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Abstract--Statistical properties of the non-linear response of a point reactor to a white Gaussian 
reactivity insertion and an external source are investigated through the general Fokker-Planck theory 
for linear systems with random coefficients. The autocorrelation function and power spectral density 
of the reactor power are obtained, and the effect of non-linearities on the corner frequencies is 
discussed. The response to a Gaussian (not necessarily white) reactivity insertion and an arbitrary 
neutron source is also considered in the absence of delayed neutrons. 

1. INTRODUCTION 
This paper is concerned with the statistical properties 
of  the power response of  a point-reactor to a 

stochastic reactivity insertion and a stochastic source 
of  external neutrons, in the absence of  feedback 
effects. From a mathematical point of  view, the 
problem is the determination of  the statistical 
description of solutions of  a set of  linear stochastic 
differential equations with randomly varying coeffi- 
cients (parametric noise) and randomly varying 
inhomogeneous terms (additive noise). Since a 
complete statistical description of  the output is 
difficult to obtain in general, we shall confine 
ourselves to the determination of  its mean, corre- 
lation function and power spectral density, only. 
The response to parametric noise is quite different 
than that o f  additive noise, because the stability of  
the system is influenced by the variation of  the 
parameters. 

The study of  differential equations with randomly 
varying coefficients seems to be rather recent. It is 
not our intention to survey the literature on this 
subject in this introduction. The papers by Samuels 
and Eringen (1959), Ariaratnam and Graefe (1965, 
I, I I  and III), Leibowitz (1962), Tik_honov (1959), 
Astrom (1965), Gray and Caughay (1965) and more 
recently by Morisson (1972) are the most relevant 
papers to the present analysis, and contain sufficiently 
complete list of  other references. A more complete 
survey of  literature on the stability of  linear systems 
with stochastic coefficients was presented by Krist 
(1971). 

* This work is partially supported by the National 
Science Foundation. 

In the field of  reactor system analysis, the first 
attempt to account for fluctuating parameters was 
done by Akcasu (1961). He proposed to explain 
the observed oscillatory trains in EBWR, and the 
random scrams that occurred at high power levels 
in terms of  the concept of  "mean square instability" 
in a simple mathematical model, i.e. a second order 
differential equation with a randomly varying 
damping coefficient. Dutr6 (1964, 1968) presented 
an approximate method to determine the autocorre- 
lation function and power spectral density of  the 
reactor power assuming that the reactivity and 
neutron source variations are white Gaussian noise 
processes and independent of  each other. Williams 
(1969) attacked the same problem using the 
Fokker-Planck theoryt and discussed the validity 
of  the conventional linearization procedure. Krist 
and Poncelet (1973) presented a systematic investi- 
gation of  the effect of randomly varying microscopic 
parameters on the stability of  power reactors again 
using the Fokker-Planck theory. They concluded 
among others that the negative cross-correlation of  
the random parameters tends to stabilize the system 
in the mean and mean square where as the autocorre- 
lation of  the same parameters acts as a destabilizing 
effect. Most recently, Gotoh applied a diagram- 
matic technique to study the power correlation 
function when the reactivity insertion is a Gaussian 
random process. 

In this paper we present the Fokker-Planck 
theory in a more general form, and determine the 
autocorrelation function and the power spectral 

t Fokker-Planck theory was also used by Dalfes (1963) 
to investigate reactor noise due to neutron statistics. 
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density of the reactor power when the reactivity 
and source variations are white noise processes but 
not necessarily independent of each other. We 
clarify the discrepancy between the results of  this 
paper and those obtained previously. Since the 
Fokker-Planck equation breaks down when the 
parametric and the additive noise processes are not 
white, we formulate the same problem in the absence 
of  delayed neutrons, assuming that the reactivity 
variations are Ganssian but not necessarily white, 
and the source noise is arbitrary. As an example we 
calculate the mean power in the case of narrow-band 
reactivity noise. We reproduce the results of the 
Fokker-Planck theory as a special case assuming 
~hite Gaussian noise processes. 

2 .  APPLICATION OF THE FOKKER-PLANCK 
THEORY 

The kinetic equations of  a point reactor are 

I dP(t) 
- -  [K(t) -- laP(t) + ~ ~iCi(t) + S( t )  (la) 

dt i=t 

dCi(t) 
- a,P(t)  -- 2iC~(t), i = 1, 2 . . . . .  I (2a) 

dt 

where P(t )  and Ci(t)  are the reactor power and 
delayed neutron precursor densities, respectively, 
K(t)  is the reactivity insertion in dollars, S( t )  is the 
external source of neutrons, 2 t and fl~ are the decay 
constant and relative abundance of delayed neutrons 
in the ith group, respectively. In these equations 
the ratio of the mean generation time I to the fraction 
of  delayed neutrons t5 is chosen as the unit of  time 
so that l/fl = 1. We assume that K(t )  and S( t )  are 
random functions of time with the constant mean 
values Ko and So, respectively. Thus, 

K(t )  ~ K o + k ( t )  (2a) 

S( t )  ~- So + s( t)  t2b) 

where (k( t ) )  = 0 and (s(t)) ~-O. The fluctuations 
k( t )  and s(t)  are taken to be stationary random 
processes with known correlation functions 

ek(r)  = (k ( t )k ( t  + r)) (3a) 

es(r)  = (s(t)s(t  + r)) (ab) 

¢1~(r) = (k( t )s( t  + ~)) (3c) 

The power spectral densities, which are the Fourier 
transforms of  these functions will be denoted by 
Gk(o), G,(co) and G~s(O), respectively. 

The problem we wish to attack is to determine the 
correlation and power spectral density matrix of the 

outputs P(t ) ,  Cl( t )  . . . . .  Cl( t )  in terms of the 
correlation functions (or power spectral densities) 
of the input noise k ( t )  and s(t).  This problem can 
be considered as a special case of  a more general 
problem characterized by an n x n system of 
stochastic differential equations of the form 

dX(t) 
= g[X(t)] + et(t)X(t) + %(0  (4) 

dt 

where X(t) is the output (or state) vectcr, gfX) is a 
vector whose components are, in general, non-linear 
functions of  vector X, a(t) is an ~ x n square matrix 
whose components ~j( t )  are stationary random 
processes representing the random variations of the 
coefficients (called the parametric noise), and %(0  is 
a vector whose components ~j0(t) are also stationary 
random processes representing the variations in the 
external sources (called the additive noise). Without 
loss of  generality we may assume that 

(-~#(t)) = 0 

( # = 0 , 1 , 2  . . . . .  n and j = l , 2  . . . . .  n) (5) 

because we can always include the mean values in 
g(X). In the case of one group of delayed neutrons, 
the point kinetic equations (1) are reproduced from 
the above general form with X(t) = [P(t), C(t)] and 

where 
g(X) = M X  + N (6a) 

M = [ ( K o ? l )  2 ]  I S ; ]  --2 ' N = (6b) 

and 

If we define an equilibrium state X0 by 

MX o + N = 0 (7) 

and consider the incremental output ~X(t) 
X ( t )  - -  Xo, then the point kinetic equations become 

d ~X 
- -  M O X  + et 0 X  + 130 ( 8 )  

dt 

where ~o ------ aX0 + %. Since (gi~) = (flJ0)=0, (8) 
is the linear version of (4). The Fokker-Planck 
theory can be developed using the general form (4) 
as easily as using (8). It is known that the output 
X(t) forms a Markov process (Leibowitz, 1962; 
Ariaratnam and Graefe, 1965) if ~t(t) and %(0  are 
white noise processes, viz. 

(~i~(t)~v(t')) = 2Di~jv~(t -- t ' )  (9) 
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where 

i , j  = 1,2 . . . . .  n; /~,v = 0 ,  1 ,2  . . . . .  n. 

If, in addition, they are Gaussian, the first-order 
probability density f ( X , t )  and the conditional 
probability density W(X, t I X0, to) for t > t o of  the 
output Markov process satisfy the Fokker-Planck 
equation 

Of(X, t) 0 
- -  + ~ ( A ~ f )  

at ox~ 
1 3 2 

- -  (B, j f )  = 0 (10) 
2 0X, OXj 

where summation convention over repeated indices 
i a n d j  is implied. The coefficients d~ and B~. are 
defined by 

A~(X) = lim (~XL) (1 la) 
6t-~O at 

and 

<ax, axe>. 
B,¢(X) = l im - -  ( l l b )  

~,-,o at 

Evaluating aX~ from (4), these coefficients are 
determined (Ariaratnam and Graefe, 1965, III)  as 

A,(X) =g~(X) + DimX~ + Diuo (12) 

and 

Bit(X ) = 2[D~z~mX~X m 

+ (Dtuo + Diost)Xz + Di0J0] (13) 

again with the summation convention over 
l ,m = 1,2 . . . .  ,n. 

The solution of the Fokker-Planck equation is 
available only in some special cases (Wang and 
Uhlenbeck, 1945; Chandrasekhar, 1943). However, 
if only the moments of the output are of  interest, as 
is the case in the present paper, it is possible to 
obtain the relevant moment equations directly from 
the Fokker-Planck equations, without having to 
solve it, as 

d<X(t)) 
<A(X)), (14) 

dt 

d<X(t)xT(t)> 

dt 

= <XAT(X)> + <A(X)XT> + <B(X)>, (15) 

0(X(t)XT(t°)> -- <A[X(t)]xT(to)), t > t 0. (16) 
0t 
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The last equation is obtained from the Fokker-  
Planck equation for W(X, t IX  o, to) multiplying it 
by f(Xo, to)XXo T, integrating over X and X o and 
using 

<X(0xT(to)> 

=fdXfdXoXXoTW(X, tlXo, to) f(Xo, to). 

In the case of  one group of  delayed neutrons 
(a~ = 1), we obtain 

where 

A = [ (K° 

A(X) = AX + A o (17a) 

1 t ' 

=E o 1 (17b) 

and 

B(X) = [G~P2 + 2GksP + Gs ~ (17c) 

where we have defined 

4~(~) G~(~-) ~. (18) 
¢ks(r) G~sa(7)J 

Substituting these into (14), (15 and (16) we obtain 

d<X) 
= A<X> + Ao, (19) 

dt 

d(XXT) (xxT>/~.T + A<xxT> 
dt 

+ <X>Ao T + Ao<X> T + <B>, (20) 

0<X(t)X(to)T> 

0t 

= A(X(t)XT(to)> + Ao<xT>, t > to. (21) 

(i) The behavior of the mean 

It  is interesting to write the equations for the mean 
(19) explicitly 

d(P> 
' = ( K o  + { G k  - -  1 ) < P )  

dt 

d<C> 

dt 

+ 2<C> + S O +½Gk~ (22a) 

-- <P) -- 2<C> (22b) 
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which are different than the conventional equations 
of reactor kinetics in the absence of  fluctuations: 

dX(t) 
- MX(t) + N (23) 

dt 

where M and N were defined in (6b). The stability 
of  (19) is determined by the characteristic values of  
A where as that of the deterministic system (23) 
depends on the characteristic values of  M. The 
stability of the mean is readily obtained from (22a) as 

K0* =--- K0 + ½Gk < 0. (24) 

If  this condition is satisfied the characteristic values 
of  A are negative, and <X(t)) decays exponentially as 

<X(t)) = era<X(0)) + (I -- em)<X) (25a) 

to its stationary value <X) determined by 
A<X) + A 0 = 0. In the case of  one-group of 
delayed neutrons the latter yields 

(P) = - ( S  O + ½Gks)/(Ko + ½G~), 

(C) = (P)/Z. (25b) 

In the absence of fluctuations, i.e. when G~s and Gk 
are zero, the mean power is So/( -Ko) .  The 
fluctuations in the reactivity tend to increase this 
value because Gk > 0 and K0 < 0. On the other 
hand the fluctuations in the external source, when 
they are correlated with the reactivity fluctuations, 
can influence the mean power in either direction 
depending on the sign of the cross-correlation G~8. 
A positive cross-correlation tends to increase <P), 
and vice versa. In the absence of correlations, the 
fluctuations in the external source does not affect 
the mean power. 

It is observed in (25) that <P) may become 
negative if So + (½)Ge~ < 0. This non-physical 
situation, we think, is a consequence of the 
assumption that S( t )  = So + s(t) is Gaussian, which 
is itself non-physical because S( t )  is always positive 
insofar as it represents a neutron source. 

The fact that the equation of the mean is different 
than that of the conventional reactor kinetics is at 
variance with the conclusions by Williams (1969), 
which imply A = M and A 0 = N in (19). The origin 
of this discrepancy lies in the approaches taken in 
solving differential equations with random coeffi- 
cients, and in the interpretation of the physical 
content of such equations, rather than in an error. 
The "mathematical" approach taken by Williams is 
applicable to stochastic differential equations essenti- 
ally of  the form 

6X = MX~t + 8[~X + 813 o 

where 813 is an n x n matrix and 6~ 0 an n x 1 
matrix whose elements are increments of  Wiener 
processes (Ariaratnam and Graefe, 1965 II). The 
"physical" approach used in this paper (also in 
Akcasu, 1961, and Krist and Poncelet, 1973) is 
applicable to stochastic differential equations of the 
form, in the present context, of 

= M X  + c tX + % 

where ~i~(t) are white Gaussian processes. The 
functions B~i(t) defined as the Wiener processes are 
related to ~i~.(t) by the stochastic integrals 

¢~.(t) = du ~i;(u). 

Although they may seem to be mathematically 
equivalent, these two differential equations "model" 
two different physical systems, as pointed out by 
Ariaratnam and Graefe (1965 lI), and lead to two 
different Fokker-Planck equations. In the first case 
the system receives a random impulse ineach interval 
8t whereas in the second case the system receives a 
continual random disturbance during its time 
evolution. Due to the pathological nature of  the 
member functions of  Wiener processes (for example, 
they are everywhere continuous but almost nowhere 
differentiable [Melsa and Sage, 1973]), the mathe- 
matical problem in the first case involves the theory 
of stochastic differential-integral calculus (Doob, 
1953). In physical problems however [3is(t) do not 
truly represent Wiener processes but rather 
d~ ~j( t )/dt = et j(  t ) are mathematical approximations 
to Gaussian processes with very short, but yet finite, 
correlation time. In this sense, /~t¢(t) are not so 
pathological in physical problems as to require a 
different differential-integral calculus (Gray and 
Caughey, 1965). Leibowitz (1962) pointed out that 
the difference between the Fokker-Planck equations 
in these two cases lies in the evaluation of A~ and B~j 
using (11), which involves the stochastic integral 

f+atdu tt(u)X(u). 

In the theory of  stochastic integration the expected 
value of  this integral is "defined" to be zero whereas 
in the physical approach it is not zero. 

It is concluded by Gray and Caughay (1965) that 
if ¢t(t) in the stochastic differential equation is 
"either an approximation to white noise, or a limit 
of the case where ¢t(t) approaches white noise, then 
the physical approach," as adapted in this paper, 
must be used. In this case one is allowed to use the 
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ordinary differential-integral calculus in solving 
differential equations with random coefficients 
(Melsa and Sage, 1973). 

(ii) The behavior of  the correlation matrix 

The discussion of  the correlation matrix 
~(t ,  to) -= (X(t)XT(to)> is simplified by writing (30) 
and (21) directly in terms of  the covariance matrix 

C(t, to) = ~(t ,  to) -- (X(t))(xT(to)). (26) 

The time dependence of the mean <X(t)> is obtained 
from (19). One finds 

dC(t, t) = CA T + AC + <B> (27) 
dt 

aC(t, to) = AC( t ,  to), t > to. (28) 
at 

In (27), <B> depends on C(t, to) as we see from (17c). 
To show this dependence explicitly, we introduce 

<B> = rc l~ ( t )  + to(t)  (29a) 

where 

The time-dependence of  the variance matrix C(t, t), 
and the covariance matrix C(t, to) for t > to and a 
fixed to can be investigated through (27) and (28). 
The time dependence of  <P(t)> in ro(t), which 
appears in (27) is to be obtained from the equation 
of the mean. 

The stability of C(t, t) can be investigated by 
converting (27) into a 3 x 3 system by introducing 
a new vector with components C11(t), C~(t) and 
C22(t), and considering the roots of the character- 

istic equation of  the resulting set of  equations: 

2(K 0 ÷ Gk -- 1) - - s  
1 
0 

24 
( K  o ÷ ½Gk -- 1 -- 2) - - s  

2 

0 
4 = 0 .  

- ( 2 4  + s )  

(30)  

One may apply, for example, Hurwitz determinants 
to obtain the conditions for stability. It is noted 
that the stability of C(t, t) is influenced only by the 
reactivity fluctuations (parametric noise). In the 
absence of  the reactivity fluctuations, viz. Gk = 0, 
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(30) reduces to K o < 0 which is the stability con- 
dition for the deterministic system. In the absence 
of  delayed neutrons (2 = 0 and Ko - 1 ~ / to ) ,  we 
obtain: 

K 0 + Ge < 0 (31) 

for the stability of C(t, t). In general, (30) imposes 
an upper bound on Gk beyond which C(t, t) diverges, 
Derivation an analytical expression for this upper 
bound in terms of  K 0 and 2 seems to be tedius, but 
straight forward, and will not be attempted here. 
When Gk is sufficiently small, C(t, t) approaches a 
stationary value C which is determined by 

CA T+ AC + rC~l + r o = o. (32) 

This equation may be considered as a generalization 
of the Einstein's relation (Lax, 1960) to parametric 
noise. The solution of (32) for C = {C~, C~c , Ccc} 
is found as 

C ~  = ½[Gk<P> 2 + 2Gks<P> ÷ Gs] 

1-1 r" K°* (Ko* + 1G k) (33a) 
x L K ~ - - 4  

C~e = Cc~ -- - -  2Ccc. (33b) 
4 - Ko* 

Equation (33a) demonstrates the manner in which 
the reactivity noise and the random fluctuations in 
the external source contribute to the variance of  the 
reactor power. In particular, the effect of the 
correlation between these two noise sources is 
displayed explicitly. The contribution of  the 
reactivity noise is proportional to the square of the 
mean power, whereas that of  the cross-correlation 
depends on the mean power linearly. The denomi- 
nator of (33a) is positive for the values of Gk for 
which a stationary state is possible (recall that 
/to* < 0 by virtue of (24)). 

(iii) Power spectral density 

In stationary state C(t, to) depends on (t - t o )  , 
and (28) reduces to 

dC0") 
AC(~-), ~- > 0. (34) 

d~- 

The values of COO for ~- < 0 is obtained from the 
relation C ( -  ~-) = C(O ~. The Laplace transform of 
(36) yields 

~-(s) = (s - A) - IC  (35) 

where C is given by (32). The power spectral density 
matrix G(w) is found from C(s) as G(w) = C(iw) + 
-~(- iw)  T 

G(w) = (iw - A)-IC + C(--iw -- AT) -x (36) 
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which can also be written as 

G(w) = (iw - A)-I<B>(-iw -- AT) -1 (37) 

if one eliminates C in (36) in favor of <B> using 
AC + CA T + <B> = 0 (Lax, 1966). However, <B> 
still depends on C (cf. 32). The power spectral 
density of the power fluctuations is Gn(w) which we 
denote by G~(w). From (37): 

G~(w) = [(iw -- Al1"-112 (Bll) (38) 

Using 

(Bll) = G~[C~ + (P)~] + 2G~s(P) q- G s 

= 2 Ir0*l [1 + ~ + I~0"1 ]c~l(~ + Ig0*l) 
(39) 

we obtain the normalized power spectral density as 

O~(~o) 

Ca~9 

= 2 I Ko*I Ig°*l + 2 + 1 I(iw - A ) ~ ' {  e. (40) 
Igo*l + Z 

In these expressions, ( s -  A)~1-1 is the source 
transfer function of a point reactor with a negative 
reactivity: 

(S __A)[ I -  1 _ Z ( s )  = s + ). 

1 -- Ko*Z(s) (s - wl)(s -- wz) 

(41) 
where Z(s) is the zero power transfer function, i.e. 
in the case of  one group model Z(s) -1 -- s[1 + I /  
(s + ~t)], and - w l  and -w2 are the roots of  the 
inhour equation 1 = Ko*Z(s). Thus, the power 
spectral density becomes 

G~(w) 21go,l  l go*l + 2 + 1 
C~9 I K0*t + Z 

I ~ + i w  12. (42a) 
× (wl + iw)(w2 + iw) 

It  is concluded that the fluctuations in the external 
source (additive noise) do not affect the shape of  
the power spectral density even when it is correlated 
with the reactivity variations. The effect o f  the 
reactivity noise manifests itself in Ko* = Ko + G~12, 
reducing the magnitude of the negative reactivity 
from IK01 to I ~  + Gk[2[. This reduction causes the 
corner frequencies w~ and w~ to shift towards lower 
frequencies x~hen the magnitude of  reactivity noise 
G~ is increased. The corner frequency w--- 
associated with the delayed neutrons is not affected. 
The dependence of the corner frequencies on the 
magnitude of  the input noise is a non-linear effect. 
These conclusions have been varified by analogue 
computer studies (Karasulu, 1975). 

The Fokker-Planck theory is not applicable when 
the reactivity and source variations are not white 
noise processes. In such cases, one constructs an 
approximate solution of  the point kinetic equations 
for an arbitrary reactivity insertion and external 
source (exact solutions are in general not available) 
and then investigates the statistical properties of the 
output when the inputs are random functions of 
time. The conventional linearized kinetics is the 
simplest method of approximation which removes 
the parametric noise completely. A more accurate 
method of  approximation is the logarithmic 
linearization procedure (Akcasu, et al., 1971). We 
postpone the application of this technique to noise 
analysis to a later paper. In the absence of  delayed 
neutrons, however, the point kinetic equations can 
be solved exactly for arbitrary reactivity input and 
external source. Hence, an exact noise theory can 
be developed in this special case as shown below. 

3. POINT-REACTOR M O D E L  W I T H O U T  
DELAYED NEUTRONS 

The kinetic equation for such a reactor is* 

de(t) 
= K(t)P(t)  + S(t) (43) 

dt 

which is readily solved ast 

P(t) = f o n d u  S ( t - - u ) e x p [ f o U d V K ( t - v ) l  (44a) 

0 
~ d u  O~fo e x p [ ~ S ( t - u )  

+ f o ~ d v K ( t -  v)lL=o. (44b) 

I f  S(t) and K(t) are correlated and both Gaussian, 
the second form proves to be more convenient 
[Dutr6, 1968]. If  they are independent, the first 
form is adequate, and one does not have to restrict 
S(t) to Ganssian processes for an exact analysis. To 
illustrate this point, we calculate the mean power 
(P(t)) first assuming S(t) and K(t) to be Gaussian. 
Using the following property of a Gaussian process 

* Here again we use the ordinary differential-integral 
calculus to solve (43) because k(t) always has a finite 
correlation time insofar as it represents reactivity 
variations in a reactor (see the discussions at the end of 
Section 2). 

t In (44) the initial value of P(t) does not appear 
because we have used 

Lim P(to) exp = 0 

which is justified in stationary systems. 
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~(t) (e.g. Tikhonov, 1959) 

(exp [~]) = exp {(~) + ½Var[~]} (45) 

we obtain (P(t)) from (44b) after a few steps as 

(P(t)) =f0°°duI so  +foUdV~ks(V)l 

× e x p { I K ° + l  f + U d v ~ l - [ ~ l ) ¢ k ~ ( v ) ] u }  \ 

(46) 

In this derivation, s(t) and k(t)  are not restricted to 
white noise processes. In this sense, (46) is an 
extention of  (25b) in which 4,k(r)= G~(r )  and 
eks(~) = Gks~(r) were assumed. Under the same 
conditions, (46) reduces to (25b) provided K0* = 
K o + GJ2 < 0, which is the condition for the 
stability of  the mean. 

I f  S(t) and K(t) are independent of  each other, 
and only K(t)is Gaussian, we use (44a) and reproduce 
(46) directly with eks = 0, by simply taking the 
ensemble average of  the integrand. Since S(t)  and 
K(t) are uncorrelated, (S(t - ul) and 
(exp [ ~  dvK(t - v)]) are evaluated separately. In 
what follows we shall use (44c) and assume S(t) and 
K(t) to be always independent of  each other. 

We can express (P(t)) in terms of  the power 
spectral density G~(w) of the reactivity noise as 

f 
o0 

(P(t)) = S O du 
do 

x exp {uKo + 1 (+OOd,,.G (w) "sin [- wu/2"]~ 

(47) 
which is more convenient if G~(w), rather than 
ek(~'), is specified (Williams, 1971). For  example, 
suppose the reactivity insertion is a narrow-band 
noise centered about a frequency w 0 so that 

ak(w) = 7rak2[(5(w + w0) + (5(w -- Wo) ] (48) 

where a~ z is the variance of  the process. Substitution 
of  (48) into (47) yields 

(P(t)) = So du 
do 
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Note that (P(t)) does not involve the power spectral 
density of  the source process, demonstrating the 
difference between the roles played by the parametric 
and additive noise processes. 

The autocorrelation function of  the power 
response is obtained from (44a): 

(P(t)P(t  + "r)) 

where 

ff f0 = du dv [SO~ + Ss(u - v + ~-)] 

× (exp [Q(t, u) + Q(t + 9, v)]) (50a) 

fo u Q(t, u) ~- dvK(t  - v) (50b) 

The following relations are needed to proceed 
further: 

(exp [Q(t, u) + Q(t + z, v)]) 

= exp {(Q(t, u)) + (Q(t + r,v)) 
+ ½[Vat [Q(t, u)] + Vat [Q(t + r, v)] + 

+ 2 Coy [Q(t, u), Q(t + ~, v)]}, (51) 

(Q(t, u)) = uK o, (52) 

f:fo -~- dx  Var [Q(t, u)] dyCk(x -- y) 

= dx[u --Ixl]¢k(x),  (53) 
d- -v ,  

Coy [a(t, u), Q(t + r, v)] 

f:f: = dx d y ~ k ( x - - y  +~'). (54) 

With these results, we can calculate (P(t)P(t + r)) -~ 
¢ ~ ( r )  for any arbitrary random source, and a 
Gaussian reactivity insertion with an arbitrary 
autocorrelation function. For example we substitute 
ek(r) = ak 2Cos wor and ¢8 = 0 in the case of  a 
narrow-band reactivity noise and a constant source. 
We shall present the results in the case of  white 
noise, i.e. $s(~') = Gs ~(z) and Sk(~-) = G~$(v) to 
compare with the results obtained in Section 2. In 

l o  2J-sin wou/27 2} this case, (53) and (54) become 

× exp u K  o + 2  ~ [. w - ~  "J " (49) V a r t Q ( t , u ) ]  = uGk 

Gk~0, v < ~- 
c o y  [Q(t, u), Q(t + ~, v)] = | t v H ( , ,  - I~1 - v) + (u - I~l)H(v + b'l - u)], u > b'l}~ < 0 

k0,  u < ~- 

2 

(55a) 

(55b) 
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Substituting (55) into (50a), performing the double 
integration over u and v, and substracting <P)~ one 
obtains after somewhat lengthy calculation 

1 
Cry O') = 2ILK0*[ + GJ2] 

So ~ 
× [(--~o,)Gk +Gs]e-IK°*l[  (56) 

In the derivation of  this result one has to assume 
K0 + Gk < 0 which is the condition for stability of  
the mean (cf. 31). The variance C~v(0) determined 
from (56) is identical to (33a), which was obtained 
through the Fokker-Planck equation, when the 
delayed neutrons are ignored, and G~s is set to zero 
in the latter. It is interesting to notice that (33a) was 
obtained with the assumption that S(t) is Gaussian, 
whereas (56) is free from this restriction. The 
power spectral density G~(w) obtained from (56) is 
also identical to (42a) obtained in the Fokker-Planck 
theory in the absence of delayed neutrons. 

4. CONCLUSIONS 

It is shown that the autocorrelation function and 
spectral density of  the power response of a point 
reactor can be determined exactly through the 
Fokker-Planck theory when the source and 
reactivity noise are white Gaussian processes, which 
may be correlated in general. The effect of the 
non-linearity on the shape of  the power spectral 
density is manifested a as shift towards lower 
frequencies in the comer frequencies when the 
magnitude of the reactivity is increased. 

An exact noise analysis when the reactivity noise 
is a non-white Gaussian process and independent of 
the source noise which is allowed to be an arbitrary 
random process, is still possible in the absence of 
delayed neutrons. We have demonstrated this by 
calculating explicitly the mean power for a narrow- 
band reactivity noise. 

In the presence of  delayed neutrons, there is no 
exact solution when the reactivity noise is non-white. 
An approximate noise analysis based on logarithmic 
linearization is currently being developed. 
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