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The model of a quasilinear molecule with a large amplitude bending mode is used to treat 

C302. The Hamiltonian operator, including the rotation-vibration interaction, is derived 

allowing only a single vibrational degree of freedom, namely, the ~7 mode corresponding to 

the bending at the central carbon atom. The C=C=O angle is constrained to be I8O0. With 

this model the rotational energy levels and, thus, the molecular constants can be computed for 

any Y, level once the Y, potential is specified. The I-doubling is included only for ?r states. 

The model contains three adjustable parameters: the rotational constant in the linear con- 

figuration and two terms in the potential function, and these are determined by fitting three 

experimental quantities: the rotational constants in and the separation between the ground 

and 2v,O states. The resulting Y? potential has a 30.56 cm-1 barrier at a = 0 with a minimum 

at CI = 11.04’, where 2a is the angular deviation from linearity. The model gives a good fit 

to the 2~~ Raman data and to the rotational and centrifugal distortion constants in all of the 

11~;~ states which have been analyzed. A similar analysis is applied with equal success to 

the states with ~1, the asymmetric C=C stretch mode at 1587 cm-l, simultaneously excited 

with a Y, mode. The potential in this case has a 56.58 cm-1 barrier at (I = 0 with a minimum 

at Q = 13.02”. 

I. INTRODUCTION 

Carbon suboxide is known to have a linear structure with a very low-frequent>- bend- 

ing mode ~7. Recent high-resolution Fourier transform (I) and tunable laser (2) spectra 

of &OS have provided molecular constants both for the ground state and for a number 
of v7 excited states as well. The purpose of this work is to determine a potential function 

for vi based on these new measurements and to demonstrate that the molecular con- 

stants, including centrifugal distortion, can be understood in terms of a very simple 
model. 

The nature of the potential function for the v7 mode of C&2 has been of considerable 

interest. The ab initio calculations by Sabin and Kim (3) suggest a harmonic potential 
with a small quartic term, which differs greatly from most of the potentials determined 
by fitting experimental data. These are based either on electron diffraction results (4, 5) 
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or infrared data (6-8) and usually indicate a highly anharmonic potential which is 
either flat-bottomed or has a barrier of lo-50 cm-’ at the linear configuration. The most 

reliable of these is the one determined by Carreira et al. (8), who fit their Raman and far 

infrared data with a quartic well having a small 14 cm+ quadratic barrier at the linear 
position. 

We have used the model of Hougen et al. (9) for a quasilinear molecule to calculate 

the energy levels in C302. This model is an extension of an earlier one by Thorson and 

Nakagawa (IO), who first treated the problem of the quasilinear molecule. In Section 

II we obtain a quantum-mechanically correct Hamiltonian operator, including rotation- 

vibration interaction, for a molecule in which only a single vibrational degree of freedom 

is allowed, namely, the bending at the central carbon atom. The primary motivation 

for using such a simple model is the fact that w7 (= 20 cm-l) is at least a factor 25 lower 

in frequency than any other fundamental vibration. 

In Section III we discuss the numerical solution of the Schrodinger equation to de- 

termine the energy levels. We use a simple form for the v7 potential function, similar to 

that of Carreira et al. (8), with two adjustable parameters. As a third adjustable parame- 
ter we use the rotational constant in the linear configuration. In Section IV we determine 

these parameters by fitting three experimental quantities: the rotational constants in 
and the separation between the ground and 2v+’ states. Despite its simplicity, the model 

gives a good fit to the Raman data and to the rotational and centrifugal distortion con- 

stants in all of the no+ states which have been analyzed. In the same section a similar 
analysis is applied to the hot-band shifts, rotational constants, and centrifugal dis- 

tortion constants in two vs + IZV$ states, where vs is a high-frequency stretching mode. 

We find that substantial changes in the VT potential occur when one of these stretching 

modes is excited. Thus the v-, potential appears to be very sensitive to the mean molecular 

positions. The anomalous positive signs of B’-B” observed in several parallel bands of 

the type v4 1 +- 0 are shown to arise from the large change in the effective VT potential. 

If similar changes in the VT potential occur in other stretching vibrations, then alternative 
assignments should be considered for some of the near ir bands studied by Mantz 

et al. (1). 

II. THEORY 

A. The Classical Kinetic Energy 

We consider a model of CzOz in which the C=C=O bonds are rigid while the C=C=C 

bond bending is allowed (see Fig. 1). The bending angle is 2a, and we choose a body- 

fixed coordinate system oriented so the yz-plane is the plane of the molecule with the 
z-axis parallel to the O-O line. The distance between the center of mass and the central 

carbon is R sinol, where 

R = X(mcrc + moro>/(3mc + 2mdl. 

The principal moments of inertia are 

I,, = IO co&, 

I,, = p sin%, (2) 

JZL: = IUU + I,, = 10 cos% + p sin%, 



I“IG. 1. Coordinate system used to describe the bending mode of C30,. 

where 

IO = 2morc2 + 2moro’, (3) 

P = IO - (3mc -I- 2mo)R2 

are the moments of inertia in the (Y = 0 and ar = ?r/2 configuration, respectively. 

The coordinate of the central carbon atom with respect to the center of mass is 

rl = R sintrf, 

the coordinates of the outer carbons are 

(4) 

r2,3 = (R - rc) sincuf f rc cosai, (5) 

while the coordinates of the oxygens are 

r4.6 = (R - ro) sinaQ f YO coscui. (6) 

The kinetic energy for a fixed center of mass and fised orientation of the body fixed 
axes is 

Tvi, = +mc(i12 + *$f is2) + +Zo(i~’ + is’). 

I:orming the time derivatives we find 

Tvjb = &$, 
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where 
I,, = I* COS~OL + I0 sin2a. 

The rotational kinetic energy is 

T,ot = $(Izzuz2 + Ig,p: + Izzw>), 

where, in terms of the Euler angles (c#B, 0, $) (II), 

(9) 

(10) 

(Jz = sine sir& + costs, 

% = sin6 cos+$ - sin$4, (11) 

w.2 = co@ + $, 

are the body-fixed components of the angular velocity. The total kinetic energy in the 
center of mass system is the sum of (8) and (10). 

B. The Hamiltonian Operator 

When the classical kinetic energy is a quadratic form in the generalized velocities, 

the quantum Hamiltonian operator is formed according to the following prescription. 
One writes 

T = $gik$@“, (12) 

where the Q’S are the generalized coordinates and gik = gjk(q) is the mass tensor. The 
quantum Hamiltonian operator is then (12) 

H = - (h2/2)(l/g’)(a/aqj)gigjk(a/d4k) + V(Q), (13) 

where V(q) is the potential energy. In this expression gjk is the inverse of the mass tensor 

and g is its determinant. The Hamiltonian (13) is self-adjoint with respect to the scalar 

product 

(4,x> = 1 +*xg’dql. - .dq,. (14) 

The form we use for the Hamiltonian differs from the commonly used Podolsky form, 
for which the factor gi is omitted in the scalar product (13). 

From the expressions (8) and (10) we find the nonzero elements of gjk are 

g LIO - - Ia,, 

gee = I,, + Iz, sin24, 

ge+ = g+8 = - I,, sin0 sin+ COSC#J, 

g++ = I,, sin? + I~,(cos2t!9 + sin26 cos2f$), 

g efi = gGe = rZf case, 

gee = I,,. 
The determinant is 

Forming (13) we can write 

g = I,J,,I,,I,, sin20. 

N ’ Hrot + Hvib. 

(15) 

(16) 

(17) 
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Here 

rr,,, = (J2/21,,1 + (J,2/21,,) + (J22/‘2I,z) (18) 

is the rotational Hamiltonian with J the total angular momentum operator, and 

is the bending mode vibrational Hamiltonian. 

C. The Eigenvalue Problem 

We seek a solution of the eigenvalue problem 

H\E = LY 

in the form 
(2()) 

(21) 

where @JI bf are the symmetric top eigenfunctions (14) 

Here 2 is the space-fixed polar axis and P is our body-fixed axis (Fig. 1). Our choice of 

I (instead of K) to represent the quantum number associated with the body-fixed asis 
projection of the total angular momentum corresponds to the usual convention for a 

quasilinear molecule. 

The rotational Hamiltonian (18) can be written 

I,, + I,, I,, - I,, 
H,,,, = ~I I (J2- J:)+-&J2+ (J+’ + J-2). (23) 

zz YY rz 
81 I 

rr 1/Y 

Here J_ and J+ are the raising and lowering operators 

with the properties (15) 

J &= J, zk iJ,, (24) 

J@JLV = A[(J f E)(J =f= 1 + 1)]~~~,/m~. (2.5) 

The symmetric top eigenfunctions are eigenfunctions of the rotational Hamiltonian 

for the case I,, = Iyyr i.e., when the last term vanishes. The corresponding energ!. 

eigenvalues are independent of M and the sign of 1. When I,, f I,, and the last term 
in (23) is present, its effect, as we see from (25), is to mix states with 1 values differing 
by two units. This removes the 111 degeneracy and leads to the well-known Z-type 

doubling effect (16). 
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We insert the Ansatz (21) in the eigenvalue problem (20) with H given by (17) and 

(23). Using the properties (22) and (25) of the rotational operators and the orthogonality 
of the @.JEM, we can write the eigenvalue problem in the form of a finite set of coupled 
equations for 41(a), I = - J, -J + 1, . . . , J. That is, 

where 
(Hl - E)4r + U(d[k(J, 04z+z + k(J, -04~1 = 0, (26) 

Im + I,, h212 
HZ = Hvib + 

41zA,, 
A2[J(J + 1) - Z’] - F> 

‘5z 
(27) 

and 

1 I,24 zz - 

U(a) = 
Ud,, 

h2, (28) 

K(J,I)=[(J-l-l)(J-1)(J+Z+l)(J+Z+2)1+. (29) 

Since in (26) only Z values which differ by 2 are coupled, the odd and even 1 values are 

uncoupled. Moreover, since Hz is even in I and k(J, -I) = k(J, Z - 2) we readily see 

that the symmetric and antisymmetric combinations of 41 and 4-r are separately coupled. 

For a quasilinear molecule the bending angle CY is always small. Using (2) we see that 

U(a) = CY~ and, therefore, the coupling terms in (26) will be small for such molecules. 

Neglecting the coupling terms gives a separate eigenvalue problem for each I, the energy 

eigenvalues being the eigenvalues of HI. Since Ht is even in 1, the spectra of Hi and H-1 
are identical ; the corresponding eigenvalues are degenerate. If, now, the coupling terms 

are included, the only eigenstates which are directly coupled are the symmetric and 
antisymmetric combinations for 1 = f 1. We therefore approximate the set of coupled 
equations (26) by neglecting the coupling terms for 111 # 1: 

For 111 = 1, we write 

(Hz - E)42 = 0, (Zj # 1. (30) 

41s = 3(41f 4-A (31) 

41s = $(41- cp_l>, 

and, neglecting the couplings with 1 = f 3, we get 

and 
(H, - E)41s + J(J + 1)Ub)41s = 0, (32) 

(H, - E)41a. - J(J + l)U(a)41, = 0. (33) 

The equations (30), (32), and (33) are separate eigenvalue problems for second-order 
differential operators, whose numerical solution will be discussed in the following 
section. The approximations involved in obtaining these equations amount to neglecting 
second-order quantities in the Z-doubling term in the rotational Hamiltonian (23). 

However, our approximation is not equivalent to first-order perturbation theory, since 
for 111 = 1 the coupling is treated exactly. For example, this more exact treatment 
predicts a difference in the centrifugal distortion terms associated with the symmetric 
and antisymmetric II/ = 1 states, which does not result from first-order perturbation 
theory. 
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III. NUMERICAL SOLUTKOX 

.4. Numerical Solution of the Eigenvalue Problem 

It will be convenient to make the change of independent variable, 

u = sin2a, (33) 

and to introduce the dimensionless parameter 

4 = P/I”, (34) 

and the dimensionless energy eigenvalue 

x = I&/2k2. (3Sj 

Then, using (27), (19) and the definitions (2) we can write the eigenvalue problems (30), 

(32), and (33) in the standard form (17) 

(dlctu)p(u) (4Vrfu) - q(u)+ + w4dJ = 0, (36) 

where 

(37) 

and 
r(u) = [(l - u + .$u)(u + .$ - &)I”, (W 

1 -uf&.4 

(1 -zt)(l -u$_p) 
[J(.7 + 1) - 121 

fuJ(J + 1) 

J(1 
-h j. (39) 

- 24) (1 - 26 + @f) 

In the last expression the + sign in front of the last term gives (32), the - sign gives 

(33). 
Equation (36) is a singular Sturm-Liouville differential equation on the interval 

0 < u < lP self-adjoint with respect to the scalar product. 

l (4, x> = i (124 r (zc)c$* (24)x (21). (40) 
0 

The endpoints of the interval are regular singular points of the differential equation, 

which implies that for an arbitrary value of X there will be exactly one solution, ++(A, u), 

which is regular at ti = 0, and one solution, &(.A, u), which is regular at u = 1. More 
precisely, assuming V(U) is regular in the interval 0 5 u 5 1, from (36) we see we can 

choose 

++(4 a) = u*“‘f+(x, u), f+(% 0) = 1, (41) 

an d 
+-(A, 24) = (1 - U)fl(J~l)j_(A, u), f-(X, 1) = 1, (42) 

with 
p = )[25(5 + 1) - 212 f i(/ + l)S,,,,,]‘. (13) 

Here f+(X, ZL) is analytic at u = 0 and &(A, u) is analytic at u = 1. The eigenvalues are 
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those discrete values of h for which (36) has solutions regular at both endpoints. Thus 
the eigenvalues are characterized by the requirement that the solutions ++(A, u) and 
&(X, u) be linearly dependent. This requirement in turn is fulfilled if and only if 

The quantity in square brackets is just the usual Wronskian and, since p(s) is always 

positive within the interval, the requirement (44) is equivalent to requiring that the 

Wronskian vanishes. The point of introducing A(x) is that it is independent of the point 

u, as is easily shown using the differential equation (36). 

Our method of numerical solution of the eigenvalue problem (36) is straightforward. 

We first pick an approximate value of the eigenvalue h. For this value of h we form 

4+((x, u) by integrating numerically from u = 0 in the +u direction; likewise we form 
&(h, u) by integrating from u = 1 in the -u direction. Our method of integration is to 

write (36) as a pair of coupled first-order equations for the dependent variables 4 and 

$ = p(u)&/&, and use the three-point Adams-Bashforth integration scheme (18). 

At an intermediate point we form 

A(X) = 4-#+ - 4+$-a (45) 

This procedure is repeated, using Newton’s method for finding the zeros of a function, 

until a value of X results for which A(x) vanishes. Although the convergence of this 

procedure is sensitive to the first guess, we find in general that six iterations give 

convergence to a part in 10’. 
As a check on the numerical accuracy of this procedure we have applied it to the special 

case 

p(u) = u(1 - u), q(u) = 0, r(u) = 1, (46) 

for which the eigenfunctions are the Legendre polynomials P,(l - 2%) with eigenvalues 

X = - n(n + 1). We found for n 5 8, the numerical eigenvalues are accurate to a part 

in 106, and we expect a corresponding accuracy in our solutions of (36). 
The numerical procedure described above is very efficient. Typical times for the de- 

termination of each eigenvalue on the DEC-10 computer are a few seconds. 

B. Choosing the Potential 

In order to determine the spectrum of energy eigenvalues we must specify the po- 
tential energy function V(ZJ) and the parameters 2: and 

(47) 

which is the rotational constant (in wavenumbers) for the linear configuration of the 
molecule. A simple form of the potential which allows a barrier in the linear configuration 
and a significant anharmonicity is given by 

V(u) = I/~24 + V’4u2 = 1/z sin% + VJ sin4a, (48) 

where T/Z and 1/d will be in wavenumbers. We have chosen to keep the parameter .$ 
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constrained at the value 

t = 0.2423, (49) 

which is determined from (34) and (3) using the atomic separations ~0 = 2.4544 A, 

YC = 1.2899 _& measured by electron diffraction (4, 5). The parameter Bo determined b!- 
the same method is 0.0725 cm-‘. This value, however, is not accurate enough, since we 

will be attempting to fit precise infrared measurements of the rotational constants. 

Thus we treat BO, T/z, and Va as the independent parameters with which we fit the 

experimental data. 

IV. COMPARISONS WITH EXPERIMENT~lL RESULTS 

_ 1. Ouly VT Modes Excited 

In this section we compare the theoretical and experimental results for those levels 

in which only the low-frequency bending mode vr is excited. The three adjustable 

parameters needed in the theoretical calculations can be determined by fitting three 

appropriate experimental quantities exactly or by fitting in a least-squares manner 

some larger set of data. We have chosen to fit exactly the B values in the ground and 
2~71’ states and the energy- separation between them reported in Ref. (1). Each of these 

quantities has been measured by at least one other independent experiment, and the 
accuracy with which they are known is very good compared with other possible data, 
e.g., Raman or far-infrared measurements. 

The parameters which result from the above fitting procedure are B. = 0.0735138 

f 8 X lo+ cn-‘, 1/‘2 = - 1666 f 17 cm-‘, and T/d = 22 702 f 120 cm-l. The un- 

certainties result primarily from the uncertainty- in the 2v+‘-state B-value. This potential 

energy function, which is very similar to the one determined by Carreira et al. (A’), has 

a 30.56 cm-’ barrier at the linear configuration with a minumim at (Y = 11.04”. Table 

I shows the comparisons between calculated and measured quantities for the various 

IZV,~ states which have been analyzed. The molecular constants for the ground and 2v+’ 
states are from Ref. (I), while those for the v~l and 2vT2 states are from Ref. (.?). The 

latter values differ slightly from those previously reported since the data have subse- 

quently been reanalyzed using lower-level combination differences only, and improved 
measurements for the P-branch lines associated with the 2vr2 states have been included. 

The analysis of the remaining states will be reported in a separate publication (19). 
The uncertainties in the computed quantities are in all cases much less than the esperi- 

mental uncertainties. 

The only systematic discrepancy between theory and experiment shown in Table I 

is that the predicted B” values for most states are slightly high. The biggest errors 

are roughly 1.3 X 1O-4 cm-’ for the v~l states and 2.0 X 1w4 cm-l for the 3vrr states, and 

in both cases they are substantially greater than the estimated experimental uncertainty 
of f3 X lO+ cm-‘. On the other hand, the Z-doubling constants QZ” are predicted quite 
well for both levels. 

We show in Fig. 2 a comparison between the computed and measured combination 
differences for the ground and 2 vr” states. The ground-state data show much less scatter 
since the!~ were obtained by averaging the results of 6 different bands having a common 
lower ltvel (I). The solid lines give the computed results. A least-squares fit to the ecpa- 
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Ic 
3 

Id 
y7 

2"; 

2"; 

3"; 

3"lC 
7 

3Jd 
7 

4"; 

18.24 
(18.5) 

la.24 
(18.5) 

45.46 0.076990 
(46.2) (0.076994)b 

60.7022a 
(60.7) 

79.61 
(80.3) 

98.53 
(97.9) 

98.53 
(97.9) 

144.17 
(144.7) 

0.076153 
(0.076012) 

0.076564 
(0.076450) 

0.076821 
(0.076616) 

0.077350 
(0.077145) 

0.077381 
(0.077374) 

(4.4 t 0.71) 4.11 
(4.38) 

7.3 
(6.0 t 1.1) 

5.9 
(6.2 + 0.5jb 

1.96 
(1.760 t 0.416)' 

5.6 
(2.1 f 3.0) 

2.8 
(0.82 k 0.6) 5.31 

(5.29) 
4.1 
(1.57 f 0.6) 

%anstrained to agree with experimental values in Ref. (1). 
b 
Average of e"en and add J series. 

%xn Ref. (1). 

tion 

AzF(J)/(4J + 2) = B, - 2D,(J + 3)” + 3H,(J + id4, 

using the computed ground-state combination differences yields D, = 3.747 X 1OV 

cm-l and H, = 5.94 X 1V3 cm-‘. These values are in excellent agreement with the 
results D, = 3.817 X 10-s cm-’ and H, = 6.019 X NV3 cm-‘, obtained by fitting the 

experimental data in a similar manner (1). 
Figure 2 provides convincing evidence that the basic assumption of our model, 

namely the neglect of all other vibrations, is valid. The agreement between observed and 

predicted D-terms for the ground state is actually better than we should expect. A 
linear molecule will generally have a D term of magnitude 4Bt?/~,2 = 2.5 X 10eg 
cm-l, where w, is the lowest symmetric stretching frequency. Assuming that centrifugal 
distortion effects are additive, then the predicted D term should be approximately 
2.5 X lwg cm-* low. This discrepancy has the same sign, but it is 3-4 times larger than 

the observed discrepancy of 0.7 X lo-9 cm-‘. 
Table II shows the lowest 6 Raman transitions reported by Carreira et al. (8) com- 

pared with our predicted results. The agreement is very good, especially considering 
the fact that our fitting procedure involves only the first transition. We have made no 
attempt to fit the far-infrared data by the same authors. The highly anharmonic po- 
tential leads to a rather simple Raman spectrum, and the assignments of at least the 
first few lines appear to be straightforward. In contrast, the far infrared spectrum is 
much more compIex, and the assignments of even the first few features are somewhat 



C302 MOLECULAR CONSTANTS AND ~7 POTENTIAL 

I I I I I I 

0075eC - 0.0763 

t 00756- 
-- 
‘E I 
0 

xi 
< 
x 
1 
2 

=s 0.0754 - 
4 

- 0.0761 

- a0759 

0.0752 - 

I I I I I I> 

0 2000 4000 6000 

tJ+> 1’ z- 

FIG. 2. Comparison between experimental and theoretical combination differences for the ground and 

ZV+’ state of C302. The data points are from Ref. (I), while the solid curves are computed using the 

model described in the text. 

questionable. In fact, Duckett, Mills, and Robiette (20) have recently- reassigned the 

far-infrared spectra from Ref. (a), and their values for the v7 energy levels, which are 

shown in Table I, are in good agreement with our predictions. 

Table II. Comparison between observed and calculated Raman frequencies 

for C302. The experimental data are from Ref. (8). 

-__ 
Transition 

Observed (m-l) Calculated (cm-l) 
_ 

2O + o" 61.0 611.70a 

3l + l1 79.4 80.29 

4O + P 84.0 84.10 

42 c 22 91.5 91.32 

5lc 31 94.9 95.74 

53 + 33 101.0 100.53 

'Constrained to agree with experiment. 
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Table III. Calculated band origins and molecular cO”StantS (vac.cm -3 for the 

V4 1 + 0 transitions of c302. Experimental values are in parenttees. 

The estimated experimental uncertainties are +o.003cm~10n band arigine, 

+5 x 10-6,x?-' on m, and 3 - 6 x 10 -9 -I On BO. cm 

Y4 + vy c v; 

Y4 + 2,; t 2"; 

Y4 + 2"; + 2v; 

Y 
4 
+ 3"3 + 3"3 

7 7 

Ic 
"4 + 3v7 + 3,;= 

Id 
u4 + 3v, t 3v;d 

Y4 + 4v; + 4v; 

1580.902 
(1580.896) 

1580.902 
(1580.900) 

1575.348 
(1575.093)b 

1583.4300= 

1570.012 
(1569.503)b 

1575.331 
(1575.996) 

1575.331 

(1575.996) 

1572.99" 
(1572.976) 

6.432a 

4.13 
(4.46) 

5.15 
(5.35) 

4.11 
(3.96)b 

-o.119h 

3.80 
(4.14)h 

1.32 
(1.26) 

1.90 

(1.81) 

".,I 
(0.25) 

1.89 
(1.86) 

2.04 
(2.0) 1.02 

(0.89) 
2.76 

(1.4) 

L. 1. 
(0.263) 

1.64 
(0.94)b 

C9) 

1.4 
(0.28) 

0.58 
(0.55) 

-0.58 
(-0.002) 

%onstrained to ag*ee with experiment. 
b 

Average of even and odd J series. 

B. Stretching Modes Excited Simultaneously with vv 

The model used to treat the nv+ states should be equally valid for states of the type 
v, f nvT1, where v, is a high-frequency stretching vibration. The effect of the high- 

frequency mode will be to produce small changes in the parameters Bo, 112, and T/d. The 

most extensive measurements on states of this type have been done on the v4 1 + 0 band 
and the various VT hot bands associated with it. This vibration is the asymmetric C=C 
stretching mode at about 1587 cm-l. Since the energies and B values of the ground and 

2~~0 states are known, measurements of the AB values for the transitions v4 +- 00 and 
v4 + 2vr” + 2vT” along with a measurement of the shift of the 2v+’ hot band allow us to 

use exactly the same fitting procedure as in the previous section. 
The parameters which result for the v1 state are Bo = 0.0733140 cm-‘, 1/z = - 2228 

cm-‘, and Vh = 21 934 cm-‘. The potential has a 56.58 cm-’ barrier at a! = 0 with a 
minimum at a! = 13.02”. The effect of exciting v4 is thus to increase the barrier by nearly 

a factor of two and to shift the minimum by 2”. The quartic term in the potential 
changes only slightly. 

Table III shows the comparisons between calculated and measured quantities for 
nine v4 + nvTz states. The data for the first five of these are obtained by using a least- 
squares fit to the line positions reported in Ref. (Z), keeping the lower-level constants 
constrained to be those given by the experimental numbers in Table I. A different 
assignment for the 2v+ band origin has been used. The reason for choosing this new 
assignment and the analysis for the remaining states will be reported later (19). The 
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agreement is again remarkably good, the predicted band origins and AB values agreeing 

with the measured quantities to within 1~0.7 cm-’ and zt 3 X 1OP cm-‘, respectively. 

Of the states studied by Mantz et al. (1) the only one for which there are sufficient data 

to use the same fitting method to determine the ~7 potential is ~2 + ~3. The parameters 
we find for this state are B. = 0.0731114 cm-‘, 1/z = - 1631 cm-l, and Vq = 24 294 

cm-‘, The potential has a 27.36 cm-’ barrier with a minimum at 10.56”. The barrier 

is slightly lower than it is in the ground state and the quartic term is larger. This means 

that the hot bands of v2 + ~3 will all be shifted to higher frequency in contrast to the 
lower-frequency shifts observed for ~4. The only comparisons between theory and esperi- 

ment which we can make for the v2 + ~3 states are for the AD terms. The predicted AD 
value for the Q f us +- 0 transition is in excellent agreement with experiment, while 

that for the v2 + ~3 + 2~7~ +-- 0 has the right sign but is nearly a factor of 30 smaller in 

magnitude than the experimental value. 

Figure 3 shows the v7 potential and energy levels for the ground, v+ and y:! + ~3 

states. The changes in the energy levels in this figure can be associated directly with the 
linear to bent transitions discussed by Thorson and Nakagawa for molecules of this 
t!,pe. Comparing the energy levels in Fig. 3 with those in the correlation diagram in 

Fig. 2 of Ref. (fO), we see that the VA state corresponds to a more bent configuration, 
the v:! + y3 state to a more linear configuration, and the ground state is intermediate. 

In linear molecules the excitation of a stretching vibration usually leads to AB 

values which are negative (21). The apparentl!- anomalous signs of AB for most of the 
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transitions in Table III arise entirely from the change in the VT potential. The direct 
change in the rotational constant produced by the v4 excitation is given by ABo = - 1.998 

X lo-’ cm+, which has the usual negative sign. The experimental AB values result 

from the combined effects of the change in Bo, which gives a negative contribution, and 

the change in the VT potential, which gives a positive contribution. In every case except 

2v70 the positive contribution dominates. 

The upper-state levels of several near-infrared bands of GOa have been tentatively 
assigned by Mantz et al. (1) on the basis of the observed AB values. If these bands have 

anomalous AB values, as is the case for ~4, then several different assignments appear 
more likely. For example, the upper state of the band at 3774.462 cm-‘, assigned as 

v4 + 4v$, could be VI+ ~4. The upper state of the band at 4471.8375 cm-‘, assigned 

as va + 41~60, could be VI+ VS. Finally, the upper state of the weak band at 3830.6023 
cm-‘, assigned as vq + 2vb” + 2v$, could be VI+ v4 + ZVP. After a few more of the corre- 
sponding hot bands have been analyzed in this spectral region, the consistency of the 

upper-state assignments can be readily checked by applying the same fitting procedure 
we have used for the v4 band. 
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