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RAPID COMPUTATION OF THE VOIGT PROFILE 
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Abstract-A computational procedure is described to evaluate the Voigt function with a maximum relative 
error of about one part in IO’, for use in line-by-line transmittance calculations and other applications. An 
efficient Fortran IV subprogram is given in the Appendix. 

OUTLINE OF COMPUTATIONAL PROCEDURE 
ATMOSPHERIC transmittance calculations for regions in which both Doppler and Lorentz line 
broadening are important require the evaluation of the Voigt profile function, viz. 

For an extensive review of the numerical methods employed and references to tabulations, the 
reader is referred to Armstrong,“’ Young,(*) and Armstrong and Nicholls.“’ These authors 
describe computer routines which are suitable for use with arbitrary values of the parameters x 
and y rather than for the preparation of tables, which was the intent of several earlier authors. 

Direct integration or line-by line methods of computing atmospheric transmittance are now 
widely employed when high accuracy is required. The computer programs-c& repeatly for the 
evaluation of the Voigt profile, which may account for a considerable fraction of the execution 
time of the program. For example, computing the Voigt profile with a modifled routine from 
Young’*’ took about 75% of the total execution time in a test calculation of transmittance using a 
program developed by Drayson.‘*’ Thus, improvement in efficiency of the Voigt routine could 
considerably reduce the expense of calculating transmittances. 

Most routines give an accuracy corresponding to six significant figures or better, although 
double-precision arithmetic is required to reduce the round-off error on some machines. However, 
the numerical accuracy of the transmittances in the line-by-line method is usually limited to about 
four decimal places by the truncation error of the numerical quadrature of the intergral over 
frequency. The absolute error is further limited by uncertainties in the line parameters, these 
usually being the dominant source of errors. 

An accuracy of 6 decin@ figures in the Voigt routines is not normally needed for 
transmittance calculations. A relative error of 1 part in 10’ would not contribute to a 
transmittance error of more than 1 in the fourth decimal place, which is compatible with the other 
sources of error. In writing the subroutine, steed and accuracy were the primary concern while 
other factors, such as storage and a small number of statements, were considered only after these 
criteria has been met. Several techniques described in the literature were programmed an4 tested 
for speed and accuracy, with the fastest being incorporated into the function program: Three 
methods were selected for use in the three regions identified in Fig. 1. 

Region I. The method adoptedis a variation of the Taylor series expansion [FADDE~ERA and 
TARENTW?. If y ~0, the Voigt function is the real part of the complex probability function 

w (2) = e-‘* (l+$letZdt), 

where z = x + iy. Equation (2) may be rewritten as 
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Fig. 1. Computational regions used in this paper. 

w(z) = e-‘2+AF(z), 
VT 

F(z) = emz2 I 
z 

eet2 dr. 
0 I (3) 

For real z, the function F(z) is known as Dawson’s function. The coefficients d,, of the Taylor 
series expansion of F(z) about a real point x obey the relationships 

do = F(x), dl = 1-2xd0, d,+, = - &(Xd+d”-,) for n=1,2,... (4) 

Dawson’s function is first evaluated on the x-axis and the Taylor series is used to find the 
imaginary part of F(z) and hence the real part as w(z). 

Dawson’s function may be evaluated by series expansion, as asymptotic expansion or a 
Chebyshev expansion due to HUMMER.‘@ The procedures are time-consuming and add 
considerably to the execution time of the program if evaluated seperately for each entry to the 
Voigt function. In a faster method developed for the program, Dawson’s function is evaluated 
initially by the Chebyshev expansion at points on the x-axis spaced 0.2 apart at x = 0.1, 0.3, 
0.5,. . . ,4.9. The coefficients d,, d2, da, d4 are also computed at each point using eqn (4) and are 
then stored for later use. This process is relatively inefficient but has to be done only once for 25 
values of x in the interval (0.0, 5.0). Dawson’s function is evaluated for arbitary x by a Taylor 
series expansion about the nearest point, distance at most 0.1 away, assuring rapid convergence. 

The number of terms needed in the Taylor series expansion of F(z) depends on x and y. 
Testing for convergence slows the program and is not easy since the absolute value of the terms 
does not always decrease monotonically. The number of terms needed was determined for 
several values of x and y and an empirical function developed developed (see program listing). 

Region II. The function w has a continued fraction expansion [FRIED and CONTE”‘], viz. 

1 (l/2) 1 (3/2) (n/2) ~(~)w(z)=--..__. . .-. . . 
z+ zs z+ z+ z+ ’ 

For y > 1, the expansion of w(z) converges rapidly so that the continued fraction becomes an 
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efficient method in Region II. Along the line y = 1, which separates Regions I and II, the Taylor 
series and the continued fraction require about the same computer time but in each region the 
time decreases with distance from the line. 

The number of terms needed in the continued fraction expansion varies from n = 4 near the 
border of Region III to n = 19 near the point x = 0, y = 1. An empirical function was again 
developed to avoid the necessity of testing for convergence. 

Region III. Numerical integration of the integral (1) by Gauss-Hermite quadrature is simple, 
fast and accurate for sufficiently large x and y and is employed in Region II. In Region IIIa 
4-point quadrature is required to maintain accuracy, while a 2point quadrature is adequate in 
Region IIIb. Outside these regions, the required order of the quadrature increases rapidly and 
other methods must be used. 

For very small values of y, the relative error of the method becomes larger than 1 part in la’ 
but, since the numerical value of the integral is small, this is rarely a signiflcant factor. 

An efficient FORTRAN IV subroutine was written (see the Appendix for details) and tested 
for speed and accuracy on an IBM 37OllaS. This machine was a word length of 32 bits, shorter 
than that of other machines commonly used in scientific calculations, so that problem due to 
round-off error on diflerent machines should not arise. Table 1 gives the CPU time in each 
computational region. Also shown is the CPU time for a method due to Rybicki [see ARMSTRONG 
and NICHOLLS(~)] in which the function w(z) is expanded in a series. Limiting the sum from 
n = - 8 to + 8 gives about the same accuracy as the routine described here, but is slower except in 
a small region of comparable speed. A routine given by GAUTSCHI’~ is more than five times slower 
than the routine described in this paper, so no attempt was made to increase speed at the expense 
of accuracy. The technique employed by KIELKOPF’~’ is not suitable for transmittance calculations 
since it sometimes gives only an accuracy of one significant figure. 

In a test of transmittance calculations described earlier, the new routine evaluation the Voigt 
profiles almost five times faster and the execution time of the entire program was less then half. 
The transmittances, averaged over O-1 cm-’ intervals, differed at most by 2 x lo”, which is 
considerably more accurate than the original aim, partly because the function accuracy was 
usually better than 1 part in 10’ and partly because the integrations in the transmittance program 
tended to average the alternating signs of the errors. 

Table 1. CPU time of routines for calculating Voigt profiles, in microseconds (IBM 370/168). 

Region This paper Rybicki 

I Maximum 185 
Minimum 125 

Summary of computational methods 
(a) Regionl. y I 1.0,x < 5.0 - 0.8~. Intheinitialentry,onlyDawson’sfunctionisevaluatedat25 

points on the x-axis using a Chebyshev expansion [HuMMER’q. Dawson’s function F(x) is obtained 
from a Taylor-series expansion about the nearest of the 25 points. A second Taylor series with 
x = constant is used to obtain F(z) [FADDEYEVA and TERENTI@]. 

(b) Regionll. y > l.Oandx < 1+?5(3.6- y). Weusedacontinuedfraction[FtuEuandCours(”]. 
(c) Region III, All x,y not in I and II. For y 2 11.0-0.6875 x, we used a 2-point 

Gauss-Hermite quadrature; for y C 11-O- 0.6875 x, we used a Cpoint Gauss-Hermite 
quadrature. 
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APPENDIX: A 
FORTRAN ptvgram for the Voigt function 

The Fortrau IV computer program for the evaluation of the Void function uses the efficient numerical methods described in 
the text and the following FORTRAN code. 

F”NCTlGN “OIGT CX,Y) 
C l == ROUTINE COMPUTES THE “0127 CWCTION: Y/P‘*I.“TEGR4LL PRO” l == 
C . . . - 70 + lNFlNlTY OF EXP(-T=*,/(Y=Y+(X-T,=~X-7,, CT . . . 

RElL 8~22,/0.,.7093602L-,/rR1orXB(15)/10 ..9..2=*..7..6..5.*4.,7 
*=3./,Y~~*5,,3=.6,.5.2=.4,4=.3,,...~..2.2*.7~,UC~25,,C~~25,,U2~25,, 
2D3~25,,D4~25,,HN~2S,,“~.2O,~,XX~3,~.5246476,,.65062..707,068/,”1~3 
3,/.25*2*21..2522262~-,,.222C~4*,..”2~2~,~,,S.5.~.,2.5,6.,7-5,7.,6.5 
4,6.#5.5,5.,4.5.4..3.5,3.,2.5,2.,,.5~, .,.5/,C~2*,l.7093602E-7*-.25* 
58434E-6,.2566874E-6, -.2727638E-5..266074E-S,-.256SSSIE-4~.7222775E 
6-4. -.,93363LE-3..42995202-3. -.1173267E-2..26487622-2,-.5623,9OE-2, 
7.LIL9601E-I ,-.2024976E-,,.362,5732-L r-.58514,2E-I,.27708,6E-,,-.I2 
8,664,.15584,-.124,.2/ 

c . . . 

01 

D3 
04 
I35 
D6 
C . . . 

*7 
Il8 

c l . . 

II 0 

c . . . 

c l . . 

u I 

u 2 

c l . . 

c . . . 

“3 

LOGICAL TRUI.FALSE.I 
IF <mu> GO TO 104 
REGION I. COMPUTE D4\USOx’S C”?aCT,ON cl* MESH POMTS l ** 
TRU=.*R”E. 
00 101 I=,#15 
RI<l,=-,,2. 
DO 103 1=1,25 
HN<*>=H=~,-.5> 
CO=4.=HN(I,=HN(*,/25.-2. 
DO roe J-2,2, 
B<JI, ,=CO=B~J>-B~J-I >+cc.l> 
DO~I,=nN~*,*~8~22,-B(el,,/5. 
D,~I,=,.-2.=HN~I,*DOo 
D2~*,=~“N~,,=D,~I,+DO(I))/Hio 
D3~*,=~HN~I,=D2~I,+DLo)IR1(3) 
D4~I,-~H~~I,=D3~I,+Dao)/RI(q) 
IF (X-5.1 105.1,2,*12 
IF <Y-l., 110,110,106 
IF <X.GT.,.25=(3.6-Y,, GO TO IL2 
REGION 1,s CONTllUED FR4CTIOI. CONPUTE 
IF <Y.l.T.L.45> GO TO 107 
1=Y+Y 
20 TO 108 
I=ll.‘Y 
.l=x.x+* .85 
M4X=XN<J>=W< I >+.46 
MIN=“lNO~l6,21-2’MPIX~ 
E”4LLmTE CONTlNUED FR4CTION l ** 
L,U=Y 

WMBEH OF TEHllS NEEDED. l *’ 

;;.x 
DO 109 J=IIN,19 
“=,“2Y2~J>/~““=U”+““*““, 
“U=Y+“*UU 
“V-X-“=“” 
“0*2T=UU/~U”=UU+““=““,/,.772454 
RETURN 
Y2=Y=Y 
IF cX+Y.GE.5.> GO TO 113 

REGlON 1. COMPUTE DAYSON’S FUNCTIO.” 47 X FHOM T4YLOR SEHIES. 
N-w” 
DX=X-HN<N+*) 

T4YLOR SERIES EXPA*SION ABOUT y-o.0 l ** 
““-2XP(Y2-X=X,*COS(2.=X*~,,,.,2637~-~=” 
““I-Y 
nax=5.+c12.+x,*.s*u 
DO LLL I-2rM4X.2 
U=~X*“+U,/RI~*, 
“=~X=U+“,/RI~I+, > 
U”=-UU*Y2 
““=““+“=U” 
“OIGT=*.128379*“” 
RETURN 
YET-Y-Y 
IF <Y.LT.,I .-.6875=X, GO TO 113 
REGION IllBi B-POINT W,USS-HERMITE QU4DR4T”RE. l =* 
u-x-xX(3) 
“=X+XX<3, 
“0I27=Y=~H”~3,,~Y2*“=“,*~~~3,~~~2+”*”,, 
RETURN 
REOION III/\r 4-POINt GIUSS-HERMITE WADR.4TURE. l == 
u-x-xx< t > 
“=X+xXc,, 
uu=X-Xx<2, 
““=X*XX(B, 
“OI2T=Y=~HH~,,/~12+“=“~+“~~*~/~Y2+”=”~+HH~2~I~Y2*Uu=uu~*“”~2~~~~*~ 

..I._ . . . . . 
I”“-““,, 

RETURN 
END 


