been 
obtained, for the undamped case. on setting the forcing functions in reference [I] equal to 
zero. 

The possibility of unsteady, free non-planar motions (motions that were not treated in 
reference [I]) existing will now be explored. Upon making the scale changes 

5, = &X”,, (20) 

II” = hJ%, (21) 

where E is regarded as being small enough to consider the products in equations (20) and (21) 
as small, equations (7) and (8) become 

dZ x,,,/dr2 + P,, x, + c(m2 7r4/4) (m’ xi + n2 y,‘) x, = 0, m = 1, 2, . . ., (22) 

d2 y,/dr2 + P,. yn + c(n2 7c4/4) (m’ xi + n2 y,‘) yn = 0, n= 1,2, . . . . (23) 

Equations similar to equations (22) and (23) have been examined, for example, by Gilchrist 
[7], using a KBM method. His method of analysis will be closely pursued here. 

In approaching the weakly coupled, non-linear, ordinary differential equations (22) and 
(23) the mathematical tack adopted by many schemes depends on whether a condition of 
internal resonance exists or not. By internal resonance is meant a circumstance in which certain 
frequencies, or combination of frequencies, generated in the scheme by the non-linear terms 
in the differential equations, equal linear natural frequencies. The phrase “vth order internal 
resonance” is common. It signifies that the term(s) in question arise at the rth level of the 
approximate scheme. For certain systems, this depends on the linear frequency ratios of the 
various modes. For instance, for the case at hand, if 

<=3<, (24) 

then the scheme, which involves expansion in powers of E, would predict resonance between 
these two modes when terms of order a3 are taken into account. It would also occur if equation 
(24) were only satisfied approximately. Generally speaking, such resonances take place when 
the following equations are satisfied either exactly or approximately: 

P,, =(w/g2 + cr,,, (25) 
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(26) 
where o is related to the frequency of free-vibrations, as can be seen on setting E equal to zero. 
Substituting equations (25) and (26) into equations (22) and (23) gives 

Solutions to equations (27) and (28) are sought in the form 

+ d,? tan,, b,, O,, A, 7) + E2gc,f) + . . ., 

+ oh (a,,,, b,, O,,,, +., Z) + e2 hk2) + . . ., (30) 

(27) 

(28) 

where g!$ and h$), s = 1,2, . . ., are periodic functions of Om and &, and a,,,, b,, O,, and 4” are 
determined from 

da,/dr = sA!$(a,,,, b,, 8,, 9.) + E’ A:’ (a,,,, b,, O,, 4.) + . . ., (31) 

db,/dr = eB(,l)(a,, b,, O,,,, 4”) + E’ R2’ (a,,,, b,, O,,,, 4,) + . . ., (32) 
dO,,,/dr = ~Cg)(a,, b,, O,,,, 6,) + E2 C(,z’ (a,,,, b,, O,,,, 4,) + . . ., (33) 

d&ldt = aD!,V,, b,, O,,,, 9.) + s2 W(a,, b,,, O,,,, 4,) + . . ., (34) 

where A’,” through D’.” are periodic in 0, and 4.. Substituting equations (31) through (34) 
into equations (27) and (28), and expanding the non-linear terms in these last equations, 
gives, on specializing to the case of first order internal resonance, that is, i =j = 1, 

a2g’,‘)/k2 + 02g’,‘) = [2wA’,” - (qxm/4) n2 a,,, b: sin(24, - 2&J] sin(wr + 0,) + 

+ {2a, WC:) - r,, a,,, - (qJ4) [3m2 ai + n2 a,,, b;5(2 - 

- cos(24, - 2&J)]} cos(o~ + 0,) - (qJ4) m2 ai cos(3wr + 30,) + 

+ (qJ4) n2 a,,, 6: cos(3w7 + 8, + 24,) (35) 

a2 h’,“/3T2 + w2 h’,” = [-20B’,” - (qJ4) m2 ai b, sin(24, - 20,)] cos(w7 + 4,) + 

+ {2b, wD’,” - fyn b, - (q,.,,/4) [3n2 bi + m2 a,f, b,(2 - 

- co@+,, - 20,))l) sin(wr + 4.) + (q,,/4)n2 b;f sin(3or + 34,) - 
- (q,,./4) m2 a,f, b, sin(3oz + 20, + &,), (36) 

where qxm = m2 n4/4 and q,,,, = n2 x4/4. 
To suppress secularities in equations (35) and (36) the coefficients of harmonic functions 

with frequency o must be set to zero. In this way A,,, , (l) B’,“, C$ and D’,” can be determined. 
Substituting these values into equations (29) through (34) yields 

x, = a, cos(o7 + O,)+ Egg), (37) 
y, = 6, sin(wr + 4”) + Eh(,‘), (38) 

da,/dr = &A(,‘) = (&/8w)q,, n2 b: a,,, sin(24, - 2&J, (39) 
db,/dr = EB(,‘) = -(E/8co)qy, m2 a,S, 6, sin(24, - 20,), (40) 

d&,/d7 = EC: = (e/2@) {r,, + (3/4)%, m2 aIf, + (1/4)q,, n2 b32 - cos(W, - 2&)1>, (41) 
d+,/dr = ED;‘) = (E/~w) V’,, + (34) qyn 11’ b,Z + (l/4) qyn mz 40 - CO@#G - 2%,)1). (42) 
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Gilchrist [7] succeeded in partially integrating equations similar to (39) through (42). 
Dividing equation (39) by (40) and integrating gives 

ai + b,2 = C, (43) 

where C is a constant of integration. Dividing equation (41) by (42), making the variable 
changes 

a, = VTcosx, (44) 

b, = fl sin x, (45) 

@ = 4, - Rn, (46) 
and integrating, yields 

-21// cos 2% + sin2 2~(f+ cos 2@) = C,, (47) 
where 

II/ = 16(r,, - f,,)/Cn’ m2 ITS - (3/2) [(n’/m’) - (m2/n2)], (48) 

f= (3/2) [(n’/m’) + (m”/n’)l - 2, (49) 

and C, is a constant of integration. 
In general it is difficult to express the motion explicitly in terms of time. However, it is 

possible to do this in the special case m = II, y = 1 (Anand [13] obtained similar results). 
One gets 

ai + b,f, = c:, (50) 

ai bi, = c: sec2(4, - 8,), (51) 

ai = (c:/2) + 2/(c:/2)2 - c$ sin [(8m2qxm c,/20) r + c,], (52) 

b,f, = (cf/2) - 2/(~:/2)~ - C: sin[(sm’q,, c,/2w) r + c,], (53) 

3E 
0, = Gqxm m2 cf 5 - tan-’ 

( 

c: tan [(Em2 qxmc2/40) 7 + c3/2] + VSF@ 

2c2 1 

+ cg> (54) 

9,=$YYnl 1 

/ 
m2 c2 T - tan-’ 

1 

c: tan [(Em2qx,.c2/4w) 5 + c4/2] - Y c’: - 4~: 

2c, 1 
+ cs, (55) 

where c1 through cg are constants of integration (note that only four of the six are independent) 
to be determined from initial conditions. 

Equations (43) through (55) show that unsteady motions do indeed exist, the amplitudes 
and phases in both the xs and ys planes being slowly varying functions of time. In the special 
case m = n, P,, = P,,,, following Anand [13], it can be shown that a particle trajectory is a 
rotating ellipse, with the axis rotating each revolution 

de = (Eq,, 7r/2<) [r2(0) + r2(0)e2(0)/Pxm + i2(0)/Px,], (56) 

where r and 8 are polar co-ordinates. It should be noted that the various types of beating 
motions that can arise can be analyzed with the aid of a @X-phase plane (see equations (44), 
(45) and (46)). The reader is referred to Gilchrist’s paper [7] for more detail. 

To conclude, some comments on non-resonant motions will be made. To investigate these, 
one takes 

x, = a,,, cos(K T + S,) + &g(,“(a,,,, b,, O,,,, $J,,, T) + c2 + . . ., 

y,, = b, sin(< z + 0,) + .#,‘)(a,, b,, O,, @., z) + 8’ + . , . . 
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The previously described procedure now yields 

da,/dz = &A(,‘) = 0, db,/dT = EB(,‘) = 0, 

de,,,/dz = EC:) = &,,&(~,,)*1 (3m2 a; + 2n2 b?,), 

d4,/dr = ED;” = .z[q,,/8(P,.)*l (3n2 bZ + 2m2 ai) 

Hence, since the amplitudes are now constant, no beating motions occur, in strong contrast 
to the resonant case. 
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