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The problem of reconstruction of the pp elastic scattering amplitudes from a complete set of measurements has been studied, 
taking into account the new experiments, which have become feasible with the advent of a high energy polarized beam at 
Argonne National Laboratory. Several experiments have been performed or proposed and we show analytically, that by 
performing two additional experiments (R and A type measurements), one can obtain all the amplitudes without ambiguities. 
The uncertainties in the amplitudes, introduced by experimental errors, are also calculated. 

1.. Introduction 

For  particle reactions with a arbitrary spins it is a central problem to select a feasilbe set o f  experiments, such 
that  it will be possible to extract the scattering amplitudes, which contain needless to say, the relevant physical 
information.  

Extensive literature exists on how many experiments are needed x) and how to reconstruct the amplitudes f rom 
a complete set of  observables, both  for  N N  2) and n N  3) scattering. 

However,  in case o f  N N  scattering the specific solutions are not  obtained from very practical measurements. 
If' one considers only practical measurements,  then an analytic reconstruction becomes more difficult. At  present 
sufficient measurements on pp elastic scattering have been done to determine the moduli  of  the five complex 
amplitudes in the transversity basis. This will be discussed in more detail later. These experiments do not form a 
complete set, since the phases between the amplitudes are still undetermined. To obtain these phases one can 
choose between many experiments and it is relevant to ask, which minimum set o f  experiments would give 
maximum constraints on the amplitudes. 

We show analytically that  in principle only four more observables are needed to determine the three natural 
parity exchange amplitudes without  ambiguities, while the relative phases between the two unnatural  parity 
exchange amplitudes can be obtained if the experimental errors are small enough. I f  one uses a polarized beam in 
combinat ion with a polarized target, then these four observables require only two experimental set-ups. 

The remaining unknown phase between the natural and unnatural  parity exchange amplitudes requires two 
more measurements. One possible experiment, f rom which these two observables can be obtained, has been 
proposed recently4). 

To obtain the amplitudes f rom measured observables, one has to solve a set o f  simultaneous, quadratic equations 
with complex unknowns.  Our  way of  solving such a set of  equations will be demonstrated first in the simple case 
of  n N  elastic scattering, in which case there are only two amplitudes involved. We will then apply the method to 
a specific numerical example in the more complicated case of  N N  scattering, taking into account  the exprimental 
errors. 

2,, General considerations 

Let us consider a particle reaction with arbitrary spins and described by n complex amplitudes ai( i= 1, ...,n). 
The complete knowledge of  this reaction requires, up to one phase, 2 n - 1  real functions. However,  one can 
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perform n 2 independent  measurements Ii(i = 1, ..., n2), which are linear combinat ions  of bilinear products of" 
amplitudes 

Ik Z k ( R e ~  * = O£ij~lm~ a i a j ,  (1) 
ij 

where ~i k are known real numbers  and {R i} means the real or imaginary part  of the complex number  aia*. 
Conversely, for each i and j one has 

• ij 
ala2 ~ (2) = f lk  Ik, 

k 

where fl~J are known complex coefficients. It is very useful to consider the Hermit ian positive n × n matrix 
M~ i = aia*, expressed in terms of the observables. All the I~ are not  independent,  but  they are related by ( n -  1) z 
quadrat ic  relationsS): 

JmijJ 2 = m u m j j  , ( i # j ) ,  (3) 

M~jMjk = MjjMik,  ( i : / : j#k) .  (4) 

These equalities should be satisfied by experimental  data and can provide some cross checks on various inde- 
pendent  measurements.  Obviously, we should also have 

{i m M,j ,/M (5) 
which can give upper bounds on some observables. The usefulness of these relations will be illustrated later. 

3. nN elastic scattering 

This reaction involves only two helicity amplitudes, the non-flip f+ + and the flip f+ _, since pions are spinless. 
The four possible independent  measurements  are given in terms of the amplitudes in appendix 1. The laboratory 
observables 0 (a; b) are defined with respect to a frame for each particle, such that I is along the direction of motion,  
n is normal  to the scattering plane and s = n x I (see fig. 1). 

n 

\ 

Fig. I. Definition of the coordinate systems for the in- and out- 
going particles in the reaction a + b-+ c + d. The vector n, denoted 
by a circle, points out of the paper. 
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Fig. 2. Restrictions on the amplitudes f++ and f+_ in n~p 
elastic scattering, imposed by the differential cross-section and 
the polarization. The phase off+_ is assumed to be zero. When 
f+ + has some possible value along the path abcd, f+_ is bound 
by eqs. (6) and (7) to have a corresponding value on the lower 
plot. 



S - C H A N N E L  H E L I C I T Y  A M P L I T U D E S  333  

Suppose we have only measured the differential cross section cr and the polarizat ion P and we ask ourselves 
what  do we know abou t  f÷  + and f ÷  _. Let  us take f ÷ _  along the real axis and denote by q5 the relative phase 
between f÷  + and f ÷ _ .  Then we know that  the sum and the produc t  of  the moduli  squared is given by (see 
appendix  1): 

I f++l  E + I f+_l  z = ~r, (6a) 

p2 
If+ + 12 If+ - I 2 - • (6b) 

4 sin 2 q5 

Therefore  the modulus  squared of  one of  the amplitudes,  denoted by p, must  satisfy the equat ion 

p2 
pZ- - f fp  + - - =  0 ,  (7a) 

4 sin E ~b 

since the solutions of  this quadrat ic  equat ion give immediately  eqs. (6a) and (6b). Since p has to be real, the dis- 
cr iminant  o f  this equat ion has to be positive or 

sinE~ ~ ( P / a )  E , (7b) 

which gives a range for  ~b. F r o m  eq. (7b) we find also a > P which is obviously satisfied. Al though of  no use in 
this simple case, this kind of  inequality, which was written in a general fo rm in eq. (5), will provide non-trivial 
bounds  for  more  complicated reactions. Eq. (Ta) is an interesting relation between p and q~, which gives restrictions 
on the possible amplitudes,  as illustrated in fig. 2, for  the reaction rc+p at  Plab = 6 GeV/c and - t =  0.3 (GeV/c) 2 
figr which P -- 0.175_+0.01 6). First o f  all eq. (Tb) implies - 173 ° ~< ~b ~< - 7  °*. For  each value of  ~b there are two 
possible values of  p, one is If+ + [2 and the other is I f+_ 12 and we have explicitly marked  corresponding paths for  
f~  + and f + _  in fig. 2. There is obviously a symmetry  qS~n-qS.  Fig. 2 summarizes  what  we know about  the 
ampli tudes,  when o- and P have been measured.  In order  to obta in  more  informat ion abou t  the phase, one needs 
one more  measurement ,  for  example  the R parameter ,  which has been measured to be -0 .2- t -0 .11 7). Needless 
to recall that  the magni tude  of  the A paramete r  is no longer independent,  because of  the well known relation 

0 .2 = p E + R E + A  2, (8)  

which is a special case of  eq. (3) (see also appendix 1). Al though this relation gives the magni tude of  A, we do not  
know its sign, but  we expect the non-flip ampli tude to be dominan t  over the flip amplitude,  which implies 
A > 0 .  Indeed,  A has been directly measured 7) and was found to be positive. F r o m  the values of  R and A it is 
possible to obta in  03 ,  which gives us again the product  o f  the moduli  as function of  q5 (see appendix 1): 

O3 = R s i n0R+A COS0R = 2 I f++[  i f + - [  cos~b. (9) 

Therefore  p must  satisfy the equat ion 

; E _ p o  + 032 = 0.  (10) 
4 cos E ~b 

In fig. 3 we plot ted two curves, corresponding to eqs. (7a) and (10) respectively, which intersect each other at two 
points B and C. This gives two possible sets of  solutions for  the modul i  o f  the amplitudes.  However ,  since A has 
been measured to be positive, we can only keep the solution If+ + l >  l f + -  I (solution B). We find numerically, if 
we normalize in such a way that  a = 1 

If+ + ] = 0.996_+ 0.006, 

I f + - I  = 0.09-4-0.06, 

~b = - 3 7 0 + 2 0  ° . 

* Note  that  sin ~b has  to be negative,  since P > O (see app.  1). 
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This phase q~ is badly determined, because P and O 3 happen to have almost the same magnitude, which makes 
the two curves overlapping for a large range of ~b, if the errors are included, This example illustrates, that the 
accuracy of the final amplitudes can depend very much on the relative magnitude of the observables. 

4. NN elastic scattering 

For a review on the formalism of nucleon nucleon scattering we refer the reader to the works by Hoshizaki 8) 
and Moravcsik9). 

Proton-proton elastic scattering can be described in terms of five complex amplitudes, if one assumes parity 
invariance, time reversal invariance and identical particle symmetry. Common sets of  amplitudes are the standard 
s-channel helicity amplitudes~°), the transversity amplitudes ~ )  or the exchange amplitudes~2). These sets are 
simple linear combinations of each other. 

In order to simplify an analytic reconstruction of the amplitudes, we found it convenient to define a set of 
amplitudes n~, n2, n3, u~, and u2, which are defined in terms of the standards-channel helicity amplitudes in 
appendix 2.1. Of course, an analytic reconstruction can be done with different sets of amplitudes as well, but the 
expressions for the laboratory observables of  interest become more complicated. Our set of amplitudes is closely 
related to the transversity amplitudes~).  The amplitudes U l and u2 are the double spin flip amplitudes, corre- 
sponding to unnatural parity exchange, while n~, n2, and n3 are simple combinations of the non-flip amplitudes, 
corresponding to natural parity exchange. 

The amplitudes u~ and u2 are expected to be small, while n~ and n2 are expected to be the largest ones, having 
similar magnitudes since their difference is proportional to the double helicity flip amplitudes (see appendix 2.1). 
The amplitude n3, corresponding to single helicity flip, is expected to be smaller than the non-flip ones. Therefore 
we expect to first order (at least for small t-values) 

Ul ~ hi2 < //3 < //1 ~ r t2 .  (11) 
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Fig.  3. The  two  curves,  c o r r e s p o n d i n g  to eqs. (7a) and  (10) in the  
text ,  in tersec t  each o the r  at  two  po in t s  B and  C, which  gives two  
poss ib l e  so lu t ions  for f+  +. 
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Fig. 4. Res t r i c t i ons  on the five pp  elast ic  sca t t e r ing  a m p l i t u d e s ,  
i m p o s e d  by m e a s u r e m e n t  o f  the di f ferent ia l  cross sect ion and  
the W o l f e n s t e i n  p a r a m e t e r s  P, DNN, Kuu and  C,~,~r. 
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An estimate of lull and lu21 can be obtained from the values of the Wolfenstein parameters 13) DNN, KNN and 
CNN, since [see eqs. (15) and (16) hereafter] 

lull 2 + ]u2l 2 = ½(1--DNu), (12) 

and also 

lull 2 - l u z l  2 = ½(KNN--CNN),  (13) 

where DNN ~ 1 ~ 4) and KNN ~ CNN 15) at 6 GeV/c and low transverse momenta. In case of five amplitudes one can 
perform 25 independent measurements. In appendix 2.2 we have written the 25 center-of-mass (c.m.) observables 
of ref. 12 in terms of our set of amplitudes. Linear relations between these observables and other c.m. observables 
can be obtained from table 2 in ref. 12. In appendix 2.3 we give the M-matrix, from which the 16 quadratic rela- 
~:ions corresponding to eqs. (3) and (4) can be obtained. The laboratory observables in the s, n, l coordinate system 
of fig. 1 can be obtained from the c.m. observables by simple rotations12). Due to this rotation a lab observable 
::an become a linear combination of two c.m. observables. In that case we denoted this c.m. observable as an 
ndirect measurement in appendix 2.2. 

The experimental program on the way at the ZGS at Argonne National Laboratory allows 15 different measure- 
nents, if the following, technically more difficult, measurements are avoided: (1) the spin of the fast forward 
~article is not analyzed, (2) the beam is not polarized longitudinally, (3) the recoil spin is not analyzed in the lon- 

tudinal direction. This set of technically more difficult measurements has been denoted by i instead of I in appen- 
dix 2.2. In appendix 2.4 we have listed the remaining 15 laboratory observables in terms of the center-of-mass 
observables. In appendix 2.5 we give quantitative estimates for them from the amplitudes given in ref. 16. For 
comparison we give also the existing data on 6 of the measured observables, Now we will describe, how one can 
reconstruct the s-channel helicity amplitudes from a suitable set of 11 laboratory observables, of which 6 have 
been measured already. We will assume an experimental error of 0.08 for all the unknown double scattering exper- 
iments. The calculations are done in 3 stages. First we calculate, how much the present data restricts the ampli- 
tudes. Then we calculate the restrictions imposed by R and A type measurements. At the end we will discuss the 
determination of the remaining unknown phase. 

4.1 .  RESTRICTIONS ON THE AMPLITUDES AFTER FIVE DIRECT MEASUREMENTS o-, P, DNN , Css AND KNN 

These so-called "N-measurements" have already been performed by different experimental groups14'15'x7'18), 
and it is relevant to ask, how much of the amplitudes do we know at this stage. From appendix 2.2 we find imme- 
diately 

In2] = ½v/(I~ + I 5 + I 9 + I l l ) ,  (14) 

lull = ½ x / ( I a - - l s - - I a a  +19) ,  

[u2[ = ½ \ / ( I , - - I 5 + I 1 , - I 9 )  , 

S ~ It / l l  2 -~ I//312 = ¼ ( I 1 + 1 5 - - I 9 - - I l l  ) ,  

(15) 

(16) 

(17) 

In,I 2 In312 - /22 ( 1 8 )  
4sin 2 ~b I " 

'We recall, that a = l l ,  P =  --12, DNN=I5, CNN = --19, and KNN= --111. 
Since we can choose one phase arbitrarily, we assume n3 real positive and q51 is the relative phase between n l 

and n3. Eqs. (14)-(16) give the moduli rt2, u:, and u2. Eqs. (17) and (18) can be used in the same way as in ~zN 
scattering to give a relation between In;I, In31, and qS~. The analogue of eq. (7a) is 

p2 _ Sp  + I2--------~2 - O, 
4sin2 41 (19) 
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and to get p real, we must  have 

S:  > I22 

sin E q51 " 

Eq. (20) gives us a range for q51 and the following restriction 

ISI > 1121, 

which can be written as 

la+DNN+CNN+KNNI > 4IPI .  

(20) 

(21a) 

(21b) 

L 1 = (~n 1 -fin3) rt*, (25) 

L2 = - 2 n 3 n 2  + ~ul UE, (26) 

where 

= 2sin 20R, and [] = 2cos 20 R. 

This non-trivial inequality is satisfied by the present data. Eq. (21b) is a special case of  eq. (5), that  is 

ImM15 ~< x/M,1 x/M55 • (21c) 

Using the numerical values of  appendix 2.5, we obtain 

[nel = 0.68___0.04, 

lull = 0.01 -t-0.21 , 

lu2[ = 0.01 +0 .21 ,  (22) 

S = 0 .53+0.03 ,  

- 1 6 8  ° < q51 < - 1 2  ° . 

Fig. 4 summarizes the results after the five measurements. We have some constraints on the moduli,  but  the phases 
are almost totally unknown.  

In order to obtain the phases, one has to perform new measurements. Suppose one measures the R and A 
parameters, corresponding to I (os ;  os) and I (o / ;  os), respectively, and using also a polarized beam, so that 
I(ns; os) and I(nl; os) are measured simultaneously. Then one can obtain all the amplitudes, except for one phase, 
as will be shown below. 

4.2. RESTRICTIONS ON THE AMPLITUDES IMPOSED BY R AND A TYPE MEASUREMENTS 

Let us assume, that the measurements R = I ( o s ;  os) and A = I ( o l ;  os), and simultaneously I(ns; os) and l(nl; os) 
have been performed and let us consider the following four quantities 

11 = I(01; os) cos OR -- I (os ;  os) sin OR, 

12 = I (o l ;  OS) COS 0R + I(OS; OS) sin OR, 

1' 1 = I(ns; os) COS0R + I(nl; os) sin0R, (23) 

1~ = I (ns ; OS) COS 0R -- I (n l; Os) sin OR, 

where OR is again the lab recoil angle. We can define two complex numbers L 1 and L2 as follows 

L1 = 11+i1'1, (24) 

L2 = lE+ilE, 

and after a straightforward calculation, using appendices 2.2 and 2.4 we get 
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Here L a and L2 are known f rom the measurements, while also the moduli  of  all the amplitudes are known within 
some errors. Thus f rom eq. (25) one can obtain the phases of  the natural parity exchange amplitudes nl  and n2, 
which we called qS~ and q52, respectively. Recall that  the phase o f  rt 3 is assumed to be zero. F r o m  eq. (26) one 
can obtain the relative phase between the unnatural  parity exchange amplitudes. Let us concentrate on L a. At  

this stage we know 

In~l, 
S ~ [n i l  2 d- In3[ 2 , 

and 

In l l  2 In3[ 2 = I2/4sin2 q51 . 

Eq. (25) can be rewritten as 

L1 = ~ In1[ In21 ei~'~l-(o2) _ f l  [n2 l  In3] e-i4a2 , (27) 

f rom which follows 

[Lal  z _- in21 z I-c~2lnll 2 + f 1 2 [ n 3 1 2 -  2 ~ f l t n l  [ [n3l c o s q ~ l ]  . (28 )  

We can eliminate ~b~ by calculating cos 2 qS~, and adding sin 2 qS~ to it. Then we obtain 

f - ~  1 ~ 
r-[--Lal2 flS + i . , l  2 , ( 2 9 )  

41n l12[n312  = I2 + L~3ln2l 2 ~ ~3 

W e  c a n  a l s o  e l m i n a t e  In3[ 2 b y  u s i n g  

In3[ 2 = S - I n a [  2 ,  (30 )  

a n d  a f t e r  s o m e  e a s y  a l g e b r a  w e  o b t a i n  a s i m p l e  q u a d r a t i c  e q u a t i o n  f o r  p = ]na[2: 

1 6 p  2 + 2 E M ( / ? z - ~  2) - 4jSZS] p + e2/~2IzZ + E M - 3 2 S ]  z = 0 (31)  

H e r e  M is d e f i n e d  as  M - [ L l l 2 / I n z l  2 . 

0.5 Re" 

Fig. 5a. Dete rmina t ion  of  the phases of  the natural  parity 
exchange ampli tudes by construct ing LI = cxnln~-flnan'~. Here 
]nil was taken to be p+ = 0.72-4-0.03, which gives two possible 
solutions A and B. The phase of  n3 is assumed to be 0. The phase 
of  n2 is given by the angle -~b2, while the phase difference 
between nl and n2, ~b~-~b2, is given by the direction of  ~nln'~ 
(~1 - ~b2 = 0°). The  solution, corresponding to point  B, has to be 
rejected, because ~ba has to be negative, since the polarizat ion 
P oc - s i n  ~b~ is positive. 

0.5 

~ - - - ~ ,  n, n ;  

D Re" 

Fig. 5b. See fig. 5a, except Inll was taken to be p_ = 0.374-0.03. 
We find again two solutions (C and D), namely nl = 0.37 e ±it162°). 
However,  these solutions do not  agree with the range for nl,  
given in fig. 4, and have to be rejected therefore. 
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The solutions o f  this equation are given by 

p+ = 1{S + ( S - 1 M )  cos(40R) + x / [ ( S - ¼ M )  M - I z  z] sin(40R)}. (32) 

Thus we have an ambiguity in ]nl I z, since it can be p+ or  p_ .  Then we have also an ambiguity in ]n3], because of  
eq. (30). These ambiguities can be solved by calculating the phases for each solution. The phases q51 and ~b z can 
be obtained from eq. (27) via a geometrical method. One just has to construct the known complex number  L1, 
draw a circle of  radius r l =  ~ [n l]]n2] centered in L~, and another circle o f  radius r 2 = fl ]n z[]n3] centered at the 
origin. In general the two circles will intersect in two points, provide the solutions of  eq. (31) are real and positive. 
This requires 

(S -¼ M) M >~ 12, (33a) 

which gives the inequalities 

21n212 I S  -- 4 ( S - I 2 ) ]  ~ ILl[ 2 < 2lnzl z [-S + , f  S - I 2 ) ] .  (33b) 

These inequalities, which give bounds on the possible values of  ILl [ 2, are a special case o f  eq. (5). 
The geometrical method is illustrated in figs. 5a and 5b, using the numerical values for the observables o f  appen- 

dix 2.5. Fig. 5a corresponds to p+, which gives ]nil = 0.72_+ 0.03, and fig. 5b to p _ ,  which gives In~l = 0.37_+ 0.03. 
Each figure gives two solutions for the phases q51 and q52, so we have in total a four-fold ambiguity in nl corre- 
sponding to the points A, B, C, and D in fig. 5. The points A and C would  give the solutions 

n I = 0.72 e -i(122°),  (34a) 

and 

nl = 0.37 e -i(16z°),  (34b) 

while the points B and D would give the same solutions with an opposite sign for the phase of  n l .  However,  the 
latter solutions are not  allowed by the range for q5 ~ given in eq. (22). I f  the other solutions for n~ are compared 
with the solution o f  eq. (19), which has been given graphically in fig. 4, then it turns out that  one can keep only 
the solution 

nl = (0.72_+0.03) e -i(122°-+32°) (35) 

The quoted error on the phase is just a global estimate, since it was obtained from the range allowed by the circles 
with minimum and maximum radii. The errors on the phases quoted hereafter will be obtained in the same way. 
F rom fig. 5 we also obtain the phase of  nz, which gives 

n 2 = (0.68___0.04) e -i(122°+30°). (36) 

Since n I is pinned down, we find immeditely n 3 to be 

+ 0  06 n3 = (0.10_o.oz), (37) 

because o f  the restrictions imposed by eqs. (17)-(19), which give one-to-one relationship between nl and n 3, as 
explained in fig. 2 for the case o f  7rN scattering. 

Since q~2 is nOW determined, we can use eq. (26) to obtain the relative phase between u~ and u2. A solution 
o f  eq. (26) is given in fig. 6, where we constructed L 2 and the range for 2n3n~(A~2 = _+32°). This gives us the 
following range for the phase difference q~34 between u~ and u2: 

- 2 2 5  ° < (/)34 < --15 ° • (38) 

Here we did not  take the experimental error on Lz into account. However,  in order to obtain some information 
Re on the phase of  eu* u2, one has to measure {lm}Lz with an accuracy of  the order o f  ~lu~l l u21, which is ~ 10-4 

in our specific example. Therefore with our  assumed error of  0.08 we obtain no information on q534. We will 
discuss this later on. Our knowledge about  the amplitudes at this point has been summarized in fig. 8. We will 
now discuss a way to determine the phases o f  the unnatural  parity exchange amplitudes. We will not take the 
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experimental errors into account, since in our specific example the moduli of u~ and//2 are too small to obtain 
these amplitudes accurately from the measurements. Fortunately. if they are really so small in practice, then there 
is no need to determine them accurately, since they will be negligible as compared to the other amplitudes. 
However, at large transverse momenta the unnatural parity amplitudes may play an appreciable role. Then one 
should be able to obtain them from the previous experiments in combination with the experiments, mentioned 
below. 

4.3 .  RESTRICTIONS ON THE AMPLITUDES IMPOSED BY THE MEASUREMENTS I(so;os) AND I(sn;os) 
Let us assume, tha t / ( so ;  os) and I(sn; os) have been measured and consider the complex number 

1. 3 = I (SO ; OS) COS O R - -  i I ( s n ;  os) s i n  O R . (39) 

By using appendices 2.2 and 2.4 one can easily show that 

* * * ½ (n*u  * L 3 = - l O ~ U l n  3 q-  n 2 u  2 - n l u  1 -1- - -  niul) ,  (40) 

which can be rewritten as 

123 = ~l  ei43 -[- ~2 e - i@3,  (41) 

with 

~-'1 = - ½ ~ [ u l l  Inal  + ½D[In21 lual e - i ( . 2 + ~ 3 4 )  + In~l lull e - i ( n + 4 ' l ) ] ,  

~.'2 = In21 luzl ei(@2+@a4) "q'- Inll luxl e i ( " + ~ ' )  • 

Here Z 3 ,  ~1, and ~2 are known and one can solve the equation via the geometrical method (see fig. 7), which 
gives for the phase of Ul 

~b3 = 145 °, (42) 

and therefore we find the phase of  u2 to be 

~b4 = 325 °, (43) 

since their phase difference ~b34 was determined to be - 1 8 0  ° (from fig. 6), if we neglect the experimental errors. 
Even if L 3 is known accurately, then the large error in ~34 leaves q~3 and ~b 4 undetermined. 

2n 0: o! 

02 & 02 L2 
A~'2 T \.u_u* 

- 0 " 2  / _ 2 -  I 

F 

q 

R; 

]Zig. 6. Dete rmina t ion  o f  the phase  difference q~a4 between the 
two unna tu ra l  pari ty exchange ampl i tudes  by const ruct ing 
L2 = - 2 n 3 n ~ + c t u 2 u ~ .  A ~ 2  indicates the error on if2, which 
causes a large error Aft34 in ffa4. If, in addit ion an error o f  0.08 
for IL21 is taken into account ,  then  one finds no constraints  on  

t 
- 0.04 ~'3 

-0.04 

p,,-L3 

[ 
0.04 Re" 

Fig. 7. De te rmina t ion  o f  the phase  ~3 o f  the unna tu ra l  parity 
exchange ampli tude u~ by construct ion o f  L a = l ( a l e l * a +  
+1(21 e- l*a .  If  typical experimental  errors are taken into account ,  
one finds no constraints  on  fla. 
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E 
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0.5 1,0 

o, < )  o,,_,o// -\o -o., , I 

Re U2/ 

Y 
Fig. 8. Summary of the knowledge of the pp elastic scattering 
amplitudes after 9 suitable measurements, namely the 5 measure- 
ments which determine fig. 4, and l(os;os), l(ns;os), l(ol;os), 
and l(nl; os). 

5. Discussion 

The advent of a high energy polarized beam has made it feasible to perform sufficient experiments for the 
reconstruction of the five pp elastic scattering amplitudes. 

We found an unambiguous  solution for the amplitudes, if in addit ion to the performed or recently proposed 
measurements,  I (oo ;  oo), I (on;  oo), I (nn; oo), l (on ;  on), I (no;  on), I ( so  ; os), and l ( sn;  os), one knows I(os;  os), 
I(ns; os), I (o l ;  os), and I(nl;os) .  

These last four observables require only two experiments, if one uses a polarized beam in combinat ion  with a 
polarized target and a recoil polarimeter. We solved the equations for a specific numerical  example, taking into 
account  the experimental errors. An  appreciable cont r ibut ion  to the uncertainties in the phases comes from the 
uncertainties in the moduli ,  which are mainly determined by the errors on DNN and KNN (see figs. 5 and 6). 

In appendix 2.4 we listed the lab observables, which are the easiest to measure. However, if DNN~ I, then 
lUll~ lu21 ~ 0  [see eq. (12)]. In  that case, six of these observables are zero (see table 1). Therefore it will be difficult 
to obtain new informat ion from these experiments at small t-values, where DNN ~ 1 1,). Fortunately,  these obser- 
vables give then informat ion on negligible amplitudes. However, at large t-values u~ and u 2 are not  negligible, 
and  at least two of the observables of table 1 have to be known to obtain the phases o f u i  and u 2. 

In the previous sections we assumed that  we measured the laboratory observables of appendix 2.4 pure, that 

Table 1 

Some of the lab observables of appendix 2.4. These observables 
are zero, if the unnatural parity exchange amplitudes are zero, 
which is the case if DNN = 1. From these observables one can 
obtain the phases of the unnatural parity exchange amplitudes, 
if I--DNN differs appreciably from one, which is the case at 
large t-values. 

l ( sl ; oo) l (ss ; on) l (so ; os) 
l (ss ; oo) l (sl ; on) l (sn ; os) 
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is o n l y  s, l o r  n c o m p o n e n t s  o f  t h e  p o l a r i z a t i o n  we re  i nvo lved .  H o w e v e r ,  in  a n  e x p e r i m e n t a l  se t -up ,  ve r t i ca l  

m a g n e t i c  f ields a re  u s u a l l y  p r e s e n t  w h i c h  c a u s e  a p r e c e s s i o n  o f  t he  h o r i z o n t a l  sp in  c o m p o n e n t s .  I n s t e a d  o f  

m e a s u r i n g  these  c o m p o n e n t s  " p u r e " ,  o n e  m e a s u r e s  l i n e a r  c o m b i n a t i o n s  o f  t h e m .  I n  t h i s  case  a n  a n a l y t i c  r e c o n -  

,~;truction o f  t he  a m p l i t u d e s  b e c o m e s  m o r e  diff icul t .  T h e n  it  m a y  be  m o r e  c o n v e n i e n t  to  r e c o n s t r u c t  t h e  a m p l i t u d e s  

via a n u m e r i c a l  m e t h o d  2 t )  b y  v a r y i n g  t h e  a m p l i t u d e s  a t  r a n d o m ,  c a l c u l a t i n g  fo r  e a c h  set  t he  m e a s u r e d  o b s e r v a b l e s ,  

a n d  k e e p i n g  o n l y  t he  s o l u t i o n s ,  w h i c h  a re  c o n s i s t e n t  w i t h  t he  m e a s u r e m e n t s .  

H o w e v e r ,  t he  s o l u t i o n  o f  t he  " s i m p l e "  case,  w h i c h  we s h o w e d ,  is sti l l  ve ry  use fu l  f o r  o b t a i n i n g  i n s i g h t  in  t he  

'var ious  a m b i g u i t i e s  a n d  w h i c h  e x p e r i m e n t s  a re  i m p o r t a n t  to  r e so lve  t h e m .  

W e  wish  to  t h a n k  D r s  G .  T h o m a s  a n d  C. W a r d  f o r  use fu l  c o m m e n t s  a n d  D r  R.  F i e l d  fo r  c o m m u n i c a t i n g  re su l t s  

p r i o r  to  p u b l i c a t i o n .  O n e  o f  us  (J .S.)  a c k n o w l e d g e s  t he  w a r m  h o s p i t a l i t y  r ece ived  a t  A r g o n n e  N a t i o n a l  L a b o r a t o r y .  
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A p p e n d i x  1 

~zN elastic scatterin 9 

1.1. The center-of-mass observables. 

O1 = I f + + l  2 + I f + - I  2 ,  

02 = 2 I m ( f + + f * _ ) ,  

03 = 2 R e ( f +  + f * _ ) ,  

O4 = If++[ z - I f + - I  2. 
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1.2. 

O" = 

P =  

R =  

A =  

1.3. 

M =  

W. DE BOER A N D  J. S O F F E R  

The laboratory observables (OR is the lab recoil angle). 

0 ( o ; o )  = 01, 

0 (n ; O) ---- - -  0 2 ,  

O(S;S) = - - 0 4  COS0 R --  0 3  sin0R, 

O(1;S) = 04 sin0R -- 03 COS0R. 

The M matrix in terms of the center-of-mass observables. 

2 f u f i ,  = ( 0 ,  +04 03+ i02~  

k,O 3 - - i O  2 0 1  - - 0  4 f 

1.4. The quadratic relation, which follows from eq. (3) in the text. 

( 0 1  4 0 4 )  ( 0 1  - - 0 4 )  = 0 1 + 0 2 2  . 

This relation can be written as 

p 2 + R Z + A 2  = t72. 

Appendix 2 

N N  elastic scatter&g 

2.1. Our set of amplitudes in terms of the s-channel helicity amplitudes. 

1 
n l  - -  ( ¢ 1 + ¢ 2 + ¢ 3 - - ¢ 4 ) ,  

2 , / 2  

1 
n 2 - -  ( ¢ 1 - - ¢ 2 + ¢ 3 + ¢ 4 ) ,  

2 , / 2  

n3 = , /2  ¢s ,  

H I  - -  
1 

2,/2 = - - ( - ¢ 1 + ¢ 2 + ¢ 3  + q L ) ,  

1 
u2 = ( - ¢ 1 - ¢ 2 + ¢ 3 - ¢ 4 ) .  

2 , / 2  

Here we used the standard notation for the helicity amplitudes: 

~ l  = < + + l M l + + > ,  

¢ 2 = < + + 1 M 1 - - > ,  

¢ 3  = < + - [ M I + - > ,  

¢ 4  = < + - - [ n l -  + > ,  

¢s = < + + l n l - + > .  

The relations between our set of amplitudes and other commonly used sets can be found by comparison with ref. 8 
for the "classical" amplitudes9), ref. 11 for the transversity amplitudes and ref. 12 for the exchange amplitudes. 
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2.2. Center-of-mass observables. 
Below we list 25 independent c.m. observables in terms of the helicity amplitudes of an appendix 2.1. At the 

:right hand side we give Halzen and Thomas'  notation for the c.m. observables: I(ab;ed),  where the arguments 
.give the direction of the polarization of the beam, target, scattered and recoil particle, respectively. The c.m. 
observables can be expressed in terms of lab observables, which are defined in terms of polarization components 
along the coordinate axis of fig. 1. (see appendix 2.4). If the coordinate transformation causes a c.m. observable 
to be a linear combination of two lab observables, then it is denoted as an indirect measurement (7). The c.m. 
observables, which are difficult to measure, because of reasons given in section 4, are denoted by ]. 

[1 

I2 

i3 

74 
15 

I6 

i7 

I8 = 2Re(u2 

19 = --Inll  2 

110 = 2Re(n2 

111 = --In~[ 2 

712 = 2Re(n~ 

= ]nil z +  [nz] z + ln3 l  z +  lull 2+[uz l  2, 

= 2Im(na n~), 

= 2Re(nln*)  + 2Re(u lu*) ,  

= - 2Re(n2n~),  

= Inll 2 + [n2[ 2 + In3] 2 - [ux[  2 - - [ U 2 1 2  , 

= 2Re(nan*)  - 2Re(UlU*) ,  

= - 2Re(n2u*)  - 2Re(n lu*) ,  

A t- 1/721 2 -  I/'/3[ 2 "-[ - l u l l  2 -  [U2[ 2, 

u*) - 2 Re(n ,u*) ,  

+ In2l 2 --In3[ 2 --[Ua[ 2 + ]U2l 2, 

u*) -- 2Re (n2u*) ,  

713 = 2Re(u ln* ) ,  

114 = _ 2Re(n1 u * ) -  2Re(n2u*),  

i15 = - 2Im(n2n~),  

716 = 2Im(u ln '~ ) ,  

[17 = - 2Im(u2n'~) ,  

71~ = 2Im(ulu '~)  - 2Im(nl  n~), 

719 = 2 I m ( n l u ~ ) -  2Im(n2u*) ,  

u*) + 2Im(n2u*) ,  

u*) + 2 I m ( n 2 u * ) ,  

u*) + 2 lm(n * 1F/2) ~ 

120 = 2 Im(n l  

/21 = 2Ira(n1 

122 = 2Im(ul  

I23 = 2 lm(n lu*)  + 2Im(nzu*) ,  

124 = Inll z + In21 z - I n 3 l  z + lull 2 + [u2[ 2, 

]z5 = 2Re(n ln~) ,  

I (oo;  oo), 

I (oy ;  oo), 

I (oz;  oz),  

I (oz ;  ox),  

I (oy  ; oy),  

I (ox;  ox),  

I ( z z ;  oo) ,  

I ( x z ;  oo), 

I (yy ;  oo),  

I ( x x ;  oo),  

I(yo; oy), 

I (xo;  ox),  

I(xo;  oz),  

I (oz;  zo),  

I ( yx ;  ox),  

I (xy;  ox), 

I ( xx ;  oy) ,  

I ( yx ;  oz), 

I (xy;  oz),  

I (zy ;  ox),  

I ( z x ;  oy),  

I ( y z ;  ox),  

I (xz; oy) ,  

l ( x x ;  xx ) ,  

l ( x x ;  xz ) .  
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2.3. 

M = 

W. DE BOER AND J. SOFFER 

The M matrix  in terms o f  the center-of-mass observables. 

--19--111 +15 32124--11 

L (Hermitian conjugate) 

73 3i6 3i(i22--118) 712--i14+i(-I19 +120) 
11315+111+19 110--i7 + i ( ]  2 +I23) 

11 - I  s - 1 1 1 3 1 9  

2.4. The laboratory observables (OR is the recoil angle). 

tr = I ( o o ; o o )  = 11, 

P = I ( n o ; o o )  = I ( o n ; o o )  = I ( o o ; o n )  = I (nn;on)  = - I 2 ,  

DuN = I(on;on)  = 15, 
I(sl; oo) = --18, 

CNN = I(nn; oo) = - 1 9 ,  

I (ss;oo)  = I 1 o, 

KNN = I (no;on)  = --111 , 
I (ss;on)  = - - I  17, 
l (s l ;on)  = 123, 

R = I (os;os)  = i4 sin 0R--76 COS OR, 

A = I (o l ;os )  = 73 sin OR + i 4  cos OR, 
I (ns;os)  = 715 cos 0R--_718 sin OR, 
I (nl ;os)  = i 15 sin OR + i22  COS 0k, 
I ( so;os )  = I12 cos 0R--i  13 sin 0k, 
I (sn;os)  = I I 6  COS 0 R 3 1 1 9  sin 0k. 

--i7 -110  3i ( i21 - 123) 2 i 2 s + 2 i i  2 

- - I 1 2 - 1 1 4 3 i ( 1 2 o - I 1 9  ) - 2 .74-2  i115 

13 --i6 -- i (II8 3122) 2113 + 2i]16 

11 --153111 --19 218 -- 2ii17 

211 -- 2124 

been listed in brackets. 

I ( o o ; o o )  = 1, 

I ( n o ; o o )  = +0 .1230 .01 ,  

I(on ; on) = 0.9996___0.08, 

I(sl; oo) = - 0.0015 + 0.04, 

I(nn; oo) = + 0.0645___ 0.04, 

I(ss; oo) = -0 .0022  30.04,  

l (no;on)  = +0.0645-+0.08, 

I(ss;on)  = - 0 . 0 0 1 2 + 0 . 0 8 ,  

[normalized to 1], 

[P=0.131 __+0.007 at Itl =0.225 (GeV/c2]6), 

[DNN = 0.9--+0.11 at It] = 0.29 (GeV/e)Z]14), 

[Cuu = ~0.04+0.02~ at It[ = ~0.17~ (GeV/c)2]l"), 
[0 .11  _ 0 .02J  [0 .27J  

[KNu = 0.14_+0.08 at It[ = 0.53 (GeV/c)2115), 

2.5. Numerical estimates for  the laboratory observables. 
We obtained numerical estimates for the observables of  the previous section from the helicity amplitudes given 

in ref. 16. We took Plab = 6 GeV/c and - t = 0 . 2  (GeV/c)  z. The experimental values for six observables have 

Here I(ab; cd) denotes a laboratory observable, for which the spin components  of  the beam, target, scattered and 
recoil particles are determined along the a, b, c and d direction respectively, a, b, c and d may each be any of  the 
directions s, n or l (see fig. 1). A " o "  denotes not  determined. 
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I(sl;on) = 0.0261 +_0.08, 

I (os ;  os) = - 0.198-t- 0.08, 

I (o l ; o s )  = 0.938+_0.08, 

l(ns; os) = +0.03 -I- 0.08, 

I(nl;os) = 0.115-t-0.08, 

I ( so ;os )  = 0.001 _+0.08, 

I(sn;os) = 0.0247___0.08. 

[R = - 0.17___ 0.24 at [t l = 0.23 (GeV/c)2]2°), 

Field and Stevens 22) have compared  predictions o f  various models. They usually agree with the values quoted 
',above, except for some disagreement on the observables which depend on the phases between natural and un- 
natural parity exchange amplitudes, namely I(ss;oo), I(sl, on), I(so;os) and I(sn;os). 


